JP4039063B2 - Composition analysis method of glass cloth base resin substrate - Google Patents

Composition analysis method of glass cloth base resin substrate Download PDF

Info

Publication number
JP4039063B2
JP4039063B2 JP2002006823A JP2002006823A JP4039063B2 JP 4039063 B2 JP4039063 B2 JP 4039063B2 JP 2002006823 A JP2002006823 A JP 2002006823A JP 2002006823 A JP2002006823 A JP 2002006823A JP 4039063 B2 JP4039063 B2 JP 4039063B2
Authority
JP
Japan
Prior art keywords
flame retardant
amount
analysis
glass cloth
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002006823A
Other languages
Japanese (ja)
Other versions
JP2003207503A (en
Inventor
直彦 佐渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002006823A priority Critical patent/JP4039063B2/en
Publication of JP2003207503A publication Critical patent/JP2003207503A/en
Application granted granted Critical
Publication of JP4039063B2 publication Critical patent/JP4039063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、多層プリント配線板等に用いられる、ガラス繊維布にエポキシ樹脂等を含浸させたガラス布基材樹脂プリプレグの組成を分析する方法、特にハロゲンフリー難燃化したガラス布基材樹脂基板の組成を分析する方法に関する。
【0002】
【従来の技術】
多層プリント配線板に用いられるガラス布基材樹脂プリプレグは、成形する前のガラス繊維(ガラスタロス)に例えばエポキシ樹脂を含浸させたものであり、日本工業規格JISC6522にガラス布基材エポキシ樹脂として適用範囲などが規定されている。そのプリプレグの規定には、基材及び結合剤、特性、成形後の厚さ、樹脂流れなどについてがある。特にプリプレグの特性レベル(4F)は、「成形後、絶縁抵抗5×1011Ω以上の絶縁特性をもつもの」及び「耐熱性をもつもの」とされている。
【0003】
一方、電子機器のプリント配線板に使用される基板材料としては、主として上記ガラスエポキシ材、紙フェノール材、ポリイミド材などの種類があり、いずれの基板材料とも安全性の観点から火災防止を目的に、難燃グレードの規格(UL94V−0)が設けられている。
一般に難燃化は難燃成分を樹脂に添加または反応させて使用される。従来から優れた難燃効果をもち基板材料特性を確保しやすいものとして、ハロゲン系の臭素系難燃剤が多く用いられてきた。このハロゲン系の難燃性のメカニズムは主に燃焼の連鎖反応を停止させ、ラジカル反応抑制要素として働くと言われている。ところが、塩素や臭素のようなハロゲン化合物を含む難燃剤は、燃焼条件によっては有害なハロゲン化ジベンゾダイオキシン類が生成する可能性があり問題視されるようになってきた。
〔樹脂基板材料のガラス基材エポキシ樹脂プリプレグについて〕
これに伴い電子機器メーカーなどではプリント基板の開発において、絶縁材料中難燃化剤の環境問題への対策として「ハロゲンフリー樹脂基板」の開発が盛んに行なわれている。
【0004】
一般に固化したシート状のプリプレグ材料としては、ガラスクロス、エポキシ樹脂,難燃剤,有機溶剤,硬化剤,その他の薬剤が用いられる。
エポキシ樹脂プリプレグの製法の概要は、図4の説明図に示したとおりである。
ガラスクロス基材11に、硬化剤、難燃剤等を入れたエポキシ樹脂の結合剤12を含浸し、真空中で加圧加熱処理して、シート状のガラス布基材エポキシ樹脂プリプレグ13が製造される。含浸方法は、浸漬方法やロール法などによって行なわれる。この時のシートの厚さは製品の目的によって異なるが、100〜200μm レベルのものが製造されることが多い。この後、銅板が接着されてガラス布基材樹脂基板が完成する.
従来用いられてきたハロゲン系難燃剤以外での難燃化の手法としては、窒素系難燃剤,りん系難燃剤または金属水酸化物を用いる方法がある。
【0005】
特にガラス布基材樹脂基板用の金属水酸化物としては、水酸化アルミニウムが用いられることが多い。その場合の難燃性のメカニズムは、熱分解で生じた水分による冷却効果により酸化反応を抑制する働きにより、基板に要求される難燃性の特性が得られると言われ、重要視されている。
【0006】
【発明が解決しようとする課題】
多層プリント配線板用基板の安定した難燃性等の特性を得るには、製造工程におけるガラス布基材エポキシ樹脂プリプレグ材料に加えられる水酸化アルミニウムなどの難燃剤等の組成管理が必要かつ重要であり、その組成を迅速に精度よく定量分析して評価する方法を確立することが求められる。
【0007】
一般に樹脂基板の組成分析方法には決まった方法がなく、プリプレグ基材での組成分析を実施するには、例えば日本分析化学会編の分析化学便覧[改訂5 版]に述べられている各無機元素の定性分析と定量分析の試料の前処理と分析法の適用を検討してからになる。さらに有機系材料の分析は別途方法および適用法の検討が必要になる。
【0008】
しかしながら上記の方法は、分析試料の各元素分析用の処理などを示唆しているに過ぎず、実施に当たっても分析方法の適用の検討に長い時間を要することになる。
また、試料に対する分析結果は、試料全体の平均組成のみを表すことになり、むしろ樹脂基板プリプレグの難燃性に直接係わる比較的表面層の深さ方向数十μm の厚さの組成情報が得られないという問題があるので、上記の方法をそのまま適用することはできない。
【0009】
組成分析方法として要求される課題は、例えば
ガラス布基板エポキシ樹脂プリプレグの深さ方向数十μm の厚さの組成情報や、表と裏側表面層の「無機成分の種類と量」、「難燃剤の成分と量」、「水酸化アルミニウムの量」と「試料全体の有機物量」の組成の究明等であり、それらの情報を求めることができる分析方法を見い出し、確立することが要求されている。
【0010】
プリプレグ試料の深さ方向数十μm 領域の組成分析法としては、例えば蛍光X線分析方法がある。しかし蛍光X線分析方法は、通常は元素分析が主な方法であって、ガラスクロス中にアルミナ(A1203 )と難燃化剤の水酸化アルミニウム〔Al(OH)3 〕とが共存するような試料の場合、それぞれの分離定量分析はできない。この点でも新たな手法を導き出さなければならない。
【0011】
この発明は以上の点に鑑みてなされその目的は、ガラス布基材樹脂基板の組成評価のため、先に記したような情報の得られる成分組成分析方法を提供することにある.
【0012】
【課題を解決するための手段】
〔プリプレグの無機成分の組成分析について〕
プリプレグの組成分析は、プリプレグの組成変動を把握し難燃剤の添加量の最適化をはかるうえで重要である。ガラス布基材エポキシ樹脂プリプレグの組成分析方法に要求される具体的な課題は、
▲1▼プリプレグ試料の深さ方向数十μm の厚さの無機成分の組成
▲2▼シート状試料の表と裏側表面層の無機成分の組成
▲3▼難燃剤の成分と量(水酸化アルミニウム,リン系材料)
▲4▼試料全体の有機物量の組成(有機物量および▲1▼〜▲3▼項を求めるための補正値)
等を求めて評価することである。
【0013】
このためには、樹脂基板材料のガラス布基材エポキシ樹脂プリプレグの無機元素の定量分析と次項で述べる有機物量の定量分析を行うことが必要である。
上記の課題を達成するため本発明は、ガラス布基材にエポキシ樹脂を含浸したエポキシ樹脂プリプレグに無機系または有機系の難燃剤が含まれる樹脂基板の組成分析において、プリプレグ基板表面層の無機成分の種類と量、難燃剤の成分と量およびプリプレグ基板中の有機物量を求めるものとする。
【0014】
無機成分の種類と量、難燃剤の成分と量およびプリプレグ基板中の有機物量を求めれば、例えば製造管理に有効である。
プリプレグ基板表面層の無機成分の種類と量の分析においては、蛍光X線法による無機元素の定性分析と、基準材料のX線との相対強度法による定量分析をおこなう。
【0015】
所定の試料サイズのものを非破壊で、プリプレグ基板である板状の試料表面層を分析領域とし蛍光X線法による無機元素の定性分析と相対強度法による定量分析を行えば、試料の深さ方向数十μm の厚さの無機成分の種類と量が求められる。
有機物量分の補正は、強熱減量測定による。
【0016】
プリプレグ基材の有機物量はエポキシ樹脂と有機系難燃剤の有機物分が主体であってその合計量の分析においては、所定の試料サイズのプリプレグ基材の強熱減量分から概ね推量できる。厳密には有機系難燃剤に由来する無機物部分、例えばリンは加熱後に五酸化リン(P205)の化合物形態になるが、その部分は後記の方法で分離できる。
【0017】
含まれる難燃剤が有機リン系であるときは、蛍光X線法によるリンの定量値から五酸化リンに換算し、更にその量から有機リン系難燃剤量を求める。
有機リン系難燃剤の分析においては、蛍光X線法によるリンの定量値から五酸化リンに換算して求め、更にその量から分子量を勘案して有機リン系難燃剤量を求めることができる。
【0018】
含まれる無機系難燃剤が水酸化アルミニウムであるときは、所定のサイズの試料の全重量から、同じ大きさのガラス布基材重量、強熱減量と蛍光X線法による五酸化リンとの合計量を減じて求めた酸化アルミニウム量を求め、それから換算して水酸化アルミニウム量を求める。
この方法にすることによって、ガラス布(ガラスクロス)中に含まれるアルミナと製造工程で加えられる難燃剤の水酸化アルミニウムの分離ができ定量分析ができるようになる。
【0020】
【発明の実施の形態】
以下に、本発明の実施形態について述べる。
今回対象にした基板材料としては、エポキシ樹脂含浸ガラス布材である.難燃剤は、金属水酸化物の水酸化アルミニウムとリン系難燃剤(例;リン酸トリエチルなど)が用いられている。特に前者の水酸化アルミニウムの難燃性は、前にも述べたように熱分解で生じた水分による冷却効果により酸化反応を抑制する働きを持っており基板に要求される難燃性の特性が得られるといわれている.
図1は、本発明にかかるプリプレグ組成分析の手順を示す流れ図である。
【0021】
図1において、プリプレグ13は蛍光X線分析法の適用によって無機成分の種類と量14が求められ、次いで強熱減量測定から求められた有機物量15をもとに、無機成分量14への補正16が行なわれてプリプレグ試料の正確な無機成分量が求められる。以下詳細に説明する。
まず、無機成分の組成分析は、プリプレグ試料のサイズを一定(この例では30×30mm)に規定して蛍光X線分析法をできるようにした。蛍光X線分析法は、X線管球から発生する1 次X線を分析試料に照射し、分析試料より発生する試料の構成元素固有のX線の波長の違いから定性分析をおこない、その強度と標準試料の強度との相対比較によって定量分析[wt%] をおこなうものである。
【0022】
図2は、本発明に係わる無機成分の種類と量を求めるための蛍光X線分析装置の構成図であり、蛍光X線分析装置の水平光学系の概略が示されている。
図2において、X線管球21から発生する1次X線22を分析試料23に照射する.この分析試料23は、プリプレグで試料サイズを規定したものである。本法では、30×30mmにしている。蛍光X線24は、分析試料23より発生する試料の構成元素固有のものであり、その波長の違いから定性分析ができ、その強度を標準試料の強度と比較することによって定量分析ができる。ソーラースリット25は、蛍光X線24を分光結晶26に導くために受光し整流するものである。蛍光X線24は分光結晶26で分光され、各元素の特性X線が検出器27で検出される。その後は電気信号に変換されて計測器・データ処理装置28で分析試料23の定性分析スペクトルの解析と定量分析値が得られる。
【0023】
本試料の蛍光X線による定性分析(対象元素11Na〜92U )では、15の元素を検出した。また、検出元素の定量分析では、理論から求めた蛍光X線強度と実測した強度とを対比して元素の含有率を決める[Fundamental Parameter :FP法]を用いて定量分析した。
定量分析した成分は、Na2O,MgO ,A12O3 ,SiO2,P2O5,SO3 ,Cl,K2O ,CaO ,TiO2,MnO ・Fe2O3 ,Br,SrO ,ZrO2の15成分である。
【0024】
図3は、蛍光X線分析方法でのプリプレグ試料表面からの深さ方向の分析領域を明らかにするためにおこなった実験の結果を示す特性図である。
プリプレグ試料上に膜厚の分っているポリエステル膜を順次重ねていき、プリプレグ試料から発生する蛍光X線強度をもとに求めた試料を構成する酸化アルミニウム(Al2O3) と二酸化ケイ素(SiO2)の量[wt%] と、有機膜層の厚さとの関係を求めた。
【0025】
ポリエステル膜の下に位置する試料からの(Al2O3) と(SiO2)の蛍光X線強度の信号が限りなく0に近くなるポリエステル膜の厚さが蛍光X線の発生領域であり、分析領域と推定される。本実験の結果から、深さ方向の分析領域は約60μm であると考えられる。したがってプリプレグ試料の表と裏側の蛍光X線分析結果は、表面層約60μm の平均組成が求められたことになる。
〔有機物量を表す強熱減量[wt%] と測定方法について〕
次に有機物量として、強熱減量測定値から求めた。
【0026】
分析試料のガラス布基板エポキシ樹脂プリプレグの有機物には、エポキシ樹脂分と有機リン系難燃剤の有機分などが含まれる。この有機物全量を強熱減量測定によって求めることは無機物の組成比を分析するうえでも必要かつ重要である。強熱減量は、600℃2時間加熱後の減量である。この測定値には、試料中の樹脂分,難燃剤・リン系難燃剤(例:リン酸エステル)の有機分の他に、水酸化アルミニウムからの水分などの燃焼減量分と、酸化する成分が存在する時はその増量分が関係するる。しかし、それらは本試料では少ないと言える。以上のことからこの強熱減量は、ガラス布基板エポキシ樹脂プリプレグ試料での目的とする有機物が主体となる測定値である。
【0027】
<強熱減量測定方法・手順>
強熱減量[wt%] の測定はつぎの手順による。
▲1▼予め乾燥(105℃2時間)したプリプレグ試料(サイズ30×30mm)1 枚を用いる。
▲2▼空焼き等準備した磁器製坩堝の風袋を測って置き、▲1▼項試料の重量を加えて測定する
▲3▼300〜400℃程度に設定した過熱器具で、1 次加熱を15分間行なう
▲4▼600℃に設定した電気炉で、2 次加熱を120分間行なう(マッフル炉が適している)
▲5▼室温まで冷却後、重量減量を測定する(冷却保管はデシケーターを使用する)
〔難燃剤:リン系難燃剤のリンの五酸化リン(P2O5)量の算出方法について〕
次に難燃剤の成分と量(1) 17として、リン系難燃剤のリンの五酸化リン(P2O5)換算量[g] が、無機成分の種類と量14とプリプレグ13の試料重量から求められる。
【0028】
ガラス布基板エポキシ樹脂プリプレグの有機系難燃剤は、有機リン系であって(例;リン酸トリエチル:分子式PO(OC2H5)3など)が用いられている。有機リン系難燃剤の有機物分は強熱減量測定の際にその減量分に含まれる。
リンについては例えば、リン酸トリエチルは強熱によって次のように反応すると考えられ、結合材料の配合組成から計算したP2O5値と蛍光X線分析値とは近似した結果を得ている。
【0029】

Figure 0004039063
以上の計算結果から、有機リン系難燃剤のリンP2O5とし、蛍光X線法によるリンの定量値から五酸化リン(P2O5)に換算して求める方法の適用は妥当であると考えられる。
〔難燃剤:水酸化アルミニウム量の算出方法について〕
最後に、難燃剤の成分と量(2) 18として、水酸化アルミニウム量[g] が、前記の測定データのプリプレグ試料量、有機物量、強熱減量、プリプレグ試料サイズのガラスクロス重量、リン系難燃剤の(P2O5)重量の値を用いて算出できる。
【0030】
はじめに、ガラス布基板エポキシ樹脂プリプレグの無機系難燃剤は、水酸化アルミニウムであって水酸化物由来のH2O 分は強熱減量測定によってその値に含まれるようになる。例えば、水酸化アルミニウムは強熱によって次のように反応するので、蛍光X線分析ではアルミナ(A12O3) として求めている。
2Al(OH)3→ Al2O3 +3H2O (↑)
<水酸化アルミニウム〔Al(OH)3 〕定量分析方法>
プリプレグ試料の水酸化アルミニウム量[g] は、前に述べた各測定データのプリプレグ試料量、有機物量(強熱減量)、プリプレグ試料サイズのガラスクロス重量、リン系難燃剤の(P2O5)重量の値を用いて算出する。詳しくは次の算出手順によって行なう。
【0031】
Sg=GLg +Igg +Ag+P g (式1)
ここで、
Sg:プリプレグ試料の全重量〔サイズ30×30mmの[g] 〕
GLg :ガラスクロスの重量〔サイズ30×30mmの[g] 〕
Igg :プリプレグ試料の強熱減量〔サイズ30×30mmの[g] 〕
Ag:プリプレグ中アルミニウム(Al)のAl2O3 相当値、重量〔サイズ30×mmの[g] 〕
Pg:プリプレグ試料の蛍光X線によるP2O5の分析値、〔サイズ30×30mmの[g] 〕
である。従って、
Ag=Sg−Igg −GLg −P g (式2)
である。なお、(式2)において、ガラス布に由来するAl2O3 は、GLg に含まれて引かれている。
【0032】
これからAl(OH)3 は、
Al(OH)3[g]=Ag×〔2Al(OH)3/ Al2O3
Al(OH)3[wt%]=〔Al(OH)3[g]/ Sg〕×100
と求められる。
2Al(OH)3/ Al203は、Al(OH)3 とAl203 との換算係数[1.5294]であるから、
Al(OH)3[wt%]=〔1.5294Ag/ Sg〕×100
となる。
〔分析精度の検討〕
プリプレグの無機成分組成分析は、蛍光X線法によるNa20,MgO ,Al2O3 ,SiO2,P2O5,SO3 ,Cl,K2O ,CaO ,TiO2,MnO ,Fe2O3 ,Br,SrO ,ZrO2の15成分の定量分析と難燃剤の水酸化アルミニウム[Al(OH)3] の算出法を経て定量分析が可能になった。
【0033】
したがって、プリプレグ試料の蛍光X線法による無機成分の組成分析についての繰り返し分析精度の検討を行なった。
本試料のガラスクロスおよび難燃剤の成分であって、主要成分であるAl2O3 ,SiO2,P2O5,CaO についての検討結果を表1 に示す。
【0034】
【表1】
Figure 0004039063
いずれの成分も変動係数が1% 以下で良好であることが分る。
なお別途測定する強熱減量測定値と、水酸化アルミニウム量の算出値は1 試料の分析値であるので、繰り返し分析の場合は30×30mmロサイズの各分析試料の組成に依存し組成変動の評価になり、精度の評価にはならない。
〔実試料の分析例:1 〕
樹脂基板材料であるプリプレグ試料(サイズ30×30mm)a、b、c三試料の表裏の組成分析を、図1 の分析フローにより、前記の手法を適用しておこなった。求められた強熱減量及び無機成分の結果の例を表2に示す。
【0035】
【表2】
Figure 0004039063
プリプレグ試料の有機物量の強熱減量(Ig.loss%表示),Al2O3 およびP2O5を含む15成分の組成を明らかにした。
さらにプリプレグ試料の表および裏側で組成が良く合っていることがわかる。各試料では主要成分のAl2O3 ,SiO2,P2O5,CaO の成分で変化が小さく、安定した組成になっていることが分る。
【0036】
なお、先の(式1)におけるSgは、約0.23g であり、GLg は約0.091g であった。参考のため表3に、ガラス布の分析値を示した。
【0037】
【表3】
Figure 0004039063
従ってガラス布に由来するP2O5は、0.091g ×0.09%=0.08mgであり、表2のP2O5量0.23g ×8%=18.4mgの0.4% に相当する。すなわち表2のP2O5は略全部が難燃材に由来すると考えて良く、前に記した換算式を用いて燐系の難燃材を算出できる。
【0038】
一方、表2のAl2O3 量は、ガラス布の分析値よりかなり大きく、Al系の難燃材が含まれていたことがわかる。そしてこの中のガラス布に由来するAl2O3 は無視できない量と考えられるが、これだけから両者を分離することはできない。
このように、従来の湿式分析方法では3日以上を要した組成分析が、半日以下で可能になっただけでなく、試料数が増えても所要時間は殆ど変わらない利点がある。
〔実試料の分析例:2 〕
次に前記(式2)から難燃剤の水酸化アルミニウム〔Al(OH)3 〕を求めた。その結果を表4に示す。強熱減量(Ig.loss%表示)およびAl2O3 量も記した。
【0039】
【表4】
Figure 0004039063
プリプレグ試料の水酸化アルミニウム〔Al(OH)3 〕が、21〜26wt% のレベルにあり、変化も小さく安定した組成になっており、評価ができることが分った。
【0040】
本発明の組成分析方法を適用すれば、容易にガラス布を含む基板の材料組成を管理できるようになり、要求特性を満足するようにプリプレグを製造できる。
【0041】
【発明の効果】
以上説明したように本発明によれば、ガラス布基材にエポキシ樹脂を含浸したエポキシ樹脂プリプレグに無機系または有機系の難燃剤が含まれる樹脂基板の組成分析において、プリプレグ基板表面層の無機成分の種類と量、難燃剤の成分と量およびプリプレグ基板中の有機物量を、例えば 無機成分の種類と量は蛍光X線法による定性分析と、定量分析により、有機物量は強熱減量測定により決定できる。
【0042】
プリプレグ基材の難燃剤が有機リン系難燃剤の場合や、水酸化アルミニウムの場合にも、ガラスクロス基剤と共存するそれらの定量分析ができることを示した。
本発明の樹脂基板材料の分析方法により、ガラス布基板エポキシ樹脂プリプレグの無機系難燃性材料などの組成評価が短時間でできるようになり、製造管理等に有効な極めて実用的な分析方法が得られたことになる。
【図面の簡単な説明】
【図1】この発明にかかるガラス布基材エポキシ樹脂プリプレグ試料の組成分析方法のフロー図
【図2】蛍光X線分析装置の構成図
【図3】試料表面上の有機層厚さと分析値との関係を示す特性図
【図4】プリプレグの製造方法の説明図
〔符号の説明〕
11 基材(ガラス布)
12 結合剤(含浸材料)
13 プリプレグ(分析試料)
14 無機成分の種類と量(蛍光X線分析による)
15 有機物量(強熱減量測定による)
16 補正(有機物量の無機成分量への補正による)
17 難燃剤成分量(1 ):リン系難燃剤P2O5換算値
18 難燃剤成分量(2 ):水酸化アルミニウムAl(OH)3 換算値
21 X線管球
22 1 次X線
23 分析試料
24 蛍光X線
25 ソーラースリット
26 分光結晶
27 検出器
28 計測器・データ処理装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for analyzing the composition of a glass cloth base resin prepreg in which a glass fiber cloth is impregnated with an epoxy resin or the like used for a multilayer printed wiring board or the like, particularly a halogen-free flame retardant glass cloth base resin substrate. The present invention relates to a method for analyzing the composition of
[0002]
[Prior art]
Glass cloth base resin prepreg used for multilayer printed wiring boards is made by impregnating glass fiber (glass taros) before molding with, for example, epoxy resin, and applied as glass cloth base epoxy resin to Japanese Industrial Standard JISC6522 The range is specified. The prepreg specifications include the base material and binder, properties, thickness after molding, resin flow, and the like. In particular, the characteristic level (4F) of the prepreg is “having an insulation characteristic of 5 × 10 11 Ω or more after molding” and “having heat resistance”.
[0003]
On the other hand, substrate materials used for printed wiring boards of electronic equipment are mainly the above-mentioned glass epoxy materials, paper phenol materials, polyimide materials, etc., and all substrate materials are intended for fire prevention from the viewpoint of safety. A flame retardant grade standard (UL94V-0) is provided.
In general, flame retardant is used by adding or reacting a flame retardant component to a resin. Conventionally, halogen-based brominated flame retardants have been used in many cases as having excellent flame retardant effects and ensuring the characteristics of substrate materials. It is said that this halogen-based flame retardant mechanism mainly stops the chain reaction of combustion and acts as a radical reaction suppressing element. However, flame retardants containing halogen compounds such as chlorine and bromine have come to be regarded as problematic because harmful halogenated dibenzodioxins may be produced depending on the combustion conditions.
[About glass substrate epoxy resin prepreg of resin substrate material]
Along with this, in the development of printed circuit boards, electronic device manufacturers and others are actively developing “halogen-free resin substrates” as countermeasures against environmental problems of flame retardants in insulating materials.
[0004]
Generally, glass cloth, epoxy resin, flame retardant, organic solvent, curing agent, and other chemicals are used as the solidified sheet-like prepreg material.
The outline of the manufacturing method of the epoxy resin prepreg is as shown in the explanatory view of FIG.
A glass cloth base material 11 is impregnated with an epoxy resin binder 12 containing a curing agent, a flame retardant, etc., and subjected to pressure heat treatment in a vacuum to produce a sheet-like glass cloth base material epoxy resin prepreg 13. The The impregnation method is performed by a dipping method or a roll method. The thickness of the sheet at this time varies depending on the purpose of the product, but a sheet having a level of 100 to 200 μm is often produced. Thereafter, the copper sheet is bonded to complete the glass cloth base resin substrate.
As a flame retardant method other than the halogen-based flame retardant that has been conventionally used, there is a method using a nitrogen-based flame retardant, a phosphorus-based flame retardant, or a metal hydroxide.
[0005]
In particular, aluminum hydroxide is often used as the metal hydroxide for the glass cloth base resin substrate. In that case, the flame retardancy mechanism is said to be important because it is said that the flame retardancy required for the substrate can be obtained by the action of suppressing the oxidation reaction by the cooling effect of moisture generated by thermal decomposition. .
[0006]
[Problems to be solved by the invention]
In order to obtain stable flame retardant properties of multilayer printed wiring board substrates, it is necessary and important to control the composition of flame retardants such as aluminum hydroxide added to glass cloth base epoxy resin prepreg materials in the manufacturing process. There is a need to establish a method for quantitatively analyzing and evaluating the composition quickly and accurately.
[0007]
In general, there is no fixed method for analyzing the composition of a resin substrate. To conduct a composition analysis on a prepreg base material, for example, each inorganic substance described in the Analytical Chemistry Handbook [5th revised edition] edited by the Japan Analytical Chemical Society It is after studying sample pretreatment and analytical methods for qualitative and quantitative analysis of elements. In addition, analysis of organic materials requires separate methods and application methods.
[0008]
However, the above method only suggests a process for analyzing each element of the analysis sample, and it takes a long time to examine the application of the analysis method even in the implementation.
In addition, the analysis result for the sample represents only the average composition of the entire sample. Rather, composition information of a thickness of several tens of μm in the depth direction of the surface layer directly related to the flame retardancy of the resin substrate prepreg is obtained. The above method cannot be applied as it is.
[0009]
Issues required for the composition analysis method include, for example, composition information on the thickness of several tens of μm in the depth direction of the glass cloth substrate epoxy resin prepreg, “type and amount of inorganic components” on the front and back surface layers, “flame retardant” It is required to find and establish an analytical method that can obtain such information, such as investigation of the composition of “component and amount of”, “aluminum hydroxide amount”, and “amount of organic matter in the entire sample”. .
[0010]
An example of a composition analysis method in the region of several tens of μm in the depth direction of the prepreg sample is a fluorescent X-ray analysis method. However, the X-ray fluorescence analysis method is usually the elemental analysis, and alumina (A1 2 0 3 ) and the flame retardant aluminum hydroxide [Al (OH) 3 ] coexist in the glass cloth. In the case of such a sample, separate quantitative analysis cannot be performed. In this respect as well, a new method must be derived.
[0011]
The present invention has been made in view of the above points, and an object thereof is to provide a component composition analysis method capable of obtaining information as described above for composition evaluation of a glass cloth base resin substrate.
[0012]
[Means for Solving the Problems]
[Composition analysis of inorganic components of prepreg]
The prepreg composition analysis is important for grasping the composition fluctuation of the prepreg and optimizing the addition amount of the flame retardant. The specific issues required for the composition analysis method of the glass cloth base epoxy resin prepreg are:
(1) Composition of inorganic components with a thickness of several tens of μm in the depth direction of the prepreg sample (2) Composition of inorganic components on the front and back surface layers of the sheet-like sample (3) Component and amount of flame retardant (aluminum hydroxide , Phosphorus materials)
(4) Composition of the amount of organic matter in the entire sample (the amount of organic matter and correction values for determining items (1) to (3))
And so on.
[0013]
For this purpose, it is necessary to perform a quantitative analysis of the inorganic elements of the glass cloth base epoxy resin prepreg of the resin substrate material and a quantitative analysis of the amount of organic substances described in the next section.
In order to achieve the above object, the present invention provides an inorganic component of a prepreg substrate surface layer in a composition analysis of a resin substrate in which an epoxy resin prepreg impregnated with an epoxy resin in a glass cloth base contains an inorganic or organic flame retardant. The amount and type of flame retardant, the component and amount of the flame retardant, and the amount of organic matter in the prepreg substrate are determined.
[0014]
If the kind and amount of the inorganic component, the component and amount of the flame retardant, and the amount of organic matter in the prepreg substrate are obtained, it is effective for manufacturing management, for example.
In the analysis of the kind and amount of the inorganic component of the prepreg substrate surface layer, a qualitative analysis of the inorganic element by the fluorescent X-ray method and a quantitative analysis by the relative intensity method with the X-ray of the reference material are performed.
[0015]
Depth of the sample can be obtained by performing non-destructive measurement of a sample with a predetermined sample size, qualitative analysis of inorganic elements by fluorescent X-ray method and quantitative analysis by relative intensity method using a plate-like sample surface layer as a prepreg substrate as an analysis region. The kind and amount of inorganic components having a thickness of several tens of μm in the direction are required.
Correction for the amount of organic matter is based on ignition loss measurement.
[0016]
The organic matter amount of the prepreg base material is mainly composed of the organic matter content of the epoxy resin and the organic flame retardant, and in the analysis of the total amount, it can be roughly estimated from the ignition loss of the prepreg base material of a predetermined sample size. Strictly speaking, an inorganic part derived from an organic flame retardant, such as phosphorus, becomes a compound form of phosphorus pentoxide (P 2 0 5 ) after heating, but the part can be separated by the method described later.
[0017]
When the flame retardant contained is an organic phosphorus type, it is converted into phosphorus pentoxide from the quantitative value of phosphorus by the fluorescent X-ray method, and the amount of the organic phosphorus flame retardant is obtained from the amount.
In the analysis of the organophosphorus flame retardant, the amount of the organophosphorus flame retardant can be obtained by converting the quantitative value of phosphorus by the fluorescent X-ray method into phosphorus pentoxide and further taking the molecular weight into consideration from the amount.
[0018]
When the inorganic flame retardant contained is aluminum hydroxide, the total weight of the glass cloth base material of the same size, loss on ignition and phosphorus pentoxide by the fluorescent X-ray method from the total weight of the sample of a predetermined size The amount of aluminum oxide obtained by subtracting the amount is obtained, and then the amount of aluminum hydroxide is obtained by conversion.
By using this method, the alumina contained in the glass cloth (glass cloth) and the flame retardant aluminum hydroxide added in the production process can be separated, and quantitative analysis can be performed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The target substrate material is epoxy resin impregnated glass cloth. As the flame retardant, metal hydroxide aluminum hydroxide and phosphorus flame retardant (eg, triethyl phosphate) are used. In particular, the flame retardancy of the former aluminum hydroxide has the function of suppressing the oxidation reaction due to the cooling effect of moisture generated by thermal decomposition as described above, and the flame retardance characteristics required for the substrate are as follows. It is said that it can be obtained.
FIG. 1 is a flowchart showing a procedure of prepreg composition analysis according to the present invention.
[0021]
In FIG. 1, the prepreg 13 determines the type and amount 14 of inorganic components by applying X-ray fluorescence analysis, and then corrects the amount to 14 based on the amount of organic matter 15 determined from ignition loss measurement. 16 is performed to determine the correct amount of inorganic components of the prepreg sample. This will be described in detail below.
First, the composition analysis of the inorganic component was carried out so that the size of the prepreg sample was defined to be constant (in this example, 30 × 30 mm) to enable the fluorescent X-ray analysis method. In X-ray fluorescence analysis, primary X-rays generated from an X-ray tube are irradiated to an analysis sample, qualitative analysis is performed from the difference in X-ray wavelength inherent in the constituent elements of the sample generated from the analysis sample, and its intensity Quantitative analysis [wt%] is performed by relative comparison between the strength of the sample and the standard sample.
[0022]
FIG. 2 is a block diagram of a fluorescent X-ray analyzer for determining the types and amounts of inorganic components according to the present invention, and shows an outline of the horizontal optical system of the fluorescent X-ray analyzer.
In FIG. 2, an analysis sample 23 is irradiated with primary X-rays 22 generated from an X-ray tube 21. This analysis sample 23 is a sample in which the sample size is defined by a prepreg. In this method, it is 30 × 30 mm. The fluorescent X-ray 24 is unique to the constituent element of the sample generated from the analysis sample 23, can be qualitatively analyzed from the difference in wavelength, and can be quantitatively analyzed by comparing the intensity with the intensity of the standard sample. The solar slit 25 receives and rectifies the fluorescent X-ray 24 in order to guide it to the spectroscopic crystal 26. The fluorescent X-rays 24 are dispersed by the spectroscopic crystal 26, and the characteristic X-rays of each element are detected by the detector 27. After that, it is converted into an electric signal, and the qualitative analysis spectrum analysis and quantitative analysis value of the analysis sample 23 are obtained by the measuring instrument / data processing device 28.
[0023]
In the qualitative analysis of the sample by fluorescent X-ray (target element 11 Na to 92 U), 15 elements were detected. In addition, in the quantitative analysis of the detected element, quantitative analysis was performed using [Fundamental Parameter: FP method] in which the content of the element was determined by comparing the fluorescent X-ray intensity obtained from theory with the actually measured intensity.
The components analyzed quantitatively are Na 2 O, MgO, A1 2 O 3 , SiO 2 , P 2 O 5 , SO 3 , Cl, K 2 O, CaO, TiO 2 , MnO · Fe 2 O 3 , Br, SrO, 15 components of ZrO 2 .
[0024]
FIG. 3 is a characteristic diagram showing the results of an experiment conducted to clarify the analysis region in the depth direction from the prepreg sample surface in the fluorescent X-ray analysis method.
A polyester film with a known thickness is sequentially stacked on the prepreg sample, and aluminum oxide (Al 2 O 3 ) and silicon dioxide (silicon dioxide) constituting the sample obtained from the fluorescent X-ray intensity generated from the prepreg sample ( The relationship between the amount [wt%] of SiO 2 ) and the thickness of the organic film layer was determined.
[0025]
The thickness of the polyester film in which the signals of the fluorescent X-ray intensity of (Al 2 O 3 ) and (SiO 2 ) from the sample located under the polyester film are close to 0 is the fluorescent X-ray generation region, Presumed to be the analysis area. From the result of this experiment, it is considered that the analysis region in the depth direction is about 60 μm. Therefore, the X-ray fluorescence analysis results on the front and back sides of the prepreg sample indicate that the average composition of the surface layer is about 60 μm.
[Ignition loss [wt%] representing the amount of organic substances and measurement method]
Next, the amount of organic matter was determined from the ignition loss measurement value.
[0026]
The organic substance of the glass cloth substrate epoxy resin prepreg of the analysis sample includes an epoxy resin component and an organic phosphorus flame retardant organic component. Obtaining the total amount of organic matter by ignition loss measurement is necessary and important for analyzing the composition ratio of inorganic matter. The ignition loss is a loss after heating at 600 ° C. for 2 hours. In addition to the resin content in the sample, the organic content of flame retardants / phosphorous flame retardants (eg, phosphate esters), the measured values include the weight loss from aluminum hydroxide and other components that oxidize. When present, the increase is relevant. However, it can be said that they are few in this sample. From the above, this ignition loss is a measured value mainly composed of the target organic substance in the glass cloth substrate epoxy resin prepreg sample.
[0027]
<Ignition loss measurement method / procedure>
The ignition loss [wt%] is measured according to the following procedure.
{Circle around (1)} One prepreg sample (size 30 × 30 mm) previously dried (105 ° C. for 2 hours) is used.
(2) Tare the porcelain crucible prepared, such as grilled, and place it, and measure it by adding the weight of the sample (1) (3) Use a superheater set at about 300-400 ° C to heat the primary 15 (4) Secondary heating in an electric furnace set at 600 ° C for 120 minutes (muffle furnace is suitable)
(5) After cooling to room temperature, measure weight loss (use a desiccator for refrigerated storage)
[Flame Retardant: Calculation method for phosphorus pentoxide (P 2 O 5 ) amount of phosphorus flame retardant phosphorus]
Next, as the flame retardant component and amount (1) 17, the phosphorus flame retardant phosphorus pentoxide (P 2 O 5 ) equivalent amount [g] is the inorganic component type and amount 14 and the prepreg 13 sample weight It is requested from.
[0028]
The organic flame retardant of the glass cloth substrate epoxy resin prepreg is an organic phosphorus type (eg, triethyl phosphate: molecular formula PO (OC 2 H 5 ) 3 etc.). The organic matter content of the organophosphorus flame retardant is included in the weight loss when measuring the loss on ignition.
As for phosphorus, for example, triethyl phosphate is considered to react as follows by ignition, and the P 2 O 5 value calculated from the blending composition of the binding material and the fluorescent X-ray analysis value are close to each other.
[0029]
Figure 0004039063
From the above calculation results, it is appropriate to apply the method of obtaining phosphorus P 2 O 5 as an organophosphorus flame retardant and converting it to phosphorus pentoxide (P 2 O 5 ) from the quantitative value of phosphorus by the fluorescent X-ray method. it is conceivable that.
[Flame retardant: About the calculation method of aluminum hydroxide content]
Finally, as flame retardant component and amount (2) 18, the amount of aluminum hydroxide [g] is the prepreg sample amount, organic matter amount, loss on ignition, glass cloth weight of prepreg sample size, phosphorus system It can be calculated using the (P 2 O 5 ) weight value of the flame retardant.
[0030]
First, the inorganic flame retardant of the glass cloth substrate epoxy resin prepreg is aluminum hydroxide, and the H 2 O content derived from hydroxide is included in the value by ignition loss measurement. For example, since aluminum hydroxide reacts as follows with high heat, it is obtained as alumina (A1 2 O 3 ) in the fluorescent X-ray analysis.
2Al (OH) 3 → Al 2 O 3 + 3H 2 O (↑)
<Aluminum hydroxide [Al (OH) 3 ] quantitative analysis method>
The amount of aluminum hydroxide [g] in the prepreg sample is the prepreg sample amount, organic matter amount (ignition loss), glass cloth weight of the prepreg sample size, phosphorus flame retardant (P 2 O 5 ) Calculate using the weight value. Specifically, the following calculation procedure is used.
[0031]
Sg = GLg + Igg + Ag + Pg (Formula 1)
here,
Sg: Total weight of prepreg sample [size 30 x 30mm [g]]
GLg: Weight of glass cloth [size 30 x 30mm [g]]
Igg: Loss on ignition of prepreg sample [size 30 x 30 mm [g]]
Ag: Al 2 O 3 equivalent value of aluminum (Al) in the prepreg, weight [size [g] of 30 x mm]
Pg: Analyzed value of P 2 O 5 by fluorescent X-ray of prepreg sample [[g] of size 30 × 30 mm]
It is. Therefore,
Ag = Sg-Igg-GLg-Pg (Formula 2)
It is. In (Formula 2), Al 2 O 3 derived from the glass cloth is included in GLg and drawn.
[0032]
Al (OH) 3 is now
Al (OH) 3 [g] = Ag × [2Al (OH) 3 / Al 2 O 3 ]
Al (OH) 3 [wt%] = [Al (OH) 3 [g] / Sg] × 100
Is required.
2Al (OH) 3 / Al 2 0 3 is a conversion coefficient [1.5294] between Al (OH) 3 and Al 2 0 3 ,
Al (OH) 3 [wt%] = [1.5294Ag / Sg] × 100
It becomes.
[Examination of analysis accuracy]
Inorganic component composition analysis of the prepreg was carried out by fluorescent X-ray analysis of Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , SO 3 , Cl, K 2 O, CaO, TiO 2 , MnO and Fe 2. Through quantitative analysis of 15 components of O 3 , Br, SrO 2 , ZrO 2 and calculation method of flame retardant aluminum hydroxide [Al (OH) 3 ], quantitative analysis became possible.
[0033]
Therefore, the repeated analysis accuracy of the composition analysis of the inorganic component by the fluorescent X-ray method of the prepreg sample was examined.
Table 1 shows the results of studies on Al 2 O 3 , SiO 2 , P 2 O 5 , and CaO, which are the main components of glass cloth and flame retardant.
[0034]
[Table 1]
Figure 0004039063
It can be seen that all components are good when the coefficient of variation is 1% or less.
In addition, since the ignition loss measurement value measured separately and the calculated value of the amount of aluminum hydroxide are the analysis values of one sample, in the case of repeated analysis, evaluation of composition variation depends on the composition of each analysis sample of 30 x 30 mm Therefore, the accuracy is not evaluated.
[Analytical sample analysis: 1]
The composition analysis of the front and back of the three prepreg samples (size 30 × 30 mm) a, b, and c, which are resin substrate materials, was performed by applying the above-described method according to the analysis flow of FIG. Table 2 shows examples of the results of the obtained ignition loss and inorganic components.
[0035]
[Table 2]
Figure 0004039063
The composition of 15 components including ignition loss (Ig.loss% display), Al 2 O 3 and P 2 O 5 of the prepreg sample was clarified.
Further, it can be seen that the composition is well matched between the front and back sides of the prepreg sample. It can be seen that in each sample, the main components Al 2 O 3 , SiO 2 , P 2 O 5 , and CaO have small changes and stable compositions.
[0036]
In the above (Formula 1), Sg was about 0.23 g, and GLg was about 0.091 g. Table 3 shows the analytical values of the glass cloth for reference.
[0037]
[Table 3]
Figure 0004039063
Therefore, P 2 O 5 derived from the glass cloth is 0.091 g × 0.09% = 0.08 mg, and the amount of P 2 O 5 in Table 2 is 0.23 g × 8% = 10.4 mg of 0.4%. It corresponds to. That is, it can be considered that almost all of P 2 O 5 in Table 2 is derived from the flame retardant, and the phosphorus-based flame retardant can be calculated using the conversion formula described above.
[0038]
On the other hand, the amount of Al 2 O 3 in Table 2 is considerably larger than the analytical value of the glass cloth, and it can be seen that an Al-based flame retardant was contained. And it is thought that Al 2 O 3 derived from the glass cloth in this is a non-negligible amount, but the two cannot be separated from this alone.
As described above, the conventional wet analysis method has the advantage that composition analysis that requires three days or more is possible in less than half a day, and the required time hardly changes even if the number of samples increases.
[Analysis example of actual sample: 2]
Next, the flame retardant aluminum hydroxide [Al (OH) 3 ] was determined from the above (formula 2). The results are shown in Table 4. The ignition loss (Ig.loss% display) and the amount of Al 2 O 3 are also shown.
[0039]
[Table 4]
Figure 0004039063
It was found that aluminum hydroxide [Al (OH) 3 ] in the prepreg sample was at a level of 21 to 26 wt%, had a small change and a stable composition, and could be evaluated.
[0040]
When the composition analysis method of the present invention is applied, the material composition of the substrate including the glass cloth can be easily managed, and the prepreg can be manufactured so as to satisfy the required characteristics.
[0041]
【The invention's effect】
As described above, according to the present invention, in the composition analysis of the resin substrate in which the epoxy resin prepreg impregnated with the epoxy resin in the glass cloth base material contains an inorganic or organic flame retardant, the inorganic component of the prepreg substrate surface layer Type and amount of flame retardant, component and amount of flame retardant, and amount of organic substance in prepreg substrate. For example, the type and amount of inorganic component are determined by qualitative analysis and quantitative analysis by fluorescent X-ray method, and the amount of organic substance is determined by ignition loss measurement. it can.
[0042]
It was shown that even when the prepreg base flame retardant is an organophosphorus flame retardant or aluminum hydroxide, they can be quantitatively analyzed with the glass cloth base.
The resin substrate material analysis method of the present invention makes it possible to evaluate the composition of an inorganic flame retardant material of a glass cloth substrate epoxy resin prepreg in a short time, and an extremely practical analysis method effective for manufacturing management and the like. It is obtained.
[Brief description of the drawings]
FIG. 1 is a flowchart of a composition analysis method for a glass cloth base epoxy resin prepreg sample according to the present invention. FIG. 2 is a configuration diagram of a fluorescent X-ray analyzer. FIG. 4 is an explanatory diagram of a method for producing a prepreg [description of symbols]
11 Base material (glass cloth)
12 Binder (impregnation material)
13 Prepreg (analytical sample)
14 Types and amounts of inorganic components (by fluorescent X-ray analysis)
15 Amount of organic matter (by ignition loss measurement)
16 Correction (by correcting the amount of organic matter to the amount of inorganic components)
17 Flame retardant component amount (1): Phosphorus flame retardant P 2 O 5 converted value 18 Flame retardant component amount (2): Aluminum hydroxide Al (OH) 3 converted value 21 X-ray tube 22 Primary X-ray 23 Analysis Sample 24 X-ray fluorescence 25 Solar slit 26 Spectroscopic crystal 27 Detector 28 Measuring instrument / data processing device

Claims (2)

ガラス布基材にエポキシ樹脂を含浸したエポキシ樹脂プリプレグに無機系および有機系の難燃剤が含まれるガラス布基材樹脂基板の組成分析において、
蛍光X線法による無機元素の定性分析と、基準材料のX線との相対強度法による定量分析を行う工程と、
強熱減量測定により強熱減量を測定する工程と、
前記有機系の難燃剤中に含まれる無機元素の蛍光X線法による定量値から、当該無機元素の酸化物量に換算する工程とを有し、
前記無機系の難燃剤が水酸化アルミニウムであって、試料の全重量から、同じ大きさのガラス布基材重量、前記強熱減量および前記酸化物量を減じて酸化アルミニウム量を求め、該酸化アルミニウム量から換算して前記水酸化アルミニウム量を求めることを特徴とするガラス布基材樹脂基板の組成分析方法。
In composition analysis of a glass cloth base resin substrate in which an inorganic resin and an organic flame retardant are contained in an epoxy resin prepreg impregnated with an epoxy resin in a glass cloth base,
Qualitative analysis of inorganic elements by fluorescent X-ray method and quantitative analysis by relative intensity method with reference material X-ray,
A process of measuring ignition loss by measuring ignition loss;
From the quantitative value of the inorganic element contained in the organic flame retardant by the fluorescent X-ray method, the step of converting to the oxide amount of the inorganic element,
The inorganic flame retardant is aluminum hydroxide, and the amount of aluminum oxide is obtained by subtracting the weight of the glass cloth substrate of the same size, the ignition loss and the oxide amount from the total weight of the sample, A composition analysis method for a glass cloth base resin substrate, wherein the aluminum hydroxide amount is determined in terms of the amount.
前記有機系の難燃剤は、有機リン系難燃剤であることを特徴とする請求項1に記載のガラス布基材樹脂基板の組成分析方法。  The composition analysis method for a glass cloth base resin substrate according to claim 1, wherein the organic flame retardant is an organic phosphorus flame retardant.
JP2002006823A 2002-01-16 2002-01-16 Composition analysis method of glass cloth base resin substrate Expired - Fee Related JP4039063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002006823A JP4039063B2 (en) 2002-01-16 2002-01-16 Composition analysis method of glass cloth base resin substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002006823A JP4039063B2 (en) 2002-01-16 2002-01-16 Composition analysis method of glass cloth base resin substrate

Publications (2)

Publication Number Publication Date
JP2003207503A JP2003207503A (en) 2003-07-25
JP4039063B2 true JP4039063B2 (en) 2008-01-30

Family

ID=27645480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002006823A Expired - Fee Related JP4039063B2 (en) 2002-01-16 2002-01-16 Composition analysis method of glass cloth base resin substrate

Country Status (1)

Country Link
JP (1) JP4039063B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995361B (en) * 2009-08-11 2012-07-04 深圳市华力兴工程塑料有限公司 Long glass fiber filling quantity measuring method in plastic modification processing process
CN103674763A (en) * 2012-08-31 2014-03-26 厦门三维丝环保股份有限公司 Method for quantitatively testing inorganic fibers in blended filter material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5134858B2 (en) * 2007-04-27 2013-01-30 株式会社東芝 Hazardous element management method in semiconductor sealing resin
JP2009244122A (en) * 2008-03-31 2009-10-22 Fuji Electric Holdings Co Ltd Pretreatment method for activated carbon analysis
JP5528995B2 (en) * 2010-12-03 2014-06-25 株式会社プラセラム Functional porous body, method for producing the same, and evaluation method for functional porous body
CN102735569A (en) * 2012-06-27 2012-10-17 浙江出入境检验检疫局检验检疫技术中心 Quantitative analysis method for burnt-out fabric
CN103196780A (en) * 2013-03-20 2013-07-10 邢台钢铁有限责任公司 Method for determining aluminium oxide content of aluminum-manganese ball
CN114460117B (en) * 2022-03-16 2023-06-06 清远南玻节能新材料有限公司 Method for detecting component content of aluminum hydroxide product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995361B (en) * 2009-08-11 2012-07-04 深圳市华力兴工程塑料有限公司 Long glass fiber filling quantity measuring method in plastic modification processing process
CN103674763A (en) * 2012-08-31 2014-03-26 厦门三维丝环保股份有限公司 Method for quantitatively testing inorganic fibers in blended filter material

Also Published As

Publication number Publication date
JP2003207503A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
JP4039063B2 (en) Composition analysis method of glass cloth base resin substrate
Van Cappellen et al. Quantitative transmission X-ray microanalysis of ionic compounds
JP2003519381A (en) Method and apparatus for estimating mineral content in sheet material
JP2009511906A (en) Method for measuring hexavalent chromium in electronic parts and electronic assemblies
EP0112079B1 (en) Measuring method and apparatus
JP2008122170A (en) Weatherable deterioration diagnosing method of facing member
Seo et al. Cathodic reduction of the duplex oxide films formed on copper in air with high relative humidity at 60° C
JPS6159242A (en) Method for diagnosing deterioration of insulating material
JP2004236465A (en) Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment
JP3010598B2 (en) X-ray spectroscopic analysis method of a sample covered with a thin film
Bekkers et al. Multilayer and thin film analysis using FPMulti software
US20130122594A1 (en) Determination of component temperature
KR101242699B1 (en) Method for measuring spreaded quantity of coating layer
Hu et al. Research review on devices and methods for rapid measurement of paper ash
Hirth et al. Which fraction of stone wool fibre surface remains uncoated by binder? A detailed analysis by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy
JP6755991B2 (en) Method for producing hydrophilic particles
Hust Glass fiberboard SRM for thermal resistance
Sandinge et al. The Effect of Accelerated Ageing on Reaction-to-Fire Properties–Composite Materials
CN113826002A (en) Method and system for monitoring a deposition process
JP4159132B2 (en) Evaluation method of flame retardancy of laminates
JP3569734B2 (en) X-ray fluorescence analyzer
Karki et al. Systematic method for quantifying re-refined engine oil bottom content in binders: using X-ray fluorescence spectroscopy
Nowak et al. Kinetic analysis of the process of melamine pyrophosphate synthesis
RU2564700C1 (en) Device and method to manufacture moisture-sensitive elements and moisture sensor based on such moisture-sensitive elements
Ward et al. Analysis of fused samples using influence coefficients obtained from synthetic standards

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees