JP4037536B2 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP4037536B2
JP4037536B2 JP23432598A JP23432598A JP4037536B2 JP 4037536 B2 JP4037536 B2 JP 4037536B2 JP 23432598 A JP23432598 A JP 23432598A JP 23432598 A JP23432598 A JP 23432598A JP 4037536 B2 JP4037536 B2 JP 4037536B2
Authority
JP
Japan
Prior art keywords
motor
current
armature
field
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23432598A
Other languages
English (en)
Other versions
JP2000069783A (ja
Inventor
裕 玉川
三昭 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP23432598A priority Critical patent/JP4037536B2/ja
Publication of JP2000069783A publication Critical patent/JP2000069783A/ja
Application granted granted Critical
Publication of JP4037536B2 publication Critical patent/JP4037536B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術の分野】
本発明は、モータの電機子に供給する電流をフィードバック制御することで、モータの出力トルクを制御するモータ制御装置に関する。
【0002】
【従来の技術】
従来、モータの出力トルクの制御方法としては、モータの電機子に流れる電流(以下、電機子電流という)を検出し、検出した電流値が指示トルクに応じた目標電流値と一致するように、モータの電機子に供給する電流をフィードバック制御する方法が一般的に採用されている。
【0003】
具体的には、例えばモータの電機子に印加する電圧のパルス幅を、モータの電機子電流の検出値と目標電流値との偏差に応じて変更することで、電機子電流を調節するPWM制御が用いられる。
【0004】
ここで、PWM制御は、基本的にはモータの電機子に印加される電圧の振幅(≒モータの電源電圧)が一定に保たれていることを前提として、モータの電機子電流を制御するものである。そのため、定電圧電源やバッテリー等を使用したときのように、電源電圧の変動が比較的小さい場合には、良好な制御性能を得ることができる。
【0005】
ところが、モータの電源として、例えば電気二重層コンデンサのように出力電圧の変動が大きい電源を使用したときには、電源電圧の変動により制御性能が悪化するという不都合がある。この不都合を解消するため、電源電圧の検出値、電機子電流の検出値、モータ回転数の検出値等を制御パラメータとして入力し、これらの制御パラメータに応じてモータの電機子に印加する電圧のパルス幅をソフトウェア演算により決定してPWM制御を行う、いわゆるソフトウェアサーボ制御を行うことが考えられる。
【0006】
しかし、このようなソフトウェアサーボ制御を行うためには、各制御パラメータの値から電機子に印加する電圧のパルス幅を決定するために多量のデータを予め保持する必要がある。そして、保持したデータに基づいて電機子に印加する電圧のパルス幅を決定するためには複雑な演算処理が必要となる。さらに、電機子に印加する電圧のパルス幅の決定は、モータの制御遅れを生じないように高速に行う必要がある。そのため、ソフトウェアサーボ制御を行うためには、複雑な演算処理を高速に行うことができる高性能のCPUやDSPを用いなければならず、モータ制御装置の構成が複雑になると共に、コスト的にも高いものとなるという不都合があった。
【0007】
【発明が解決しようとする課題】
本発明は、出力電圧の変動が大きい電源と比較的演算処理能力の低いCPUを使用して、正確なトルク制御を行うことのできるモータ制御装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するため、モータと、該モータの電機子に流れる電流を検出する電流検出手段と、該電流検出手段により検出される電流値が所定のトルク指令に応じた目標電流値と一致するように、該モータの電機子に供給する電流をフィードバック制御する電機子電流制御手段とを備えたモータ制御装置の改良に関する。
【0009】
そして、前記モータの電源電圧を検出する電圧検出手段と、前記モータの回転数を検出する回転数検出手段と、該電圧検出手段により検出された電圧値と該回転数検出手段により検出された回転数と前記トルク指令とから前記モータの電機子に供給する目標供給電力を算出する目標供給電力算出手段と、前記電流検出手段により検出された電流値と前記電圧検出手段により検出された電圧値とから前記モータに実際に供給される実供給電力を算出する実供給電力算出手段と、前記目標供給電力と前記実供給電力との偏差を解消するための操作量算出する操作量算出手段と、該操作量に応じて前記電機子電流制御手段におけるフィードバックゲインを調節するゲイン調節手段とを備えたことを特徴とする。
【0010】
モータの効率(モータの出力/モータの電機子への供給電力)は、モータの電源電圧の変動に応じて変化する。また、モータの回転数の変化もモータの効率に影響を与える。そのため、前記目標供給電力算出手段は、前記トルク指令に応じたモータの出力を得るために必要となるモータへの目標供給電力を、前記トルク指令とモータの電源電圧とモータの回転数とにより算出する。
【0011】
そして、前記ゲイン調節手段は、前記操作量算出手段により算出された、前記実供給電力と前記目標供給電力との偏差を解消するための操作量に応じて、前記電機子電流制御手段によるフィードバックゲインを調節する。そのため、モータの電源電圧が変動してモータへの実供給電力が変化しても、前記トルク指令に応じた実供給電力が供給されるように、モータの電機子に供給される電流が制御される。これにより、モータの電源電圧の変動が大きいときであっても、正確なモータのトルク制御を行うことができる。そして、前記操作量は簡易な演算処理(例えばPI制御の演算処理)で算出でき、前記フィードバックゲインの調節は簡易なハードウェア構成等により実現できるので、高性能なCPUやDSPを用いる必要はない。そのため、比較的演算能力の低いCPUを用いてモータの制御装置を構成することができ、装置構成が複雑化することや、装置コストが上昇することを抑制することができる。
【0012】
上述したように、前記ゲイン調節手段により、前記電機子電流制御手段におけるフィードバックゲインを調節することで、基本的には電源電圧の変動が生じても安定したトルク制御を行うことができる。しかし、フィードバックゲインの調節範囲には限界があり、モータの電機子への供給電流を無制限に調節することはできない。そのため、前記トルク指令に応じた目標電流値をモータの電機子に供給することができない場合がある。
【0013】
そこで、本発明においては、前記操作量算出手段により算出された前記操作量が、所定の限界操作量(例えばフィードバックゲインの調節範囲の上限付近に対応させて設定される)を超えたときに、前記モータの界磁極に供給する界磁電流を調節して、界磁極に発生する磁束を弱める界磁弱め制御を行う界磁制御手段を備え、前記操作量算出手段により算出された操作量が該限界操作量をを超えたときには、前記界磁制御手段により界磁弱め制御を行う。これにより、モータの電機子に供給可能な電流値を増加させることができ、トルク制御の制御範囲を拡大することができる。そして、本発明によれば、フィードバックゲインの制御領域(操作量≦限界操作量)から、界磁弱め制御領域(操作量>限界操作量)への切替を、前記操作量というひとつの変数に基づいて行うため、制御領域の切替がスムーズに行われて良好な制御特性を得ることができる。
また、前記操作量算出手段により算出された前記操作量が、所定の限界操作量を超えたときに、前記モータの電機子に供給する界磁電流を調節して、永久磁石による界磁の磁束方向に発生する磁束を弱める界磁弱め制御を行う界磁制御手段を備えたことを特徴とする。
また、前記限界操作量を、前記電圧検出手段により検出された前記モータの電源電圧と前記回転数検出手段により検出された前記モータの回転数と前記トルク指令とに基づいて算出する限界操作量算出手段を備えたことを特徴とする。
【0014】
また、前記界磁制御手段は、前記操作量の大きさに応じて、前記界磁弱め制御における界磁電流の調節量を決定することを特徴とする。
【0015】
かかる本発明によれば、前記操作量の大きさに応じて前記界磁弱め制御における界磁電流の調節量が決定することで、電源電圧の変動に応じた適切な界磁弱め制御を行うことができると共に、フィードバックゲインの制御領域から界磁弱め制御領域への移行時におけるモータの発生トルクを滑らかに変化させることができる。
【0016】
また、前記電機子電流制御手段は、前記電流検出手段により検出された電流値と前記目標電流値との差と、基準三角波とを比較することで前記電機子に印加する電圧のパルス幅を決定するPWM制御により、前記モータの電機子に供給する電流を制御し、前記ゲイン調節手段は、前記基準三角波の振幅を変更することで前記フィードバックゲインを調節することを特徴とする。
【0017】
モータの電機子に供給する電流を制御する方法として、モータの電機子に印加する電圧のパルス幅を調節するPWM制御が広く採用されている。そして、本発明により、前記電流検出手段により検出された電流値と前記目標電流値との差と、前記基準三角波とを比較することで前記パルス幅を決定する構成とした場合は、前記基準三角波の振幅を変更することで、前記電流検出手段により検出された電流値と前記目標電流値との差に応じて決定される前記パルス幅が変更され、前記フィードバックゲインを容易に調節することができる。
【0018】
また、前記モータの電源として電気二重層コンデンサを用いたことを特徴とする。電気二重層コンデンサは、残充電量の減少に伴う出力電圧の減少幅が大きいため、特に本発明の適用効果が大きい。
【0019】
【発明の実施の形態】
本発明の実施の形態の一例について、図1〜図5を参照して説明する。図1は本発明のモータ制御装置の全体構成図、図2は図1に示したモータドライバの作動説明図、図3は図1に示したモータコントローラの制御ブロック図、図4は図3に示した制御選択手段の作動説明図、図5はフィードバックゲインの補正処理の説明図である。
【0020】
図1を参照して、本実施の形態のモータ制御装置はエンジンとモータの組合わせにより駆動力を得るいわゆるハイブリット車両に搭載されるものであり、DCブラシレスモータであるモータ1と、電気二重層コンデンサであってモータ1の作動用電源である電源2と、モータ1が所望のトルクを発生するようにモータ1の電機子3と界磁極4への供給電流を制御するモータドライバー5と、モータドライバー5に対して各種の制御指示を与えるモータコントローラ6とを備える。
【0021】
モータコントローラ6は、CPU、ROM、RAM等によって構成され、車両の速度や電源2の出力電圧等を入力して車両の作動を制御する統括的コントローラ(図示しない)から与えられるトルク指令に応じて、モータ1の電機子3に供給する電流の目標値(以下、目標電流値という)を決定し、該目標電流値をモータドライバー5に指示する。
【0022】
モータドライバー5に備えられた電機子電流制御手段7は、モータ1の電機子3に3相(U,V,W)の駆動電圧を印加することで回転磁界を生じさせる。そして、電流センサ8,9(本発明の電流検出手段に相当する)により、実際に電機子3に流れる電流(以下、電機子電流という)を検出し、検出した電機子電流が前記目標電流値と一致するように、電機子3に供給する電流をフィードバック制御する。尚、界磁極4に供給する電流は、通常は界磁電流制御手段10により一定に保たれる。
【0023】
ここで、電機子電流制御手段7は、PWM制御によりモータ1の電機子3に供給する電流を制御する。図2(a)を参照して、電機子電流制御手段7は、前記目標電流値と電機子電流の検出値との差分(目標電流値−電機子電流の検出値)に応じた差分電圧Vasを出力する差分出力回路20と、電源2の出力電圧が所定レベル(例えば電源2が満充電されたときの出力電圧レベル)であるときに、前記目標電流値での電流供給が得られるように規定された基準電圧Vb を出力する基準電圧出力回路21と、差分出力回路20から出力される差分電圧Vasと基準電圧出力回路21から出力される基準電圧Vb を加算する加算器22と、基準三角波を生成する三角波生成回路23と、加算器22の出力と三角波生成回路23から出力される基準三角波を比較するコンパレータ24とを有する。
【0024】
図2(b)を参照して、コンパレータ24の動作を説明すると、▲1▼に示したようにコンパレータ24の負入力端子に振幅A1 ,周期T1 の基準三角波aを入力したときに、例えば差分出力回路20から出力される差分電圧Vasが0であったときには、コンパレータ24の正入力端子に加算器22からの基準電圧Vb が入力される。そのため、コンパレータ24の出力端子からは▲2▼に示したように、パルス幅W1 のパルス信号cが出力される。
【0025】
そして、パルス信号cの出力がハイレベルであるときに、電機子3に電圧を印加することで、▲3▼に示すように周期T1 における電機子3への電圧印加時間が調節されて電機子3への供給電流が制御される。
【0026】
ここで、電機子電流の検出値が目標電流値よりも小さいときは、差分出力回路20から出力される差分電圧Vasが正となり、加算器22からコンパレータ24の正入力端子に入力される電圧レベルが基準電圧Vb よりも上昇するので、コンパレータ24から出力されるパルス信号のパルス幅がW1 よりも広くなる。そのため周期T1 における電機子3への電圧印加時間が増加して、電機子電流が増加する。
【0027】
逆に、電機子電流の検出値が目標電流値よりも大きいときには、差分出力回路20から出力される差分電圧Vasが負となり、加算器22からコンパレータ24の正入力端子に入力される電圧レベルが基準電圧Vb よりも低下するので、コンパレータ22から出力されるパルス信号のパルス幅がW1 よりも狭くなる。そのため周期T1 における電機子3への電圧印加時間が減少して、電機子電流が減少する。
【0028】
このように、電機子電流の検出値と目標電流値との差分に応じて、該差分が解消するように、即ち、電機子電流の検出値が目標電流値と一致するように電機子3への供給電流がフィードバック制御される。
【0029】
ところで、本実施の形態においては、モータ1の電源2に電気二重層コンデンサ2を使用しているため、残充電量の減少に応じた電源2の出力電圧の低下度合いが大きい。例えば、図2(b)の▲3▼に示したように電源2の出力電圧の低下に伴って、モータ1の電機子3に印加する電圧の振幅がB1 からB2 に減少した場合、加算器22から基準電圧Vb をコンパレータの正入力端子に入力したときにモータ1の電機子3に印加される電圧波形がdからeへと変化する。
【0030】
その結果、モータ1の電機子3に供給される電流が減少し、電機子電流の検出値と目標電流値との差が拡大して、差分出力回路20から出力される差分電圧Vasが増大する。そして、増大した差分電圧Vasを解消すべく、上述したフィードバック制御により、電機子3への駆動電圧の印加時間が増加するが、このように、電源2の出力電圧の低下により差分電圧Vasが大きくなると、電機子電流の追従特性が悪化するため正確なトルク制御を行うことができない。
【0031】
また、モータ1の効率(モータの出力/モータの電機子への供給電力)は、電源2の出力電圧の変動や、モータ1の回転数によって変化する。そこで、このような電源2の出力電圧の変動とモータ1の回転数の変化を考慮して、正確なトルク制御を行うため、図1を参照して、モータコントローラ6は、電圧センサ11により検出された電源2の出力電圧と、モータ1の回転速度に応じた周期のパルス信号を出力する回転センサ12(本発明の回転数検出手段に相当する)により検出されたモータ1の回転数と、電流センサ8,9により検出された電機子電流とを入力し、これらに応じて電機子電流制御手段7におけるフィードバックゲインの補正と、界磁電流制御手段10により界磁極4に供給される界磁電流の補正をモータドライバー5に指示する。
【0032】
以下、図3〜図5を参照して、モータコントローラ6によるフィードバックゲインの補正処理と界磁電流の補正処理について説明する。図3を参照して、モータコントローラ6は、目標電流値算出手段30、目標供給電力算出手段31、実供給電力算出手段32、操作量算出手段33、限界操作量算出手段34、制御選択手段35、ゲイン調節手段36、及び界磁制御手段37を備える。
【0033】
目標電流値算出手段30は、前記統括的コントローラ(図示しない)から与えられたトルク指令に応じて、モータ1の電機子3に供給する目標電流値を算出し、モータドライバー5に出力する。目標電流値算出手段30は、予め実験により決定したトルク指令−目標電流値の対応マップを備え、該マップに従って、トルク指令から目標電流値を算出する。
【0034】
目標供給電力算出手段31は、トルク指令と、電圧センサ11(図1参照)により検出された電源2の出力電圧と、回転センサ12(図1参照)により検出されたモータ1の回転数とから、トルク指令に応じたトルクを得るために電機子3に供給すべき電力である目標供給電力を算出する。
【0035】
ここで、上述したように、モータの効率(モータの出力/モータの電機子への供給電力)は、モータの電源電圧の変動とモータの回転数の変化により変化する。そこで、目標供給電力算出手段31は、電源2の出力電圧とモータ1の回転数の影響を考慮して目標供給電力を算出するため、予め実験により決定した、電源2の所定の出力電圧範囲毎のトルク指令とモータ1の回転数に応じた目標供給電力の対応マップを有し、該マップに従って目標供給電力を算出する。
【0036】
実供給電力算出手段32は、電圧センサ11(図1参照)により検出された電源2の出力電圧と、電流センサ8,9(図1参照)により検出された電機子電流とから、実際にモータ1の電機子3に供給される実供給電力を算出する。
【0037】
操作量算出手段33は、目標供給電力算出手段31により算出された目標供給電力と、実供給電力算出手段32により算出された実供給電力との偏差ΔPowerを解消するための操作量αをPI制御に基づく以下の式(1)によって算出する。
【0038】
α=KP*ΔPower+KI*∫ΔPower ・・・・・(1)
尚、KP、KIは、それぞれモータ1の特性や実験結果等に基づいて決定される係数である。
【0039】
限界操作量算出手段34は、トルク指令と、電圧センサ11(図1参照)により検出された電源2の出力電圧と、回転センサ12(図1参照)により検出されたモータ1の回転数とから、モータ1の電機子3に供給することができる電流の上限値に対応した限界操作量αL を算出する。
【0040】
制御選択手段35は、操作量算出手段33により算出された操作量αと、限界操作量算出手段34により算出された限界操作量αL とを比較して、ゲイン調節手段36と界磁制御手段37のいずれかを選択的に作動させる。図4を参照して、制御選択手段35は、操作量算出手段33によりαmin ≦α≦αmax の範囲で算出された操作量αが、限界操作量算出手段34により算出された限界操作量αL 以下であるときは、ゲイン調節手段36を作動させる。
【0041】
ゲイン調節手段36は、スケーリング関数f1 (α)により、操作量αに基づいて電機子電流制御手段7(図1参照)におけるフィードバックゲインの補正値ΔGainを、Gmin ≦ΔGain≦Gmax の範囲で算出して、モータドライバー5に出力する。
【0042】
一方、操作量αが限界操作量αL を越えたときには、制御選択手段35は界磁制御手段37を作動させる。界磁制御手段37は、スケーリング関数f2 (α)により、操作量αに基づいて界磁電流制御手段8(図1参照)からモータ1の界磁極4に供給する電流の補正値であるΔiq を、Qmin ≦Δiq ≦Qmax の範囲で算出して、モータドライバー5に出力する。
【0043】
このように、制御選択手段35は、操作量αという単一のパラメータにより、ゲイン調節手段36によるフィードバックゲインの補正制御と、界磁制御手段37による界磁電流の補正制御との切替を行うため、制御の切替をスムーズに行うことができる。
【0044】
次に、図1を参照して、モータドライバー5に備えられた電機子電流制御手段7は、モータコントローラ6に備えられたゲイン調節手段36(図3参照)から出力されたフィードバックゲインの補正値ΔGainに基づいて、モータ1の電機子3に供給する電流をフィードバック制御するためのフィードバックゲインを基準値から変更する。具体的には、図2(a)を参照して、電機子電流制御手段7に備えられた三角波生成回路23が、ΔGainの指示値に応じて基準三角波の振幅を変更することで、フィードバックゲインが変更される。
【0045】
図5は、このようにして基準三角波の振幅を変更したときに、電機子3に印加される駆動電圧波形の形状が変化する様子を示したものである。図5の▲4▼に示したように、基準三角波aの振幅をA3 からA4 に変更すると、▲5▼に示したように、図2(a)に示したコンパレータ24の正入力端子に基準電圧Vb が入力されたときに、コンパレータ24から出力されるパルス信号cのパルス幅がW3 からW4 に拡大される。 そのため、▲6▼に示したように、電源2の出力電圧が低下し、電機子3への印加電圧の振幅がB3 からB4 に減少して電機子3に供給される電流が減少したときに、基準三角波の振幅を減少させてフィードバックゲインを増加させることで、電機子3に供給される電流が減少することを抑制することができる。これにより、電源2の出力電圧が低下したときに、図2(a)を参照して、差分出力回路20から出力される差分電圧Vasが増加することを抑制し、電機子電流の追従特性が悪化することを防止して正確なトルク制御を行うことができる。
【0046】
次に、上述したように、基準三角波の振幅を変更して電機子電流制御手段7におけるフィードバックゲインを補正することで、電源2の出力電圧低下によるトルク制御の追従性の悪化を抑制することができるが、電機子電流制御におけるフィードバックゲインを無制限に増加させることはできない。即ち、図5の▲5▼に示したように、パルス幅はW5 までしか拡大することができない。尚、上述した限界操作量αL は、このように、パルス幅を最大(Duty100%)としたときに、電機子3に供給し得る電流値に応じて算出される。
【0047】
そこで、制御選択手段35は、操作量算出手段33で算出された操作量αが限界操作量αL を越え、フィードバックゲインの補正ではトルク指令に応じた目標電流値での電流供給を行うことができなくなったときには、ゲイン調節手段36によるフィードバックゲインの補正制御から、界磁制御手段37による界磁弱め制御に切り替える。界磁制御手段37は、図4に示したように、操作量αの値に応じて界磁電流補正値を算出することで、電源1の出力電圧の変動に応じた適切な界磁弱め制御を行う。尚、界磁弱め制御を行うときには、フィードバックゲインの補正値ΔGainは、ΔGain=f2 (αL )に保たれ、電機子電流制御手段7におけるフィードバックゲインが一定に保たれる。
【0048】
図1を参照して、モータドライバー5に備えられた界磁電流制御手段10は、モータコントローラ6に備えられた界磁制御手段37から出力された界磁電流補正値に応じて界磁極4に供給する電流を変更する。これにより、界磁極4で発生する磁束が弱められる。このように界磁弱め制御を行うことで、電機子3に供給する電流を増加させることができ、一定の電源電圧の変動範囲におけるモータ1のトルク制御の制御範囲を拡大することができる。そのため、図3を参照して、目標供給電力算出手段31と限界操作量算出手段34で、予め電源2の出力電圧に応じて保持しておく必要のあるデータテーブルの数を減らすことができる。
【0049】
そして、図3を参照して、コントローラ6における処理は、上述したように操作量αの算出、限界操作量αL の算出、操作量αに応じたフィードバックゲイン及び界磁電流の補正値のスケーリング等の簡易な演算処理のみである。そのため、比較的演算処理能力が低いCPUを用いてコントローラ6を構成することができる。
【0050】
尚、本実施の形態においては、電機子電流制御手段7におけるPWM制御部をハードウェア回路で構成したが、マイクロプロセッサによるソウトウェア制御で構成してもよい。また、電機子電流制御手段7におけるフィードバックゲインの変更を、基準三角波の振幅を変えることで行ったが、電機子電流制御手段7におけるPI制御の係数値を変えることで行ってもよく、さらに、目標電流値に対応する基準電圧Vb (図2(a)参照)の値を変えることで行ってもよい。
【0051】
また、電機子に供給する電流の制御方法として、PWM制御ではなく他の制御方法、例えば電機子に印加する電圧の振幅を調節する方法を用いてもよい。
【0052】
また、本実施の形態においては、界磁極に電流を供給することで界磁極に磁束を生じさせるDCブラシレスモータを示したが、界磁に永久磁石を設けることで界磁極に磁束を生じさせる永久磁石界磁型のDCブラシレスモータに対しても、本発明の適用が可能である。永久磁石界磁型のDCブラシレスモータのトルク制御を行う場合は、制御を容易に行うために、該モータを永久磁石による界磁の磁束方向であるq軸上にある第1電機子と、q軸と直交するd軸上にある第2電機子とを有する等価回路に変換し、該等価回路を制御対象とする制御方法が一般的に採用されている。
【0053】
そして、このように、永久磁石界磁型のDCブラシレスモータをdq軸での等価回路に変換してトルク制御を行う場合には、前記第2電機子に流れるid電流が本発明の電機子に流れる電機子電流に相当し、前記第1電機子に流れるiq電流が本発明の界磁極に流れる界磁電流に相当する。即ち、id電流を制御することで、モータのトルクが調節され、iq電流を制御することで、モータの界磁極の磁束を減少させる界磁弱め制御と同等の効果が生じる。そのため、永久磁石型のDCブラシレスモータに対してdq軸での等価回路によるトルク制御を行った場合にも、本発明の効果を得ることができる。さらに、DCブラシレスモータ以外の他の種類のモータであっても本発明の適用が可能である。
【0054】
また、電機子電流のフィードバック制御におけるフィードバックゲインの補正制御と、界磁弱め制御の双方を実施することで本発明の最良の効果が得られるが、電機子電流のフィードバック制御におけるフィードバックゲインの補正制御のみを実施しても本発明の効果を得ることができる。
【0055】
また、本実施の形態においては、操作量αに応じて界磁弱め制御における界磁電流の補正量を算出したが、場合によっては界磁弱め制御における界磁電流の補正値を固定としてもよい。
【0056】
また、本実施の形態においては、モータの電源として電気二重層コンデンサを用いた例を示したが、他の種類の電源であっても電源の出力電圧の変動が大きいものに対しては、本発明の適用が有効である。
【図面の簡単な説明】
【図1】本発明のモータ制御装置の全体構成図。
【図2】図1に示したモータドライバの作動説明図。
【図3】図1に示したモータコントローラの制御ブロック図。
【図4】図3に示した制御選択手段の作動説明図。
【図5】フィードバックゲインの補正処理の説明図。
【符号の説明】
1…モータ、2…電源、3…電機子、4…界磁極、5…モータドライバー、6…モータコントローラ、7…電機子電流制御手段、8,9…電流センサ、10…界磁電流制御手段、11…電圧センサ、12…回転数センサ、13…電流センサ、20…差分出力回路、21…基準電圧出力回路、22…加算器、23…三角波生成回路、24…コンパレータ、30…目標電流値算出手段、31…目標供給電力算出手段、32…実供給電力算出手段、33…操作量算出手段、34…限界操作量算出手段、35…制御選択手段、36…ゲイン調節手段、37…界磁制御手段

Claims (7)

  1. モータと、該モータの電機子に流れる電流を検出する電流検出手段と、該電流検出手段により検出される電流値が所定のトルク指令に応じた目標電流値と一致するように、該モータの電機子に供給する電流をフィードバック制御する電機子電流制御手段とを備えたモータ制御装置において、
    前記モータの電源電圧を検出する電圧検出手段と、前記モータの回転数を検出する回転数検出手段と、該電圧検出手段により検出された電圧値と該回転数検出手段により検出された回転数と前記トルク指令とから前記モータの電機子に供給する目標供給電力を算出する目標供給電力算出手段と、前記電流検出手段により検出された電流値と前記電圧検出手段により検出された電圧値とから前記モータに実際に供給される実供給電力を算出する実供給電力算出手段と、前記目標供給電力と前記実供給電力との偏差を解消するための操作量を算出する操作量算出手段と、該操作量に応じて前記電機子電流制御手段におけるフィードバックゲインを調節するゲイン調節手段とを備えたことを特徴とするモータ制御装置。
  2. 前記操作量算出手段により算出された前記操作量が、所定の限界操作量を超えたときに、前記モータの界磁極に供給する界磁電流を調節して、界磁極に発生する磁束を弱める界磁弱め制御を行う界磁制御手段を備えたことを特徴とする請求項1記載のモータ制御装置。
  3. 前記操作量算出手段により算出された前記操作量が、所定の限界操作量を超えたときに、前記モータの電機子に供給する界磁電流を調節して、永久磁石による界磁の磁束方向に発生する磁束を弱める界磁弱め制御を行う界磁制御手段を備えたことを特徴とする請求項1記載のモータ制御装置。
  4. 前記限界操作量を、前記電圧検出手段により検出された前記モータの電源電圧と前記回転数検出手段により検出された前記モータの回転数と前記トルク指令とに基づいて算出する限界操作量算出手段を備えたことを特徴とする請求項2または3記載のモータ制御装置。
  5. 前記界磁制御手段は、前記操作量の大きさに応じて、前記界磁弱め制御における界磁電流の調節量を決定することを特徴とする請求項2から4のうちいずれか1項記載のモータ制御装置。
  6. 前記電機子電流制御手段は、前記電流検出手段により検出された電流値と前記目標電流値との差と、基準三角波とを比較することで前記電機子に印加する電圧のパルス幅を決定するPWM制御により、前記モータの電機子に供給する電流を制御し、
    前記ゲイン調節手段は、前記三角波の振幅を変更することで前記フィードバックゲインを調節することを特徴とする請求項1からのうちいずれか1項記載のモータ制御装置。
  7. 前記モータの電源として電気二重層コンデンサを用いたことを特徴とする請求項1からのうちいずれか1項記載のモータ制御装置。
JP23432598A 1998-08-20 1998-08-20 モータ制御装置 Expired - Fee Related JP4037536B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23432598A JP4037536B2 (ja) 1998-08-20 1998-08-20 モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23432598A JP4037536B2 (ja) 1998-08-20 1998-08-20 モータ制御装置

Publications (2)

Publication Number Publication Date
JP2000069783A JP2000069783A (ja) 2000-03-03
JP4037536B2 true JP4037536B2 (ja) 2008-01-23

Family

ID=16969244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23432598A Expired - Fee Related JP4037536B2 (ja) 1998-08-20 1998-08-20 モータ制御装置

Country Status (1)

Country Link
JP (1) JP4037536B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218783A (ja) * 2001-01-15 2002-08-02 Rohm Co Ltd モータ駆動装置
JP5745339B2 (ja) * 2011-05-27 2015-07-08 旭化成エレクトロニクス株式会社 線形運動デバイスの制御装置

Also Published As

Publication number Publication date
JP2000069783A (ja) 2000-03-03

Similar Documents

Publication Publication Date Title
JP3943726B2 (ja) 回生制動装置
JP3559258B2 (ja) ステアリング制御装置
US9647583B2 (en) Variable magnetization machine controller
US7567055B2 (en) Controller for brushless motor
US5726549A (en) Sensor-less control apparatus for permanent magnet synchronous motor
JPH08182398A (ja) 永久磁石形同期電動機の駆動装置
JP2004328814A (ja) 電動パワーステアリング装置
WO2005093943A1 (ja) 永久磁石式同期モータの制御装置
JP5495020B2 (ja) モータ制御装置および車両用操舵装置
JP4008724B2 (ja) モータ制御装置
JP3561453B2 (ja) 電動パワーステアリング制御装置
US11190120B2 (en) Motor driving device and steering system
WO2013051616A1 (ja) インバータ装置
JPH08275599A (ja) 永久磁石同期電動機の制御方法
JP2003348899A (ja) モ−タの制御方法及び制御装置
JP2004056839A (ja) 永久磁石型電動機の制御システム
US8129935B2 (en) Motor control device
JP4037536B2 (ja) モータ制御装置
US20220306133A1 (en) Method for Online Direct Estimation and Compensation of Flux and Torque Errors in Electric Drives
US6963182B2 (en) Motor control device and motor control method
JP3800012B2 (ja) シリーズハイブリッド電気自動車用発電機の制御方式
JP4037321B2 (ja) 電動油圧式パワーステアリング装置
JP4068392B2 (ja) モータ制御装置
JP4203873B2 (ja) 電動車両のモータ制御装置
JP5584794B1 (ja) 電動機の駆動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees