JP4037280B2 - Optical measuring device - Google Patents

Optical measuring device Download PDF

Info

Publication number
JP4037280B2
JP4037280B2 JP2003026488A JP2003026488A JP4037280B2 JP 4037280 B2 JP4037280 B2 JP 4037280B2 JP 2003026488 A JP2003026488 A JP 2003026488A JP 2003026488 A JP2003026488 A JP 2003026488A JP 4037280 B2 JP4037280 B2 JP 4037280B2
Authority
JP
Japan
Prior art keywords
light
lens
measured
imaging
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003026488A
Other languages
Japanese (ja)
Other versions
JP2004239646A (en
Inventor
貞雄 野田
Original Assignee
サンクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンクス株式会社 filed Critical サンクス株式会社
Priority to JP2003026488A priority Critical patent/JP4037280B2/en
Publication of JP2004239646A publication Critical patent/JP2004239646A/en
Application granted granted Critical
Publication of JP4037280B2 publication Critical patent/JP4037280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被測定対象物の変位及び傾きを検出するための光学測定装置に関する。
【0002】
【従来の技術】
被測定対象物の変位及び傾きを測定する装置として特許文献1及び特許文献2が開示されている。
特許文献1の変位測定装置は三角測量の原理を用いて被測定対象物の変位及び傾きを測定するものであり、変位測定用光学系と傾き測定用光学系とを備えている。変位測定用光学系では、レンズにより収束された投光素子からの光を被測定対象物に対して斜めから投射し、反射光をレンズにより収束して撮像手段の撮像面に照射する構成とされており、その撮像面における光の照射位置により被測定対象物の変位を測定することができる。
また、傾き測定用光学系は、レンズにより平行光とされた投光素子からの光を被測定対象物に対して斜めから投射し、反射光をレンズにより収束して撮像手段の撮像面に照射する構成とされており、その撮像面における光の照射位置により被測定対象物の傾きを測定することができる。
【0003】
一方、特許文献2の変位測定装置は投光素子からの光を被測定対象物に照射し、レンズにより集光された被測定対象物からの散乱光を変位測定用撮像手段に受光するとともに、正反射光をプリズムで反射させて傾き測定用撮像手段にて受光する構成とされている。これにより、変位測定用撮像手段における光の照射位置に基づいて被測定対象物の変位が測定されるとともに、傾き測定用撮像手段における光の照射位置に基づいて被測定対象物の傾きが測定されるのである。
【0004】
【特許文献1】
特開平8−240408号公報
【特許文献2】
特開平11−153407号公報
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1の構成では被測定対象物に対して斜めから光を投射しているため、被測定対象物の距離によって被測定対象物上に照射される光の位置が変わることで正しい変位・傾き測定を行なうことができないという問題がある。さらに、投光素子が2つ必要とされることに伴って投光素子を制御する回路が複数必要となり、装置の大型化が避けられない。
また、特許文献2の構成では被測定対象物の距離によってプリズムにおける正反射光の照射位置が変位してしまうことから、傾き測定用撮像手段の光の照射位置が異なり、この結果傾きの測定値が変化して正しく傾き測定が行なわれないという問題がある。
【0006】
本発明は上記のような事情に基づいて完成されたものであって、変位及び傾きを高精度に測定することができる光学測定装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するための手段として、請求項1の発明は、光を被測定対象物に投射し、その被測定対象物からの反射光に基づいて前記被測定対象物の変位及び傾きを測定するものであって、光を出射する投光手段と、前記投光手段からの光を平行光にするコリメータレンズと、前記コリメータレンズからの平行光の一部を収束光に変える収束レンズと、前記コリメータレンズからの平行光を収束光に変えるとともに、前記収束レンズからの光を平行光に変えることで前記被測定対象物の光照射面に前記収束光及び前記平行光を投射する対物レンズと、前記対物レンズと前記収束レンズとの配置関係は固定のままで前記対物レンズから出射した収束光の焦点位置を移動させるように前記対物レンズ及び前記収束レンズをそれぞれの中心軸に沿った方向に移動させるレンズ位置移動手段と、前記レンズ位置移動手段に駆動信号を与えて前記対物レンズ及び前記収束レンズを往復移動させる駆動制御手段と、前記対物レンズの位置に基づいて位置信号を出力するレンズ位置検出手段と、前記被測定対象物の光照射面で反射した光を前記コリメータレンズを通して受光し、受光量に応じた受光信号を出力する変位測定用受光手段と、前記変位測定用受光手段からの受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて前記被測定対象物の光照射面までの距離を検出する距離検出手段と、前記被測定対象物の光照射面で反射した光を前記対物レンズを通して撮像面に受光し、その撮像面における受光量に基づいて撮像信号を出力する傾き測定用撮像手段と、前記傾き測定用撮像手段からの前記撮像信号に基づいて前記被測定対象物の光照射面の傾きを検出する傾き検出手段とを備えたところに特徴を有する。
【0008】
請求項2の発明は、光を被測定対象物に投射し、その被測定対象物からの反射光に基づいて前記被測定対象物の変位及び傾きを測定するものであって、光を出射する投光手段と、前記投光手段からの光を平行光にするコリメータレンズと、前記コリメータレンズからの平行光の一部を収束光に変える収束レンズと、開口を有し、前記収束レンズからの光を前記開口に通すとともに、前記コリメータレンズからの光を発散光に変える発散レンズと、前記発散レンズからの発散光を収束光に変えるとともに、前記収束レンズからの光を平行光に変えることで前記被測定対象物の光照射面に前記収束光及び前記平行光を投射する対物レンズと、前記対物レンズから出射した収束光の焦点位置を移動させるべく前記発散レンズをその中心軸に沿った方向に移動させるレンズ位置移動手段と、前記レンズ位置移動手段に駆動信号を与えて前記発散レンズを往復移動させる駆動制御手段と、前記発散レンズの位置に基づいて位置信号を出力するレンズ位置検出手段と、前記被測定対象物の光照射面で反射した光を前記コリメータレンズを通して受光し、受光量に応じた受光信号を出力する変位測定用受光手段と、前記変位測定用受光手段からの受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて前記被測定対象物の光照射面までの距離を検出する距離検出手段と、前記被測定対象物の光照射面で反射した光を前記対物レンズを通して撮像面に受光し、その撮像面における受光量に基づいて撮像信号を出力する傾き測定用撮像手段と、前記傾き測定用撮像手段からの前記撮像信号に基づいて前記被測定対象物の光照射面の傾きを検出する傾き検出手段とを備えたところに特徴を有する。
【0009】
請求項3の発明は、請求項1又は請求項2に記載のものにおいて、前記収束レンズはその中心軸が前記コリメータレンズの中心軸に一致するように配されているところに特徴を有する。
【0010】
請求項4の発明は、光を被測定対象物に投射し、その被測定対象物からの反射光に基づいて前記被測定対象物の変位及び傾きを測定するものであって、光を出射する投光手段と、前記投光手段からの光を平行光にするコリメータレンズと、前記コリメータレンズからの平行光の一部を発散光に変える発散レンズと、開口を有し、前記発散レンズからの発散光を前記開口に通すとともに、前記コリメータレンズからの平行光を収束光に変える収束レンズと前記収束レンズからの収束光が照射されるとともに、前記発散光を平行光に変えることで前記被測定対象物の光照射面に収束光及び平行光を照射する対物レンズと、前記対物レンズから出射した収束光の焦点位置を移動させるべく前記収束レンズをその中心軸に沿った方向に移動させるレンズ位置移動手段と、前記レンズ位置移動手段に駆動信号を与えて前記収束レンズを往復移動させる駆動制御手段と、前記収束レンズの位置に基づいて位置信号を出力するレンズ位置検出手段と、前記被測定対象物の光照射面で反射した光を前記コリメータレンズを通して受光し、受光量に応じた受光信号を出力する変位測定用受光手段と、前記変位測定用受光手段からの受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて前記被測定対象物の光照射面までの距離を検出する距離検出手段と、前記被測定対象物の光照射面で反射した光を前記対物レンズを通して撮像面に受光し、その撮像面における受光量に基づいて撮像信号を出力する傾き測定用撮像手段と、前記傾き測定用撮像手段からの前記撮像信号に基づいて前記被測定対象物の光照射面の傾きを検出する傾き検出手段とを備えたところに特徴を有する。
【0011】
【発明の作用及び効果】
<請求項1の発明>
請求項1の発明では、投光手段から出射された光からコリメータレンズ、収束レンズ及び対物レンズにより平行光と収束光とを作り出してそれぞれ被測定対象物に照射する。そして、反射光を対物レンズ及びコリメータレンズを介して変位測定用受光手段にて受光し、その受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて被測定対象物の変位を測定する。また、反射光を対物レンズ及び収束レンズを介して傾き測定用撮像手段にて受光し、その撮像信号に基づいて被測定対象物の傾きを測定する。
これにより、変位及び傾き測定のための投光手段を1つにすることができるから、投光手段の制御装置を削減することができて光学測定装置の小型化を図ることができる。
また、対物レンズからの収束光及び平行光を被測定対象物の変位方向に沿った方向に投射することで、被測定対象物の距離に関係無く被測定対象物の一定の位置に光を照射することができ、もって、変位及び傾きの測定を正確に行なうことができる。
【0012】
<請求項2の発明>
発散レンズのみを往復移動させるようにしているから、レンズ位置移動手段を小型化することができる。また、発散レンズの開口に収束レンズからの光を通すようにして対物レンズと収束レンズとの間隔を一定に保つようにしたことで、発散レンズの位置に関係無く対物レンズから平行光を出射することができる。
【0013】
<請求項3の発明>
コリメータレンズと収束レンズとを一体的に形成することで、部品点数が減少し、装置の小型化・組付け工数の削減を図ることができる。
【0014】
<請求項4の発明>
収束レンズのみを往復移動させるようにしているから、レンズ位置移動手段を小型化することができる。また、収束レンズの開口に発散レンズからの光の一部を通すようにしたことで、収束レンズの位置に関係無く対物レンズから平行光を出射することができる。
【0015】
【発明の実施の形態】
<第1実施形態>
請求項1の発明に係る光学測定装置の一実施形態を図1によって説明する。
本実施形態の光学測定装置はいわゆる合焦点検出により金属や樹脂等の非測定対象物の変位を測定するとともに、オートコリメータの原理を用いてその傾きを測定するものである。その構成は図1に示す通りであり、レーザパワー制御回路11からの出力信号によりレーザ光源12(「投光手段」に相当)からレーザ光が出射され、この出射光がビームスプリッタ13を透過してコリメータレンズ14に至り、平行光に変えられてから1/4波長板15及び対物レンズ16を透過して板状のワークW(「被測定対象物」に相当)の表面に投射される。
【0016】
また、コリメータレンズ14と1/4波長板15との間にはビームスプリッタ17がその反射面の中央部をコリメータレンズ14の中心軸と一致させて配されており、さらに1/4波長板15と対物レンズ16との間には収束レンズ18が配されている。この収束レンズ18は、コリメータレンズ14よりも小径とされているとともに、その中心軸をコリメータレンズ14の中心軸と一致させた状態で配置されている。
【0017】
従って、コリメータレンズ14からの平行光のうち中央部分の光が収束レンズ18により収束光に変えられて発散した光が対物レンズ16により平行光としてワークWに照射されるとともに、収束レンズ18を介さずに対物レンズに至った円筒状の平行光は対物レンズ16により収束光とされてワークWに照射される。また、対物レンズ16に入射する収束レンズ18からの光のスポット径が常に一定となるように両者16,18間の距離D1は一定とされている。
【0018】
対物レンズ16及び収束レンズ18は音叉19A(「レンズ位置移動手段」に相当)の先端部にそれぞれ取りつけられており、その軸部には制御手段3(「距離検出手段」及び「傾き検出手段」に相当)からの制御信号Saに応じて動作する音叉振動用の励磁コイル19B(「駆動制御手段」に相当)が配設されている。励磁コイル19Bに制御手段3からの制御信号Saが供給されると、音叉19Aが図面上下方向に振動することに伴って対物レンズ16及び収束レンズ18が光軸LCの方向に往復移動されるようになっている。また、音叉19Aのうち対物レンズ16を取りつけた部位の近傍には対物レンズ16の位置を検出するレンズ位置検出コイル31(「レンズ位置検出手段」に相当)が配設されており、このレンズ位置検出コイル31からの位置信号Sbが制御手段3に出力されるようになっている。
【0019】
ワークWの表面(「光照射面」に相当)で反射した対物レンズ16からの収束光は、1/4波長板15、コリメータレンズ14を通ってビームスプリッタ13にて反射されるとともに、受光面の前方にピンホール板21を設けた受光素子20(「変位測定用受光手段」に相当)に受光され、その受光信号Scが制御手段3に出力される。尚、対物レンズ16からの収束光がワークWの表面に焦点を結ぶと、その反射光がピンホール板21のピンホール位置で結像し、受光素子20での受光量が最大となる。一方、対物レンズ16を透過した収束光がワークWの表面に焦点を結んでいないときには、その反射光の受光量は著しく少なくなる。
【0020】
一方、ワークWの表面で反射した対物レンズ16からの平行光は収束レンズ18を通って平行光とされた後1/4波長板15を通ってビームスプリッタ17に至り、ビームスプリッタ17で反射され、収束レンズ22により収束されてCCD23(「傾き測定用撮像手段」に相当)の撮像面に結像する。CCD23では、その結像された撮像面における受光量分布に基づいて結像点の位置情報たるアナログ信号をCCD駆動回路24に出力し、CCD駆動回路24はアナログ信号をディジタル信号(「撮像信号Sd」に相当)に変換して制御手段3に出力する。
【0021】
以下、上記構成の動作について説明する。
制御手段3は、受光素子20からの受光信号Sc及びレンズ位置検出コイル31からの位置信号Sbを基にしてワークW表面の変位を測定する。具体的には、励磁コイル19Bに制御手段3からの制御信号が供給されると、音叉19Aが図面上下方向に振動することに伴って対物レンズ16及び収束レンズ18が光軸LCの方向に往復移動され、そのときの受光素子20からの受光信号Scをモニタし、その受光信号Scが最大となったときのレンズ位置検出コイル31からの位置信号Sbを取り込む。そして、取り込んだ位置信号Sbから対物レンズ16の位置を検出し、この対物レンズ16の位置と焦点距離f1とからワークWまでの距離を割り出す。以降、ワークWが光軸LCと直交する方向へ移動したときには、上記と同様の手順によりワークW表面までの距離を割り出すことでワークWの変位を検出する。
【0022】
また、制御手段3は受光素子20からの受光信号Scが最大とされたときのCCD駆動手段24からの撮像信号Sdに基づいてワークWの表面の傾きを検出する。例えば、ワークWの表面が光軸LCに対して直交した状態、即ち、傾きが無いときには(図中▲1▼の状態、以下、正規位置という。)、ワークWからの反射光は収束レンズ18を通って平行光とされてビームスプリッタ17の中央部分に至り、このビームスプリッタ17を反射した平行光は収束レンズ22により収束されてCCD23の撮像面の中央に結像する。
【0023】
ここで、オートコリメータの原理により、
d=2(f2 )θ・・・・・式(1)
d´=df3 /f1 ・・・式(2)
(d´:CCD23の撮像面中央と結像点との距離 d:収束レンズ18からの光の焦点位置と対物レンズ16を透過した反射光の焦点距離とのずれ量 f1 :収束レンズ18の焦点距離 f2 :対物レンズ16を透過した反射光の焦点距離 f3 :収束レンズ22の焦点距離 θ:ワークWの傾き角)
の関係が成り立つことを利用して、制御手段3では上記式(1)及び式(2)からワークWの傾き角を演算することができる。従って、上記のように撮像面の中央に光が結像しているときには、d´=0となって、傾き角θは「0°」と測定される(図2参照)。
【0024】
また、ワークWが正規位置から角度θ傾いているときには(図中▲2▼の状態)、反射光は光軸LCに対して2θ傾いて対物レンズ16に向かう。収束レンズ18からの平行光はビームスプリッタ17の左よりに照射され、CCD23上には中央から上側にd´だけオフセットして結像するから、上記式に基づいてワークWの傾き角θが測定される(図2参照)。
【0025】
ここで、ワークWが傾きθを維持したまま光軸LCと直交する方向に変位した場合においても、ワークWには常に対物レンズ16からの平行光が照射されているので、対物レンズ16からワークWまでの距離f1 に関係無く常に撮像面の中央からd´離れた位置に結像されて正確な測定が維持される。
【0026】
このように、本実施形態では、レーザ光源12により変位測定及び傾き測定を行なうようにしているから、それぞれの測定用に光源を設ける必要が無く、装置の構成を簡略化することができる。
また、対物レンズ16からの収束光及び平行光をワークWの変位方向に沿った方向に投射しているから、ワークWの距離に関係無く一定の位置に光を照射することができ、もって、正確に変位の測定を行なうことができる。
また、傾きを測定する際には、対物レンズ16とワークWとの距離に無関係にワークWの傾きを正確に測定できる。
【0027】
<第2実施形態>
請求項2の発明に係る光学測定装置の一実施形態について図3を参照して説明し、第1実施形態と同一の部分には同一の符号を付して重複する説明を省略し、同一の作用・効果についての説明も省略する。
本実施形態では1/4波長板15と対物レンズ16との間に発散レンズ41が配されている。この発散レンズ41は音叉19Aの一端部に取り付けられており、他端部の近傍には音叉振幅制御回路19Cからの駆動信号に基づいて動作する音叉振動用の励磁コイル19B(音叉振幅制御回路19Cとともに「レンズ位置移動手段」を構成する)が配設されている。励磁コイル19Bに駆動信号が与えられると、励磁コイル19Bが励磁されることにより音叉19Aが図面上下方向に往復移動されるようになっている。これによって、対物レンズ16に照射される発散レンズからの発散光のビーム径が変化することで、対物レンズ16からの収束光の焦点位置が光軸LCに沿って移動する。
また、発散レンズ41の中央部分には開口が形成されており、この開口の中心部が光軸に一致するように配されて収束レンズ18からの光が対物レンズ16に向かって通過するようになっている。
【0028】
本実施形態では、発散レンズ41を往復移動させることで、対物レンズ16からの収束光の焦点位置を変化させるようにしているから、第1実施形態のものと比べて、音叉19A及び励磁コイル19Bを小型化することができる。
また、収束レンズ18からの光を発散レンズ41の開口を通して対物レンズ16に照射するようにしているから、発散レンズ41を移動させたとしても対物レンズ16に照射される収束レンズ18からの光のビーム径は一定に保たれる。このようにすることで、ビーム径を一定に保つために収束レンズ18及び対物レンズ16を移動させるための機構が不要となり、装置を一層小型化させることができる。
【0029】
<第3実施形態>
本実施形態は図4に示すように、コリメータレンズ14と収束レンズ18との間にアキシコンレンズ対42を配したところが第2実施形態と相違している。このアキシコンレンズ対42は大きさの異なるアキシコンレンズ42A,42Bが互いに曲面を向かい合わせた状態で配されており、42Bが42Aよりも大きくされている。このアキシコンレンズ42A,42B間の距離を変えることで、アキシコンレンズ42Bの平坦面から出射される平行光のビーム径を変化させることができ、これに伴って、対物レンズから出射される平行光のビーム径を変化させられる。
微小なワークWの傾きを測定する場合と、大きなワークWの傾きを測定する場合とでは、要求される平行光のビーム径が異なっており、例えば微小なワークWに対して、そのワークの表面よりも大きなビーム径の光を照射しても正確な傾きが測定されず、逆に大きなワークWに対してビーム径の小さい光を照射すると、その表面粗さによって測定に影響を及ぼして正確に傾きが測定されないことがある。
これに対して本実施形態では、対物レンズ16からの平行光のビーム径を変えることができるから大きさの異なる様々なワークWに対して正確な傾き測定を行なうことができる。
【0030】
<第4実施形態>
請求項4に係る本実施形態は、コリメータレンズ14と1/4波長板15との間に発散レンズ43が配されており、また、1/4波長板15と対物レンズ16との間には中央部分に開口を有する収束レンズ44が配されているとともに、この収束レンズ44が音叉19Aの一端側に取り付けられているところが第2実施形態と異なっている(図5参照)。
コリメータレンズ14からの平行光の一部は収束レンズ44にて収束光とされる。また、コリメータレンズ14からの平行光のその他の一部は発散レンズ43によって発散光となり、収束レンズ44の開口を通過して対物レンズ16に照射される。そうすると、対物レンズ16からは収束光及び平行光が出射されてこれらがワークWの表面に照射される。また、収束レンズ44は音叉19Aのよって光軸LCに沿って往復移動しているから、これに伴って対物レンズ16から照射される収束レンズ44の焦点位置が光軸LCに沿った方向に移動する。
【0031】
本実施形態では、収束レンズ44を往復移動させることで、対物レンズ16からの収束光の焦点位置を変化させるようにしているから、第1実施形態のものと比べて、音叉19A及び励磁コイル19Bを小型化することができる。
また、発散レンズ43からの光を収束レンズ44の開口を通して対物レンズ16に照射するようにしているから、収束レンズ44を移動させたとしても対物レンズ16に照射される発散レンズ43からの光のビーム径は略一定に保たれる。このようにすることで、ビーム径を一定に保つために発散レンズ43及び対物レンズ16を移動させるための機構が不要となり、装置を一層小型化させることができる。
【0032】
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記第1及び第2実施形態では、コリメータレンズ14と収束レンズ18とを別体で設けた構成としていたが、例えばコリメータレンズ14と収束レンズ18とを一体的に形成したものを用いても良い。このようにすれば、部品点数が削減されるとともに、装置の小型化・組付け工数の削減を図ることができる。
【図面の簡単な説明】
【図1】第1実施形態の光学測定装置の構成を示す模式図
【図2】傾き測定の測定方法を示した模式図
【図3】第2実施形態の光学測定装置の構成を示す模式図
【図4】第3実施形態の光学測定装置の構成を示す模式図
【図5】第4実施形態の光学測定装置の構成を示す模式図
【符号の説明】
12…レーザ光源(投光手段)
14…コリメータレンズ
16…対物レンズ
18…収束レンズ
19A…音叉
19B…励磁コイル
20…受光素子(変位測定用受光手段)
23…CCD(傾き測定用撮像手段)
30…制御手段(距離検出手段、傾き検出手段)
31…レンズ位置検出コイル(レンズ位置検出手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical measurement apparatus for detecting the displacement and inclination of an object to be measured.
[0002]
[Prior art]
Patent Document 1 and Patent Document 2 are disclosed as apparatuses for measuring the displacement and inclination of an object to be measured.
The displacement measuring apparatus of Patent Document 1 measures the displacement and inclination of an object to be measured using the principle of triangulation, and includes a displacement measuring optical system and an inclination measuring optical system. In the displacement measuring optical system, the light from the light projecting element converged by the lens is projected obliquely onto the object to be measured, and the reflected light is converged by the lens and irradiated onto the imaging surface of the imaging means. The displacement of the object to be measured can be measured by the light irradiation position on the imaging surface.
The tilt measuring optical system projects light from the light projecting element, which has been made parallel light by the lens, obliquely onto the object to be measured, converges the reflected light by the lens, and irradiates the imaging surface of the imaging means. The inclination of the measurement object can be measured based on the light irradiation position on the imaging surface.
[0003]
On the other hand, the displacement measuring device of Patent Document 2 irradiates the object to be measured with the light from the light projecting element, and receives the scattered light from the object to be measured collected by the lens on the imaging means for measuring the displacement. The specularly reflected light is reflected by a prism and received by an inclination measuring imaging means. Thereby, the displacement of the measurement object is measured based on the light irradiation position in the displacement measurement imaging means, and the inclination of the measurement object is measured based on the light irradiation position in the inclination measurement imaging means. It is.
[0004]
[Patent Document 1]
JP-A-8-240408 [Patent Document 2]
Japanese Patent Laid-Open No. 11-153407
[Problems to be solved by the invention]
However, in the configuration of Patent Document 1, since light is projected obliquely to the measurement target object, the correct displacement is obtained by changing the position of the light irradiated on the measurement target object depending on the distance of the measurement target object.・ There is a problem that tilt measurement cannot be performed. Furthermore, since two light projecting elements are required, a plurality of circuits for controlling the light projecting elements are required, and the size of the apparatus cannot be avoided.
Further, in the configuration of Patent Document 2, the irradiation position of the specularly reflected light on the prism is displaced depending on the distance to the object to be measured. There is a problem that the tilt measurement is not performed correctly due to the change in the angle.
[0006]
The present invention has been completed based on the above-described circumstances, and an object thereof is to provide an optical measuring apparatus capable of measuring displacement and inclination with high accuracy.
[0007]
[Means for Solving the Problems]
As means for achieving the above object, the invention according to claim 1 is directed to projecting light onto an object to be measured, and determining the displacement and inclination of the object to be measured based on the reflected light from the object to be measured. A light projecting unit that emits light; a collimator lens that converts light from the light projecting unit into parallel light; and a converging lens that converts part of the parallel light from the collimator lens into convergent light; An objective lens for projecting the convergent light and the parallel light onto the light irradiation surface of the object to be measured by changing the parallel light from the collimator lens into convergent light and changing the light from the convergent lens into parallel light And the objective lens and the converging lens are placed on their respective central axes so that the focal position of the converging light emitted from the objective lens is moved while the positional relationship between the objective lens and the converging lens is fixed. A lens position moving means for moving the lens in a predetermined direction, a drive control means for giving a driving signal to the lens position moving means to reciprocate the objective lens and the converging lens, and a position signal based on the position of the objective lens. A lens position detecting means for outputting, a light receiving means for displacement measurement for receiving the light reflected by the light irradiation surface of the object to be measured through the collimator lens, and outputting a light reception signal corresponding to the amount of received light; and A distance detecting means for detecting a distance to the light irradiation surface of the object to be measured based on a position signal from the lens position detecting means when a light receiving signal from the light receiving means is maximized; Inclination measuring imaging means for receiving light reflected by the light irradiation surface on the imaging surface through the objective lens and outputting an imaging signal based on the amount of light received on the imaging surface; Based on the imaging signals from the measuring imaging means having a characteristic at which a tilt detection means for detecting the inclination of the light irradiation surface of the object to be measured.
[0008]
According to a second aspect of the present invention, light is projected onto an object to be measured, and the displacement and inclination of the object to be measured are measured based on the reflected light from the object to be measured, and the light is emitted. A light projecting unit; a collimator lens that converts light from the light projecting unit into parallel light; a converging lens that converts part of the parallel light from the collimator lens into convergent light; and an aperture, A diverging lens that allows light to pass through the aperture, converts light from the collimator lens into divergent light, and changes divergent light from the divergent lens into convergent light, and changes light from the convergent lens into parallel light. An objective lens that projects the convergent light and the parallel light onto the light irradiation surface of the object to be measured, and a direction along the central axis of the diverging lens to move the focal position of the convergent light emitted from the objective lens A lens position moving means for moving the lens, a drive control means for giving a driving signal to the lens position moving means to reciprocate the diverging lens, and a lens position detecting means for outputting a position signal based on the position of the diverging lens; The light reflected from the light irradiation surface of the object to be measured is received through the collimator lens, and a light receiving signal for displacement measurement that outputs a light receiving signal corresponding to the amount of light received, and a light receiving signal from the light receiving means for displacement measurement Distance detection means for detecting a distance to the light irradiation surface of the object to be measured based on a position signal from the lens position detection means at the time of maximum, and light reflected by the light irradiation surface of the object to be measured Is received by the imaging surface through the objective lens and outputs an imaging signal based on the amount of light received on the imaging surface, and the tilt measurement imaging unit from the tilt measurement imaging unit Characterized in place and a tilt detection means for detecting the inclination of the light irradiation surface of the object to be measured based on the image signal.
[0009]
A third aspect of the invention is characterized in that, in the first or second aspect of the invention, the converging lens is arranged such that a central axis thereof coincides with a central axis of the collimator lens.
[0010]
According to a fourth aspect of the present invention, light is projected onto an object to be measured, and the displacement and inclination of the object to be measured are measured based on reflected light from the object to be measured, and the light is emitted. A light projecting unit; a collimator lens that collimates the light from the light projecting unit; a divergent lens that converts a part of the collimated light from the collimator lens into a divergent light; an aperture; The diverging light is passed through the aperture, and the converging lens for irradiating the collimating light from the collimator lens to the converging light is irradiated with the converging light from the converging lens, and the diverging light is converted into the parallel light to measure the light to be measured. An objective lens that irradiates the light irradiation surface of the object with convergent light and parallel light, and a lens that moves the convergent lens in a direction along its central axis to move the focal position of the convergent light emitted from the objective lens. Position moving means; drive control means for applying a driving signal to the lens position moving means to reciprocate the convergent lens; lens position detecting means for outputting a position signal based on the position of the convergent lens; and the device under measurement The light reflected from the light irradiation surface of the object is received through the collimator lens, and the light receiving signal for displacement measurement that outputs a light receiving signal corresponding to the amount of light received and the light receiving signal from the light receiving means for displacement measurement are maximized. Distance detecting means for detecting a distance to the light irradiation surface of the object to be measured based on a position signal from the lens position detecting means, and light reflected by the light irradiation surface of the object to be measured Through the image pickup surface that receives light on the image pickup surface and outputs an image pickup signal based on the amount of light received on the image pickup surface, and based on the image pickup signal from the image pickup means for inclination measurement Serial characterized in was a tilt detection means for detecting the inclination of the light irradiation surface of the object to be measured.
[0011]
[Action and effect of the invention]
<Invention of Claim 1>
In the first aspect of the invention, the collimator lens, the converging lens, and the objective lens produce parallel light and converging light from the light emitted from the light projecting means, and irradiate the object to be measured. Then, the reflected light is received by the displacement measuring light receiving means via the objective lens and the collimator lens, and the displacement of the object to be measured is based on the position signal from the lens position detecting means when the received light signal is maximized. Measure. Further, the reflected light is received by the tilt measuring imaging means via the objective lens and the converging lens, and the tilt of the measurement object is measured based on the imaging signal.
Thereby, since the light projection means for measuring the displacement and the inclination can be made one, the control device for the light projection means can be reduced and the optical measurement apparatus can be miniaturized.
In addition, by projecting convergent light and parallel light from the objective lens in a direction along the displacement direction of the object to be measured, light is irradiated to a certain position of the object to be measured regardless of the distance of the object to be measured. Therefore, displacement and tilt can be measured accurately.
[0012]
<Invention of Claim 2>
Since only the diverging lens is reciprocated, the lens position moving means can be reduced in size. In addition, since the light from the converging lens is passed through the aperture of the diverging lens so that the distance between the objective lens and the converging lens is kept constant, parallel light is emitted from the objective lens regardless of the position of the diverging lens. be able to.
[0013]
<Invention of Claim 3>
By integrally forming the collimator lens and the converging lens, the number of parts can be reduced, and the apparatus can be downsized and the number of assembly steps can be reduced.
[0014]
<Invention of Claim 4>
Since only the convergent lens is reciprocated, the lens position moving means can be reduced in size. Further, by allowing a part of the light from the diverging lens to pass through the aperture of the converging lens, parallel light can be emitted from the objective lens regardless of the position of the converging lens.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
<First Embodiment>
An embodiment of an optical measuring apparatus according to the invention of claim 1 will be described with reference to FIG.
The optical measurement apparatus of this embodiment measures the displacement of a non-measurement object such as metal or resin by so-called in-focus detection, and measures the tilt using the principle of an autocollimator. The configuration is as shown in FIG. 1, and laser light is emitted from a laser light source 12 (corresponding to “light projecting means”) in response to an output signal from the laser power control circuit 11, and this emitted light passes through the beam splitter 13. The collimator lens 14 is converted into parallel light and then transmitted through the quarter-wave plate 15 and the objective lens 16 to be projected onto the surface of the plate-like workpiece W (corresponding to “object to be measured”).
[0016]
A beam splitter 17 is disposed between the collimator lens 14 and the quarter wavelength plate 15 so that the central portion of the reflection surface thereof coincides with the central axis of the collimator lens 14. A focusing lens 18 is disposed between the objective lens 16 and the objective lens 16. The converging lens 18 has a smaller diameter than that of the collimator lens 14 and is disposed in a state where the central axis thereof coincides with the central axis of the collimator lens 14.
[0017]
Accordingly, light in the central portion of the parallel light from the collimator lens 14 is converted into convergent light by the converging lens 18 and emitted from the objective lens 16 as parallel light to the work W, and through the converging lens 18. The cylindrical parallel light reaching the objective lens without being converted into convergent light by the objective lens 16 is irradiated onto the workpiece W. In addition, the distance D1 between the two lenses 16 and 18 is constant so that the spot diameter of the light from the converging lens 18 incident on the objective lens 16 is always constant.
[0018]
The objective lens 16 and the converging lens 18 are respectively attached to the tip of a tuning fork 19A (corresponding to “lens position moving means”), and the control means 3 (“distance detection means” and “tilt detection means”) are attached to the shafts. An excitation coil 19B for tuning fork vibration (corresponding to "drive control means") that operates in response to a control signal Sa from the above is disposed. When the control signal Sa from the control means 3 is supplied to the exciting coil 19B, the objective lens 16 and the converging lens 18 are reciprocated in the direction of the optical axis LC as the tuning fork 19A vibrates in the vertical direction of the drawing. It has become. Further, a lens position detecting coil 31 (corresponding to “lens position detecting means”) for detecting the position of the objective lens 16 is disposed in the vicinity of the portion of the tuning fork 19A where the objective lens 16 is mounted. A position signal Sb from the detection coil 31 is output to the control means 3.
[0019]
The convergent light from the objective lens 16 reflected by the surface of the workpiece W (corresponding to the “light irradiation surface”) is reflected by the beam splitter 13 through the quarter-wave plate 15 and the collimator lens 14, and the light receiving surface. Is received by a light receiving element 20 (corresponding to “displacement measuring light receiving means”) provided with a pinhole plate 21 in front of the light, and a light reception signal Sc is output to the control means 3. When the convergent light from the objective lens 16 is focused on the surface of the workpiece W, the reflected light forms an image at the pinhole position of the pinhole plate 21, and the amount of light received by the light receiving element 20 is maximized. On the other hand, when the convergent light transmitted through the objective lens 16 is not focused on the surface of the workpiece W, the amount of reflected light is remarkably reduced.
[0020]
On the other hand, the parallel light from the objective lens 16 reflected by the surface of the workpiece W is converted into parallel light through the converging lens 18, then reaches the beam splitter 17 through the quarter-wave plate 15, and is reflected by the beam splitter 17. Then, the light is converged by the converging lens 22 and imaged on the imaging surface of the CCD 23 (corresponding to “an imaging means for tilt measurement”). The CCD 23 outputs an analog signal as position information of the image forming point to the CCD driving circuit 24 based on the received light amount distribution on the imaged imaging surface, and the CCD driving circuit 24 converts the analog signal into a digital signal (“imaging signal Sd”). To the control means 3.
[0021]
The operation of the above configuration will be described below.
The control means 3 measures the displacement of the surface of the workpiece W based on the light reception signal Sc from the light receiving element 20 and the position signal Sb from the lens position detection coil 31. Specifically, when the control signal from the control means 3 is supplied to the exciting coil 19B, the objective lens 16 and the converging lens 18 reciprocate in the direction of the optical axis LC as the tuning fork 19A vibrates in the vertical direction of the drawing. The received light signal Sc from the light receiving element 20 at that time is monitored, and the position signal Sb from the lens position detection coil 31 when the received light signal Sc becomes maximum is taken in. Then, the position of the objective lens 16 is detected from the captured position signal Sb, and the distance from the position of the objective lens 16 and the focal length f1 to the workpiece W is determined. Thereafter, when the workpiece W moves in a direction perpendicular to the optical axis LC, the displacement of the workpiece W is detected by determining the distance to the surface of the workpiece W by the same procedure as described above.
[0022]
Further, the control means 3 detects the inclination of the surface of the workpiece W based on the imaging signal Sd from the CCD driving means 24 when the light reception signal Sc from the light receiving element 20 is maximized. For example, when the surface of the workpiece W is orthogonal to the optical axis LC, that is, when there is no inclination (the state of (1) in the figure, hereinafter referred to as a normal position), the reflected light from the workpiece W is reflected by the converging lens 18. The collimated light passes through the beam splitter 17 and reaches the center of the beam splitter 17. The collimated light reflected by the beam splitter 17 is converged by the converging lens 22 and forms an image on the center of the imaging surface of the CCD 23.
[0023]
Here, according to the principle of the autocollimator,
d = 2 (f2) θ Equation (1)
d '= df3 / f1 (2)
(D ′: Distance between the center of the image pickup surface of the CCD 23 and the image forming point d: Amount of deviation between the focal position of the light from the converging lens 18 and the focal length of the reflected light transmitted through the objective lens 16 f1: The focal point of the converging lens 18 Distance f2: Focal length of reflected light transmitted through objective lens 16 f3: Focal length of converging lens 22 θ: tilt angle of workpiece W)
The control means 3 can calculate the tilt angle of the workpiece W from the above equations (1) and (2). Accordingly, when light is focused on the center of the imaging surface as described above, d ′ = 0 and the inclination angle θ is measured as “0 °” (see FIG. 2).
[0024]
When the workpiece W is inclined at an angle θ from the normal position (state (2) in the figure), the reflected light is inclined by 2θ with respect to the optical axis LC toward the objective lens 16. The parallel light from the converging lens 18 is irradiated from the left of the beam splitter 17 and forms an image on the CCD 23 with an offset of d ′ from the center to the upper side. Therefore, the tilt angle θ of the workpiece W is measured based on the above formula. (See FIG. 2).
[0025]
Here, even when the workpiece W is displaced in the direction orthogonal to the optical axis LC while maintaining the inclination θ, the workpiece W is always irradiated with the parallel light from the objective lens 16, and thus the workpiece W is irradiated from the objective lens 16. Regardless of the distance f1 to W, an image is always formed at a position d 'away from the center of the imaging surface, and accurate measurement is maintained.
[0026]
Thus, in this embodiment, since the displacement measurement and the inclination measurement are performed by the laser light source 12, it is not necessary to provide a light source for each measurement, and the configuration of the apparatus can be simplified.
Further, since the convergent light and parallel light from the objective lens 16 are projected in the direction along the displacement direction of the workpiece W, light can be irradiated to a certain position regardless of the distance of the workpiece W, and The displacement can be measured accurately.
Further, when measuring the tilt, the tilt of the workpiece W can be accurately measured regardless of the distance between the objective lens 16 and the workpiece W.
[0027]
Second Embodiment
An embodiment of the optical measuring device according to the invention of claim 2 will be described with reference to FIG. 3, the same parts as those of the first embodiment will be denoted by the same reference numerals, and the duplicate description will be omitted. A description of the action and effect is also omitted.
In the present embodiment, a diverging lens 41 is disposed between the quarter-wave plate 15 and the objective lens 16. The diverging lens 41 is attached to one end of the tuning fork 19A, and in the vicinity of the other end, an excitation coil 19B (tuning fork amplitude control circuit 19C) for tuning fork vibration that operates based on a drive signal from the tuning fork amplitude control circuit 19C. In addition, a “lens position moving means” is provided. When a drive signal is given to the excitation coil 19B, the tuning fork 19A is reciprocated in the vertical direction of the drawing by exciting the excitation coil 19B. As a result, the beam diameter of the diverging light from the diverging lens irradiated on the objective lens 16 changes, so that the focal position of the convergent light from the objective lens 16 moves along the optical axis LC.
In addition, an opening is formed in the central portion of the diverging lens 41, and the central portion of the opening is arranged so as to coincide with the optical axis so that the light from the converging lens 18 passes toward the objective lens 16. It has become.
[0028]
In the present embodiment, since the focal position of the convergent light from the objective lens 16 is changed by reciprocating the diverging lens 41, the tuning fork 19A and the excitation coil 19B are compared with those of the first embodiment. Can be miniaturized.
Further, since the light from the converging lens 18 is irradiated onto the objective lens 16 through the opening of the diverging lens 41, even if the diverging lens 41 is moved, the light from the converging lens 18 irradiated onto the objective lens 16 is reflected. The beam diameter is kept constant. By doing so, a mechanism for moving the converging lens 18 and the objective lens 16 in order to keep the beam diameter constant is unnecessary, and the apparatus can be further miniaturized.
[0029]
<Third Embodiment>
As shown in FIG. 4, this embodiment is different from the second embodiment in that an axicon lens pair 42 is disposed between the collimator lens 14 and the converging lens 18. In this axicon lens pair 42, axicon lenses 42A and 42B having different sizes are arranged with their curved surfaces facing each other, and 42B is made larger than 42A. By changing the distance between the axicon lenses 42A and 42B, the beam diameter of the parallel light emitted from the flat surface of the axicon lens 42B can be changed, and accordingly the parallel light emitted from the objective lens. The beam diameter of light can be changed.
The required beam diameter of parallel light differs between when measuring the inclination of a minute workpiece W and when measuring the inclination of a large workpiece W. For example, the surface of the workpiece is different from that of the minute workpiece W. Even if light with a larger beam diameter is irradiated, the accurate tilt is not measured. Conversely, when light with a small beam diameter is irradiated onto a large workpiece W, the measurement is affected accurately due to the surface roughness. Tilt may not be measured.
On the other hand, in the present embodiment, since the beam diameter of the parallel light from the objective lens 16 can be changed, accurate tilt measurement can be performed for various workpieces W having different sizes.
[0030]
<Fourth embodiment>
In the present embodiment according to claim 4, a diverging lens 43 is disposed between the collimator lens 14 and the quarter wavelength plate 15, and between the quarter wavelength plate 15 and the objective lens 16. The second embodiment is different from the second embodiment in that a converging lens 44 having an opening is disposed in the central portion, and the converging lens 44 is attached to one end side of the tuning fork 19A (see FIG. 5).
Part of the parallel light from the collimator lens 14 is converted into convergent light by the converging lens 44. Further, the other part of the parallel light from the collimator lens 14 becomes divergent light by the diverging lens 43, passes through the opening of the converging lens 44, and is irradiated onto the objective lens 16. Then, convergent light and parallel light are emitted from the objective lens 16 and are irradiated onto the surface of the workpiece W. Further, since the converging lens 44 reciprocates along the optical axis LC by the tuning fork 19A, the focal position of the converging lens 44 irradiated from the objective lens 16 moves in the direction along the optical axis LC. To do.
[0031]
In the present embodiment, since the focal position of the convergent light from the objective lens 16 is changed by reciprocating the converging lens 44, the tuning fork 19A and the excitation coil 19B are compared with those of the first embodiment. Can be miniaturized.
Further, since the light from the diverging lens 43 is irradiated to the objective lens 16 through the opening of the converging lens 44, even if the converging lens 44 is moved, the light from the diverging lens 43 irradiated to the objective lens 16 is irradiated. The beam diameter is kept substantially constant. By doing so, a mechanism for moving the diverging lens 43 and the objective lens 16 in order to keep the beam diameter constant is unnecessary, and the apparatus can be further miniaturized.
[0032]
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.
(1) In the first and second embodiments, the collimator lens 14 and the converging lens 18 are separately provided. For example, a collimator lens 14 and a converging lens 18 that are integrally formed are used. May be. In this way, the number of parts can be reduced, and the apparatus can be downsized and the number of assembly steps can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of an optical measuring device according to a first embodiment. FIG. 2 is a schematic diagram showing a measuring method for tilt measurement. FIG. 3 is a schematic diagram showing a configuration of an optical measuring device according to a second embodiment. FIG. 4 is a schematic diagram showing a configuration of an optical measurement device according to a third embodiment. FIG. 5 is a schematic diagram showing a configuration of an optical measurement device according to a fourth embodiment.
12 ... Laser light source (light projection means)
DESCRIPTION OF SYMBOLS 14 ... Collimator lens 16 ... Objective lens 18 ... Converging lens 19A ... Tuning fork 19B ... Excitation coil 20 ... Light receiving element (light receiving means for measuring displacement)
23. CCD (imaging means for measuring tilt)
30 ... Control means (distance detection means, inclination detection means)
31 ... Lens position detection coil (lens position detection means)

Claims (4)

光を被測定対象物に投射し、その被測定対象物からの反射光に基づいて前記被測定対象物の変位及び傾きを測定するものであって、
光を出射する投光手段と、
前記投光手段からの光を平行光にするコリメータレンズと、
前記コリメータレンズからの平行光の一部を収束光に変える収束レンズと、
前記コリメータレンズからの平行光を収束光に変えるとともに、前記収束レンズからの光を平行光に変えることで前記被測定対象物の光照射面に前記収束光及び前記平行光を投射する対物レンズと、
前記対物レンズと前記収束レンズとの配置関係は固定のままで前記対物レンズから出射した収束光の焦点位置を移動させるように前記対物レンズ及び前記収束レンズをそれぞれの中心軸に沿った方向に移動させるレンズ位置移動手段と、
前記レンズ位置移動手段に駆動信号を与えて前記対物レンズ及び前記収束レンズを往復移動させる駆動制御手段と、
前記対物レンズの位置に基づいて位置信号を出力するレンズ位置検出手段と、
前記被測定対象物の光照射面で反射した光を前記コリメータレンズを通して受光し、受光量に応じた受光信号を出力する変位測定用受光手段と、
前記変位測定用受光手段からの受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて前記被測定対象物の光照射面までの距離を検出する距離検出手段と、
前記被測定対象物の光照射面で反射した光を前記対物レンズを通して撮像面に受光し、その撮像面における受光量に基づいて撮像信号を出力する傾き測定用撮像手段と、
前記傾き測定用撮像手段からの前記撮像信号に基づいて前記被測定対象物の光照射面の傾きを検出する傾き検出手段とを備えたことを特徴とする光学測定装置。
Projecting light onto the object to be measured, and measuring the displacement and inclination of the object to be measured based on the reflected light from the object to be measured;
A light projecting means for emitting light;
A collimator lens that collimates the light from the light projecting means;
A converging lens that converts part of the parallel light from the collimator lens into convergent light;
An objective lens that changes the parallel light from the collimator lens into convergent light and projects the convergent light and the parallel light onto the light irradiation surface of the object to be measured by changing the light from the convergent lens into parallel light; ,
The objective lens and the converging lens are moved in directions along the respective central axes so that the focal position of the converging light emitted from the objective lens is moved while the positional relationship between the objective lens and the converging lens is fixed. Lens position moving means for causing
Drive control means for providing a drive signal to the lens position moving means to reciprocate the objective lens and the converging lens;
Lens position detection means for outputting a position signal based on the position of the objective lens;
Light receiving means for displacement measurement that receives light reflected by the light irradiation surface of the object to be measured through the collimator lens and outputs a light reception signal corresponding to the amount of light received;
A distance detecting means for detecting a distance to the light irradiation surface of the object to be measured based on a position signal from the lens position detecting means when the light receiving signal from the displacement measuring light receiving means is maximized;
Inclination measuring imaging means for receiving light reflected by the light irradiation surface of the object to be measured on the imaging surface through the objective lens and outputting an imaging signal based on the amount of light received on the imaging surface;
An optical measurement apparatus comprising: an inclination detection unit configured to detect an inclination of a light irradiation surface of the object to be measured based on the imaging signal from the imaging unit for inclination measurement.
光を被測定対象物に投射し、その被測定対象物からの反射光に基づいて前記被測定対象物の変位及び傾きを測定するものであって、
光を出射する投光手段と、
前記投光手段からの光を平行光にするコリメータレンズと、
前記コリメータレンズからの平行光の一部を収束光に変える収束レンズと、
開口を有し、前記収束レンズからの光を前記開口に通すとともに、前記コリメータレンズからの光を発散光に変える発散レンズと、
前記発散レンズからの発散光を収束光に変えるとともに、前記収束レンズからの光を平行光に変えることで前記被測定対象物の光照射面に前記収束光及び前記平行光を投射する対物レンズと、
前記対物レンズから出射した収束光の焦点位置を移動させるべく前記発散レンズをその中心軸に沿った方向に移動させるレンズ位置移動手段と、
前記レンズ位置移動手段に駆動信号を与えて前記発散レンズを往復移動させる駆動制御手段と、
前記発散レンズの位置に基づいて位置信号を出力するレンズ位置検出手段と、前記被測定対象物の光照射面で反射した光を前記コリメータレンズを通して受光し、受光量に応じた受光信号を出力する変位測定用受光手段と、
前記変位測定用受光手段からの受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて前記被測定対象物の光照射面までの距離を検出する距離検出手段と、
前記被測定対象物の光照射面で反射した光を前記対物レンズを通して撮像面に受光し、その撮像面における受光量に基づいて撮像信号を出力する傾き測定用撮像手段と、
前記傾き測定用撮像手段からの前記撮像信号に基づいて前記被測定対象物の光照射面の傾きを検出する傾き検出手段とを備えたことを特徴とする光学測定装置。
Projecting light onto the object to be measured, and measuring the displacement and inclination of the object to be measured based on the reflected light from the object to be measured;
A light projecting means for emitting light;
A collimator lens that collimates the light from the light projecting means;
A converging lens that converts part of the parallel light from the collimator lens into convergent light;
A diverging lens having an aperture, passing light from the converging lens through the aperture, and converting light from the collimator lens into diverging light;
An objective lens for projecting the convergent light and the parallel light onto the light irradiation surface of the object to be measured by changing the divergent light from the divergent lens into convergent light and changing the light from the convergent lens into parallel light; ,
Lens position moving means for moving the diverging lens in a direction along its central axis in order to move the focal position of the convergent light emitted from the objective lens;
Drive control means for providing a drive signal to the lens position moving means to reciprocate the diverging lens;
Lens position detection means for outputting a position signal based on the position of the diverging lens, and light reflected by the light irradiation surface of the object to be measured is received through the collimator lens, and a light reception signal corresponding to the amount of received light is output. A light receiving means for measuring displacement;
A distance detecting means for detecting a distance to the light irradiation surface of the object to be measured based on a position signal from the lens position detecting means when the light receiving signal from the displacement measuring light receiving means is maximized;
Inclination measuring imaging means for receiving light reflected by the light irradiation surface of the object to be measured on the imaging surface through the objective lens and outputting an imaging signal based on the amount of light received on the imaging surface;
An optical measurement apparatus comprising: an inclination detection unit configured to detect an inclination of a light irradiation surface of the object to be measured based on the imaging signal from the imaging unit for inclination measurement.
前記収束レンズは前記コリメータレンズよりも小径とされており、かつ、その中心軸が前記コリメータレンズの中心軸に一致するように配されていることを特徴とする請求項1又は請求項2に記載の光学測定装置。The converging lens has a smaller diameter than the collimator lens, and is arranged so that a central axis thereof coincides with a central axis of the collimator lens. Optical measuring device. 光を被測定対象物に投射し、その被測定対象物からの反射光に基づいて前記被測定対象物の変位及び傾きを測定するものであって、
光を出射する投光手段と、
前記投光手段からの光を平行光にするコリメータレンズと、
前記コリメータレンズからの平行光の一部を発散光に変える発散レンズと、
開口を有し、前記発散レンズからの発散光を前記開口に通すとともに、前記コリメータレンズからの平行光を収束光に変える収束レンズと
前記収束レンズからの収束光が照射されるとともに、前記発散光を平行光に変えることで前記被測定対象物の光照射面に収束光及び平行光を照射する対物レンズと、
前記対物レンズから出射した収束光の焦点位置を移動させるべく前記収束レンズをその中心軸に沿った方向に移動させるレンズ位置移動手段と、
前記レンズ位置移動手段に駆動信号を与えて前記収束レンズを往復移動させる駆動制御手段と、
前記収束レンズの位置に基づいて位置信号を出力するレンズ位置検出手段と、
前記被測定対象物の光照射面で反射した光を前記コリメータレンズを通して受光し、受光量に応じた受光信号を出力する変位測定用受光手段と、
前記変位測定用受光手段からの受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて前記被測定対象物の光照射面までの距離を検出する距離検出手段と、
前記被測定対象物の光照射面で反射した光を前記対物レンズを通して撮像面に受光し、その撮像面における受光量に基づいて撮像信号を出力する傾き測定用撮像手段と、
前記傾き測定用撮像手段からの前記撮像信号に基づいて前記被測定対象物の光照射面の傾きを検出する傾き検出手段とを備えたことを特徴とする光学測定装置。
Projecting light onto the object to be measured, and measuring the displacement and inclination of the object to be measured based on the reflected light from the object to be measured;
A light projecting means for emitting light;
A collimator lens that collimates the light from the light projecting means;
A diverging lens that converts part of the parallel light from the collimator lens into divergent light;
A diverging light from the diverging lens passing through the opening, a converging lens for converting the parallel light from the collimator lens into a converging light, and a converging light from the converging lens, and the diverging light; An objective lens that irradiates convergent light and parallel light on the light irradiation surface of the object to be measured by changing the light into parallel light;
Lens position moving means for moving the converging lens in a direction along its central axis in order to move the focal position of the convergent light emitted from the objective lens;
Drive control means for applying a drive signal to the lens position moving means to reciprocate the convergent lens;
Lens position detecting means for outputting a position signal based on the position of the convergent lens;
Light receiving means for displacement measurement that receives light reflected by the light irradiation surface of the object to be measured through the collimator lens and outputs a light reception signal corresponding to the amount of light received;
A distance detecting means for detecting a distance to the light irradiation surface of the object to be measured based on a position signal from the lens position detecting means when the light receiving signal from the displacement measuring light receiving means is maximized;
Inclination measurement imaging means for receiving light reflected by the light irradiation surface of the object to be measured on the imaging surface through the objective lens and outputting an imaging signal based on the amount of received light on the imaging surface;
An optical measurement apparatus comprising: an inclination detection unit configured to detect an inclination of a light irradiation surface of the object to be measured based on the imaging signal from the imaging unit for inclination measurement.
JP2003026488A 2003-02-03 2003-02-03 Optical measuring device Expired - Fee Related JP4037280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026488A JP4037280B2 (en) 2003-02-03 2003-02-03 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026488A JP4037280B2 (en) 2003-02-03 2003-02-03 Optical measuring device

Publications (2)

Publication Number Publication Date
JP2004239646A JP2004239646A (en) 2004-08-26
JP4037280B2 true JP4037280B2 (en) 2008-01-23

Family

ID=32954479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026488A Expired - Fee Related JP4037280B2 (en) 2003-02-03 2003-02-03 Optical measuring device

Country Status (1)

Country Link
JP (1) JP4037280B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5057962B2 (en) * 2007-12-25 2012-10-24 株式会社ミツトヨ Optical displacement measuring instrument
JP2012189547A (en) * 2011-03-14 2012-10-04 Omron Corp Displacement sensor
JP2012193970A (en) * 2011-03-15 2012-10-11 Omron Corp Confocal displacement sensor
JP6756214B2 (en) * 2016-09-26 2020-09-16 セイコーエプソン株式会社 Manufacturing methods for robots, gear devices and gear devices

Also Published As

Publication number Publication date
JP2004239646A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
CN105829828B (en) Method for measuring penetration depth of laser beam into workpiece and laser processing equipment
KR101845187B1 (en) Laser dicing device and dicing method
JP5072337B2 (en) Optical displacement sensor and adjustment method thereof
JP6288280B2 (en) Surface shape measuring device
JP2010151745A (en) Displacement sensor
JPH10300438A (en) Bore measuring method and device
JP2008128744A (en) Distance measurement apparatus and method
JP4500097B2 (en) Optical measuring device and distance calculating method in optical measuring device
JP2010216880A (en) Displacement sensor
JP2002039724A (en) Internal hole surface inspecting device
JP2005241607A (en) Apparatus for measuring angle
JP4037280B2 (en) Optical measuring device
JP5171108B2 (en) 3D shape measuring device
JP2008096197A (en) Device for measuring eccentricity
JP2004102228A (en) Focusing device, displacement sensor and cofocusing microscope
JPH11173821A (en) Optical inspecting device
JP2004085442A (en) Displacement measuring apparatus
JP2005017257A (en) Optical measuring device
JP2015004600A (en) Eccentricity measurement device, eccentricity measurement method and lens manufacturing method
JP2005195338A (en) Displacement measurement device
JP4130599B2 (en) Laser beam irradiation device
JP2003161610A (en) Optical measurement device
JP2828145B2 (en) Optical section microscope apparatus and method for aligning optical means thereof
JP2020071414A (en) Measuring device for collimation adjustment and method for adjusting collimation optical system
JP3967058B2 (en) Method and apparatus for measuring surface shape and thickness of plate-like workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees