JP4036073B2 - Quartz substrate with thin film - Google Patents

Quartz substrate with thin film Download PDF

Info

Publication number
JP4036073B2
JP4036073B2 JP2002305980A JP2002305980A JP4036073B2 JP 4036073 B2 JP4036073 B2 JP 4036073B2 JP 2002305980 A JP2002305980 A JP 2002305980A JP 2002305980 A JP2002305980 A JP 2002305980A JP 4036073 B2 JP4036073 B2 JP 4036073B2
Authority
JP
Japan
Prior art keywords
thin film
zno
intermediate layer
based thin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002305980A
Other languages
Japanese (ja)
Other versions
JP2004137135A (en
Inventor
俊郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002305980A priority Critical patent/JP4036073B2/en
Publication of JP2004137135A publication Critical patent/JP2004137135A/en
Application granted granted Critical
Publication of JP4036073B2 publication Critical patent/JP4036073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、発光デバイスや受光デバイスに用いられる半導体結晶の結晶成長に使用される基板に関する。特に、700 ℃以上の高温での結晶成長が必要である、GaNなどの化合物半導体の結晶性を向上させる機能を持つ透明な薄膜が形成された、薄膜付き石英基板に関する。
【0002】
【従来の技術】
青色光を発生する発光ダイオード用や紫外光を検出する受光 (光電変換) ダイオード用の半導体材料として、GaNなどの III−V族化合物半導体が用いられている。この種の半導体は大型の単結晶を作製することが困難であることから、同じ六方晶のサファイア結晶のc面 (001 面) を基板とし、その上にMBE (分子線エピタキシー) 法やMOCVD (有機金属気相成長) 法などにより結晶を成長させるという方法で製作される。基板温度は、MBE法によるGaN成膜の場合で 700〜900 ℃であり、MOCVD法では一般に1000℃以上となる。
【0003】
サファイア基板は、高価で、直径が4インチ(約10 cm)を超える大面積化は困難である。そこで、安価で光学的特性と耐熱性とに優れ、4インチ以上の大面積化が可能な、石英ガラス (シリカガラス) からなる石英基板上にGaNなどの半導体からなるデバイスを製作することが、従来より望まれている。
【0004】
しかし、そのような石英基板は、通常のガラス基板と同様に、非晶質であるため、良質な半導体結晶をその上に形成することができない。
そこで、特許文献1には、ガラス基板上に、c軸に優先配向した六方晶ZnO結晶をまず成長させ、こうして形成された結晶質のZnO薄膜の上にGaN結晶を成長させることによって、c軸に優先配向したGaN結晶の薄膜を作製した、GaN発光素子が提案されている。なお、特許文献1では、基板はガラスのような非晶質材料と結晶質材料のいずれでもよいとされているが、具体的にはガラス基板を使用している。
【0005】
ZnO結晶からなる薄膜は、可視光波長域では透明であるため、発光ダイオードなどに使用される透明基板上に形成しても、基板の透明性を損なわない。また、ZnO薄膜は、通常の成膜条件ではZn過剰の組成または酸素欠乏の組成となってn型伝導を示すことから、好ましくはAlやGaをドープして導電性を高めて、透明電極などの透明導電膜として機能させることも行われている。
【0006】
なお、本明細書では、ドーパント(ドープ元素)を含有するZnO薄膜と含有しないZnO薄膜とを含む意味でZnO系薄膜と称する。
特許文献2には、後述する課題の解決手段に関連する、中間層を設けた透明導電膜におけるマイクロクラック(ヘアクラック)の発生を防止する技術が開示されている。
【0007】
【特許文献1】
特開昭57−10280 号公報 (特許請求の範囲、第2頁左上欄〜右上欄)
【特許文献2】
特開2000−261013号公報 (特許請求の範囲、0011欄、0013欄)
【0008】
【発明が解決しようとする課題】
特許文献1に開示の技術を、熱膨張係数の極めて小さい石英基板に適用した場合、c軸配向したZnO系薄膜を設けた石英基板を、その上にGaN結晶を成長させるために加熱する際に、ZnOと石英との熱膨張係数の差による歪みのために、ZnO系薄膜に図2に示すようなマイクロクラックが発生する。ZnO系薄膜に発生したマイクロクラックは、その上に成長させるGaN結晶のクラック発生の原因となり、良質のGaN結晶の成長を不可能にする。また、ZnO系薄膜を透明導電膜としても機能させる場合には、マイクロクラックによりZnO系薄膜の導電性が劣化することも問題となる。
【0009】
従って、特許文献1に開示の技術は、ガラス基板に比べて熱膨張係数が極めて小さい石英基板には、そのままでは適用することができない。
本発明は、GaNなどの良質な半導体結晶、特に六方晶系の半導体結晶を成長させることができる石英基板を提供することを課題とする。より具体的な課題は、結晶質のZnO系薄膜を設けた石英基板であって、半導体結晶の成長時に700 ℃以上の温度に加熱されてもZnO系薄膜にマイクロクラックが発生しない、耐熱性に優れたZnO系薄膜付き石英基板を提供することである。
【0010】
【課題を解決するための手段】
本発明者は、石英基板上のZnO系薄膜を加熱した際に基板との熱膨張係数の差が原因でZnO系薄膜に発生するマイクロクラックを、基板と薄膜との間に中間層を介在させることで防止すべく検討した。
【0011】
そのような中間層の利用は、例えば、特許文献2に開示されている。特許文献2に開示の技術では、太陽電池に適したSnO2 からなる透明導電膜に関して、ガラス(アルカリ含有)基板上に、結晶性を有する金属酸化物(例、ZnO)の下地膜を形成して表面に微細凹凸を導入し、その上に常法に従ってアルカリバリア用のSiO2 膜とSnO2 透明導電膜とを形成する。
【0012】
しかし、この技術をZnO系薄膜の成膜に適用して、結晶性を有する金属酸化物の下地膜の上にZnO系薄膜を形成しても、下地膜が表面凹凸を有する結晶質の薄膜であるため、その上に形成されたZnO系薄膜は、c軸配向した結晶質の薄膜とはならないことが判明した。
【0013】
本発明者は、石英基板上のZnO系薄膜に加熱時に発生するマイクロクラックの防止に有効な中間層を探索した。その結果、Zn−Si−O系の非晶質薄膜を石英基板とZnO系薄膜との間に中間層として介在させると、その上に成長させたZnO結晶はc軸に優先配向し、かつ加熱時の熱膨張係数差に起因する歪みが小さくなってマイクロクラックが発生しにくくなり、マイクロクラック発生温度が、中間層がない場合に比べて 100〜300 ℃高くなることが明らかになった。
【0014】
この知見に基づいて完成した本発明は、
石英ガラスからなる石英基板上に、所定方向に優先配向した、ドーパントを含有していてもよい結晶質ZnO系薄膜を備えた薄膜付き石英基板であって、
前記薄膜と石英基板との間に、ZnとSiと酸素を含む非晶質薄膜からなる中間層が形成され
前記非晶質薄膜中のZn/Siの原子比が0.22〜3.7の範囲内であることを特徴とする薄膜付き石英基板である。
【0015】
【発明の実施の形態】
本発明に係る薄膜付き石英基板は、図1に示すように、非晶質SiO2 (石英ガラス)からなる石英基板上に、ZnとSiと酸素を含む非晶質薄膜からなる中間層を介して、所定方向(通常は図1に記載のようにc軸方向)に優先配向した結晶質のZnO系薄膜を有する。ZnO系薄膜は、前述したように、ドーパントを含有するZnO薄膜と、ZnOのみからなる薄膜のいずれでもよい。
【0016】
ZnO系薄膜は、ガラス基板や石英基板といった非晶質の基板上に直接成膜した場合には、一般に多結晶化してc軸方向に優先配向される。従って、その上にc軸配向したGaN結晶をエピタキシャル成長させることができるので、ZnO系薄膜付きの基板は、良質なGaN結晶の成長用基板として使用できる。
【0017】
発光ダイオード等として機能させるGaN結晶を成長させる場合、基板は高い透明性を示し、かつGaN結晶成長時の温度に耐える耐熱性に優れた材料から構成する必要がある。従って、通常のガラス基板では耐熱性が不十分で、石英基板が好適となる。しかし、石英基板上にZnO系薄膜を形成すると、c軸配向した薄膜とはなるものの、前述したように、基板との熱膨張係数の差が大きいため、ZnO系薄膜上にGaN結晶を成長させる際の加熱によってZnO系薄膜にマイクロクラックが発生するため、良質のGaN結晶の成長が妨げられる。
【0018】
本発明では、石英基板とZnO系薄膜との間に、ZnとSiと酸素を含む非晶質薄膜からなる中間層を介在させることで、その上に形成したZnO系薄膜の優先配向性を確保しつつ、ZnO系薄膜の耐熱性を高め、加熱されてもマイクロクラックが発生しにくい、c軸配向したZnO系薄膜を石英基板上に実現することができる。
【0019】
中間層が、特許文献2に開示されているようにZnO薄膜であると、表面に微小凹凸を有する結晶質の中間層となる。この結晶質のZnO中間層の上に、さらにZnO結晶を成長させた場合、中間層の表面凹凸によって結晶の優先配向性が乱され、c軸に優先配向したZnO系薄膜を得ることができない。
【0020】
本発明で利用する中間層は、ZnとSiと酸素を含む非晶質薄膜である。この中間層の組成は、ZnxSiyz なる組成式で示すことができる。ここで、x、y、zはいずれも0より大であるが、非晶質の薄膜が形成可能であれば、組成は特に制限されない。この中間層は、Zn−O結合とSi−O結合とを含有するZnとSiとの複合酸化物から構成され、石英基板とZnO系薄膜との中間の熱膨張係数を有するため、加熱時にZnO系薄膜が受ける歪みを低減し、マイクロクラックの発生を防止することができる。しかし、この中間層は、単に基板のSiO2 と薄膜のZnOとの中間的な性質を有するものではない。
【0021】
即ち、結晶学的には、この中間層は石英基板と同様に非晶質であって、非晶質である基板と結晶質であるZnO系薄膜との中間的な性質(部分的に結晶質を含むこと)を有してはいない。本発明で利用する中間層が非晶質となるのは、中間層に含まれるSi−O結合が、中間層の成膜時にZnOの多結晶化を防ぐ役割をするからである。中間層に含まれるSi原子数が少ないと、石英基板に接して多結晶化するZnO領域が多くなるため、非晶質の薄膜とはならない。
【0022】
中間層の組成は、上記組成式におけるx/y比(即ち、Zn/Si原子比)が0.22〜3.7 の範囲内となる組成であることが好ましい。Zn/Si原子比が0.22より小さいと、中間層に含まれるSi原子数が多すぎ、中間層の結晶構造が石英基板の結晶構造に近くなって、石英基板に直接ZnO結晶を成長させた場合と同様の結果となることがある。つまり、ZnO系薄膜のc軸配向性は得られるものの、加熱時のマイクロクラック発生が中間層/ZnO系薄膜の界面で起こり易くなり、中間層によるマイクロクラック発生の防止効果が十分には得られないことがある。一方、Zn/Si原子比が3.7 より大きいと、中間層に含まれるSi原子数が少なすぎて、中間層全体が非晶質にはならず、中間層の表面凹凸が大きくなって、石英基板に垂直方向へのZnO成長が妨げられる結果、ZnO系薄膜のc軸配向性が劣化する。また、中間層の結晶構造がZnO薄膜の結晶構造に近くなり、ZnO系薄膜のマイクロクラックの発生が起こり易くなる。Zn/Si原子比は、より好ましくは 0.5〜2.0 の範囲である。
【0023】
中間層の厚みは約10〜80 nm の範囲内とすることが好ましい。この範囲内では、中間層の上に良好なc軸配向のZnO系薄膜を成膜することができ、中間層の厚みも均一となる。しかし、中間層の厚みが約80 nm より大きくなると、中間層の表面近傍の凹凸が大きくなり、それぞれの微小な領域で基板表面に垂直な方向から大きくずれてZnO結晶が成長するため、良好なc軸配向のZnO系薄膜が得られにくくなる。一方、約10 nm より薄い中間層は、一般に膜厚制御がむずかしく、成膜法によっては (例、スパッタ法) 中間層が島状に成長するため、均一な厚みの中間層を安定して形成することが困難である。さらに、中間層の厚みが10 nm より薄いと、基板とZnO系薄膜との熱膨張係数の差に起因する加熱時のマイクロクラックの発生を防止する効果も非常に小さくなる。中間層の厚みは、より好ましくは約30〜70 nm の範囲内である。
【0024】
前述した非晶質の中間層の上にZnO系薄膜を形成すると、ZnO系薄膜はc軸に優先配向した六方晶結晶構造の薄膜となる。そのため、このZnO系薄膜を表面に有する薄膜付き石英基板の上に、GaNなどの六方晶結晶を成長させて、良質な結晶質機能膜を成膜することができる。本発明の薄膜付き石英基板上に成膜可能な機能材料の例としては、青色発光ダイオードや紫外レーザなどとして有用な、GaN、InGaN、AlGaNといった、Gaを含む窒化物半導体が挙げられる。
【0025】
ZnO系薄膜のc軸配向性は、本発明の薄膜付き石英基板のX線回折計による測定 (θ−2θ法) で判定することができる。石英基板と中間層は非晶質であり、回折ピークを示さないので、結晶質のZnO系薄膜からの回折ピークだけが測定される。この測定で得られたX線回折パターンが、図3に示すように、 (001)の回折ピークのみを示す場合、ZnO系薄膜はc軸に優先配向していると見なすことができる。
【0026】
ZnO系薄膜が石英基板に優先配向性(例、c軸配向性)を付与する機能だけを果たせばよい場合には、この層はZnOのみからなる薄膜でよい。一方、ZnO系薄膜がn型伝導性を有することを利用して、この層に透明導電体(例、透明電極)としての機能も同時に持たせる場合には、ZnOの導電性を高めるのに有効な適当な元素(例、B、Al、GaなどのIII 族元素) をドーパントとして含有させることが好ましい。ドーパントの添加量は、Znに対する原子比率で0.05〜0.5 %程度である。ZnO系薄膜の厚みは 100〜400 nmの範囲とすることが好ましく、より好ましくは 120〜300 nmの範囲内である。
【0027】
石英基板は、透明な非晶質SiO2(石英ガラス) からなる任意の基板でよく、例えば、四塩化ケイ素の火炎加水分解法や気相軸付け法により製造される合成石英と、天然石英(例、水晶)を溶融して得られる溶融石英のいずれからなる基板であってもよい。
【0028】
中間層およびZnO系薄膜の成膜方法は特に制限されず、スパッタ法、MOCVD法などを含む、適用可能な任意の方法でこれらの層を形成することができる。後述する実施例ではスパッタ法による成膜例を示すが、他の方法でも成膜できることは当業者には理解されよう。
【0029】
【実施例】
合成石英または溶融石英を原料とする、厚さ約0.5 mm、直径3インチ(76cm) の円形ウエハ上に、高周波スパッタ法により、中間層としてZnxSiyz の非晶質薄膜を成膜する。スパッタのターゲットには、所定のx/y比率 (Zn/Si原子比) となるようにSiO2 粉末とZnO粉末とを混合して約1kg/cm2の圧力で固めたディスクを用いる。スパッタ条件は、真空度1Pa、Ar雰囲気、基板温度120 ℃、高周波出力100 Wである。
【0030】
中間層を形成した石英基板を、真空外に出すことなく、同じスパッタ装置内で基板を別のターゲット上に移動させることにより、ZnO系薄膜の成膜に供する。ZnO系薄膜に透明電極の機能を持たせる場合にはAlドープを行う。スパッタのターゲットは、非ドープ時には通常のZnO焼結体、Alドープ時にはAl23 を2質量%含有するZnO焼結体を用いる。スパッタ条件は真空度 0.2〜1Pa、Ar雰囲気、基板温度300 ℃、高周波出力200 Wである。Alドープ時のZnO系薄膜のAl含有量は、Znに対する原子比率で約0.1 %であり、ターゲット中のAl含有量より非常に少なくなる。これは、Al23 のスパッタリング率がZnOより低いためである。
【0031】
こうして得られたZnO系薄膜付き石英基板について、ZnO系薄膜のc軸配向の有無を、X線回折計 (X線源のパワー:1kW、ターゲット:Co) で測定される回折パターンにより評価した。 (001)面からの回折ピークのみが検出された場合、ZnO系薄膜はc軸配向した結晶からなり、c軸配向性が有ると判定した。一方、 (001)面からの回折ピークが検出限界より小さいか、および/または他の面の回折ピークが検出された場合は、c軸配向性が無いと判定した。
【0032】
中間層のZn原子とSi原子との比率 (Zn/Si原子比、即ち、上記組成式のx/y比)は、基板の断面を測定面とする試料を作成し、電子線マイクロアナライザ法により測定した。
【0033】
基板加熱時のZnO系薄膜のマイクロクラック発生の有無は、ZnO系薄膜付き石英基板の試料を、約2E−3(=2×10-3) Paの真空中、540 ℃、740 ℃、840 ℃、および900 ℃の温度で20分間熱処理した後、ZnO系薄膜の表面を100 倍の顕微鏡で目視観察することにより判定した。熱処理は、昇温速度1℃/秒、冷却速度10℃/分で行った。
【0034】
以上の試験結果を、基板が合成石英の基板、中間層の厚みが50 nm 、ZnO系薄膜がAlをドープした厚み150 nmのZnO系薄膜であり、中間層の組成 (Zn/Si原子比) を変化させた場合について、表1にまとめて示す。
【0035】
【表1】

Figure 0004036073
【0036】
表1に示した薄膜付き石英基板のすべてのZnO系薄膜は、 400〜900 nmの波長範囲で75%以上の透過率を示す透明な膜であった。AlドープしたZnO系薄膜のシート抵抗は、いずれの基板でも約27Ω/□であった。中間層は、試料6除いて、電子顕微鏡を用いた電子線回折パターンから判断して、非晶質であった。試料6 (Siなし) は、特許文献2に開示のように中間層がZnOである場合であり、中間層は非晶質ではなく、六方晶の多結晶質であった。
【0037】
表1に示すように、中間層がない場合(石英基板上に直接ZnO系薄膜をスパッタした場合)、ZnO系薄膜はc軸配向性があったが、740 ℃での熱処理でマイクロクラックが発生した。
【0038】
これに対して、Zn/Si原子比が0.22から3.7 の範囲の中間層を形成すると、ZnO系薄膜のc軸配向性を確保しながら、そのマイクロクラック発生温度が 100〜300 ℃高くなるという効果が得られた。このZnO系薄膜の耐熱性の改善により、700 ℃より高い結晶成長温度を必要とする、GaNなどの窒化物半導体の結晶成長に使用可能な、大面積で安価な基板の提供が可能となる。
【0039】
しかし、中間層が結晶質であった試料6では、その上にc軸配向性の結晶質のZnO系薄膜を形成することができなかった。また、耐熱性も、中間層がない場合と同様であり、中間層による耐熱性の向上も得られなかった。
【0040】
なお、表1には、ZnO系薄膜がAlドープされたZnO系薄膜である場合についての結果を示したが、非ドープのZnO系薄膜である場合も表1と同様の結果となり、膜の透明性も上記と同様である。
【0041】
表2には、中間層のZn/Si原子比が1.2 で、その厚みが異なる、本発明に係るZnO系薄膜付き石英基板について、ZnO系薄膜の (001)面からのX線回折ピーク強度を、他の面からの回折ピークの有無とともに示す。ZnO系薄膜の(001) 面回折ピーク強度は、図3に示すX線回折パターンに準じて求めたものである。ZnO系薄膜は、上記と同様、厚み150 nmのAlドープZnO系薄膜であった。
【0042】
【表2】
Figure 0004036073
【0043】
表2からわかるように、中間層の厚みが大きくなると、ZnO系薄膜の (001)面回折ピーク強度が小さくなり、ZnO系薄膜の結晶性は低下する傾向がある。しかし、中間層の厚みが約80 nm までは、良好なc軸配向のZnO系薄膜が得られる。中間層の厚みが約80 nm より大きくなると、中間層の表面近傍の凹凸が大きくなり、ZnOの成長方向が不揃いになるため、(001) 面回折ピーク強度が次第に検出限界に近づくようになる。中間層の厚みが110 nmでは、回折ピーク強度が検出限界以下となり、他の面からの回折ピークも現れるようになる。このように結晶性が低下したZnO系薄膜の上に、例えばGaN結晶を成長させても、良質なGaN結晶とはならず、高輝度の青色発光ダイオードを作製することはできない。
【0044】
なお、10 nm より薄い中間層は、均一な膜厚での成膜が難しい上、中間層による基板の耐熱性向上 (加熱時のZnO系薄膜のマイクロクラック発生の防止) の効果が不十分となり、マイクロクラック発生温度は、表1に示した中間層なしの場合 (試料1) と同様になる。
【0045】
【発明の効果】
本発明により、安価で大面積の透明基板を容易に作製することができる石英基板を用いて、その上に、 700〜900 ℃に加熱されてもマイクロクラックが発生しない、c軸配向したZnO系薄膜を有する、耐熱性に優れたZnO系薄膜付き石英基板を供給することが可能となる。
【0046】
本発明の薄膜付き石英基板は、成膜時の基板温度が 700〜900 ℃となる、c軸配向性の透明膜を成膜する際の基板として有用であり、例えば、MBE法により青色発光ダイオード用のGaN、InGaN、AlGaN等の窒化物半導体結晶を成長させるための基板として好適である。従来の高価で大面積化ができないサファイア基板の代わりに、本発明の石英基板を使用して、例えば、GaN青色発光ダイオードを製造すると、その製造コストの大幅な低減が可能となる。青色発光ダイオードは、発光ダイオードを利用したフルカラー大型ディスプレイ装置における最も高価な素子であるので、本発明により、このようなディスプレイ装置の低価格化も可能となる。
【0047】
本発明の薄膜付き石英基板は、好ましくはZnO系薄膜をドープすることにより、基板表面のZnO系薄膜を透明電極として利用することができる。従来のサファイア基板には、絶縁体であることから、裏面電極として導電性を持つGaN膜成長が必要であり、そのため製造コストが高くなるという欠点があったが、本発明の石英基板ではこの欠点も解消される。ZnO系薄膜は、例えばGaN結晶の成長のために700 ℃以上に加熱されてもマイクロクラックが発生しないため、マイクロクラック発生による導電性の低下がなく、透明電極として良好に機能することができる。
【図面の簡単な説明】
【図1】本発明のZnO系薄膜付き石英基板の構造を示す説明図である。
【図2】従来のZnO系薄膜付き石英基板を熱処理した時にZnO系薄膜に発生するマイクロクラックを示す、基板表面の顕微鏡写真である。
【図3】本発明に係るZnO系薄膜付き石英基板におけるZnO系薄膜のc軸配向を示すX線回折パターンの1例を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a substrate used for crystal growth of a semiconductor crystal used in a light emitting device or a light receiving device. In particular, the present invention relates to a quartz substrate with a thin film on which a transparent thin film having a function of improving the crystallinity of a compound semiconductor such as GaN, which requires crystal growth at a high temperature of 700 ° C. or higher, is formed.
[0002]
[Prior art]
Group III-V compound semiconductors such as GaN are used as semiconductor materials for light-emitting diodes that generate blue light and light-receiving (photoelectric conversion) diodes that detect ultraviolet light. Since it is difficult to produce a large single crystal with this type of semiconductor, the c-plane (001 plane) of the same hexagonal sapphire crystal is used as a substrate, and then MBE (molecular beam epitaxy) method or MOCVD ( The crystal is grown by a method such as metal organic chemical vapor deposition). The substrate temperature is 700 to 900 ° C. in the case of GaN film formation by the MBE method, and generally 1000 ° C. or more in the MOCVD method.
[0003]
The sapphire substrate is expensive and it is difficult to increase the area exceeding 4 inches (about 10 cm) in diameter. Therefore, it is possible to manufacture a device made of a semiconductor such as GaN on a quartz substrate made of quartz glass (silica glass), which is inexpensive, excellent in optical properties and heat resistance, and capable of a large area of 4 inches or more. It has been desired from the past.
[0004]
However, since such a quartz substrate is amorphous like a normal glass substrate, a high-quality semiconductor crystal cannot be formed thereon.
Therefore, in Patent Document 1, a hexagonal ZnO crystal preferentially oriented in the c-axis is first grown on a glass substrate, and then a GaN crystal is grown on the crystalline ZnO thin film thus formed, whereby the c-axis There has been proposed a GaN light emitting device in which a thin film of GaN crystal preferentially oriented is fabricated. In Patent Document 1, the substrate may be either an amorphous material such as glass or a crystalline material. Specifically, a glass substrate is used.
[0005]
Since the thin film made of ZnO crystal is transparent in the visible light wavelength region, even if it is formed on a transparent substrate used for a light emitting diode or the like, the transparency of the substrate is not impaired. In addition, since the ZnO thin film exhibits n-type conduction under a normal film forming condition with a Zn-rich composition or an oxygen-deficient composition, it is preferably doped with Al or Ga to increase conductivity, and transparent electrodes, etc. It is also made to function as a transparent conductive film.
[0006]
In this specification, the ZnO-based thin film is referred to as including a ZnO thin film containing a dopant (doping element) and a ZnO thin film not containing the dopant.
Patent Document 2 discloses a technique for preventing the occurrence of microcracks (hair cracks) in a transparent conductive film provided with an intermediate layer, which is related to means for solving the problems described later.
[0007]
[Patent Document 1]
JP-A-57-10280 (Claims, page 2, upper left column to upper right column)
[Patent Document 2]
JP 2000-261013 A (claims, columns 0011, 0013)
[0008]
[Problems to be solved by the invention]
When the technique disclosed in Patent Document 1 is applied to a quartz substrate having a very small thermal expansion coefficient, when a quartz substrate provided with a c-axis oriented ZnO-based thin film is heated to grow a GaN crystal on the quartz substrate. Due to the strain due to the difference in thermal expansion coefficient between ZnO and quartz, micro cracks as shown in FIG. 2 occur in the ZnO-based thin film. Microcracks generated in the ZnO-based thin film cause cracks in the GaN crystal grown thereon, making it impossible to grow a high-quality GaN crystal. Further, when the ZnO-based thin film functions as a transparent conductive film, the conductivity of the ZnO-based thin film deteriorates due to microcracks.
[0009]
Therefore, the technique disclosed in Patent Document 1 cannot be applied as it is to a quartz substrate having a very small thermal expansion coefficient compared to a glass substrate.
An object of the present invention is to provide a quartz substrate capable of growing a high-quality semiconductor crystal such as GaN, particularly a hexagonal semiconductor crystal. A more specific problem is a quartz substrate provided with a crystalline ZnO-based thin film, which does not generate microcracks in the ZnO-based thin film even when heated to a temperature of 700 ° C. or higher during the growth of a semiconductor crystal. An object is to provide an excellent quartz substrate with a ZnO-based thin film.
[0010]
[Means for Solving the Problems]
The present inventor interposes an intermediate layer between the substrate and the thin film due to microcracks generated in the ZnO based thin film due to a difference in thermal expansion coefficient with the substrate when the ZnO based thin film on the quartz substrate is heated. We studied to prevent this.
[0011]
The use of such an intermediate layer is disclosed in Patent Document 2, for example. In the technique disclosed in Patent Document 2, regarding a transparent conductive film made of SnO 2 suitable for a solar cell, a base film of crystalline metal oxide (eg, ZnO) is formed on a glass (alkali-containing) substrate. Then, fine irregularities are introduced into the surface, and an SiO 2 film for an alkali barrier and a SnO 2 transparent conductive film are formed thereon according to a conventional method.
[0012]
However, even if this technology is applied to the formation of a ZnO-based thin film and a ZnO-based thin film is formed on a crystalline metal oxide underlying film, the underlying film is a crystalline thin film having surface irregularities. For this reason, it has been found that the ZnO-based thin film formed thereon is not a c-axis oriented crystalline thin film.
[0013]
The inventor has searched for an intermediate layer effective for preventing microcracks generated during heating of a ZnO-based thin film on a quartz substrate. As a result, when a Zn—Si—O-based amorphous thin film is interposed as an intermediate layer between the quartz substrate and the ZnO-based thin film, the ZnO crystal grown thereon is preferentially oriented in the c-axis and heated. It was clarified that the strain due to the difference in thermal expansion coefficient at the time became small and microcracks were hardly generated, and the microcrack generation temperature was increased by 100 to 300 ° C. as compared with the case without the intermediate layer.
[0014]
The present invention completed based on this finding
A quartz substrate with a thin film comprising a crystalline ZnO-based thin film that may contain a dopant and preferentially oriented in a predetermined direction on a quartz substrate made of quartz glass,
An intermediate layer made of an amorphous thin film containing Zn, Si and oxygen is formed between the thin film and the quartz substrate ,
A quartz substrate with a thin film, wherein the atomic ratio of Zn / Si in the amorphous thin film is in the range of 0.22 to 3.7 .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the quartz substrate with a thin film according to the present invention has a quartz substrate made of amorphous SiO 2 (quartz glass) on an intermediate layer made of an amorphous thin film containing Zn, Si and oxygen. Thus, it has a crystalline ZnO-based thin film preferentially oriented in a predetermined direction (usually the c-axis direction as shown in FIG. 1). As described above, the ZnO-based thin film may be either a ZnO thin film containing a dopant or a thin film made of only ZnO.
[0016]
When a ZnO-based thin film is directly formed on an amorphous substrate such as a glass substrate or a quartz substrate, it is generally polycrystallized and preferentially oriented in the c-axis direction. Accordingly, a c-axis oriented GaN crystal can be epitaxially grown thereon, so that a substrate with a ZnO-based thin film can be used as a substrate for growing a high-quality GaN crystal.
[0017]
When growing a GaN crystal that functions as a light emitting diode or the like, the substrate needs to be made of a material that exhibits high transparency and has excellent heat resistance that can withstand the temperature during the growth of the GaN crystal. Therefore, a normal glass substrate has insufficient heat resistance, and a quartz substrate is preferable. However, when a ZnO-based thin film is formed on a quartz substrate, although it becomes a c-axis oriented thin film, as described above, since the difference in thermal expansion coefficient with the substrate is large, a GaN crystal is grown on the ZnO-based thin film. Micro-cracks are generated in the ZnO-based thin film due to the heating at the time, so that the growth of good quality GaN crystals is hindered.
[0018]
In the present invention, an intermediate layer made of an amorphous thin film containing Zn, Si and oxygen is interposed between the quartz substrate and the ZnO thin film, thereby ensuring the preferential orientation of the ZnO thin film formed thereon. However, the heat resistance of the ZnO-based thin film can be improved, and a c-axis oriented ZnO-based thin film that hardly generates microcracks even when heated can be realized on a quartz substrate.
[0019]
If the intermediate layer is a ZnO thin film as disclosed in Patent Document 2, it becomes a crystalline intermediate layer having minute irregularities on the surface. When a ZnO crystal is further grown on the crystalline ZnO intermediate layer, the preferential orientation of the crystal is disturbed by the surface irregularities of the intermediate layer, and a ZnO-based thin film preferentially oriented in the c-axis cannot be obtained.
[0020]
The intermediate layer used in the present invention is an amorphous thin film containing Zn, Si, and oxygen. The composition of the intermediate layer can be represented by a composition formula of Zn x Si y O z . Here, x, y, and z are all greater than 0, but the composition is not particularly limited as long as an amorphous thin film can be formed. This intermediate layer is composed of a complex oxide of Zn and Si containing Zn—O bonds and Si—O bonds, and has an intermediate thermal expansion coefficient between the quartz substrate and the ZnO-based thin film. The distortion which a system thin film receives can be reduced and generation | occurrence | production of a microcrack can be prevented. However, this intermediate layer does not simply have an intermediate property between SiO 2 of the substrate and ZnO of the thin film.
[0021]
That is, crystallographically, this intermediate layer is amorphous like the quartz substrate, and has an intermediate property (partially crystalline) between the amorphous substrate and the crystalline ZnO-based thin film. Do not have). The reason why the intermediate layer used in the present invention is amorphous is that the Si—O bond contained in the intermediate layer prevents ZnO from being polycrystallized during the formation of the intermediate layer. If the number of Si atoms contained in the intermediate layer is small, the number of ZnO regions that are polycrystallized in contact with the quartz substrate increases, so that an amorphous thin film cannot be obtained.
[0022]
The composition of the intermediate layer is preferably such that the x / y ratio (that is, the Zn / Si atomic ratio) in the composition formula is in the range of 0.22 to 3.7. When the Zn / Si atomic ratio is less than 0.22, the intermediate layer has too many Si atoms, the crystal structure of the intermediate layer is close to the crystal structure of the quartz substrate, and the ZnO crystal is directly grown on the quartz substrate. May give similar results. In other words, although the c-axis orientation of the ZnO-based thin film can be obtained, microcracks are likely to occur at the interface between the intermediate layer and the ZnO-based thin film, and the effect of preventing the occurrence of microcracks by the intermediate layer is sufficiently obtained. There may not be. On the other hand, if the Zn / Si atomic ratio is larger than 3.7, the number of Si atoms contained in the intermediate layer is too small, the entire intermediate layer does not become amorphous, and the surface irregularities of the intermediate layer become large. As a result, the growth of ZnO in the vertical direction is hindered, so that the c-axis orientation of the ZnO-based thin film deteriorates. In addition, the crystal structure of the intermediate layer becomes close to the crystal structure of the ZnO thin film, and microcracks of the ZnO-based thin film easily occur. The Zn / Si atomic ratio is more preferably in the range of 0.5 to 2.0.
[0023]
The thickness of the intermediate layer is preferably in the range of about 10 to 80 nm. Within this range, a good c-axis oriented ZnO-based thin film can be formed on the intermediate layer, and the thickness of the intermediate layer is uniform. However, when the thickness of the intermediate layer is greater than about 80 nm, the unevenness in the vicinity of the surface of the intermediate layer increases, and the ZnO crystal grows in a small area from the direction perpendicular to the substrate surface. It becomes difficult to obtain a c-axis oriented ZnO-based thin film. On the other hand, an intermediate layer thinner than about 10 nm is generally difficult to control the film thickness, and depending on the film formation method (e.g., sputtering method), the intermediate layer grows in an island shape, so an intermediate layer with a uniform thickness can be formed stably. Difficult to do. Furthermore, if the thickness of the intermediate layer is less than 10 nm, the effect of preventing the occurrence of microcracks during heating due to the difference in the thermal expansion coefficient between the substrate and the ZnO-based thin film becomes very small. The thickness of the intermediate layer is more preferably in the range of about 30 to 70 nm.
[0024]
When a ZnO-based thin film is formed on the above-described amorphous intermediate layer, the ZnO-based thin film becomes a thin film having a hexagonal crystal structure preferentially oriented in the c-axis. Therefore, a high-quality crystalline functional film can be formed by growing hexagonal crystals such as GaN on a quartz substrate with a thin film having the ZnO-based thin film on the surface. Examples of functional materials that can be formed on the quartz substrate with a thin film of the present invention include nitride semiconductors containing Ga, such as GaN, InGaN, and AlGaN, which are useful as blue light emitting diodes and ultraviolet lasers.
[0025]
The c-axis orientation of the ZnO-based thin film can be determined by measurement (θ-2θ method) with an X-ray diffractometer of the quartz substrate with a thin film of the present invention. Since the quartz substrate and the intermediate layer are amorphous and show no diffraction peak, only the diffraction peak from the crystalline ZnO-based thin film is measured. As shown in FIG. 3, when the X-ray diffraction pattern obtained by this measurement shows only the (001) plane diffraction peak, the ZnO-based thin film can be regarded as preferentially oriented in the c-axis.
[0026]
In the case where the ZnO-based thin film only needs to perform the function of imparting preferential orientation (eg, c-axis orientation) to the quartz substrate, this layer may be a thin film made of only ZnO. On the other hand, when the ZnO-based thin film has n-type conductivity and this layer also has a function as a transparent conductor (eg, transparent electrode), it is effective for increasing the conductivity of ZnO. Such an appropriate element (eg, a group III element such as B, Al, or Ga) is preferably contained as a dopant. The amount of dopant added is about 0.05 to 0.5% in terms of atomic ratio to Zn. The thickness of the ZnO-based thin film is preferably in the range of 100 to 400 nm, more preferably in the range of 120 to 300 nm.
[0027]
The quartz substrate may be an arbitrary substrate made of transparent amorphous SiO 2 (quartz glass). For example, synthetic quartz produced by a flame hydrolysis method or a gas phase axis method of silicon tetrachloride, natural quartz ( For example, a substrate made of fused quartz obtained by melting quartz) may be used.
[0028]
The method for forming the intermediate layer and the ZnO-based thin film is not particularly limited, and these layers can be formed by any applicable method including a sputtering method, an MOCVD method, and the like. Although an example of film formation by sputtering is shown in the examples described later, those skilled in the art will understand that film formation by other methods is also possible.
[0029]
【Example】
An amorphous thin film of Zn x Si y O z is formed as an intermediate layer on a circular wafer with a thickness of about 0.5 mm and a diameter of 3 inches (76 cm) using synthetic quartz or fused quartz as an intermediate layer by high-frequency sputtering. To do. As a sputtering target, a disk in which SiO 2 powder and ZnO powder are mixed and hardened at a pressure of about 1 kg / cm 2 so as to have a predetermined x / y ratio (Zn / Si atomic ratio) is used. The sputtering conditions are a degree of vacuum of 1 Pa, an Ar atmosphere, a substrate temperature of 120 ° C., and a high frequency output of 100 W.
[0030]
The quartz substrate on which the intermediate layer is formed is used to form a ZnO-based thin film by moving the substrate onto another target in the same sputtering apparatus without taking it out of vacuum. In order to give the ZnO-based thin film the function of a transparent electrode, Al doping is performed. As a sputtering target, a normal ZnO sintered body is used when undoped, and a ZnO sintered body containing 2% by mass of Al 2 O 3 is used when Al is doped. The sputtering conditions are a degree of vacuum of 0.2 to 1 Pa, an Ar atmosphere, a substrate temperature of 300 ° C., and a high frequency output of 200 W. The Al content of the ZnO-based thin film at the time of Al doping is about 0.1% in terms of atomic ratio with respect to Zn, which is much smaller than the Al content in the target. This is because the sputtering rate of Al 2 O 3 is lower than that of ZnO.
[0031]
The thus obtained quartz substrate with a ZnO-based thin film was evaluated for the presence or absence of the c-axis orientation of the ZnO-based thin film by a diffraction pattern measured with an X-ray diffractometer (X-ray source power: 1 kW, target: Co). When only the diffraction peak from the (001) plane was detected, it was determined that the ZnO-based thin film was made of c-axis oriented crystals and had c-axis orientation. On the other hand, when the diffraction peak from the (001) plane was smaller than the detection limit and / or when the diffraction peak of another plane was detected, it was determined that there was no c-axis orientation.
[0032]
The ratio of Zn atoms to Si atoms in the intermediate layer (Zn / Si atomic ratio, that is, x / y ratio in the above composition formula) was determined by preparing a sample with the cross section of the substrate as the measurement surface, and using an electron beam microanalyzer method. It was measured.
[0033]
The presence or absence of microcracks in the ZnO-based thin film during substrate heating was determined by using a sample of a quartz substrate with a ZnO-based thin film in a vacuum of about 2E-3 (= 2 × 10 −3 ) Pa at 540 ° C., 740 ° C., 840 ° C. And after heat treatment at 900 ° C. for 20 minutes, the surface of the ZnO-based thin film was visually observed with a 100 × microscope. The heat treatment was performed at a heating rate of 1 ° C./second and a cooling rate of 10 ° C./min.
[0034]
The above test results show that the substrate is a synthetic quartz substrate, the thickness of the intermediate layer is 50 nm, the ZnO thin film is a 150 nm thick ZnO-based thin film doped with Al, and the composition of the intermediate layer (Zn / Si atomic ratio) Table 1 summarizes the cases where the values are changed.
[0035]
[Table 1]
Figure 0004036073
[0036]
All the ZnO-based thin films of the quartz substrate with a thin film shown in Table 1 were transparent films showing a transmittance of 75% or more in a wavelength range of 400 to 900 nm. The sheet resistance of the Al-doped ZnO-based thin film was about 27Ω / □ for all the substrates. The intermediate layer was amorphous except for Sample 6, as judged from the electron diffraction pattern using an electron microscope. Sample 6 (without Si) was a case where the intermediate layer was ZnO as disclosed in Patent Document 2, and the intermediate layer was not amorphous but was hexagonal polycrystalline.
[0037]
As shown in Table 1, when there is no intermediate layer (when a ZnO-based thin film is sputtered directly on a quartz substrate), the ZnO-based thin film has c-axis orientation, but microcracks are generated by heat treatment at 740 ° C. did.
[0038]
On the other hand, when an intermediate layer having a Zn / Si atomic ratio in the range of 0.22 to 3.7 is formed, the microcracking temperature is increased by 100 to 300 ° C. while ensuring the c-axis orientation of the ZnO-based thin film. was gotten. By improving the heat resistance of the ZnO-based thin film, it is possible to provide a large-area and inexpensive substrate that can be used for crystal growth of a nitride semiconductor such as GaN that requires a crystal growth temperature higher than 700 ° C.
[0039]
However, in Sample 6 in which the intermediate layer was crystalline, a c-axis oriented crystalline ZnO-based thin film could not be formed thereon. Further, the heat resistance was the same as that without the intermediate layer, and the heat resistance was not improved by the intermediate layer.
[0040]
Table 1 shows the results for the case where the ZnO-based thin film is an Al-doped ZnO-based thin film. However, when the ZnO-based thin film is an undoped ZnO-based thin film, the same results as in Table 1 were obtained, and the film was transparent. The characteristics are the same as above.
[0041]
Table 2 shows the X-ray diffraction peak intensities from the (001) plane of the ZnO-based thin film for the quartz substrate with a ZnO-based thin film according to the present invention in which the Zn / Si atomic ratio of the intermediate layer is 1.2 and the thickness is different. , Along with the presence or absence of diffraction peaks from other surfaces. The (001) plane diffraction peak intensity of the ZnO-based thin film is obtained according to the X-ray diffraction pattern shown in FIG. The ZnO-based thin film was an Al-doped ZnO-based thin film having a thickness of 150 nm as described above.
[0042]
[Table 2]
Figure 0004036073
[0043]
As can be seen from Table 2, when the thickness of the intermediate layer increases, the (001) plane diffraction peak intensity of the ZnO-based thin film decreases and the crystallinity of the ZnO-based thin film tends to decrease. However, when the thickness of the intermediate layer is up to about 80 nm, a good c-axis oriented ZnO-based thin film can be obtained. When the thickness of the intermediate layer is greater than about 80 nm, the unevenness near the surface of the intermediate layer increases, and the growth direction of ZnO becomes uneven, so that the (001) plane diffraction peak intensity gradually approaches the detection limit. When the thickness of the intermediate layer is 110 nm, the diffraction peak intensity is below the detection limit, and diffraction peaks from other surfaces also appear. Even if a GaN crystal, for example, is grown on the ZnO-based thin film with such a lowered crystallinity, it does not become a high-quality GaN crystal, and a high-luminance blue light-emitting diode cannot be produced.
[0044]
An intermediate layer thinner than 10 nm is difficult to form with a uniform film thickness, and the effect of improving the heat resistance of the substrate by the intermediate layer (preventing the occurrence of microcracks in the ZnO-based thin film during heating) becomes insufficient. The microcracking temperature is the same as in the case without the intermediate layer shown in Table 1 (Sample 1).
[0045]
【The invention's effect】
According to the present invention, a c-axis-oriented ZnO system in which a microcrack is not generated even when heated to 700 to 900 ° C. is used on a quartz substrate on which an inexpensive transparent substrate having a large area can be easily produced. It is possible to supply a quartz substrate with a ZnO-based thin film having a thin film and excellent in heat resistance.
[0046]
The quartz substrate with a thin film according to the present invention is useful as a substrate for forming a c-axis oriented transparent film having a substrate temperature of 700 to 900 ° C. during film formation. It is suitable as a substrate for growing nitride semiconductor crystals such as GaN, InGaN, and AlGaN. If, for example, a GaN blue light emitting diode is manufactured using the quartz substrate of the present invention instead of the conventional expensive sapphire substrate which cannot be increased in area, the manufacturing cost can be greatly reduced. Since the blue light emitting diode is the most expensive element in a full-color large display device using the light emitting diode, the present invention can reduce the price of such a display device.
[0047]
In the quartz substrate with a thin film of the present invention, the ZnO-based thin film on the substrate surface can be used as a transparent electrode, preferably by doping a ZnO-based thin film. Since the conventional sapphire substrate is an insulator, it requires the growth of a conductive GaN film as a back electrode, which has the disadvantage of increasing the manufacturing cost. However, the quartz substrate of the present invention has this disadvantage. Is also resolved. A ZnO-based thin film, for example, does not generate microcracks even when heated to 700 ° C. or higher for the growth of GaN crystals, so that it does not deteriorate in conductivity due to the generation of microcracks and can function well as a transparent electrode.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing the structure of a quartz substrate with a ZnO-based thin film according to the present invention.
FIG. 2 is a micrograph of the substrate surface showing microcracks generated in a ZnO-based thin film when a conventional quartz substrate with a ZnO-based thin film is heat-treated.
FIG. 3 shows an example of an X-ray diffraction pattern showing the c-axis orientation of a ZnO-based thin film in a quartz substrate with a ZnO-based thin film according to the present invention.

Claims (2)

石英ガラスからなる石英基板上に、所定方向に優先配向した、ドーパントを含有していてもよい結晶質ZnO系薄膜を備えた薄膜付き石英基板であって、
前記薄膜と石英基板との間に、ZnとSiと酸素を含む非晶質薄膜からなる中間層が形成され
前記非晶質薄膜中のZn/Siの原子比が0.22〜3.7の範囲内である
ことを特徴とする薄膜付き石英基板。
A quartz substrate with a thin film comprising a crystalline ZnO-based thin film that may contain a dopant and preferentially oriented in a predetermined direction on a quartz substrate made of quartz glass,
An intermediate layer made of an amorphous thin film containing Zn, Si and oxygen is formed between the thin film and the quartz substrate ,
The quartz substrate with a thin film, wherein an atomic ratio of Zn / Si in the amorphous thin film is in a range of 0.22 to 3.7 .
Gaを含む窒化物半導体を結晶成長させるための請求項1に記載の薄膜付き石英基板。The quartz substrate with a thin film according to claim 1 for crystal growth of a nitride semiconductor containing Ga.
JP2002305980A 2002-10-21 2002-10-21 Quartz substrate with thin film Expired - Fee Related JP4036073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305980A JP4036073B2 (en) 2002-10-21 2002-10-21 Quartz substrate with thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305980A JP4036073B2 (en) 2002-10-21 2002-10-21 Quartz substrate with thin film

Publications (2)

Publication Number Publication Date
JP2004137135A JP2004137135A (en) 2004-05-13
JP4036073B2 true JP4036073B2 (en) 2008-01-23

Family

ID=32452916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305980A Expired - Fee Related JP4036073B2 (en) 2002-10-21 2002-10-21 Quartz substrate with thin film

Country Status (1)

Country Link
JP (1) JP4036073B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028118A1 (en) * 2004-09-08 2006-03-16 Rohm Co., Ltd Semiconductor light-emitting device
KR101176543B1 (en) * 2006-03-10 2012-08-28 삼성전자주식회사 Resistance Random Memory Device
JP2007258599A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Semiconductor device and method for manufacturing semiconductor device
KR100835666B1 (en) 2007-01-02 2008-06-09 한국과학기술연구원 Method for preparing zno nano-crystal directly on the silicon substrate
KR100797077B1 (en) 2007-04-04 2008-01-22 한양대학교 산학협력단 Electrode for flexible display, method of fabricating thereof and flexible display comprising the same
JP5313568B2 (en) * 2008-07-11 2013-10-09 株式会社カネカ Transparent conductive film
US8872174B2 (en) * 2012-06-01 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
WO2024048394A1 (en) * 2022-09-01 2024-03-07 株式会社ジャパンディスプレイ Laminated structure, manufacturing method for laminated structure, and semiconductor device

Also Published As

Publication number Publication date
JP2004137135A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP5102357B2 (en) Substrate for epitaxial growth of gallium nitride
EP1313134B1 (en) Semiconductor polysilicon component and method of manufacture thereof
TWI484662B (en) A laminated body and a method for manufacturing the same, and a semiconductor light-emitting element and a solar battery using the same
Gomez et al. Gallium-doped ZnO thin films deposited by chemical spray
CN102884644B (en) The manufacture method of nitride semiconductor device, nitride semiconductor luminescent element and light-emitting device
KR20090058952A (en) Light emitting device using nano-rod and method for manufacturing the same
CN107419333B (en) A kind of preparation method of high mobility niobium doped stannum oxide monocrystal thin films
JP4036073B2 (en) Quartz substrate with thin film
Ting et al. Electrical and structural characteristics of tin-doped GaN thin films and its hetero-junction diode made all by RF reactive sputtering
KR101458629B1 (en) MANUFACTURE METHOD FOR ZnO-CONTAINING COMPOUND SEMICONDUCTOR LAYER
Yusof et al. Fabrication and characterization of copper doped zinc oxide by using Co-sputtering technique
TW200933754A (en) Zno-based thin film and semiconductor element
JP2012136759A (en) Ito film, method of manufacturing the ito film, semiconductor light-emitting element, and method of manufacturing the light-emitting element
JP2006073579A (en) METHOD OF FORMING CRYSTALLINE ZINC OXIDE (ZnO) THIN FILM
CN112210755B (en) p-type transparent conductive SnO2Semiconductor film, preparation method and application thereof
KR100403191B1 (en) Method for manufacturing a high quality thin film by post-growth annealing in oxygen ambient
JP3929964B2 (en) Method for manufacturing thin film laminated structure
KR100594383B1 (en) Method of manufacturing zinc oxide thin film doped with aluminum
JP5426315B2 (en) ZnO-based compound semiconductor device
JP7479231B2 (en) Photoelectric conversion film, method for producing photoelectric conversion film, and photoelectric conversion element
JP2012059874A (en) MANUFACTURING METHOD OF ZnO-BASED SEMICONDUCTOR LAYER AND MANUFACTURING METHOD OF ZnO-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT
JP4048316B2 (en) Manufacturing method and manufacturing apparatus of zinc oxide single crystal film on single crystal silicon substrate and laminated structure
TW201801344A (en) Substrate for semiconductor device and semiconductor device using the same
JP4614616B2 (en) ZnTe single crystal and method for producing the same
JPH04212473A (en) Polycrystal semiconductor film and photovoltaic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4036073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees