JP4036291B2 - 光増幅素子 - Google Patents

光増幅素子 Download PDF

Info

Publication number
JP4036291B2
JP4036291B2 JP2002259214A JP2002259214A JP4036291B2 JP 4036291 B2 JP4036291 B2 JP 4036291B2 JP 2002259214 A JP2002259214 A JP 2002259214A JP 2002259214 A JP2002259214 A JP 2002259214A JP 4036291 B2 JP4036291 B2 JP 4036291B2
Authority
JP
Japan
Prior art keywords
oscillation
optical
arm
waveguide
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002259214A
Other languages
English (en)
Other versions
JP2004103614A (ja
Inventor
泰夫 柴田
順裕 菊池
裕一 東盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002259214A priority Critical patent/JP4036291B2/ja
Publication of JP2004103614A publication Critical patent/JP2004103614A/ja
Application granted granted Critical
Publication of JP4036291B2 publication Critical patent/JP4036291B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、波長多重光ネットワークにおいて、任意波長の入力信号光強度を増幅する光増幅技術に関するものである。
【0002】
【従来の技術】
従来、複数の異なる波長の光信号を伝送する光伝送システムとして、前記複数の異なる波長の光信号を1本の光ファイバに結合して伝送する、波長多重を利用した光伝送システム(WDMシステム)がある。
更に、前記WDMシステムは、1対1の伝送のみならず、1対多、多対多などの複数の端末間の光伝送を可能とするためネットワーク化が急速に進みつつある。
【0003】
このようなWDMシステムにおいて、光信号は、波長に応じて合流・分岐されるWDM合分波回路、すべての波長を一括して合流・分岐する合分岐回路、特定の波長を抜き出し、あるいは挿入するアドドロップマルチプレクサ(Add‐dropmultiplexer,ADM)等の光素子を通過することにより生じる強度損失のため、信号強度が劣化する。そこで光ファイバを伝送する光信号を光のまま増幅する光増幅素子の役割が重要となってくる。
【0004】
従来の半導体光増幅素子(Semiconductor optica1 Amplifier,SOA)をWDMシステムに用いた場合、次のような問題が生じていた。すなわち、WDMシステムでは波長多重信号が入射するが、その波長多重数はADM等を通過する毎に変動すると考えられる。いま波長多重数mの信号がSOAに入射したとする。入射光強度はm波合計でP1(dBm)であり、その時のSOAの利得はG1(dB)であるとする。ここで、ADMにより信号が追加されて波長多重数がnに増加したとすると、このとき入射光強度はn波合計でP2(dBm)となり、SOAの飽和出力PsatがPsat<G1・P2であれば飽和が生じ、その時のSOAの利得は減少してG2(dB)となる。
一般的に、上記したような利得と入力とのパワーの関係は、以下に示す、特許文献1及び非特許文献1の該当内容のような関係となる。
【0005】
【特許文献1】
米国特許第5291328号明細書(第4図)
【非特許文献1】
Journal of Lightwave Technology Vol.16,No.12(1998年)(2228頁、第2図)
【0006】
【発明が解決しようとする課題】
このように、従来のSOAをWDMシステムで用いた場合、波長多重数により信号の利得が変動してしまうという問題があった。また、この飽和が生じた状態では利得が変化するのみならず信号パターンによって信号強度が変化するパターン効果により、波形が劣化するという問題もあった。
【0007】
そこで、本発明は、このような従来の技術の有する未解決の課題に着目してなされたものであって、利得の変動がなく、パターン効果を抑圧した光増幅素子を提供することを目的としている。
【0011】
【課題を解決するための手段】
また、本発明に係る請求項1記載の光増幅素子は、基板上に形成された、第1アームおよび第2アームに入力信号光の光強度を増幅する増幅手段をそれぞれ有する対称マッハツェンダ干渉回路と、
前記対称マッハツェンダ干渉回路の第1アームの入力側に形成された入力導波路と、
前記対称マッハツェンダ干渉回路の第1アームの出力側および第2アームの入力側に形成された発振光導波路と、
前記対称マッハツェンダ干渉回路の第2アームの出力側に形成された出力導波路と、
前記第1アームの出力側に形成された発振光導波路上に前記増幅手段とは独立に形成された、発振を生ずるためのキャビティを有するレーザ発振手段とを備え、
前記レーザ発手段の発振波長を、前記増幅手段の利得媒質のバンドギャップ波長よりも短波長に設定したことを特徴としている。
【0012】
これにより利得を一定に保ちパターン効果を抑圧する事が可能となる。
また、請求項に係る発明は、請求項記載の光増幅素子において、前記レーザ発振手段は、ファブリペロー形レーザ、DFB(Distributed Feed-back)レーザあるいはDBR(Distributed Bragg reflector)レーザであることを特徴としている。
【0013】
これにより利得を一定に保ちパターン効果を抑圧する事が可能となる
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。図1乃至図5は、本発明に係る光増幅素子の実施の形態を示す図である。
まず、本発明に係る光増幅素子の第1の実施の形態を図1に基づき説明する。図1は、本発明に係る光増幅素子の第1の実施の形態を示す図である。
【0015】
図中101、102は半導体光増幅器(Semiconductor Optica1 Amplifier,SOA)、103、104は多モード干渉型3dB力プラ( Multi-mode Interference coupler,MMIカプラ)、105はDFB−LD、106、107は導波路端面、108、109は反射防止膜、110は入力導波路、111、112は発振光導波路、113は出力導波路、114は基板である。SOA101、102とMMIカプラ103、104は対称マッハツェンダ(Mach-Zehnder)干渉回路115を形成している。
【0016】
以下、動作原理を説明する。対称マッハツェンダ干渉回路115の両アームに接続されたSOA101および102には、ほぼ同一の電流が注入され、両SOAはともに20dBの信号利得を有している。このとき、両SOAには、前記したようにほぼ同一の電流が注入されているため、マッハツェンダ干渉回路115の対称性は保存されている。
【0017】
更に、対称マッハツェンダ干渉回路115の性質により、マッハツェンダ干渉回路115においては、入力導波路110から入射した光は出力導波路113から出射され、また、発振光導波路111から入射した光は入力導波路112へ出射されるような交差状態となる。
また、発振光導波路112に接続されたDFB−LD105はSOA101、102とは独立に制御されており、SOA101、102の注入電流に関わらず発振するように設定されている。
【0018】
ここで、DFB−LD105は、分布帰還型(DFB型)の半導体レーザであり、回折型共振器構造をとったものである。つまり、活性層に隣合わせた場所(上でも下でもよい)に、ガイド層として周期的な凹凸(回折格子として機能)構造を形成し、この凹凸によって帰還させられた光を発振させようとするものである。この構造では、屈折率も周期的に変化するため、周期的に反射されてくる光の位相が合ったところの波長で、ブラッグ反射により反射率が高くなり、これによりレーザ発振が生じる。
【0019】
図2は、DFB−LD105の発振波長とSOA101、102の利得スペクトルの関係を示した図である。本実施の形態においては、DFB−LD105の発振波長はSOA101、102の利得煤質のバンドギャップ波長よりも短波長側に設定してあるため、図2に示すように、利得スペクトルのピーク波長λcよりも短波長側となる。ここで、DFB−LD105およびSOA101、102の電流、温度を調整すると、図2に示すように発振波長をSOA101、102の利得がゼロになる波長λ0に設定することができる。このとき、DFB−LD105の発振波長λ0ではSOA101、102は透明状態となり、発振光の存在はSOA101、102の特性に影響を与えることはない。
【0020】
入力信号光116の強度が大きくなった場合、SOA101、102のキャリア密度が減少し、利得スペクトルは図2の一点鎖線の様になる。このとき、DFB−LD105の発振波長λ0ではSOA101、102は利得がマイナス、すなわち吸収状態となる。そのため、SOA101、102はDFB−LD105の発振光を吸収し、その結果キャリア密度は増加して急速に図2の実線で示される定常状態へと回復する。
【0021】
一方、入力信号光強度が減少した場合、SOA101、102のキャリア密度が増加し、利得スペクトルは図2の点線の様になる。このとき、DFB−LD105の発振波長λ0ではSOA101、102は利得がプラス、すなわち増幅状態となる。そのため、SOA101、102はDFB−LD105の発振光を増幅し、その結果キャリア密度が減少して急速に図2の実線で示される定常状態へと回復する。
【0022】
このように、入力信号強度が変動してもSOA101、102のキャリア密度に変動は生じず、利得も一定に保たれる。従って、入力信号の波長多重数が変化しても利得の変動を最小限に抑えて安定に動作することが可能となる。
なお、本実施の形態において、対称マッハツェンダ干渉回路115の性質により、入力導波路112から入射したDFB−LD105の発振光は、マッハツェンダ干渉回路115を透過して発振光導波路111から出力されるため、発振光が信号光の入力導波路110及び出力導波路113に混入することはなく、信号光と発振光との空間的分離がなされている。そのため、発振光を除去するための外部フィルタは不要となる。
【0023】
また、本実施の形態において用いるSOA101、102の構造に関しては、特に制約を設けるものではなく、通常用いられるすべてのSOAについて本構成をとることにより上記説明のような効果が期待できる。すなわちSOAの活性層に関してはInGaAsP、GaAs、AlGaAs、InGaAs、GaInNAs等任意の材質について適用が可能であり、活性層構造に関してもバルク、MQW、量子細線、量子ドットを問わず、またSOAの導波路構造に関してもSCH(分離閉じ込め構造)の有無によらず、pn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いた場合でも同様な効果が期待できる。基板に関してもn型基板に限定されるものではなく、p型、半絶緑型等でも同様な効果が得られることは言うまでもない。
【0024】
また、上記実施の形態では、3dBカプラとして、MMIカプラを用いた例を示しているが、これに限らず、方向性結合器を用いても良い。
更に、上記実施の形態では、レーザ発信器としてDFB−LDを用いた例を示しているが、DFB−LDに限らずレーザキャビティが信号光増幅手段である半導体増幅器101、102と独立に形成されていれば同様な効果が期待できる。例えば活性層の存在する活性領域と、活性領域一方の端に存在するブラッグ反射器、および反対側の端に存在するブラッグ反射器または反射ミラーとによりキャビティを構成するDBR−LD、活性領域とその両端に存在する反射ミラーによりキャビティを構成するファブリペローLDを用いた場合でも同様な効果が期待できる。発振光のスペクトルに関しては、必ずしもシングルモード発振である必要はない。ファブリペローLDに代表されるようなマルチピークを有する発振スペクトルレーザ発信器を用いた場合でも、λ0を挟んで発振スペクトルの短波長側が吸収、長波長側が増幅され、トータルで吸収と増幅が釣り合う点で定常状態となるため、同様な効果が期待できる。
【0025】
更に、図3に基づき、本発明に係る光増幅素子の第2の実施の形態を説明する。図3は、本発明に係る光増幅素子の第2の実施の形態を示す図である。
図中301、302は半導体光増幅器(SOA)、303、304は多モード干渉型3dB力プラ(MMIカプラ)、305はDFB−LD、306、307は導波路端面、308、309は反射防止膜、310は入力導波路、311、312は発振光導波路、313は出力導波路、314は基板、318はループ導波路である。SOA301、302と MMIカプラ303、304は対称マッハツエンダ(Mach-Zehnder)干渉回路315を形成している。
【0026】
動作原理は、DFB−LD305から出力される波長λ0の発振光が、発振光導波路311と312の両方から対称マッハツェンダ干渉回路315に入射することを除けば、上記第1の実施の形態とまったく同様である。
従って、本実施の形態の場合も、対称マッハツェンダ干渉回路315の性質により、発振光導波路312から入射したDFB−LD305の発振光は、マッハツェンダ干渉回路315を透過して発振光導波路311から出力され、また、発振光導波路311から入射したDFB−LD305の発振光はマッハツェンダ干渉回路315を透過して発振光導波路312から出力されるため、発振光が信号光の入力導波路310及び出力導波路313に混入することはなく、信号光と発振光との空間的分離がなされている。そのため、発振光を除去するための外部フィルタは不要となる。
【0027】
なお、本実施の形態におけるSOAの構造に関しては、上記第1の実施の形態と同様に特に制約を設けるものではなく、通常用いられるすべてのSOAについて本構成をとることにより上記説明のような効果が期待できる。すなわちSOAの活性層に関してはInGaAsP、GaAs、AlGaAs、InGaAs、GaInNAs等任意の材質について適用が可能であり、活性層構造に関してもバルク、MQW、量子細線、量子ドットを問わず、またSOAの導波路構造に関してもSCH(分離閉じ込め構造)の有無によらず、pn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いた場合でも同様な効果が期待できる。基板に関してもn型基板に限定されるものではなく、p型、半絶緑型等でも同様な効果が得られることは言うまでもない。
【0028】
また、3dBカプラとして、MMIカプラに限らず、方向性結合器を用いてもまったく同様な効果が期待できる。
更に、レーザ発信器としてDFB−LDに限らず、レーザキャビティが信号光増幅手段である半導体増幅器301、302と独立に形成されていれば同様な効果が期待できる。例えば活性層の存在する活性領域と、活性領域一方の端に存在するブラッグ反射器、および反対側の端に存在するブラッグ反射器または反射ミラーとによりキャビティを構成するDBR−LD、活性領域とその両端に存在する反射ミラーによりキャビティを構成するファブリペローLDを用いた場合でも同様な効果が期待できる。また、発振光のスペクトルに関しては、必ずしもシングルモード発振である必要はない。
【0029】
更に、図4に基づき、本発明に係る光増幅素子の第3の実施の形態を説明する。図4は、本発明に係る光増幅素子の第3の実施の形態を示す図である。
図中401、402は半導体光増幅器(SOA)、403、404、419は多モード干渉型3dB力プラ(MMIカプラ)、405はDFB−LD、406、407は導波路端面、408、409は反射防止膜、410は入力導波路、411、412、418は発振光導波路、413は出力導波路、414は基板である。SOA401、402と MMIカプラ403、404は対称マッハツェンダ(Mach-Zehnder)干渉回路415を形成している。
【0030】
動作原理は、DFB−LD415から出力される波長λ0の発振光が、MMI3dBカプラ419で2分岐され、発振光導波路411と412の両方から対称マッハツェンダ干渉回路415に入射することを除けば、図1に示す第1の実施の形態および図3に示す第2の実施の形態とまったく同様である。
従って、本実施の形態の場合も、対称マッハツェンダ干渉回路415の性質により、発振光導波路412から入射したDFB−LD405の発振光は、マッハツェンダ干渉回路415を透過して発振光導波路411から出力され、また、発振光導波路411から入射したDFB−LD405の発振光はマッハツェンダ干渉回路415を透過して発振光導波路412から出力されるため、発振光が信号光の入力導波路410及び出力導波路413に混入することはなく、信号光と発振光との空間的分離がなされている。そのため、発振光を除去するための外部フィルタは不要となる。
【0031】
なお、本実施の形態におけるSOAの構造に関しては、上記第1の実施の形態及び第2の実施の形態と同様に特に制約を設けるものではなく、通常用いられるすべてのSOAについて本構成をとることにより上記説明のような効果が期待できる。すなわちSOAの活性層に関してはInGaAsP、GaAs、AlGaAs、InGaAs、GaInNAs等任意の材質について適用が可能であり、活性層構造に関してもバルク、MQW、量子細線、量子ドットを問わず、またSOAの導波路構造に関してもSCH(分離閉じ込め構造)の有無によらず、pn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いた場合でも同様な効果が期待できる。基板に関してもn型基板に限定されるものではなく、p型、半絶緑型等でも同様な効果が得られることは言うまでもない。
【0032】
また、3dBカプラとして、MMIカプラに限らず、方向性結合器を用いてもまったく同様な効果が期待できる。
更に、レーザ発信器としてDFB−LDに限らず、レーザキャビティが信号光増幅手段である半導体増幅器401、402と独立に形成されていれば同様な効果が期待できる。例えば活性層の存在する活性領域と、活性領域一方の端に存在するブラッグ反射器、および反対側の端に存在するブラッグ反射器または反射ミラーとによりキャビティを構成するDBR−LD、活性領域とその両端に存在する反射ミラーによりキャビティを構成するファブリペローLDを用いた場合でも同様な効果が期待できる。また、発振光のスペクトルに関しては、必ずしもシングルモード発振である必要はない。
【0033】
更に、図5に基づき、本発明に係る光増幅素子の第4の実施の形態を説明する。図5は、本発明に係る光増幅素子の第4の実施の形態を示す図である。
図5に示す、第4の実施の形態は、図4に示す第3の実施の形態におけるMMI3dBカプラ419を多モード干渉型(MMI)1:2カプラ519に置き換えたものである。
【0034】
図中501、502は半導体光増幅器(SOA)、503、504は多モード干渉型3dB力プラ(MMIカプラ)、505はDFB−LD、506、507は導波路端面、508、509は反射防止膜、510は入力導波路、511、512、518は発振光導波路、513は出力導波路、514は基板、519は多モード干渉型(MMI)1:2カプラである。SOA501、502と MMI3dBカプラ503、504は対称マッハツェンダ(Mach-Ze士mder)干渉回路515を形成している。
【0035】
動作原理は、DFB−LD515から出力される波長λ0の発振光が、多モード干渉型1:2カプラ519で2分岐することを除けば、図4に示した第3の実施の形態とまったく同様である。
なお、本実施の形態におけるSOAの構造に関しては、上記第1の実施の形態、第2の実施の形態及び第3の実施の形態と同様に特に制約を設けるものではなく、通常用いられるすべてのSOAについて本構成をとることにより上記説明のような効果が期待できる。すなわちSOAの活性層に関してはInGaAsP、GaAs、AlGaAs、InGaAs、GaInNAs等任意の材質について適用が可能であり、活性層構造に関してもバルク、MQW、量子細線、量子ドットを問わず、またSOAの導波路構造に関してもSCH(分離閉じ込め構造)の有無によらず、pn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いた場合でも同様な効果が期待できる。基板に関してもn型基板に限定されるものではなく、p型、半絶緑型等でも同様な効果が得られることは言うまでもない。
【0036】
また、3dBカプラとして、MMIカプラに限らず、方向性結合器を用いてもまったく同様な効果が期待できる。更に、1×2カプラとしてはMMIカプラに限らずY分岐を用いても同様な効果が期待できる。
更に、レーザ発信器としてDFB−LDに限らず、レーザキャビティが信号光増幅手段である半導体増幅器301、302と独立に形成されていれば同様な効果が期待できる。例えば活性層の存在する活性領域と、活性領域一方の端に存在するブラッグ反射器、および反対側の端に存在するブラッグ反射器または反射ミラーとによりキャビティを構成するDBR−LD、活性領域とその両端に存在する反射ミラーによりキャビティを構成するファブリペローLDを用いた場合でも同様な効果が期待できる。また、発振光のスペクトルに関しては、必ずしもシングルモード発振である必要はない。
【0037】
【発明の効果】
以上説明したように、本発明に係る光増幅素子によれば、入力信号強度が変動しても利得を一定に保ち、更に、飽和状態においてもパターン効果を抑圧することが可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す図である。
【図2】SOAの利得スペクトルと発振波長の関係を示す図である。
【図3】本発明の第2の実施の形態を示す図である。
【図4】本発明の第3の実施の形態を示す図である。
【図5】本発明の第4の実施の形態を示す図である。
【符号の説明】
101、102 SOA
103、104 MMI3dBカプラ
105 DFB−LD
106、107 端面
108、109 反射防止膜
110 入力導波路
111、112 発振光導波路
113 出力導波路
114 基板
115 対称マッハツェンダ干渉回路
116 入力信号光
117 出力信号光
301、302 SOA
303、304 MMI3dBカプラ
305 DFB−LD
306、307 端面
308、309 反射防止膜
310 入力導波路
311、312 発振光導波路
313 出力導波路
314 基板
315 対称マッハツェンダ干渉回路
316 入力信号光
317 出力信号光
318 ループ導波路
401、402 SOA
403、404 MMI3dBカプラ
405 DFB−LD
406、407 端面
408、409 反射防止膜
410 入力導波路
411、412 発振光導波路
413 出力導波路
414 基板
415 対称マッハツェンダ干渉回路
416 入力信号光
417 出力信号光
418 発振光導波路
419 MMI3dBカプラ
501、502 SOA
503、504 MMI3dBカプラ
505 DFB−LD
506、507 端面
508、509 反射防止膜
510 入力導波路
511、512 発振光導波路
513 出力導波路
514 基板
515 対称マッハツェンダ干渉回路
516 入力信号光
517 出力信号光
518 発振光導波路
519 MMI1:2カプラ

Claims (2)

  1. 基板上に形成された、第1アームおよび第2アームに入力信号光の光強度を増幅する増幅手段をそれぞれ有する対称マッハツェンダ干渉回路と、
    前記対称マッハツェンダ干渉回路の第1アームの入力側に形成された入力導波路と、
    前記対称マッハツェンダ干渉回路の第1アームの出力側および第2アームの入力側に形成された発振光導波路と、
    前記対称マッハツェンダ干渉回路の第2アームの出力側に形成された出力導波路と、
    前記第1アームの出力側に形成された発振光導波路上に前記増幅手段とは独立に形成された、発振を生ずるためのキャビティを有するレーザ発振手段とを備え、
    前記レーザ発手段の発振波長を、前記増幅手段の利得媒質のバンドギャップ波長よりも短波長に設定したことを特徴とする光増幅素子。
  2. 前記レーザ発振手段は、ファブリペロー形レーザ、DFB(Distributed Feed-back)レーザあるいはDBR(Distributed Bragg reflector)レーザであることを特徴とする請求項1記載の光増幅素子。
JP2002259214A 2002-09-04 2002-09-04 光増幅素子 Expired - Fee Related JP4036291B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259214A JP4036291B2 (ja) 2002-09-04 2002-09-04 光増幅素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259214A JP4036291B2 (ja) 2002-09-04 2002-09-04 光増幅素子

Publications (2)

Publication Number Publication Date
JP2004103614A JP2004103614A (ja) 2004-04-02
JP4036291B2 true JP4036291B2 (ja) 2008-01-23

Family

ID=32260313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259214A Expired - Fee Related JP4036291B2 (ja) 2002-09-04 2002-09-04 光増幅素子

Country Status (1)

Country Link
JP (1) JP4036291B2 (ja)

Also Published As

Publication number Publication date
JP2004103614A (ja) 2004-04-02

Similar Documents

Publication Publication Date Title
US9705282B2 (en) Multi-wavelength laser light source and wavelength multiplexing communication system
US7262905B2 (en) Optical amplifier
JP3262331B2 (ja) 周波数分割光通信システムのための端子
JP2017098362A (ja) 光集積素子及び光通信装置
US9148227B2 (en) Reflective colorless optical transmitter
US20080304826A1 (en) Semiconductor optical amplifier for an external cavity diode laser
JP2013168500A (ja) 光半導体装置
JP2002169131A (ja) 光半導体素子及び光半導体素子の変調方法
JP6443955B2 (ja) 半導体レーザ装置
US8548024B2 (en) Semiconductor laser module
JP6038059B2 (ja) 波長可変光源および波長可変光源モジュール
JP2015094812A (ja) 波長可変光源
JP6320192B2 (ja) 波長可変光源および波長可変光源モジュール
JP6173206B2 (ja) 光集積素子
JP2013118315A (ja) 半導体レーザ装置および半導体レーザモジュール
JP6245656B2 (ja) 半導体レーザ素子
JP2015095513A (ja) 波長可変光源
JP4022792B2 (ja) 半導体光増幅装置
JP2016149529A (ja) 波長可変光源および波長可変光源モジュール
JP4036291B2 (ja) 光増幅素子
JP6610834B2 (ja) 波長可変レーザ装置
JP2017083594A (ja) 光結合器、波長可変光源及び波長可変光源モジュール
CN116349097A (zh) 光半导体装置
Broeke et al. A wavelength converter with integrated tunable laser
Möhrle et al. 4.1 Communication: 4 Optical data processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees