JP2004236465A - Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment - Google Patents

Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment Download PDF

Info

Publication number
JP2004236465A
JP2004236465A JP2003023953A JP2003023953A JP2004236465A JP 2004236465 A JP2004236465 A JP 2004236465A JP 2003023953 A JP2003023953 A JP 2003023953A JP 2003023953 A JP2003023953 A JP 2003023953A JP 2004236465 A JP2004236465 A JP 2004236465A
Authority
JP
Japan
Prior art keywords
power receiving
solid insulator
ion
solid
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003023953A
Other languages
Japanese (ja)
Inventor
Shinsuke Miki
伸介 三木
Shu Okazawa
周 岡澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003023953A priority Critical patent/JP2004236465A/en
Publication of JP2004236465A publication Critical patent/JP2004236465A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately estimate the remaining life times of solid insulators for power receiving and distributing equipment of which the insulators deteriorate due to the combined influences of a plurality of deterioration factors. <P>SOLUTION: The following items are taken as evaluation items: the amount of various ions, including nitrate ion, sulfate ion, chlorine ion, and calcium ion, sticking to a new solid insulator for power receiving and distributing equipment and a solid insulator for power receiving and distributing equipment as a specimen; and the colors of both the solid insulators for power receiving and distributing equipment in a color specification mode b. These evaluation items are used comprehensively, to represent the degree of insulator deterioration with a single index. The remaining lifetime of the solid insulator for power receiving and distributing equipment as a specimen is estimated, based on the relation between the operating time and the index which has been determined beforehand. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、受配電機器用固体絶縁物の余寿命推定方法に関するものであり、さらに詳しくは、受配電機器の設置現場で、受配電機器に用いられている有機材料からなる固体絶縁物の絶縁抵抗低下による余寿命を充分な感度で、精度良く推定することのできる方法に関するものである。
【0002】
【従来の技術】
従来の固体絶縁物の余寿命推定を実施した例として、被覆ケーブルの余寿命推定方法においては、被覆層を形成する有機高分子材料自体、該有機高分子材料と同じ組成を有する再現材料、または該再現材料と類似の材料からなる群から選ばれた少なくとも1材料について該材料の基準温度tsでの超音波伝搬特性Vtsまたは劣化診断特性をパラメータとして加熱温度tと加熱時間hとの相関関係(t−h相関関係)を実験的に確立する工程α、該t−h相関関係の中から任意に選定した少なくとも一パラメータ値についてのt−h相関関係を寿命t−h相関関係として定める工程β、一定期間布設された余寿命推定対象の被覆ケーブルの被覆層を形成する有機高分子材料の超音波伝搬特性Vtsまたは劣化診断特性の値を得る工程γ、上記の一定期間布設以降における被覆ケーブルの被覆層の平均温度における寿命t−h相関関係上の加熱時間h1 と工程γにおいて得た超音波伝搬特性Vtsまたは劣化診断特性の値(パラメータ値)についてのt−h相関関係上の加熱時間h2 を求める工程δ、および加熱時間h1 と加熱時間h2との時間差をもって被覆ケーブルの余寿命とする工程ε、とを有している(例えば、特許文献1参照)。また、劣化診断特性として、被覆ケーブルの被覆層を形成する有機高分子材料の引張強さ、破断伸び率、弾性率、ヤング率、モジュラス、誘電率、誘電正接、体積抵抗率、交流破壊電圧強度、インパルス破壊電圧強度、超音波伝搬特性、表面反発硬度、表面針入硬度、被覆ケーブルの捩じりトルク、および被覆ケーブルの曲げ剛性が挙げられている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平11−352050号公報(第2−9頁、第1および2図)
【0004】
【発明が解決しようとする課題】
しかしながら、上記の従来例では、温度に対する劣化(熱劣化)のみ考慮しているため、温度以外の因子で劣化する場合には適用できないという問題点があった。
【0005】
本発明は、上記のような従来のものの問題点を解決するためになされたものであり、複数の劣化要因が複合的に影響して劣化する受配電機器用固体絶縁物の余寿命を精度良く推定することができる方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明に係る受配電機器用固体絶縁物の余寿命推定方法は、新品の受配電機器用固体絶縁物と被検体である受配電機器用固体絶縁物とに付着している硝酸イオン、硫酸イオン、塩素イオン、およびカルシウムイオンの各イオン量、並びに上記各受配電機器用固体絶縁物の表色モードbにおける色彩を評価項目とし、上記評価項目を総合的に用いて絶縁劣化の程度を1つの指標で表し、予め求めておいた運転時間と上記指標との関係から上記被検体である受配電機器用固体絶縁物の余寿命を推定するものである。
【0007】
【発明の実施の形態】
実施の形態1.
本発明の余寿命推定に適用される固体絶縁物は、スイッチギア、遮断器、開閉器等の受配電機器で使用されるものである。このような受配電機器で使用される固体絶縁物には、例えば、炭酸カルシウムまたは水和アルミナ等を含む不飽和ポリエステル、フェノール樹脂(フェノール積層板、フェノール成型品)、エポキシ樹脂、エポキシ碍子等の有機材料からなる固体絶縁物が多く見られる。本発明ではこのような受配電機器で使用される有機材料からなる固体絶縁物のことを受配電機器用固体絶縁物と称する(以下、受配電機器用固体絶縁物を単に固体絶縁物ということもある。)では、使用時のストレス要因等により劣化が進行する。このような劣化の状態を診断して事故を未然に防ぐことが重要となる。
【0008】
本発明の発明者らが遮断器のトラブル事例を詳しく分析したところ、固体絶縁物は、熱ストレスのみにより劣化が進行するのではなく、電気的、化学的、環境的なストレス要因により劣化が進行することが分かった。すなわち、固体絶縁物にイオン性物質が付着してそれが潮解したとき、または、そこに降雨などにより水分がかかったときには、固体絶縁物の表面を流れる漏れ電流が増加し、絶縁低下をきたす。さらには、この漏れ電流による局部加熱により固体絶縁物表面の一部が乾燥し、漏れ電流が遮断されると、その部分の電圧が増加し、局所的な放電が発生する。この放電により硝酸化合物が生成し、さらに絶縁抵抗が低下する。放電が発生した部分で炭化が進行し、導電路が形成されることにより短絡に至る。
【0009】
本発明の発明者らは、受配電機器用固体絶縁物は、上記のように熱ストレスのみで劣化するのではなく、電気的、化学的、環境的なストレス要因が複合的に劣化に影響するため、複数の劣化特性を測定し総合的に余寿命を判断する必要があることを見出して本発明に至ったものである。
【0010】
本発明による受配電機器用固体絶縁物の余寿命推定方法は、絶縁劣化量を評価するための複数の評価項目について測定を実施し、測定結果を総合的に解析して1つの劣化指標(マハラノビスの距離)で表し、予め作成した運転時間と劣化指標(マハラノビスの距離)の関係から余寿命を推定するものであり、下記の三段階の工程から構成される。
【0011】
第一の工程は、運転中の受配電機器において、その受配電機器で用いられている固体絶縁物の絶縁劣化量を診断するための評価項目について測定することを内容とする。本発明の発明者らは、上記のような受配電機器用固体絶縁物の市場使用品を分析した結果、固体絶縁物に付着している硝酸イオン、硫酸イオン、塩素イオン、ナトリウムイオン、アンモニウムイオン、およびカルシウムイオンの各イオン量、並びに固体絶縁物の光沢、表色モードbおける色彩(色彩の表記法の1つであり、プラス方向は黄色が強くなる方向、マイナス方向は青が強くなる方向である。以下、色彩bと記載する。)、および成分(炭化水素基の量)の各評価項目が、運転中の受配電機器で用いられている固体絶縁物の絶縁劣化量を評価するのに有効であることを見いだした。
【0012】
各イオン量は、例えば市販のイオン試験紙または反応試薬溶液と吸光度計を用いて測定する。
イオン試験紙を用いる具体的な測定方法の一例は以下の通りである。イオン試験紙を水に浸し、次いで余分な水を振り払う。水を含んだイオン試験紙を固体絶縁物表面に約1秒押しつけ、イオン試験紙の変色を目視または高感度反射式光度計で測定する。変色はイオン量が多いほど多くなるので、イオン量を定量することができる。
反応試薬溶液と吸光度計を用いる具体的な測定方法の一例は以下の通りである。濾紙を水に浸し、次いで余分な水を振り払う。水を含んだ濾紙を固体絶縁物表面に約30秒押しつけ、固体絶縁物表面のイオンを濾紙に抽出する。イオンを抽出した濾紙を3mlの水に浸し水にイオンを抽出する。イオンを抽出した水1.5mlと反応試薬溶液を混合し試薬とイオンを反応させ、溶液の吸光度を吸光度計で測定する。吸光度が大きいほどイオン量は多くなるので、イオン量の定量が可能である。
【0013】
光沢、色彩および成分(炭化水素基)はそれぞれ可搬型光沢計、可搬型色彩計および簡易型赤外分光光度計で測定する。
【0014】
従来は、固体絶縁物の絶縁劣化量を診断するのに、例えば、有機高分子材料の引張強さ、破断伸び率、弾性率、ヤング率、モジュラス、誘電率、誘電正接、体積抵抗率、交流破壊電圧強度、インパルス破壊電圧強度、超音波伝搬特性、表面反発硬度、表面針入硬度、捩じりトルク、および曲げ剛性のうちの少なくとも1つを測定しており、温度、湿度、電磁波等の外乱の影響を受けていた。
これに対して、本実施の形態では、外乱の影響をほとんど受けない上記のような化学的評価(各イオン量、光沢の程度、色彩b、成分(炭化水素基の量))により、固体絶縁物の絶縁劣化量の高精度な診断が可能になる。しかも、上記の各評価項目は、被検体である固体絶縁物を取り外して測定装置のところまで持っていかなくても、運転中の受配電機器に対してその設置現場で測定することができる。
【0015】
第二の工程は、上記評価項目による測定結果を総合的に解析して1つの劣化指標(マハラノビスの距離)で表すことを内容とする。上述したように、本発明の発明者らは、受配電機器用固体絶縁物の劣化は電気的、化学的、環境的なストレス要因が複合的に影響するため、1つの絶縁劣化特性で診断すると診断精度が悪くなるので適切ではなく、複数の劣化特性を測定し総合的に余寿命を判断する必要があることを見いだした。
より具体的には、新品および被検体である固体絶縁物に付着している硝酸イオン量、硫酸イオン量、塩素イオン量、ナトリウムイオン量、アンモニウムイオン量、およびカルシウムイオン量、並びに固体絶縁物の光沢、色彩b、成分(炭化水素基の量)を評価項目とし、各評価項目の測定結果をマハラノビス・タグチシステム法により解析して1つの指標(マハラノビスの距離)で表し、このマハラノビスの距離を用いて絶縁劣化量を診断すると、高精度な絶縁劣化量の診断結果が得られることが分かった。すなわち、新品サンプルからのマハラノビスの距離が未知サンプル(被検体)の絶縁劣化量(劣化指標)に相当する。新品サンプルの数は製造ロットが異なる15サンプル、好ましくは30サンプル、さらに好ましくは50サンプル以上である。新品サンプルの各評価項目の測定データからなる基準データ群を固体絶縁物の種類ごとに予め作成し、未知サンプル(被検体)が基準データからどれだけ離れているか(マハラノビスの距離)で診断対象となる固体絶縁物の絶縁劣化量を診断する。
【0016】
第三の工程は、予め作成した運転時間と劣化指標(マハラノビスの距離)との関係から余寿命を推定することを内容とする。本発明の発明者らは、受配電機器用固体絶縁物の劣化を促進する主な化学的、環境的因子は、湿度、温度、硝酸類、硫酸類、塩素類であることを見いだし、これらの化学的、環境的因子の雰囲気下で電圧を印加可能な図1に示すような絶縁劣化促進試験装置を開発した。
図1において、固体絶縁物7は、恒温・恒湿槽5内に配置された湿度調節機能付きデシケーター6内に設置される。デシケーター6は硝酸類、硫酸類、および塩素類の供給源8と連通している。発振器11とパワーアンプ12で出力電圧を調整し、トランス1で電圧を上昇させる。今回、200倍に電圧を上げるトランス1を使用したので、発振器11とパワーアンプ12で電圧を10V出力するとトランス1で2kVになり、固体絶縁物7に印加される。固体絶縁物7に印加されている電圧をデジタルオシロスコープ13で実測するために高圧プローブ3を備えている。また、固体絶縁物7が絶縁破壊したときに計測機器に高電圧が掛からないように保護する目的で抵抗(1MΩ)2を備えており、高電圧が掛かっている抵抗(1MΩ)を周囲から離すための台としてアクリル容器4を備えている。
固体絶縁物7からの漏れ電流はデジタルオシロスコープ13とデジタルマルチメーター10で計測し、パーソナルコンピュータ9にデータを保存する。
【0017】
硝酸類、硫酸類、および塩素類の供給は、NO、SO、HClの各ガスの供給、あるいは硝酸化合物、硫酸化合物、塩素系化合物の各水溶液の噴霧、あるいは硝酸、硫酸、塩酸の蒸気暴露等の方法で行うことができる。
【0018】
デシケーター6内の温度、湿度、硝酸類の濃度、硫酸類の濃度、塩素類の濃度を所定の値(具体的数値については後に詳しく説明する。)に保った状態で、所定の電界(具体的数値については後に詳しく説明する。)が印加された固体絶縁物7をデシケーター6内に所定時間保持した後に、固体絶縁物を上記の評価項目で分析してマハラノビスの距離を求め、時間とマハラノビスの距離との関係を示す図(図2に示す余寿命マスターカーブ)を作成した。試験後(デシケーター6内に所定時間保持後)の固体絶縁物の電気的評価(湿度50%、温度20℃の条件下での表面抵抗測定値)および化学的評価(上記評価項目による評価結果をマハラノビス・タグチシステム(MTS)法で解析し、マハラノビスの距離で表した値)を行った。その結果、市場で使用したサンプルの表面抵抗とマハラノビスの距離の相関と、絶縁劣化促進試験装置で試験したサンプルの表面抵抗とマハラノビスの距離の相関とが一致した(市場で使用したサンプルの表面抵抗とマハラノビスの距離の相関直線上に試験サンプルのデータが乗った。)ことから、本試験が市場での絶縁劣化を模擬していることを確認した。なお、図2において、横軸は運転時間、縦軸はマハラノビスの距離をそれぞれ示している。
寿命点は、遮断器、開閉器等の受配電機器の種類、電圧、絶縁距離、固体絶縁物の厚さ、材質等を考慮して求め、マハラノビスの距離が所定値、例えば10〜10(表面抵抗が10〜1011Ω)の間の所定の値になった点を寿命点とする。
【0019】
図2に示す絶縁劣化促進試験により得られた余寿命マスターカーブを用いて、実際に市場で運転した受配電機器で用いられている固体絶縁物の余寿命を推定する手順は下記の通りである。例えば10年間、市場で運転した受配電機器で用いられている固体絶縁物の劣化度(マハラノビスの距離)を求める。求められたマハラノビスの距離がxであれば(b−a)が10年に相当し、余寿命は{(d−b)/(b−a)×10}年となる。同様にマハラノビスの距離がyであれば(c−a)が10年に相当し、余寿命は{(d−c)/(c−a)×10}年となる。
【0020】
絶縁劣化促進試験の各条件を以下に記すが、本発明は、これに限定されるものではない。湿度は、高すぎるとフラッシュオーバが発生し市場での劣化モードと異なり、低すぎると絶縁劣化が進行せず劣化が促進しないので、40%RH〜95%RH、好ましくは60%RH〜90%RHである。温度は、市場での劣化モードを模擬して、50℃〜80℃、好ましくは60℃〜70℃である。硝酸類濃度、硫酸類濃度、塩素類濃度の合計濃度は、高すぎると絶縁劣化が加速しすぎ診断精度が悪くなり、低すぎると絶縁劣化が進行せず劣化が促進しないので、0.01ppm〜100ppm、好ましくは0.1ppm〜10ppmである。また、硝酸類濃度、硫酸類濃度、塩素類濃度の濃度比が、0〜2:0〜2:0〜0.5、好ましくは0.8〜1.5:0.8〜1.5:0.1〜0.3である。電界は、0.01kV/mm〜10kV/mm、好ましくは0.1kV/mm〜2.0kV/mmである。
【0021】
【実施例】
実施例1.
遮断器で用いられている固体絶縁物(不飽和ポリエステル主成分)の余寿命を推定した実施事例を以下に詳細に示す。新品および市場で使用した遮断器用の固体絶縁物をサンプルとした。サンプル数は、新品が16個(サンプル番号1〜16)、市場使用品が14個(サンプル番号17〜30)である。
固体絶縁物の各イオン(硝酸イオン、硫酸イオン、塩素イオン、ナトリウムイオン、アンモニウムイオン、カリウムイオン、カルシウムイオン、フッ素イオン、亜硝酸イオン)付着量、色差(表色モードL、a、b)、光沢、成分(炭化水素基、水、エステル基、硫酸塩、硝酸塩、ケイ酸塩)分析の化学的評価(評価項目19個)を行った。サンプルとして用いた遮断器の設置場所と設置区分、および測定装置(装置の名称、社名、商品番号)と測定条件をそれぞれ表1および表2に示す。化学的評価結果にマハラノビス・タグチシステム(MTS)法を適用してマハラノビスの距離を求め、余寿命を推定した。
【0022】
【表1】

Figure 2004236465
【0023】
【表2】
Figure 2004236465
【0024】
多変量解析の判別分析の1つであるマハラノビスの距離については、例えば刊行物(救仁郷 誠,「マハラノビスの距離入門―MTS法を理解するために―」,品質工学,Vol.9,No.1,p.13(2001))に詳細に記載されている。マハラノビスの距離は、基準としたデータ群にどれだけ似ているかを示す尺度である。
以下に、新品の遮断器用固体絶縁物の上記各評価項目の測定データを基準データ群として用いて被検体である市場で使用した遮断器用固体絶縁物のマハラノビスの距離を求める手順について説明するが、具体的な数式については上記刊行物にも記載されているのでその記載を省略する。
【0025】
手順▲1▼:基準データ群の用意
K個の変量(評価項目)を持つn組のデータを用意する。
本実施例の場合、基準データ群は新品の遮断器用固体絶縁物サンプル16個であり、評価項目は上記の19個である。
手順▲2▼:基準データ群の正規化
評価項目ごとにそれらの平均値と標準偏差を用いてそれぞれのデータを正規化する。ここで標準偏差がゼロの項目は除外する(後述するが、具体的には色彩a)。
手順▲3▼:変量間の相関係数行列の算出
k個の変量から、2個を取り出す組み合わせ()について、相関係数を求め、k×kの相関係数行列Rを求める。ここで相関の大きい項目を除外する(後述するが、具体的には水、硝酸塩、硫酸塩)
手順▲4▼:相関係数行列の逆行列の算出
相関係数行列Rの逆行列Aを求める。
手順▲5▼:マハラノビスの距離の算出
手順▲4▼で求めた相関係数行列Rを用いてマハラノビスの距離Dを求める。
以上により、新品の遮断器用固体絶縁物サンプルのマハラノビスの距離が求まる。
【0026】
次に、被検体である市場で使用した遮断器用固体絶縁物のマハラノビスの距離の求め方について説明する。
まず、被検体である市場で使用した遮断器用固体絶縁物14個についてのデータを用意する。新品の遮断器用固体絶縁物サンプルの場合と同様に、評価項目は15項目である。
次に、新品の遮断器用固体絶縁物サンプルのデータを基準データ群として求められた平均値と標準偏差を用いて被検体のデータを評価項目ごとに正規化する。
次に、基準データ群から求められた相関係数行列Rを用いて、被検体である市場で使用した遮断器用固体絶縁物のマハラノビスの距離を算出する。
【0027】
なお、基準データ群(新品の遮断器用固体絶縁物サンプル)は、評価項目ごとにそれらの平均値と標準偏差を用いてそれぞれのデータを正規化するので、データ数は複数個ある必要があるが、被検体である市場で使用した遮断器用固体絶縁物のデータの正規化には、基準データ群の平均値と標準偏差を用いるので、データ数は複数個に限らず1個あってもよいのは言うまでもない。
【0028】
次に、有効な評価項目の選定方法について説明する。被検体である市場で使用した遮断器用固体絶縁物のマハラノビスの距離が大きければ大きいほど、診断精度が向上する。評価項目を使用する場合を第1水準、使用しない場合を第2水準として評価項目を直交表に割り付け、評価項目の組み合わせ毎に被検体のマハラノビスノ距離を求め、そのマハラノビスの距離から望大特性のSN比を求めて有効な評価項目を選定する。
【0029】
イオン付着量の測定結果を図3〜図5に示す。図3および図4は陰イオン付着量の測定結果(その1)および(その2)、図5は陽イオン付着量の測定結果である。図3〜図5において、横軸はサンプル番号(サンプル番号1〜16:新品、サンプル番号17〜30:市場使用品)、縦軸はイオン量(mg/cm)である。市場使用品の硝酸(図3に四角で示す。)、硫酸(図4に菱形で示す。)、塩素(図3に三角で示す。)の各陰イオンと、ナトリウム(図5に菱形で示す。)、カリウム(図5に×印で示す。)の各陽イオンとは新品に比べ増加する傾向があった。陰イオンの主成分は硝酸イオンと硫酸イオンであった。陽イオンの主成分はカルシウムイオン(図5に四角で示す。)であり他の陽イオンの50倍〜100倍であった。
フッ素イオン(図3に×印で示す。)、亜硝酸イオン(図3に○印で示す。)、カルシウムイオン、アンモニウムイオン(図5に三角で示す。)は市場使用品と新品とであまり変化が無かった。
【0030】
色彩の測定結果を図6、図7に示す。図6は色彩L(表色モードLおける色彩:色彩の表記法の1つであり明度を表し、プラス方向は明るくなる方向である。以下、色彩Lと記載する。)の測定結果、図7は色彩a(表色モードaにおける色彩:色彩の表記法の1つであり、プラス方向は赤が強くなる方向、マイナス方向は緑が強くなる方向である。)と色彩bの測定結果である。図6、図7において、横軸はサンプル番号(サンプル番号1〜16:新品、サンプル番号17〜30:市場使用品)、縦軸は色彩である。色彩は白(L=93.61、a=1.50、b=−0.03)を基準色とし、基準色のL、a、b値に対する相対値で示した。
市場使用品の色彩bは増加する傾向があった。色彩aは変化がなかったが、色彩Lは低下しているサンプルもあった。
【0031】
光沢の測定結果を図8に示す。図8において、横軸はサンプル番号(サンプル番号1〜16:新品、サンプル番号17〜30:市場使用品)、縦軸は光沢である。光沢は黒の光沢(95.5)を基準光沢とし、これとの相対値で示した。また、新品は光沢が高いため入射角60°で測定し、市場使用品は85°で測定した。
市場使用品の光沢は低下する傾向があった。これは水やイオン性物質の付着、劣化による表面の荒れが原因であると考えられる。
【0032】
赤外分析による成分分析結果を図9、図10に示す。図9は赤外分析による成分分析結果(その1)、図10は赤外分析による成分分析結果(その2)である。図9、図10において、横軸はサンプル番号(サンプル番号1〜16:新品、サンプル番号17〜30:市場使用品)、縦軸は成分量であり、遮断器で用いられている固体絶縁物(不飽和ポリエステル主成分)の充填材である炭酸カルシウムに対する比で各成分量を表した。水(図9に四角で示す。)、硫酸塩(図9に○印で示す。)、硝酸塩(図10に三角で示す。)、ケイ酸塩(図9に三角で示す。)は新品では検出限界(1.0)以下であった。市場使用品では水、硝酸塩、硫酸塩、ケイ酸塩は増加する傾向があった。硝酸塩、硫酸塩、水の付着等により、硫酸塩と硝酸塩がイオン化し表面抵抗が低下したと考えられる。
炭化水素(HC)(図10に四角で示す。)、エステル(図10に菱形で示す。)については市場使用品と新品とであまり変化が無かった。
【0033】
MTS法による有効な評価項目の明確化を目的に、分析した19項目のうち相関性が高い項目(水、硝酸塩、硫酸塩)、新品、市場使用品とも変化が全く見られない項目(色彩a)を除いた15個の項目を評価した。各項目について、表4に示すように番号A〜Oを付し、表3に示すように各項目を因子として2水準のL16直交表に割り付けた。第1水準をその評価項目を使用する、第2水準を使用しないとし、16種類の評価項目の組み合せより、市場使用品データのマハラノビスの距離を求めた。このような手法については、例えば刊行物(田口玄一、兼高達貮著、 品質工学応用講座「MTシステムにおける技術開発」、第1版第1刷、日本、財団法人日本規格協会発行、2002年6月20日、第62頁)に記載されている。
基準空間(新品のデータ群)からの市場使用品のマハラノビスの距離は、大きい方が劣化診断を行うのが容易であるので、望大特性のSN比で評価を行った。表4の組み合せNo.1は水準が全て1なのでA〜Oの全ての評価項目で得られたデータからマハラノビスの距離を求める。組み合せNo.2で水準が1である評価項目はA〜Gなので、A〜Gの評価項目で得られたデータからマハラノビスの距離を求める。以下同様にして組み合せNo.16までのマハラノビスの距離を求め、それぞれに対して望大特性のSN比を求めた。
【0034】
【表3】
Figure 2004236465
【0035】
【表4】
Figure 2004236465
【0036】
SN比の要因効果図を図11に示す。図11において、横軸は評価項目番号(A〜O)と水準(1,2)、縦軸はSN比である。要因効果図で左上がりの項目は診断に有効な項目、右上がりの項目は必要のない項目である。特に有効な評価項目は、硝酸イオン(J)、硫酸イオン(K)、塩素イオン(H)ナトリウムイオン(L)、アンモニウムイオン(M)、カルシウムイオン(O)、光沢(C)、色彩b(B)、成分(炭化水素基(D))であった。これらの有効な評価項目を用いて、市場使用品14個(サンプル番号17〜30)のマハラノビスの距離を求め、求められたマハラノビスの距離と予め絶縁劣化促進試験により求めておいた図2に示すような余寿命マスターカーブを用いて実施の形態1で説明した余寿命算出方法により余寿命を算出した。結果を表5に示す。
【0037】
【表5】
Figure 2004236465
【0038】
実施例2.
上記サンプル(新品16個:サンプル番号1〜16、市場使用品14:サンプル番号17〜30)について、上述の評価項目を硝酸イオン、硫酸イオン、塩素イオン、およびカルシウムイオンの各付着量、並びに色彩bとし、実施例1と同様にして絶縁劣化量を診断した。
比較のために実験室で温度20℃、湿度50%の雰囲気下で測定した表面抵抗値とマハラノビスの距離の相関を求めた。結果を図12に示す。
【0039】
その結果、相関係数は、実施例1の硝酸イオン、硫酸イオン、塩素イオン、ナトリウムイオン、アンモニウムイオン、カルシウムイオン、光沢、色彩b、成分(炭化水素基)の測定では0.96であり、硝酸イオン、硫酸イオン、塩素イオン、カルシウムイオン、色彩bの測定では0.94であった。
【0040】
この結果より、少なくとも硝酸イオン、硫酸イオン、塩素イオン、カルシウムイオン、色彩bを評価項目とし、測定結果から余寿命を推定すると、推定精度は多少低下するものの、測定時間の短縮化、コストの低減が図れる。
【0041】
比較例1.
上記サンプル(新品16個:サンプル番号1〜16、市場使用品14:サンプル番号17〜30)について、1つの評価項目で絶縁劣化量を診断した。サンプル、および各イオン量等の測定方法は実施例1および2と同じである。
図13は硝酸イオン単独および硫酸イオン単独で被検体である固体絶縁物(不飽和ポリエステル)の劣化の程度を評価した結果である。図13において、横軸が表面抵抗(Ω)、縦軸が硝酸または硫酸イオン量(濃度:mg/cm)である。白抜き菱形が上記サンプルの硝酸イオン量(濃度)と表面抵抗の測定結果、白抜き四角が上記サンプルの硫酸イオン量(濃度)と表面抵抗の測定結果であり、硝酸イオン量と表面抵抗との関係を示す破線および硫酸イオン量と表面抵抗との関係を示す実線はそれぞれこれらの測定結果から求めたものである。黒菱形は未知サンプルの硝酸イオン量(濃度)の測定結果、黒四角は同じ未知サンプルの硫酸イオン量(濃度)の測定結果である。
【0042】
未知サンプルの硝酸イオン量と硫酸イオン量をそれぞれ測定し、図13の表面抵抗と各イオン量の関係を示す直線を利用して表面抵抗を求めた場合と、実施例2で説明したマハラノビスの距離から、図12に示した表面抵抗とマハラノビスの距離の関係を示す直線を利用して表面抵抗をもとめた場合を比較した。
手順は以下のとおりである。
手順▲1▼:表面抵抗と硝酸イオン量、および表面抵抗と硫酸イオン量の関係を示す直線を求める。
手順▲2▼:表面抵抗とマハラノビスの距離の関係を示す直線を求める。
手順▲3▼:未知サンプルのイオン量から▲1▼で求めた直線関係を利用して表面抵抗を求める。
手順▲4▼:未知サンプルのマハラノビスの距離から▲2▼で求めた直線関係を利用して表面抵抗を求める。
手順▲5▼:手順▲3▼と手順▲4▼の結果を比較して有効性を確認する。
【0043】
未知サンプルの表面抵抗を測定したところ、1.8×10Ωであった。この実測値1.8×10Ωに対し、手順▲3▼において硫酸イオン、および硝酸イオンから求めた表面抵抗はそれぞれ1.0×10Ω、および4.0×1010Ωであり、1桁以上、実測値と異なっていた。
これに対して、手順▲4▼においてマハラノビスの距離から求めた表面抵抗は8.7×10Ωであり、実測値とほぼ一致した。
この結果より、1つの評価結果から診断すると余寿命推定精度が悪くなることがわかった。
【0044】
比較例2.
前述の通り、絶縁劣化促進試験の湿度条件は40%RH〜95%RH、好ましくは60%RH〜90%RHである。温度は50℃〜80℃、好ましくは60℃〜70℃である。硝酸類濃度、硫酸類濃度、塩素類濃度の合計濃度は0.01ppm〜100ppm、好ましくは0.1ppm〜10ppmである。電界は0.01kV/mm〜10kV/mm、好ましくは0.1kV/mm〜2.0kV/mmである。これらの範囲以外で試験した結果を表6に示す(試験時間は1時間〜350時間の間の10分おき)。
【0045】
試験番号1は湿度が低すぎる場合、試験番号2は温度が低すぎる場合、試験番号3は電界強度が大きすぎる場合、試験番号4は硝酸類濃度、硫酸類濃度、塩素類濃度の合計濃度が大きすぎる場合である。
いずれの場合も市場での劣化と整合せず、マスターカーブを取得するのに十分な絶縁劣化を再現することはできなかった。
【0046】
【表6】
Figure 2004236465
【0047】
以上説明したように、固体絶縁物に付着している硝酸イオン、硫酸イオン、塩素イオン、およびカルシウムイオンの各イオン量、並びに上記固体絶縁物の色彩bを評価項目とし、各評価結果をマハラノビス・タグチシステム法により解析して1つの指標(マハラノビスの距離)で表し、このマハラノビスの距離を用いて絶縁劣化量を診断すると、市場での劣化メカニズムに即した高精度な絶縁劣化量の診断結果が得られる。
【0048】
さらに、固体絶縁物に付着している硝酸イオン、硫酸イオン、塩素イオン、ナトリウムイオン、アンモニウムイオン、およびカルシウムイオンの各イオン量、並びに、上記固体絶縁物の光沢、色彩b、成分(炭化水素基の量)を評価項目とし、各評価結果をマハラノビスの距離で表し、このマハラノビスの距離を用いて絶縁劣化量を診断すると、測定時間およびコストが多少かかるものの、市場での劣化メカニズムに即したより高精度な絶縁劣化量の診断結果が得られる。
【0049】
なお、上記のような評価項目は、いずれも、被検体である固体絶縁物を取り外して測定装置のところまで持っていかなくても、運転中の受配電機器に対してその設置現場で測定することができる。
【0050】
また、受配電機器用固体絶縁物に対して、湿度、温度、硝酸類の濃度、硫酸類の濃度、塩素類の濃度、印加電界をコントロールして絶縁劣化促進試験を行うことにより、受配電機器用固体絶縁物の市場での絶縁劣化を精度良く模擬することが可能となる。その結果、精度の高い余寿命マスターカーブの作成が可能となり、これを用いて、複数の劣化要因が複合的に影響して劣化する受配電機器用固体絶縁物の余寿命を精度良く推定することができる。
【0051】
なお、上記では、評価項目を総合的に用いて絶縁劣化の程度を1つの指標で表すのに、絶縁劣化の程度を表す指標としてマハラノビスの距離を用い、新品の受配電機器用固体絶縁物の各評価項目の測定データを基準データ群として用いて被検体である受配電機器用固体絶縁物のマハラノビスの距離を求め、予め求めておいた運転時間とマハラノビスの距離との関係から被検体である受配電機器用固体絶縁物の余寿命を推定する場合について説明したが、絶縁劣化の程度を表す指標はマハラノビスの距離に限るものではなく、別の指標を用いてもよい。要は、評価項目として、受配電機器用固体絶縁物に付着している硝酸イオン、硫酸イオン、塩素イオン、およびカルシウムイオンの各イオン量、並びに受配電機器用固体絶縁物の色彩bを採択したことが、さらには、上記評価項目に加えて、受配電機器用固体絶縁物に付着しているナトリウムイオン、およびアンモニウムイオンの各イオン量、並びに受配電機器用固体絶縁物の光沢、および受配電機器用固体絶縁物の成分として炭化水素基の量を採択したことが、本発明の特徴とするところである。
【0052】
【発明の効果】
以上のように、本発明によれば、新品の受配電機器用固体絶縁物と被検体である受配電機器用固体絶縁物とに付着している硝酸イオン、硫酸イオン、塩素イオン、およびカルシウムイオンの各イオン量、並びに上記各受配電機器用固体絶縁物の色彩bを評価項目とし、上記評価項目を総合的に用いて絶縁劣化の程度を1つの指標で表し、予め求めておいた運転時間と上記指標との関係から上記被検体である受配電機器用固体絶縁物の余寿命を推定するので、複数の劣化要因が複合的に影響して劣化する、受配電機器用固体絶縁物の余寿命を、精度良く推定することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る絶縁劣化促進試験装置を示す構成図である。
【図2】本発明の実施の形態1に係る余寿命マスターカーブを示す図である。
【図3】本発明の実施例1による固体絶縁物の陰イオン付着量の測定結果を示す図である。
【図4】本発明の実施例1による固体絶縁物の陰イオン付着量の測定結果を示す図である。
【図5】本発明の実施例1による固体絶縁物の陽イオン付着量の測定結果を示す図である。
【図6】本発明の実施例1による固体絶縁物の色彩Lの測定結果を示す図である。
【図7】本発明の実施例1による固体絶縁物の色彩a,bの測定結果を示す図である。
【図8】本発明の実施例1による固体絶縁物の光沢の測定結果を示す図である。
【図9】本発明の実施例1による固体絶縁物の赤外分析結果を示す図である。
【図10】本発明の実施例1による固体絶縁物の赤外分析結果を示す図である。
【図11】本発明の実施例1によるSN比の要因効果図である。
【図12】本発明の実施例2によるマハラノビスの距離と表面抵抗値との関係を示す図である。
【図13】本発明の比較例1による硝酸イオン濃度、硫酸イオン濃度各単独での絶縁物の評価結果を説明する図である。
【符号の説明】
1 トランス、2 抵抗(1MΩ)、3 高圧プローブ、4 アクリル容器、5 恒温・恒湿槽、6 湿調付きデシケーター、7 絶縁物、8 硝酸類、硫酸類、塩素類供給源、9 パソコン、10 デジタルマルチメーター、11 発振器、12 パワーアンプ、13 デジタルオシロスコープ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for estimating the remaining life of a solid insulator for a power receiving / distributing device, and more particularly, to insulating a solid insulator made of an organic material used for a power receiving / distributing device at a site where the power receiving / distributing device is installed. The present invention relates to a method for accurately estimating a remaining life due to a decrease in resistance with sufficient sensitivity.
[0002]
[Prior art]
As an example of performing the remaining life estimation of the conventional solid insulator, in the method of estimating the remaining life of the coated cable, the organic polymer material itself forming the coating layer, a reproduction material having the same composition as the organic polymer material, or For at least one material selected from the group consisting of materials similar to the reproduction material, the correlation between the heating temperature t and the heating time h using the ultrasonic propagation characteristic Vts or the deterioration diagnosis characteristic at the reference temperature ts of the material as a parameter ( a) for experimentally establishing a th correlation (th-h correlation), and a step β for determining a th correlation for at least one parameter value arbitrarily selected from the th correlations as a lifetime ht correlation. Obtaining a value of the ultrasonic propagation characteristic Vts or the deterioration diagnostic characteristic of the organic polymer material forming the coating layer of the coated cable which has been laid for a certain period of time and whose remaining life is to be estimated; The heating time h1 on the correlation between the life t-h at the average temperature of the coating layer of the coated cable and the ultrasonic propagation characteristic Vts obtained in the process γ or the value (parameter value) of the deterioration diagnosis characteristic obtained in the process γ after the fixed period of installation. The method includes a step δ for obtaining a heating time h2 on the h correlation, and a step ε for determining a remaining life of the coated cable based on a time difference between the heating time h1 and the heating time h2 (for example, see Patent Document 1). The degradation diagnostic properties include tensile strength, elongation at break, modulus of elasticity, Young's modulus, modulus, dielectric constant, dielectric loss tangent, volume resistivity, and AC breakdown voltage strength of the organic polymer material forming the coating layer of the coated cable. , Impulse breakdown voltage strength, ultrasonic wave propagation characteristics, surface resilience hardness, surface penetration hardness, torsional torque of a coated cable, and bending rigidity of a coated cable.
[0003]
[Patent Document 1]
JP-A-11-352050 (pages 2-9, FIGS. 1 and 2)
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional example, since only deterioration with respect to temperature (thermal deterioration) is considered, there is a problem that the method cannot be applied to a case where deterioration is caused by factors other than temperature.
[0005]
The present invention has been made in order to solve the above-described problems of the related art, and accurately determines the remaining life of a solid insulator for a power receiving / distributing device, which is deteriorated due to a plurality of deterioration factors. The purpose is to provide a method that can be estimated.
[0006]
[Means for Solving the Problems]
The method for estimating the remaining life of a solid insulator for a power receiving / distributing device according to the present invention includes a nitrate ion and a sulfate ion adhering to a new solid insulator for a power receiving / distributing device and a solid insulator for the power receiving / distributing device as a subject. , Chlorine ions, and calcium ions, and the color in the color specification mode b of each of the solid-state insulators for power receiving and distributing equipment as evaluation items. The remaining life of the solid insulator for the power receiving / distributing device, which is the subject, is estimated from the relationship between the operating time, which is represented by an index, and a previously determined operation time and the index.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
The solid insulator applied to the remaining life estimation of the present invention is used in power receiving and distribution equipment such as a switchgear, a circuit breaker, and a switch. Solid insulators used in such power receiving and distribution equipment include, for example, unsaturated polyester containing calcium carbonate or hydrated alumina, phenol resin (phenol laminate, phenol molded product), epoxy resin, epoxy insulator and the like. There are many solid insulators made of organic materials. In the present invention, such a solid insulator made of an organic material used in a power receiving / distributing device is referred to as a solid insulator for a power receiving / distributing device (hereinafter, a solid insulator for a power receiving / distributing device may be simply referred to as a solid insulator. ), The deterioration proceeds due to stress factors during use. It is important to diagnose such a state of deterioration and prevent an accident from occurring.
[0008]
The inventors of the present invention have analyzed the trouble cases of the circuit breaker in detail, and found that the solid insulator does not deteriorate due to only thermal stress but deteriorates due to electrical, chemical and environmental stress factors. I found out. That is, when an ionic substance adheres to a solid insulator and deliquesces, or when moisture is applied thereto due to rainfall or the like, a leakage current flowing on the surface of the solid insulator increases, resulting in a decrease in insulation. Further, when a part of the surface of the solid insulator is dried by the local heating due to the leakage current and the leakage current is interrupted, the voltage of the part increases and a local discharge occurs. This discharge generates a nitric acid compound and further lowers insulation resistance. Carbonization proceeds in the portion where the discharge has occurred, and a conductive path is formed, resulting in a short circuit.
[0009]
The inventors of the present invention have found that the solid insulator for power receiving / distributing equipment does not deteriorate only due to thermal stress as described above, but the electrical, chemical, and environmental stress factors affect the deterioration in a complex manner. Therefore, the present inventors have found that it is necessary to measure a plurality of deterioration characteristics and judge the remaining life comprehensively, leading to the present invention.
[0010]
The method for estimating the remaining life of a solid insulator for power receiving and distribution equipment according to the present invention measures a plurality of evaluation items for evaluating the amount of insulation deterioration and comprehensively analyzes the measurement results to obtain one deterioration index (Maharanobis). The remaining life is estimated from the relationship between the operating time and the deterioration index (maharanobis distance) created in advance, and is composed of the following three steps.
[0011]
The first step is to measure the evaluation items for diagnosing the insulation deterioration amount of the solid insulator used in the power receiving and distribution device during operation. The inventors of the present invention analyzed the marketed product of the solid insulator for power receiving and distribution equipment as described above, and found that nitrate ion, sulfate ion, chloride ion, sodium ion, ammonium ion adhered to the solid insulator. , And the amount of each of calcium ions, the gloss of the solid insulator, the color in the color specification mode b (one of the notations of color, the plus direction indicates the direction in which yellow becomes stronger, and the minus direction indicates the direction in which blue becomes stronger) Hereafter, the evaluation items of the color b and the component (the amount of the hydrocarbon group) are used to evaluate the insulation deterioration amount of the solid insulator used in the power receiving and distribution equipment during operation. Found to be effective.
[0012]
The amount of each ion is measured using, for example, a commercially available ion test paper or a reaction reagent solution and an absorbance meter.
An example of a specific measurement method using an ion test paper is as follows. Immerse the ion strip in water and then shake off excess water. An ion test paper containing water is pressed against the surface of the solid insulator for about 1 second, and the discoloration of the ion test paper is measured visually or by a high-sensitivity reflection photometer. Since the discoloration increases as the amount of ions increases, the amount of ions can be quantified.
An example of a specific measurement method using a reaction reagent solution and an absorbance meter is as follows. Soak the filter paper in water and then shake off excess water. The filter paper containing water is pressed against the surface of the solid insulator for about 30 seconds to extract ions on the surface of the solid insulator into the filter paper. The filter paper from which the ions have been extracted is immersed in 3 ml of water to extract the ions into the water. The reaction reagent solution is mixed with 1.5 ml of the water from which the ions have been extracted, and the reagent is reacted with the ions. The absorbance of the solution is measured with an absorptiometer. The larger the absorbance, the larger the amount of ions, so that the amount of ions can be quantified.
[0013]
Gloss, color and components (hydrocarbon groups) are measured with a portable gloss meter, a portable color meter and a simple infrared spectrophotometer, respectively.
[0014]
Conventionally, in order to diagnose the insulation deterioration amount of a solid insulator, for example, the tensile strength, elongation at break, elastic modulus, Young's modulus, modulus, dielectric constant, dielectric loss tangent, volume resistivity, AC It measures at least one of breakdown voltage strength, impulse breakdown voltage strength, ultrasonic wave propagation characteristics, surface rebound hardness, surface penetration hardness, torsional torque, and bending stiffness, and measures temperature, humidity, electromagnetic waves, etc. Was affected by disturbance.
On the other hand, in the present embodiment, the solid evaluation is performed by the above-described chemical evaluation (the amount of each ion, the degree of gloss, the color b, and the component (the amount of the hydrocarbon group)) which is hardly affected by disturbance. A highly accurate diagnosis of the amount of insulation deterioration of an object becomes possible. Moreover, each of the above-described evaluation items can be measured at the installation site of the operating power receiving and distribution device without removing the solid insulator as the subject and bringing it to the measuring device.
[0015]
The second step is to comprehensively analyze the measurement results of the above-mentioned evaluation items and to represent the results by one deterioration index (maharanobis distance). As described above, the inventors of the present invention consider that the deterioration of the solid insulator for power receiving and distribution equipment is affected by a combination of electrical, chemical, and environmental stress factors. It was not appropriate because the diagnostic accuracy deteriorated, and it was found that it was necessary to measure a plurality of deterioration characteristics and judge the remaining life comprehensively.
More specifically, the amount of nitrate ion, the amount of sulfate ion, the amount of chloride ion, the amount of sodium ion, the amount of ammonium ion, and the amount of calcium ion adhering to a new product and a solid insulator as a test object, and the amount of calcium ion, and The gloss, color b, and component (amount of hydrocarbon group) are used as evaluation items, and the measurement results of each evaluation item are analyzed by the Mahalanobis-Taguchi system method and expressed as one index (maharanobis distance). When the amount of insulation deterioration was diagnosed by using this method, it was found that a highly accurate diagnosis result of the amount of insulation deterioration was obtained. That is, the distance of Mahalanobis from the new sample corresponds to the insulation deterioration amount (deterioration index) of the unknown sample (test object). The number of new samples is 15 samples from different production lots, preferably 30 samples, and more preferably 50 samples or more. A reference data group consisting of measurement data for each evaluation item of a new sample is created in advance for each type of solid insulator, and the distance to the unknown sample (subject) from the reference data (maharanobis distance) is used as a diagnosis target. Diagnosis of insulation deterioration of solid insulator.
[0016]
The third step is to estimate the remaining life from the relationship between the previously created operation time and the deterioration index (distance of Mahalanobis). The inventors of the present invention have found that the main chemical and environmental factors that promote the deterioration of the solid insulator for power distribution equipment are humidity, temperature, nitrates, sulfuric acids, and chlorines. We have developed an insulation deterioration accelerating test device as shown in Fig. 1 that can apply a voltage under an atmosphere of chemical and environmental factors.
In FIG. 1, a solid insulator 7 is installed in a desiccator 6 with a humidity control function arranged in a constant temperature / humidity chamber 5. The desiccator 6 is in communication with a source 8 of nitrates, sulfates, and chlorines. The output voltage is adjusted by the oscillator 11 and the power amplifier 12, and the voltage is increased by the transformer 1. In this case, since the transformer 1 whose voltage is increased 200 times is used, when the oscillator 11 and the power amplifier 12 output a voltage of 10 V, the voltage of the transformer 1 becomes 2 kV and is applied to the solid insulator 7. The high-voltage probe 3 is provided to measure the voltage applied to the solid insulator 7 with the digital oscilloscope 13. In addition, a resistor (1 MΩ) 2 is provided to protect the measuring instrument from high voltage application when the solid insulator 7 breaks down, and the high voltage applied resistance (1 MΩ) is separated from the surroundings. Acrylic container 4 is provided as a stand for the work.
The leakage current from the solid insulator 7 is measured by the digital oscilloscope 13 and the digital multimeter 10 and the data is stored in the personal computer 9.
[0017]
The supply of nitrates, sulphates and chlorine is NO x , SO x , HCl gas, spraying an aqueous solution of a nitric acid compound, a sulfuric acid compound, or a chlorine-based compound, or exposing to a vapor of nitric acid, sulfuric acid, or hydrochloric acid.
[0018]
While maintaining the temperature, humidity, nitric acid concentration, sulfuric acid concentration, and chlorine concentration in the desiccator 6 at predetermined values (specific numerical values will be described in detail later), a predetermined electric field (specific value) will be described. After the solid insulator 7 to which the numerical value is applied is held in the desiccator 6 for a predetermined time, the solid insulator is analyzed by the above-mentioned evaluation items to obtain the Mahalanobis distance, and the time and Mahalanobis distance are obtained. A diagram showing the relationship with the distance (remaining life master curve shown in FIG. 2) was created. After the test (after holding in the desiccator 6 for a predetermined time), the electrical evaluation of the solid insulator (measured surface resistance under the condition of 50% humidity and 20 ° C.) and the chemical evaluation Analysis was performed by the Mahalanobis-Taguchi system (MTS) method, and the value was represented by the Mahalanobis distance). As a result, the correlation between the surface resistance of the sample used in the market and the distance between the Mahalanobis and the correlation between the surface resistance of the sample tested with the insulation deterioration acceleration test device and the distance between the Mahalanobis were consistent (the surface resistance of the sample used in the market). The data of the test sample was on the correlation line between the distance between the test sample and the Mahalanobis.) From this, it was confirmed that this test simulated insulation deterioration in the market. In FIG. 2, the horizontal axis indicates the operation time, and the vertical axis indicates the Mahalanobis distance.
The life point is determined in consideration of the type of power receiving and distribution equipment such as a circuit breaker and a switch, a voltage, an insulation distance, a thickness and a material of a solid insulator, and the like. 4 -10 9 (Surface resistance is 10 7 -10 11 Ω) is a life point.
[0019]
The procedure for estimating the remaining life of the solid insulator used in the power distribution equipment actually operated in the market using the remaining life master curve obtained by the insulation deterioration promotion test shown in FIG. 2 is as follows. . For example, the degree of deterioration (distance of Mahalanobis) of a solid insulator used in a power receiving and distribution device operated in the market for 10 years is obtained. If the calculated Mahalanobis distance is x, (ba) corresponds to 10 years, and the remaining life is {(db) / (ba) × 10} years. Similarly, if the Mahalanobis distance is y, (ca) corresponds to 10 years, and the remaining life is {(dc) / (ca) × 10} years.
[0020]
The respective conditions of the insulation deterioration accelerating test are described below, but the present invention is not limited thereto. If the humidity is too high, flashover occurs, which is different from the deterioration mode in the market. If the humidity is too low, the insulation deterioration does not progress and the deterioration does not accelerate. Therefore, the humidity is 40% RH to 95% RH, preferably 60% RH to 90%. RH. The temperature is between 50 ° C. and 80 ° C., preferably between 60 ° C. and 70 ° C., simulating a degradation mode on the market. If the total concentration of the nitrate concentration, the sulfuric acid concentration, and the chlorine concentration is too high, the insulation deterioration is accelerated and the diagnostic accuracy is deteriorated. If the concentration is too low, the insulation deterioration does not proceed and the deterioration is not promoted. It is 100 ppm, preferably 0.1 ppm to 10 ppm. Further, the concentration ratio of the nitric acid concentration, the sulfuric acid concentration, and the chlorine concentration is 0 to 2: 0 to 2: 0 to 0.5, preferably 0.8 to 1.5: 0.8 to 1.5: 0.1 to 0.3. The electric field is 0.01 kV / mm to 10 kV / mm, preferably 0.1 kV / mm to 2.0 kV / mm.
[0021]
【Example】
Embodiment 1 FIG.
An example of the estimation of the remaining life of the solid insulator (mainly unsaturated polyester) used in the circuit breaker will be described in detail below. New samples and solid insulators for circuit breakers used in the market were used as samples. The number of samples is 16 for new products (sample numbers 1 to 16) and 14 for market use (sample numbers 17 to 30).
Amount of each ion (nitrate ion, sulfate ion, chloride ion, sodium ion, ammonium ion, potassium ion, calcium ion, fluorine ion, nitrite ion) of solid insulator, color difference (color mode L, a, b), Chemical evaluation (19 evaluation items) of gloss and components (hydrocarbon group, water, ester group, sulfate, nitrate, silicate) was performed. Tables 1 and 2 show the installation locations and installation categories of the circuit breakers used as the samples, as well as the measurement devices (name of the device, company name, and product number) and measurement conditions. The Mahalanobis-Taguchi system (MTS) method was applied to the chemical evaluation results to determine the Mahalanobis distance, and the remaining life was estimated.
[0022]
[Table 1]
Figure 2004236465
[0023]
[Table 2]
Figure 2004236465
[0024]
Regarding the Mahalanobis distance, which is one of the discriminant analyzes of the multivariate analysis, see, for example, a publication (Makoto Nijingo, "Introduction to the Distance of Mahalanobis-To Understand the MTS Method", Quality Engineering, Vol. 9, No. 1. , P.13 (2001)). The Mahalanobis distance is a measure of how similar the data group is to the reference.
The following describes the procedure for determining the Mahalanobis distance of the circuit breaker solid insulator used in the market that is the subject using the measurement data of each of the above evaluation items of the new circuit breaker solid insulator as the reference data group, Specific mathematical formulas are also described in the above-mentioned publications, so description thereof is omitted.
[0025]
Procedure (1): Preparation of reference data group
N sets of data having K variables (evaluation items) are prepared.
In the case of this embodiment, the reference data group is 16 new solid insulator samples for circuit breakers, and the evaluation items are the 19 items described above.
Step (2): Normalization of reference data group
Each data is normalized using the average value and the standard deviation for each evaluation item. Here, the items whose standard deviation is zero are excluded (specifically, color a, as will be described later).
Step (3): Calculation of correlation coefficient matrix between variables
Combination of taking two out of k variables ( k C 2 ), A correlation coefficient is obtained, and a k × k correlation coefficient matrix R is obtained. Exclude items with a large correlation here (specifically, water, nitrate, sulfate)
Step (4): Calculation of inverse matrix of correlation coefficient matrix
An inverse matrix A of the correlation coefficient matrix R is obtained.
Step 5: Calculation of Mahalanobis distance
The Mahalanobis distance D is obtained using the correlation coefficient matrix R obtained in step (4).
From the above, the Mahalanobis distance of the new solid insulator sample for circuit breaker is obtained.
[0026]
Next, a method of obtaining the Mahalanobis distance of the solid insulator for the circuit breaker used in the market as the subject will be described.
First, data on 14 circuit breaker solid insulators used in the market, which is the subject, is prepared. As in the case of the new solid insulator sample for circuit breaker, the evaluation items are 15 items.
Next, the data of the subject is normalized for each evaluation item using the average value and the standard deviation obtained using the data of the new solid insulator sample for circuit breaker as a reference data group.
Next, using the correlation coefficient matrix R obtained from the reference data group, the distance of Mahalanobis of the solid insulator for the circuit breaker used in the market, which is the subject, is calculated.
[0027]
In the reference data group (new solid insulator sample for circuit breaker), each data is normalized using the average value and the standard deviation for each evaluation item. Since the average value and the standard deviation of the reference data group are used for normalizing the data of the solid insulator for the circuit breaker used in the market that is the subject, the number of data is not limited to a plurality but may be one. Needless to say.
[0028]
Next, a method for selecting an effective evaluation item will be described. The greater the distance of Mahalanobis of the solid insulator for the circuit breaker used in the market being the subject, the better the diagnostic accuracy. The evaluation items are assigned to an orthogonal table as the first level when the evaluation item is used and the second level when the evaluation item is not used, and the Mahalanobisno distance of the subject is obtained for each combination of the evaluation items. , And select an effective evaluation item.
[0029]
3 to 5 show the measurement results of the amount of attached ions. 3 and 4 show the measurement results (part 1) and (part 2) of the anion adhesion amount, and FIG. 5 shows the measurement result of the cation adhesion amount. 3 to 5, the horizontal axis represents the sample number (sample numbers 1 to 16: new, sample numbers 17 to 30: used in the market), and the vertical axis represents the ion amount (mg / cm). 2 ). Each anion of nitric acid (indicated by a square in FIG. 3), sulfuric acid (indicated by a diamond in FIG. 4), chlorine (indicated by a triangle in FIG. 3), and sodium (indicated by a diamond in FIG. 5) ) And potassium (indicated by a cross in FIG. 5) tended to increase as compared with new cations. The main components of the anion were nitrate ion and sulfate ion. The main component of the cation was a calcium ion (shown by a square in FIG. 5), which was 50 to 100 times that of the other cations.
Fluorine ions (indicated by a cross in FIG. 3), nitrite ions (indicated by a circle in FIG. 3), calcium ions, and ammonium ions (indicated by triangles in FIG. 5) are rarely used in commercial products and new products. There was no change.
[0030]
The measurement results of color are shown in FIGS. FIG. 6 shows the measurement results of the color L (color in the color specification mode L: one of the notations of color, which represents lightness, and the plus direction is the direction in which the color becomes brighter; hereinafter, referred to as the color L), and FIG. Is the measurement result of the color a (color in the color specification mode a: one of the notations of color; the plus direction is the direction in which red becomes stronger, and the minus direction is the direction in which green becomes stronger) and the measurement result of the color b. . 6 and 7, the horizontal axis represents the sample number (sample numbers 1 to 16: new, sample numbers 17 to 30: used in the market), and the vertical axis represents color. The color is white (L = 93.61, a = 1.50, b = −0.03) as a reference color, and is shown as a relative value to the L, a, and b values of the reference color.
The color b of the marketed product tended to increase. In some samples, the color a did not change, but the color L decreased.
[0031]
FIG. 8 shows the measurement results of the gloss. In FIG. 8, the horizontal axis represents sample numbers (sample numbers 1 to 16: new products, sample numbers 17 to 30: products used on the market), and the vertical axis represents gloss. The gloss was defined as a value relative to the black gloss (95.5) as the reference gloss. In addition, new products were measured at an incident angle of 60 ° because of high gloss, and products used on the market were measured at 85 °.
The gloss of marketed products tended to decrease. This is considered to be due to surface roughness due to adhesion and deterioration of water and ionic substances.
[0032]
9 and 10 show the results of component analysis by infrared analysis. FIG. 9 shows the result of component analysis by infrared analysis (part 1), and FIG. 10 shows the result of component analysis by infrared analysis (part 2). 9 and 10, the horizontal axis represents the sample number (sample numbers 1 to 16: new, sample numbers 17 to 30: used in the market), and the vertical axis represents the component amount, and the solid insulator used in the circuit breaker. The amount of each component was represented by the ratio of (unsaturated polyester main component) to calcium carbonate as a filler. Water (shown by a square in FIG. 9), sulfate (shown by a circle in FIG. 9), nitrate (shown by a triangle in FIG. 10), and silicate (shown by a triangle in FIG. 9) are new. It was below the detection limit (1.0). Water, nitrate, sulfate, and silicate tended to increase in marketed products. It is considered that sulfate and nitrate were ionized due to the attachment of nitrate, sulfate, and water, and the surface resistance was reduced.
Regarding hydrocarbons (HC) (shown by squares in FIG. 10) and esters (shown by diamonds in FIG. 10), there was not much change between commercially available products and new products.
[0033]
For the purpose of clarifying effective evaluation items by the MTS method, among the 19 items analyzed, items having high correlation (water, nitrate, sulfate), items showing no change in new products and products used in the market (color a) ) Were evaluated for 15 items. Each item was numbered A to O as shown in Table 4 and assigned to a two-level L16 orthogonal table using each item as a factor as shown in Table 3. Assuming that the first level uses the evaluation item and the second level is not used, the Mahalanobis distance of the market use product data was obtained from a combination of 16 types of evaluation items. For such a method, see, for example, a publication (Genichi Taguchi and Kenta Kanetaka, Quality Engineering Application Lecture “Technological Development in MT System”, 1st edition, 1st edition, Japan, published by the Japan Standards Association, 2002 June 20, p. 62).
The larger the distance of the Mahalanobis of the product used in the market from the reference space (new data group), the easier it is to perform the deterioration diagnosis. Combination No. of Table 4 Since the level of 1 is all 1, the Mahalanobis distance is obtained from the data obtained for all the evaluation items A to O. Combination No. Since the evaluation items whose level is 1 and 2 are A to G, the Mahalanobis distance is obtained from the data obtained by the evaluation items of A to G. Hereinafter, the combination No. The Mahalanobis distances up to 16 were determined, and the S / N ratio of the desired size characteristic was determined for each.
[0034]
[Table 3]
Figure 2004236465
[0035]
[Table 4]
Figure 2004236465
[0036]
FIG. 11 shows a factor-effect diagram of the SN ratio. In FIG. 11, the horizontal axis represents the evaluation item number (A to O) and the level (1, 2), and the vertical axis represents the SN ratio. In the factor-effect diagram, items rising to the left are items effective for diagnosis, and items rising to the right are items that are unnecessary. Particularly effective evaluation items are nitrate ion (J), sulfate ion (K), chloride ion (H), sodium ion (L), ammonium ion (M), calcium ion (O), gloss (C), color b ( B) and a component (hydrocarbon group (D)). Using these effective evaluation items, the Mahalanobis distance of 14 products used on the market (sample numbers 17 to 30) was obtained, and the obtained Mahalanobis distance and FIG. 2 obtained in advance by an insulation deterioration promotion test are shown. The remaining life was calculated by the remaining life calculation method described in the first embodiment using such a remaining life master curve. Table 5 shows the results.
[0037]
[Table 5]
Figure 2004236465
[0038]
Embodiment 2. FIG.
With respect to the above samples (16 new products: sample numbers 1 to 16; products used in the market 14: sample numbers 17 to 30), the above-mentioned evaluation items were determined based on the attached amounts of nitrate ion, sulfate ion, chloride ion, and calcium ion, and color. b, the amount of insulation deterioration was diagnosed in the same manner as in Example 1.
For comparison, the correlation between the surface resistance value and the Mahalanobis distance measured in an atmosphere of a temperature of 20 ° C. and a humidity of 50% in a laboratory was obtained. FIG. 12 shows the results.
[0039]
As a result, the correlation coefficient was 0.96 in the measurement of the nitrate ion, the sulfate ion, the chloride ion, the sodium ion, the ammonium ion, the calcium ion, the gloss, the color b, and the component (hydrocarbon group) in Example 1. The measurement of nitrate ion, sulfate ion, chloride ion, calcium ion and color b was 0.94.
[0040]
From this result, when at least nitrate ion, sulfate ion, chloride ion, calcium ion, and color b are evaluated and the remaining life is estimated from the measurement result, the estimation accuracy is slightly reduced, but the measurement time is shortened and the cost is reduced. Can be achieved.
[0041]
Comparative Example 1
With respect to the above-mentioned samples (16 new products: sample numbers 1 to 16, marketed products 14: sample numbers 17 to 30), the amount of insulation deterioration was diagnosed by one evaluation item. The method for measuring the sample and the amount of each ion is the same as in Examples 1 and 2.
FIG. 13 shows the results of evaluating the degree of deterioration of a solid insulator (unsaturated polyester) as a test object using only nitrate ions and only sulfate ions. In FIG. 13, the horizontal axis represents surface resistance (Ω), and the vertical axis represents nitrate or sulfate ion amount (concentration: mg / cm). 2 ). Open diamonds indicate the measurement results of the nitrate ion amount (concentration) and surface resistance of the sample, and open squares indicate the measurement results of the sulfate ion amount (concentration) and surface resistance of the sample. A broken line indicating the relationship and a solid line indicating the relationship between the sulfate ion amount and the surface resistance are obtained from these measurement results. The black diamonds indicate the measurement results of the nitrate ion amount (concentration) of the unknown sample, and the black squares indicate the measurement results of the sulfate ion amount (concentration) of the same unknown sample.
[0042]
The amount of nitrate ion and the amount of sulfate ion of the unknown sample were measured, respectively, and the surface resistance was obtained using a straight line indicating the relationship between the surface resistance and each ion amount in FIG. 13, and the distance between Mahalanobis described in Example 2 Therefore, a comparison was made between the case where the surface resistance was determined using the straight line indicating the relationship between the surface resistance and the Mahalanobis distance shown in FIG.
The procedure is as follows.
Procedure (1): A straight line indicating the relationship between the surface resistance and the amount of nitrate ions, and the relationship between the surface resistance and the amount of sulfate ions is determined.
Step (2): Obtain a straight line indicating the relationship between the surface resistance and the distance between Mahalanobis.
Step (3): The surface resistance is determined from the ion amount of the unknown sample using the linear relationship determined in (1).
Step (4): The surface resistance is determined from the Mahalanobis distance of the unknown sample using the linear relationship determined in (2).
Step (5): The results of Step (3) and Step (4) are compared to confirm the validity.
[0043]
When the surface resistance of the unknown sample was measured, it was 1.8 × 10 9 Ω. This measured value 1.8 × 10 9 Ω, the surface resistance determined from sulfate ion and nitrate ion in step (3) was 1.0 × 10 7 Ω, and 4.0 × 10 10 Ω, which differs from the actually measured value by one digit or more.
On the other hand, the surface resistance obtained from the Mahalanobis distance in step (4) is 8.7 × 10 8 Ω, which almost coincided with the actually measured value.
From this result, it was found that when the diagnosis was made based on one evaluation result, the remaining life estimation accuracy deteriorated.
[0044]
Comparative Example 2.
As described above, the humidity condition of the insulation deterioration promotion test is 40% RH to 95% RH, preferably 60% RH to 90% RH. The temperature is between 50C and 80C, preferably between 60C and 70C. The total concentration of nitrate concentration, sulfuric acid concentration and chlorine concentration is 0.01 ppm to 100 ppm, preferably 0.1 ppm to 10 ppm. The electric field is between 0.01 kV / mm and 10 kV / mm, preferably between 0.1 kV / mm and 2.0 kV / mm. The results of testing outside these ranges are shown in Table 6 (test time every 10 minutes between 1 hour and 350 hours).
[0045]
Test No. 1 is when the humidity is too low, Test No. 2 is when the temperature is too low, Test No. 3 is when the electric field strength is too high, and Test No. 4 is when the total concentration of nitrate concentration, sulfuric acid concentration and chlorine concentration is This is the case when it is too large.
In any case, it did not match with the deterioration in the market, and it was not possible to reproduce insulation deterioration sufficient to obtain a master curve.
[0046]
[Table 6]
Figure 2004236465
[0047]
As described above, the amounts of nitrate ion, sulfate ion, chloride ion, and calcium ion adhering to the solid insulator and the color b of the solid insulator are used as evaluation items, and each evaluation result is obtained by Mahalanobis. Analyzed by the Taguchi system method and expressed as one index (Maharanobis distance), and using this Mahalanobis distance to diagnose the insulation degradation amount, a highly accurate diagnosis result of the insulation degradation amount based on the degradation mechanism in the market is obtained. can get.
[0048]
Further, the amounts of nitrate ion, sulfate ion, chloride ion, sodium ion, ammonium ion and calcium ion adhering to the solid insulator, the gloss, color b, and components (hydrocarbon group) of the solid insulator ) Is used as an evaluation item, and each evaluation result is represented by a Mahalanobis distance. Diagnosis of insulation deterioration using this Mahalanobis distance will require a certain amount of measurement time and cost. A highly accurate diagnosis result of the insulation deterioration amount can be obtained.
[0049]
In addition, all of the above evaluation items are measured at the installation site of the operating power receiving / distributing device without removing the solid insulator as the subject and bringing it to the measuring device. be able to.
[0050]
In addition, by controlling humidity, temperature, nitric acid concentration, sulfuric acid concentration, chlorine concentration, and applied electric field on the solid insulator for power receiving and distribution equipment, an insulation deterioration promotion test is performed, It is possible to accurately simulate insulation deterioration in the market of solid insulators for industrial use. As a result, it is possible to create a highly accurate remaining life master curve, which can be used to accurately estimate the remaining life of the solid insulator for power receiving and distribution equipment, which deteriorates due to the combined effects of multiple deterioration factors. Can be.
[0051]
In the above, in order to express the degree of insulation deterioration by one index using the evaluation items comprehensively, the Mahalanobis distance is used as an index indicating the degree of insulation deterioration, and a new solid insulator for power receiving and distribution equipment is used. The measurement data of each evaluation item is used as a reference data group to determine the Mahalanobis distance of the solid insulator for the power receiving and distribution equipment that is the subject, and the subject is determined from the relationship between the previously obtained operating time and the Mahalanobis distance. Although the case of estimating the remaining life of the solid insulator for power receiving and distribution equipment has been described, the index indicating the degree of insulation deterioration is not limited to the Mahalanobis distance, and another index may be used. In short, as evaluation items, the respective ion amounts of nitrate ion, sulfate ion, chloride ion, and calcium ion adhering to the solid insulator for the power receiving and distribution device, and the color b of the solid insulator for the power receiving and distribution device were adopted. Furthermore, in addition to the above evaluation items, the amounts of sodium ion and ammonium ion adhering to the solid insulator for power receiving and distribution equipment, the gloss of the solid insulator for power receiving and distribution equipment, and power receiving and distribution It is a feature of the present invention that the amount of the hydrocarbon group is adopted as a component of the solid insulator for equipment.
[0052]
【The invention's effect】
As described above, according to the present invention, nitrate ions, sulfate ions, chloride ions, and calcium ions adhering to a new solid insulator for a power receiving and distribution device and a solid insulator for a power receiving and distribution device as a subject. The amount of each ion and the color b of the solid insulator for each power receiving and distribution device are used as evaluation items, and the degree of insulation deterioration is represented by one index using the above evaluation items comprehensively, and the operating time obtained in advance The remaining life of the solid insulator for power receiving and distribution equipment as the subject is estimated from the relationship between the solid insulator for power receiving and distribution equipment, which is the object to be inspected, so that the remaining solid insulator for power receiving and distribution equipment deteriorates due to the combined influence of a plurality of deterioration factors. The life can be accurately estimated.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an insulation deterioration accelerating test apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a diagram showing a remaining life master curve according to the first embodiment of the present invention.
FIG. 3 is a view showing a measurement result of an anion adhesion amount of a solid insulator according to Example 1 of the present invention.
FIG. 4 is a view showing a measurement result of an anion adhesion amount of a solid insulator according to Example 1 of the present invention.
FIG. 5 is a view showing a measurement result of a cation attachment amount of a solid insulator according to Example 1 of the present invention.
FIG. 6 is a diagram showing a measurement result of a color L of the solid insulator according to the first embodiment of the present invention.
FIG. 7 is a diagram showing measurement results of colors a and b of the solid insulator according to the first embodiment of the present invention.
FIG. 8 is a diagram showing a measurement result of gloss of a solid insulator according to Example 1 of the present invention.
FIG. 9 is a diagram showing an infrared analysis result of a solid insulator according to Example 1 of the present invention.
FIG. 10 is a diagram showing an infrared analysis result of a solid insulator according to Example 1 of the present invention.
FIG. 11 is a diagram showing a factor and effect of an SN ratio according to the first embodiment of the present invention.
FIG. 12 is a diagram illustrating a relationship between a distance of Mahalanobis and a surface resistance value according to the second embodiment of the present invention.
FIG. 13 is a diagram illustrating the evaluation results of insulators with a nitrate ion concentration and a sulfate ion concentration alone according to Comparative Example 1 of the present invention.
[Explanation of symbols]
1 transformer, 2 resistance (1MΩ), 3 high pressure probe, 4 acrylic container, 5 constant temperature / humidity chamber, 6 desiccator with humidity control, 7 insulator, 8 nitric acid, sulfuric acid, chlorine supply source, 9 personal computer, 10 Digital multimeter, 11 oscillator, 12 power amplifier, 13 digital oscilloscope.

Claims (4)

設置現場における受配電機器用固体絶縁物の絶縁劣化に対する余寿命を推定する方法であって、新品の受配電機器用固体絶縁物と被検体である受配電機器用固体絶縁物とに付着している硝酸イオン、硫酸イオン、塩素イオン、およびカルシウムイオンの各イオン量、並びに上記各受配電機器用固体絶縁物の表色モードbにおける色彩を評価項目とし、上記評価項目を総合的に用いて絶縁劣化の程度を1つの指標で表し、予め求めておいた運転時間と上記指標との関係から上記被検体である受配電機器用固体絶縁物の余寿命を推定することを特徴とする受配電機器用固体絶縁物の余寿命推定方法。A method for estimating the remaining life of a solid insulator for a power receiving and distribution device at an installation site with respect to insulation deterioration, wherein the solid insulator for a new power receiving and distributing device and a solid insulator for a power receiving and distribution device as a test object adhere to the solid insulator. Nitrate ion, sulfate ion, chloride ion, and calcium ion amount, and the color in the color mode b of each solid insulator for power receiving and distribution equipment are evaluated as evaluation items, and the above evaluation items are comprehensively used for insulation. A power receiving / distributing device, wherein the degree of deterioration is represented by one index, and a remaining life of the solid insulator for the power receiving / distributing device, which is the subject, is estimated from a relationship between an operation time obtained in advance and the index. Method for estimating the remaining life of solid insulators for industrial use. 新品の受配電機器用固体絶縁物と被検体である受配電機器用固体絶縁物とに付着している硝酸イオン、硫酸イオン、塩素イオン、ナトリウムイオン、アンモニウムイオン、およびカルシウムイオンの各イオン量、並びに、上記各受配電機器用固体絶縁物の光沢、表色モードbおける色彩および炭化水素基の量を評価項目とすることを特徴とする請求項1記載の受配電機器用固体絶縁物の余寿命推定方法。The amount of each of nitrate ion, sulfate ion, chloride ion, sodium ion, ammonium ion, and calcium ion adhering to the new solid insulator for power receiving and distribution equipment and the solid insulator for power receiving and distribution equipment which is the subject, 2. The solid insulator for a power receiving / distributing device according to claim 1, wherein the gloss of each solid insulator for the power receiving / distributing device, the color in the color specification mode b, and the amount of a hydrocarbon group are used as evaluation items. Life estimation method. 湿度、温度、硝酸類の濃度、硫酸類の濃度、塩素類の濃度、印加電界を制御して絶縁劣化促進試験を行うことにより、運転時間と指標との関係を求めることを特徴とする請求項1または2記載の受配電機器用固体絶縁物の余寿命推定方法。The relationship between the operation time and the index is obtained by performing an insulation deterioration promotion test by controlling humidity, temperature, nitric acid concentration, sulfuric acid concentration, chlorine concentration, and applied electric field. 3. The method for estimating the remaining life of a solid insulator for a power receiving / distributing device according to 1 or 2. 絶縁劣化の程度を表す指標としてマハラノビスの距離を用い、新品の受配電機器用固体絶縁物の上記各評価項目の測定データを基準データ群として用いて被検体である受配電機器用固体絶縁物のマハラノビスの距離を求め、予め求めておいた運転時間と上記マハラノビスの距離との関係から上記被検体である受配電機器用固体絶縁物の余寿命を推定することを特徴とする請求項1ないし3の何れかに記載の受配電機器用固体絶縁物の余寿命推定方法。Using the Mahalanobis distance as an index indicating the degree of insulation deterioration, the measurement data of each of the above-mentioned evaluation items of a new solid-state insulator for power receiving and distribution equipment is used as a reference data group for the solid insulator for power-receiving and distribution equipment that is the subject. The distance of Mahalanobis is obtained, and the remaining life of the solid insulator for power receiving and distribution equipment as the subject is estimated from the relationship between the previously obtained operating time and the distance of Mahalanobis. The method for estimating the remaining life of a solid insulator for a power receiving and distribution device according to any one of the above.
JP2003023953A 2003-01-31 2003-01-31 Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment Pending JP2004236465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003023953A JP2004236465A (en) 2003-01-31 2003-01-31 Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003023953A JP2004236465A (en) 2003-01-31 2003-01-31 Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment

Publications (1)

Publication Number Publication Date
JP2004236465A true JP2004236465A (en) 2004-08-19

Family

ID=32952613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003023953A Pending JP2004236465A (en) 2003-01-31 2003-01-31 Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment

Country Status (1)

Country Link
JP (1) JP2004236465A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064610A (en) * 2006-09-07 2008-03-21 Kansai Electric Power Co Inc:The Deterioration diagnosing method of aerial strip
JP2008180607A (en) * 2007-01-25 2008-08-07 Railway Technical Res Inst Deterioration-evaluating system for article consisting of polymeric material
JP2011027596A (en) * 2009-07-27 2011-02-10 Toshiba Corp Insulation deterioration diagnosis method of insulating material
JP2011252846A (en) * 2010-06-03 2011-12-15 Hitachi Ltd Residual service life assessment method, residual service life assessment device, and program
JP2012141146A (en) * 2010-12-28 2012-07-26 Toshiba Corp Apparatus, method and program for diagnosing deterioration of insulating material
JP2014224824A (en) * 2014-07-22 2014-12-04 株式会社東芝 Insulation deterioration diagnosis method of insulation material
JP2015135348A (en) * 2015-03-25 2015-07-27 株式会社東芝 Insulating material remaining life estimation apparatus, insulating material remaining life estimation method, and insulating material remaining life estimation program
US20160061885A1 (en) * 2014-08-29 2016-03-03 Fuji Electric Co., Ltd. Semiconductor device
WO2017002728A1 (en) * 2015-06-30 2017-01-05 三菱電機株式会社 Method for diagnosing remaining life before short circuiting of power distribution equipment and system for diagnosing remaining life before short circuiting of power distribution equipment
JP2019124541A (en) * 2018-01-15 2019-07-25 株式会社東芝 Degradation estimation device, degradation estimation system, degradation estimation method, and computer program

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064610A (en) * 2006-09-07 2008-03-21 Kansai Electric Power Co Inc:The Deterioration diagnosing method of aerial strip
JP2008180607A (en) * 2007-01-25 2008-08-07 Railway Technical Res Inst Deterioration-evaluating system for article consisting of polymeric material
JP2011027596A (en) * 2009-07-27 2011-02-10 Toshiba Corp Insulation deterioration diagnosis method of insulating material
JP2011252846A (en) * 2010-06-03 2011-12-15 Hitachi Ltd Residual service life assessment method, residual service life assessment device, and program
JP2012141146A (en) * 2010-12-28 2012-07-26 Toshiba Corp Apparatus, method and program for diagnosing deterioration of insulating material
JP2014224824A (en) * 2014-07-22 2014-12-04 株式会社東芝 Insulation deterioration diagnosis method of insulation material
US10613135B2 (en) 2014-08-29 2020-04-07 Fuji Electric Co., Ltd. Semiconductor device
US20160061885A1 (en) * 2014-08-29 2016-03-03 Fuji Electric Co., Ltd. Semiconductor device
JP2015135348A (en) * 2015-03-25 2015-07-27 株式会社東芝 Insulating material remaining life estimation apparatus, insulating material remaining life estimation method, and insulating material remaining life estimation program
JPWO2017002728A1 (en) * 2015-06-30 2018-04-19 三菱電機株式会社 Short-circuit remaining life diagnosis method and short-circuit remaining life diagnosis system for power distribution equipment
WO2017002728A1 (en) * 2015-06-30 2017-01-05 三菱電機株式会社 Method for diagnosing remaining life before short circuiting of power distribution equipment and system for diagnosing remaining life before short circuiting of power distribution equipment
JP2019124541A (en) * 2018-01-15 2019-07-25 株式会社東芝 Degradation estimation device, degradation estimation system, degradation estimation method, and computer program
JP7000169B2 (en) 2018-01-15 2022-01-19 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method and computer program

Similar Documents

Publication Publication Date Title
Kendig et al. Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals
JP5840342B2 (en) Insulation degradation diagnosis method for insulation materials
JPH0543268B2 (en)
KR100541996B1 (en) A dignosis method of insulation of electric apparatus
JP2001215187A (en) Method and apparatus for diagnosing deterioration
Kendig et al. Rapid electrochemical assessment of paint
JP2004236465A (en) Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment
Allahar et al. Understanding ac–dc–ac accelerated test results
JP4045776B2 (en) Life diagnosis method for power distribution facilities
CN104089838A (en) Method for rapidly detecting insulation life of cable based on hardness
JP6460003B2 (en) Diagnosis method of electrical equipment
JP2014052356A (en) Deterioration diagnosis method and device for insulation material
Gore et al. Corrosive gas environmental testing for electrical contacts
JP2008122170A (en) Weatherable deterioration diagnosing method of facing member
Kern et al. Electrochemical impedance spectroscopy as a tool for investigating the quality and performance of coated food cans
EP0245116A2 (en) Apparatus and method for measuring resistivity
CN107703215A (en) A kind of GIS device discharge fault chemical diagnosis method
JPS6159242A (en) Method for diagnosing deterioration of insulating material
JPH06273326A (en) Nondestructive deterioration diagnostic method for synthetic resin molded item containing plasticizer and filler
JP2007327877A (en) Analysis method of polyvinyl chloride composition
Wilson et al. Novel thin wire paint and sealant degradation sensor
JP5872643B2 (en) Insulation degradation diagnosis method for insulation materials
JP3923257B2 (en) Insulation deterioration diagnosis method
CN109946356B (en) Quantitative evaluation method for concrete damage after high temperature and fire
WO2001069223A3 (en) Method and apparatus for investigating corrosion

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040712

A621 Written request for application examination

Effective date: 20041206

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070813

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303