JP3929964B2 - Method for manufacturing thin film laminated structure - Google Patents

Method for manufacturing thin film laminated structure Download PDF

Info

Publication number
JP3929964B2
JP3929964B2 JP2003385344A JP2003385344A JP3929964B2 JP 3929964 B2 JP3929964 B2 JP 3929964B2 JP 2003385344 A JP2003385344 A JP 2003385344A JP 2003385344 A JP2003385344 A JP 2003385344A JP 3929964 B2 JP3929964 B2 JP 3929964B2
Authority
JP
Japan
Prior art keywords
film
single crystal
calcium fluoride
thin film
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003385344A
Other languages
Japanese (ja)
Other versions
JP2005145753A (en
Inventor
満明 矢野
正崇 井上
誠彦 佐々
一歩 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003385344A priority Critical patent/JP3929964B2/en
Publication of JP2005145753A publication Critical patent/JP2005145753A/en
Application granted granted Critical
Publication of JP3929964B2 publication Critical patent/JP3929964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、単結晶シリコン基板上に弗化カルシウム単結晶薄膜を介して酸化亜鉛単結晶膜を形成した薄膜積層構造体の製造方法に関する。   The present invention relates to a method for manufacturing a thin film laminated structure in which a zinc oxide single crystal film is formed on a single crystal silicon substrate via a calcium fluoride single crystal thin film.

従来、酸化亜鉛多結晶は、その誘電的性質、圧電的性質、可視光透過性等の多機能性に注目して、表面弾性波素子、圧電素子、ガスセンサー、バリスター、あるいは透明導電膜等、広範なデバイスに用いられてきたが、セラミックスとしての特性を活かした利用が多かった。   Conventionally, zinc oxide polycrystals have focused on their multifunctional properties such as dielectric properties, piezoelectric properties, and visible light transmission, and surface acoustic wave devices, piezoelectric devices, gas sensors, varistors, transparent conductive films, etc. Although it has been used for a wide range of devices, it has been used in many ways utilizing its properties as a ceramic.

一方、酸化亜鉛は、可視光の短波長端に相当する禁制帯幅を持った直接遷移形の半導体でもあるので、結晶完全性が高い単結晶が製造できれば、高耐圧電子デバイス用半導体や発光・受光デバイス用半導体として使用可能である。   Zinc oxide, on the other hand, is also a direct transition type semiconductor with a forbidden band corresponding to the short wavelength end of visible light, so if a single crystal with high crystal integrity can be produced, semiconductors for high voltage electronic devices and light emitting / It can be used as a semiconductor for light receiving devices.

これらのデバイスをワンチップに集積化するには薄膜が有利であるため、近年、酸化亜鉛単結晶膜の製造方法の研究が種々行われている。例えば、酸素ラジカルと亜鉛分子線を用いた分子線エピタキシャル法で、サファイア基板上に酸化亜鉛単結晶膜を製造する方法(例えば、非特許文献1参照。)が報告されている。しかしながら、サファイア基板は加工が難しくコストも高いので、他の基板上にエピタキシャル成長させる方法が求められている。酸化亜鉛単結晶基板上に成長することも可能であるが、この場合、大面積基板の入手が難しく、かつ、さらにコストが高い欠点を持つ。   In order to integrate these devices on a single chip, thin films are advantageous, and in recent years, various researches on methods for producing zinc oxide single crystal films have been conducted. For example, a method of producing a zinc oxide single crystal film on a sapphire substrate by a molecular beam epitaxial method using oxygen radicals and a zinc molecular beam (for example, see Non-Patent Document 1) has been reported. However, since a sapphire substrate is difficult to process and expensive, there is a need for a method of epitaxial growth on another substrate. Although it is possible to grow on a zinc oxide single crystal substrate, in this case, it is difficult to obtain a large-area substrate, and the cost is further high.

シリコンは最も汎用的な半導体で、大面積かつ高品質の単結晶基板が、比較的低コストで安定供給されている。単結晶シリコン基板はLSIの中心材料として長い歴史を持ち、加工技術も確立されている。このような利点を持つ単結晶シリコンを基板として酸化亜鉛単結晶膜を形成できれば、加工性やコストの問題が解決するばかりでなく、シリコン電子回路と酸化亜鉛デバイスの集積化も可能になる。   Silicon is the most general-purpose semiconductor, and a large-area, high-quality single crystal substrate is stably supplied at a relatively low cost. Single crystal silicon substrates have a long history as the core material of LSI, and processing technology has been established. If a single crystal silicon film having such advantages can be used as a substrate to form a zinc oxide single crystal film, not only the problems of workability and cost can be solved, but also the integration of silicon electronic circuits and zinc oxide devices becomes possible.

単結晶シリコン基板上に酸化亜鉛単結晶膜を形成する方法として、シリコンの(111)面基板上にシリコン窒化膜を形成し、このシリコン窒化膜上に酸化亜鉛単結晶膜をエピタキシャル成長させる技術がある(例えば、特許文献1参照。)。   As a method for forming a zinc oxide single crystal film on a single crystal silicon substrate, there is a technique in which a silicon nitride film is formed on a (111) plane substrate of silicon and a zinc oxide single crystal film is epitaxially grown on the silicon nitride film. (For example, refer to Patent Document 1).

更に又、特許文献1に開示の技術の改良として、本願発明者等による改良技術として、単結晶シリコン基板の上に弗化カルシウム単結晶薄膜を介して、酸化亜鉛単結晶膜を形成する技術が開示されている(例えば、特許文献2参照。)。   Furthermore, as an improvement of the technique disclosed in Patent Document 1, as a technique improved by the present inventors, there is a technique for forming a zinc oxide single crystal film on a single crystal silicon substrate via a calcium fluoride single crystal thin film. (For example, refer to Patent Document 2).

特許文献2に記載の技術(以下、先願技術という。)は、シリコンの(111)面と酸化亜鉛の(0001)面のマッチングが良いことを利用してエピタキシャル成長を行うにあたり、酸素ラジカルがシリコン基板の表面を酸化してアモルファス化するのを防ぐため、シリコンと格子定数が近接している弗化カルシウム薄膜を挿入して酸化亜鉛単結晶膜を得る方法である。
工業製品技術協会編、2000年発行、岩田拡也著、セラミックデータブック2000、第190〜194頁 特開2001−44499号公報 特開2003−165793号公報
In the technique described in Patent Document 2 (hereinafter referred to as the prior application technique), when the epitaxial growth is performed using the good matching between the (111) plane of silicon and the (0001) plane of zinc oxide, oxygen radicals are converted into silicon. This is a method for obtaining a zinc oxide single crystal film by inserting a calcium fluoride thin film having a lattice constant close to that of silicon in order to prevent the surface of the substrate from being oxidized and made amorphous.
Industrial Products Technology Association, 2000, published by Hiroya Iwata, Ceramic Data Book 2000, pages 190-194 JP 2001-44499 A JP 2003-165793 A

先願技術が開示した方法は、シリコンの例えば、(111)面上に、c軸が基板面と垂直に配向して結晶方位が膜面内で回転したドメインを含まない酸化亜鉛単結晶膜を製造することができるため、デバイス応用にとって有益であり、単結晶シリコン基板上にエピタキシャル成長で形成した弗化カルシウム単結晶薄膜を介して酸化亜鉛単結晶膜をエピタキシャル成長させるという技術思想の基本的な発明である。しかしながら、先願技術開発の時点で得た酸化亜鉛単結晶膜は、エピタキシャル成長の温度から室温に戻すとき、あるいは、成長後に熱処理を行うとき、温度変化によって膜面に割れを生じやすいという課題があることが判った。また、この方法で得た酸化亜鉛単結晶膜は、割れを発生しない場合においても、キャリア(n形の場合は電子)の移動度が極端に小さいという課題があることもその後の研究開発で判明した。   The method disclosed in the prior application technique is, for example, to form a zinc oxide single crystal film that does not include a domain in which the c-axis is oriented perpendicularly to the substrate surface and the crystal orientation is rotated in the film surface on the (111) plane of silicon. It is useful for device application because it can be manufactured, and it is a basic invention of the technical idea of epitaxially growing a zinc oxide single crystal film through a calcium fluoride single crystal thin film formed by epitaxial growth on a single crystal silicon substrate. is there. However, the zinc oxide single crystal film obtained at the time of the development of the prior application technology has a problem that when the temperature is changed from the temperature of epitaxial growth to room temperature or when heat treatment is performed after the growth, the film surface is likely to be cracked due to temperature change. I found out. Further research and development revealed that the zinc oxide single crystal film obtained by this method has a problem that the mobility of carriers (electrons in the case of n-type) is extremely small even when cracking does not occur. did.

これらの課題は共通して酸化亜鉛単結晶膜が不連続であることに起因しており、膜面の割れは巨視的不連続の、移動度の低下は微視的不連続の存在によって生じている。ここで、酸化亜鉛単結晶膜中の微視的不連続とは、互いに極くわずか方位が揺らいだ結晶粒から膜が構成されている状態、あるいは、方位が揃っていても面状の格子欠陥に囲まれた結晶粒から膜が構成されている状態を指す。膜中にこのような不連続が含まれる場合、結晶粒界がキャリアの移動を妨げて移動度は極端に低下する。また、微視的な不連続を含む膜に限度を超えた応力が働けば、粒界で膜が容易に破断して巨視的な不連続すなわち割れに発展する。換言すれば、先願技術開発当時実際に製造した酸化亜鉛膜は、巨視的あるいは微視的な不連続を含む低品位単結晶膜であった。   These problems are commonly caused by the discontinuity of the zinc oxide single crystal film. The cracks in the film surface are caused by macroscopic discontinuities, and the decrease in mobility is caused by the presence of microscopic discontinuities. Yes. Here, the microscopic discontinuity in the zinc oxide single crystal film means that the film is composed of crystal grains whose orientations are slightly fluctuated from each other, or planar lattice defects even if the orientations are uniform. A state in which a film is formed from crystal grains surrounded by. When such a discontinuity is included in the film, the crystal grain boundary prevents the carrier from moving, and the mobility is extremely lowered. In addition, if a stress exceeding the limit is applied to a film including microscopic discontinuities, the film easily breaks at grain boundaries and develops into macroscopic discontinuities, that is, cracks. In other words, the zinc oxide film actually manufactured at the time of the development of the prior application technology was a low-quality single crystal film containing macroscopic or microscopic discontinuities.

請求項1の発明は、単結晶シリコン基板上に弗化カルシウム単結晶薄膜をエピタキシャル成長させ、前記弗化カルシウム単結晶薄膜上に酸化亜鉛単結晶膜をエピタキシャル成長させる方法であって、前記単結晶シリコン基板表面と接する最初の3分子層即ち厚さにして1nm未満の弗化カルシウム膜の層を450℃〜900℃の温度範囲で形成し、それ以降の弗化カルシウム膜を150℃〜400℃の温度範囲で形成することを特徴とする薄膜積層構造体の製造方法を提供する。   The invention of claim 1 is a method of epitaxially growing a calcium fluoride single crystal thin film on a single crystal silicon substrate and epitaxially growing a zinc oxide single crystal film on the calcium fluoride single crystal thin film, wherein the single crystal silicon substrate The first trimolecular layer in contact with the surface, that is, a layer of calcium fluoride film having a thickness of less than 1 nm is formed in a temperature range of 450 ° C. to 900 ° C., and the subsequent calcium fluoride film is heated to a temperature of 150 ° C. to 400 ° C. The present invention provides a method for producing a thin film laminated structure characterized by being formed in a range.

上記温度範囲である450℃〜900℃の限定理由は、450℃より低いと弗化カルシウムの結晶性が低下し、900℃を超えると再蒸発のため弗化カルシウム膜の形成が進まなかったためである。又第2段階目の弗化カルシウム膜の形成を150℃〜400℃の比較的低温で行っているが,これは出来るだけシリコン基板との格子不整合の少ない状態で高度な結晶性を保つ弗化カルシウム膜を得るためである。   The reason for limiting the temperature range from 450 ° C. to 900 ° C. is that if the temperature is lower than 450 ° C., the crystallinity of calcium fluoride is lowered, and if it exceeds 900 ° C., the formation of the calcium fluoride film does not proceed due to re-evaporation. is there. In addition, the second stage calcium fluoride film is formed at a relatively low temperature of 150 ° C. to 400 ° C. This is a fluoride film that maintains a high degree of crystallinity with as little lattice mismatch as possible with the silicon substrate. This is to obtain a calcium fluoride film.

請求項2の発明は、単結晶シリコン基板上に弗化カルシウム単結晶薄膜をエピタキシャル成長させ、前記弗化カルシウム単結晶薄膜上に酸化亜鉛単結晶膜をエピタキシャル成長させる方法であって、前記単結晶シリコン基板表面と接する最初の3分子層即ち厚さにして1nm未満の厚さまでは弗化カルシウム膜の層を450℃〜700℃の温度範囲で形成し、それ以降の弗化カルシウム膜を200℃〜300℃の温度範囲で形成することを特徴とする半導体積層構造体の製造方法を提供する。請求項1の発明における弗化カルシウムの温度範囲を更に限定した理由は最初のたかだか3分子層については実用的な成長速度を維持しながら高結晶性を実現できる温度範囲に注目したものであり、それ以降の部分についてはたかだか3分子層の初期成長層の有する高い結晶性を損なわずに厚い弗化カルシウム膜を実現する温度より好適な範囲に注目したものである。   The invention of claim 2 is a method of epitaxially growing a calcium fluoride single crystal thin film on a single crystal silicon substrate, and epitaxially growing a zinc oxide single crystal film on the calcium fluoride single crystal thin film, wherein the single crystal silicon substrate The first trimolecular layer in contact with the surface, that is, with a thickness of less than 1 nm, a calcium fluoride film layer is formed in a temperature range of 450 ° C. to 700 ° C., and a subsequent calcium fluoride film is formed at 200 ° C. to 300 ° C. Provided is a method for manufacturing a semiconductor multilayer structure, wherein the method is formed in a temperature range of ° C. The reason why the temperature range of calcium fluoride in the invention of claim 1 is further limited is that attention is paid to the temperature range in which high crystallinity can be realized while maintaining a practical growth rate for the first trilayer. Regarding the subsequent portions, attention is focused on a range more suitable than the temperature at which a thick calcium fluoride film is realized without impairing the high crystallinity of the initial growth layer of the trimolecular layer.

請求項3の発明は、請求項1又は2の発明において、エピタキシャル成長は、化学的気相堆積法、真空蒸着法、スパッタリング法、分子線エピタシキシャル法及びレーザアブレーション法のいずれかの方法又はそれらの組合わせの方法で行うことを特徴とするものである。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the epitaxial growth is performed by any one of a chemical vapor deposition method, a vacuum evaporation method, a sputtering method, a molecular beam epitaxial method, and a laser ablation method, or a combination thereof. It is characterized in that it is performed by a method of matching.

本発明によれば,加工性に優れかつ低コストで汎用性のある単結晶シリコンを基板として、結晶完全性が高く巨視的にも微視的にも連続である酸化亜鉛単結晶膜を提供することができる。したがって、本発明によれば、酸化亜鉛を使った半導体デバイス、発光受光デバイス、誘電的性質を使った種種のデバイスや導波路等の光デバイスをシリコン基板上に
製作することが可能になり、きわめて有用である。
According to the present invention, there is provided a zinc oxide single crystal film having high crystal integrity and being macroscopically and microscopically continuous using single crystal silicon having excellent processability, low cost and versatility as a substrate. be able to. Therefore, according to the present invention, semiconductor devices using zinc oxide, light emitting / receiving devices, various devices using dielectric properties, and optical devices such as waveguides can be fabricated on a silicon substrate. Useful.

以下、本発明の実施例につき、図面に基づいて本発明の最良の実施の形態を中心に詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, focusing on the best mode of the present invention.

図1の(a)は、本発明によって形成される、単結晶シリコン基板と弗化カルシウム薄膜と酸化亜鉛膜との薄膜積層構造体を示す図である。図2は、図1の積層構造体を製造するための装置の一例である、分子線エピタキシャル装置を模式的に示す図である。
以下、図1の(a)及び図2を用いて本発明の実施の形態を説明する。
FIG. 1A is a view showing a thin film laminated structure of a single crystal silicon substrate, a calcium fluoride thin film, and a zinc oxide film formed according to the present invention. FIG. 2 is a diagram schematically showing a molecular beam epitaxial apparatus which is an example of an apparatus for manufacturing the laminated structure of FIG.
Hereinafter, an embodiment of the present invention will be described with reference to FIG.

シリコン(111)面単結晶基板1上に、弗化カルシウム薄膜2および3をエピタキシャル成長させ、弗化カルシウム薄膜3上に、c軸が基板面に垂直に配向して結晶方位が膜面内で回転したドメインを含まず、かつ、巨視的にも微視的にも連続膜である酸化亜鉛単結晶膜4をエピタキシャル成長させる。弗化カルシウム薄膜2はシリコン基板上に弗化カルシウム薄膜3を単結晶成長させるための極く薄い初期層で、その成膜条件は弗化カルシウム薄膜3と異なっても良い。弗化カルシウム薄膜2と3を合せた厚さは1nm以上で15nm未満、さらに好ましくは3nm以上で12nm未満までである。弗化カルシウム薄膜2と弗化カルシウム薄膜3は、基板1の表面と平行に(111)面を有して結晶方位が膜面内で回転したドメインを含まない単結晶膜で、酸化亜鉛膜4と接する界面に明白なファセットがない平坦膜としてシリコン基板1の全面を覆っている。   Calcium fluoride thin films 2 and 3 are epitaxially grown on a silicon (111) plane single crystal substrate 1, and the c-axis is oriented perpendicularly to the substrate surface on the calcium fluoride thin film 3 so that the crystal orientation rotates within the film plane. The zinc oxide single crystal film 4 that does not include the above-described domain and is a continuous film macroscopically and microscopically is epitaxially grown. The calcium fluoride thin film 2 is a very thin initial layer for growing a single crystal of the calcium fluoride thin film 3 on the silicon substrate, and the film forming conditions may be different from those of the calcium fluoride thin film 3. The combined thickness of the calcium fluoride thin films 2 and 3 is 1 nm or more and less than 15 nm, more preferably 3 nm or more and less than 12 nm. The calcium fluoride thin film 2 and the calcium fluoride thin film 3 are single crystal films that have a (111) plane parallel to the surface of the substrate 1 and do not include a domain whose crystal orientation is rotated in the film plane. The entire surface of the silicon substrate 1 is covered as a flat film having no obvious facets at the interface in contact with the substrate.

エピタキシャル成長は、例えば、図2に示した分子線エピタキシャル装置を用いて実施することができる。図2に示すように、超高真空槽11内において、基板加熱装置10に装着された単結晶シリコン基板1の表面に、弗化カルシウムを入れた坩堝5を加熱して発生させた弗化カルシウム分子線を照射し、所望の厚さの弗化カルシウム薄膜をエピタキシャル成長させる。酸化亜鉛膜は、弗化カルシウム薄膜上に、亜鉛を入れた坩堝6を加熱して亜鉛分子線を照射するとともに、高周波放電ガンを使用した酸素ラジカル源7から酸素ラジカルを照射してエピタキシャル成長させる。なお、図2において、12は排気系を示し、8、9はそれぞれ、反射高速電子線回折装置の電子銃及びスクリーンを示している。   The epitaxial growth can be performed using, for example, the molecular beam epitaxial apparatus shown in FIG. As shown in FIG. 2, calcium fluoride generated by heating a crucible 5 containing calcium fluoride on the surface of a single crystal silicon substrate 1 mounted on a substrate heating device 10 in an ultrahigh vacuum chamber 11. A molecular beam is irradiated to epitaxially grow a calcium fluoride thin film having a desired thickness. A zinc oxide film is epitaxially grown on a calcium fluoride thin film by heating a crucible 6 containing zinc to irradiate a zinc molecular beam and irradiating an oxygen radical from an oxygen radical source 7 using a high-frequency discharge gun. In FIG. 2, 12 indicates an exhaust system, and 8 and 9 indicate an electron gun and a screen of a reflection high-energy electron diffraction apparatus, respectively.

上記説明では分子線エピタキシャル法を例にとったが,成膜条件が精密に制御できる他の薄膜形成方法、例えば化学的気相堆積法でも良く、あるいは、真空蒸着法、スパッタリング法、またはレーザーアブレーション法といったエピタキシャル成長が可能な物理的気相堆積法でも良く、あるいは、これらと分子線エピタキシャル法の組み合わせでも良い。上記方法に従えば、単結晶シリコンの(111)面の基板上に弗化カルシウム薄膜を介してエピタキシャル成長させた酸化亜鉛膜において、c軸が基板面に垂直に配向して結晶方位が膜面内で回転したドメインを含まず、かつ、巨視的にも微視的にも連続膜であることを特徴とする酸化亜鉛単結晶膜が得られる。割れや粒構造を含まず電気特性に優れた酸化亜鉛単結晶膜を単結晶シリコン基板上に製造できるため、デバイスへの応用にとって非常に有益である。   In the above description, the molecular beam epitaxial method is taken as an example, but other thin film forming methods whose film forming conditions can be precisely controlled, such as chemical vapor deposition, may be used, or vacuum deposition, sputtering, or laser ablation. A physical vapor deposition method capable of epitaxial growth such as a method may be used, or a combination of these and a molecular beam epitaxial method may be used. According to the above method, in a zinc oxide film epitaxially grown on a (111) -plane substrate of single crystal silicon via a calcium fluoride thin film, the c-axis is oriented perpendicularly to the substrate surface and the crystal orientation is in the film plane. Thus, a zinc oxide single crystal film characterized in that it does not contain a domain rotated in step (b) and is a continuous film both macroscopically and microscopically can be obtained. Since a zinc oxide single crystal film excellent in electrical characteristics without cracks or grain structure can be manufactured on a single crystal silicon substrate, it is very useful for device application.

次に、本発明の一実施例を、先願技術に開示された方法と比較して説明する。   Next, an embodiment of the present invention will be described in comparison with the method disclosed in the prior application technique.

薄膜積層構造体の製造装置として、高周波放電ガンを用いた酸素ラジカル源と亜鉛用坩堝及び弗化カルシウム用坩堝を備えた図2の分子線エピタキシャル装置を用いた。高周波放電ガンへ供給される酸素ガス流量は0.3ccmで、高周波放電電力は350Wである。基板には単結晶シリコンの(111)面を用いた。   The molecular beam epitaxial apparatus shown in FIG. 2 equipped with an oxygen radical source using a high-frequency discharge gun, a zinc crucible and a calcium fluoride crucible was used as the thin film laminated structure manufacturing apparatus. The flow rate of oxygen gas supplied to the high frequency discharge gun is 0.3 ccm, and the high frequency discharge power is 350 W. A (111) plane of single crystal silicon was used for the substrate.

シリコン単結晶基板を有機溶媒で洗浄後、煮沸硝酸への浸漬に引き続いて弗酸を用いる
標準的なエッチングを行い、基板表面を水素原子で終端した状態で分子線エピタキシャル装置に装着した。この基板を1×10-7Paの真空中で800℃に昇温して30分間保つと、超構造7×7の反射高速電子線回折パターンを示す清浄表面が得られた。
After washing the silicon single crystal substrate with an organic solvent, the silicon single crystal substrate was immersed in boiling nitric acid, followed by standard etching using hydrofluoric acid, and mounted on a molecular beam epitaxial apparatus with the substrate surface terminated with hydrogen atoms. When this substrate was heated to 800 ° C. in a vacuum of 1 × 10 −7 Pa and kept for 30 minutes, a clean surface showing a reflection high-energy electron diffraction pattern of superstructure 7 × 7 was obtained.

この清浄表面を持ったシリコン基板上に図1の(a)に示した積層構造体をエピタキシャル成長させるが、その特徴を、先願技術に開示された構造である図1の(b)と比較して示す。図1の(b)の先願技術に開示された方法では弗化カルシウム薄膜全体を650℃で成膜するが、図1の(a)の本発明で例示する方法では最初の2分子層を650℃で成膜し、引き続き250℃に降温して残りの弗化カルシウムを成膜する2段階成長法を採用した。これは、弗化カルシウムをシリコン基板上に直接250℃の低温で成膜すると多結晶あるいはアモルファスの膜になる場合があったが、このように2段階で成膜すると、2段階目が低温でも再現性良く単結晶膜が得られたためである。弗化カルシウム薄膜の成長速度は、いずれの場合も1.0nm/分とした。   The stacked structure shown in FIG. 1A is epitaxially grown on a silicon substrate having this clean surface, and its characteristics are compared with FIG. 1B, which is the structure disclosed in the prior art. Show. In the method disclosed in the prior application technique of FIG. 1B, the entire calcium fluoride thin film is formed at 650 ° C., but in the method illustrated in the present invention of FIG. 1A, the first bimolecular layer is formed. A two-stage growth method was employed in which the film was formed at 650 ° C., and subsequently the temperature was lowered to 250 ° C. to form the remaining calcium fluoride. This is because when calcium fluoride is directly deposited on a silicon substrate at a low temperature of 250 ° C., it may become a polycrystalline or amorphous film. This is because a single crystal film was obtained with good reproducibility. The growth rate of the calcium fluoride thin film was 1.0 nm / min in all cases.

室温における弗化カルシウムとシリコンの格子不整合率は約0.6%と僅少であるが、弗化カルシウムの熱膨張係数はシリコンに比較して約1桁大きいので、高温では格子不整合率が増加する(250℃で1.2%、650℃で2.8%)。このため、高温のシリコン基板上における弗化カルシウムの成長はインコヒーレントなVolmer-Weberモード(3次元島形成による成長モード)となりやすい。成長が3次元島形成モードとなった場合、島の合体時に粒界が形成されて微視的不連続膜になるのみならず、シリコン基板全面を覆うために必要な厚さが増加する。   Although the lattice mismatch rate between calcium fluoride and silicon at room temperature is only about 0.6%, the thermal expansion coefficient of calcium fluoride is about an order of magnitude higher than that of silicon. Increase (1.2% at 250 ° C, 2.8% at 650 ° C). For this reason, the growth of calcium fluoride on a high-temperature silicon substrate tends to be an incoherent Volmer-Weber mode (a growth mode by three-dimensional island formation). When the growth is in a three-dimensional island formation mode, a grain boundary is formed when the islands are united to form a microscopic discontinuous film, and the thickness necessary for covering the entire silicon substrate increases.

弗化カルシウム薄膜が粒界を含む場合、その上にエピタキシャル成長させた酸化亜鉛膜も粒界を含んだ柱状組織あるいは双晶となって、微視的連続膜が得られない。このような酸化亜鉛膜においては、下地との熱膨張率差で生ずる熱応力によって、粒界割れや膜の剥離が発生しやすい。また、厚い弗化カルシウム薄膜の使用は、熱応力を増加させて粒界割れや剥離を助長するので好ましくないが、無理に薄くすると、覆われていないシリコン基板表面の酸化が防げず、酸化亜鉛膜に回転ドメインの発生をもたらす。   When the calcium fluoride thin film includes grain boundaries, the zinc oxide film epitaxially grown thereon also becomes a columnar structure or twins including the grain boundaries, and a microscopic continuous film cannot be obtained. In such a zinc oxide film, intergranular cracking and peeling of the film are likely to occur due to thermal stress caused by a difference in thermal expansion coefficient from the base. In addition, the use of a thick calcium fluoride thin film is not preferable because it increases thermal stress and promotes intergranular cracking and peeling. Causes the generation of rotational domains in the membrane.

図3は、二つの方法で10nm厚の弗化カルシウム薄膜を成長させた後に観察された反射高速電子線回折のパターンである。いずれの場合も、成長開始時の回折パターンはシリコン基板から引き続いたストリーク・ツウ・ストリークであったが、先願技術の図3の(b)では膜が成長するに従いバルクスポットがストリークパターンに重なってきた。一方、本発明の図3の(a)では完全なストリークが最後まで保たれていた。このことは、先願技術の弗化カルシウム薄膜は3次元的な島構造であるが、本発明の方法では平坦な膜であることを示している。   FIG. 3 shows reflection high-energy electron diffraction patterns observed after growing a 10 nm-thick calcium fluoride thin film by two methods. In either case, the diffraction pattern at the start of growth was streak-to-streak continued from the silicon substrate. In FIG. 3B of the prior application technique, the bulk spot overlapped with the streak pattern as the film grew. I came. On the other hand, in FIG. 3A of the present invention, a complete streak was maintained until the end. This indicates that the calcium fluoride thin film of the prior application has a three-dimensional island structure, but is a flat film in the method of the present invention.

図4は、シリコン基板上に成長させた弗化カルシウム薄膜について、成長膜厚と格子定数変化の関係を示している。格子定数の変化は、成長中に計測した反射高速電子線回折のストリーク間隔から見積もった。先願技術の(b)では弗化カルシウムの膜厚が1nmに達した時点で格子緩和が始まって本来の格子定数に近づいているが、本発明の(a)では膜厚が15nm以上に達しても格子緩和が認められない。図3の結果と相俟って、先願技術の弗化カルシウム薄膜はインコヒーレントな島構造であるが、本発明の薄膜はコヒーレントな平坦膜であると判断できる。   FIG. 4 shows the relationship between the grown film thickness and the change in lattice constant for the calcium fluoride thin film grown on the silicon substrate. The change in lattice constant was estimated from the streak interval of reflection high-energy electron diffraction measured during growth. In the prior art (b), when the calcium fluoride film thickness reaches 1 nm, the lattice relaxation starts and approaches the original lattice constant. In (a) of the present invention, the film thickness reaches 15 nm or more. However, no lattice relaxation is observed. In combination with the results of FIG. 3, the calcium fluoride thin film of the prior application technique has an incoherent island structure, but the thin film of the present invention can be determined to be a coherent flat film.

図5は、先願技術と本発明で成膜した、厚さ10nmの弗化カルシウム薄膜の表面を原子間力顕微鏡で観察した写真である。先願技術による図5の(b)の弗化カルシウム薄膜の表面には(111)面に特有な三角形のファセットを有する島構造が形成されているが、本発明による図5の(a)の薄膜表面は原子スケールで平坦である。この結果は図3の反射高速電子線回折の結果と一致している。   FIG. 5 is a photograph of the surface of a 10 nm-thick calcium fluoride thin film formed by the prior application technique and the present invention, observed with an atomic force microscope. An island structure having triangular facets peculiar to the (111) plane is formed on the surface of the calcium fluoride thin film of FIG. 5B according to the prior application technique. The thin film surface is flat on the atomic scale. This result is consistent with the result of reflection high-energy electron diffraction in FIG.

図6は、先願技術と本発明で成膜した弗化カルシウム膜の、{311}を極点としたX線回折の極点図である。別途測定したθ/2θ法のX線回折では、いずれの弗化カルシウム薄膜からも(111)面からの回折のみが観測された。そこで、両者とも基板の垂直方向に沿って結晶軸が配向していることが判る。しかし極点図には差が現れ、先願技術による図6の(b)は面内に180°回転したドメインが含まれる6回対称となっているが、本発明による図6の(a)は回転ドメインが存在しない3回対称となっている。   FIG. 6 is a pole figure of X-ray diffraction of the calcium fluoride film formed by the prior application technique and the present invention with {311} as a pole. In the X-ray diffraction of the θ / 2θ method separately measured, only diffraction from the (111) plane was observed from any calcium fluoride thin film. Thus, it can be seen that both have crystal axes oriented along the vertical direction of the substrate. However, there is a difference in the pole figure, and FIG. 6 (b) according to the prior application technique has 6-fold symmetry including the domain rotated 180 ° in the plane, but FIG. 6 (a) according to the present invention is There is a three-fold symmetry with no rotation domain.

図7は、先願技術と本発明でp形シリコン基板上に成膜した同一膜厚の弗化カルシウム薄膜それぞれに面積0.08cm2のアルミニウム電極を蒸着し、金属/弗化カルシウム
/p形シリコンのダイオードの電流電圧特性を調べた結果を示している。両者の特性を比較すると、本発明による(a)の弗化カルシウムの方が先願技術による(b)よりも電気絶縁性に優れている。先願技術による弗化カルシウム薄膜は穴の多い不連続膜であるが、本発明の薄膜は均一にシリコン基板面を覆う連続膜となっているためである。
FIG. 7 shows metal / calcium fluoride / p-type by depositing an aluminum electrode having an area of 0.08 cm 2 on each of the calcium fluoride thin films having the same film thickness formed on the p-type silicon substrate in the prior art and the present invention. The result of examining the current-voltage characteristics of a silicon diode is shown. Comparing the characteristics of the two, the calcium fluoride (a) according to the present invention is superior in electrical insulation than the prior art (b). This is because the calcium fluoride thin film according to the prior application technique is a discontinuous film having many holes, but the thin film of the present invention is a continuous film that uniformly covers the silicon substrate surface.

以上の結果から、本発明の弗化カルシウム薄膜は、シリコン基板の表面と平行に(111)面を有して結晶方位が膜面内で回転したドメインを含まない単結晶膜で、酸化亜鉛膜と接する界面に明白なファセットがない平坦膜としてシリコン基板の全面を覆っていると判断できる。   From the above results, the calcium fluoride thin film of the present invention is a single crystal film having a (111) plane parallel to the surface of the silicon substrate and including no domain in which the crystal orientation is rotated in the film plane. It can be judged that the entire surface of the silicon substrate is covered as a flat film having no obvious facet at the interface in contact with the substrate.

つぎに、この二つの方法で厚さ5nmの弗化カルシウム薄膜をシリコン基板上に成膜して、その上に酸化亜鉛膜をエピタキシャル成長した結果を説明する。具体的には、弗化カルシウム薄膜の成長後、真空を破らずに基板温度を250℃に下げ、まず亜鉛分子線を、その後に酸素ラジカルを追加照射して、酸化亜鉛膜の成長を開始した。酸化亜鉛膜の成長速度は3.3nm/分とした。厚さ10nmの酸化亜鉛膜を成長させた後、酸素ラジカルの照射を停止して一旦成長を中断した。その後、亜鉛分子線のみを照射しながら500℃まで基板温度を上昇させ、再び酸素ラジカルの照射を追加して成長を再開し、最終的に厚さ600nmの酸化亜鉛膜を得た。   Next, the result of epitaxially growing a zinc oxide film on a calcium fluoride thin film having a thickness of 5 nm formed on a silicon substrate by these two methods will be described. Specifically, after the growth of the calcium fluoride thin film, the substrate temperature was lowered to 250 ° C. without breaking the vacuum, and the zinc oxide film was first irradiated with the zinc molecular beam, and then the oxygen radical was added to start the growth of the zinc oxide film. . The growth rate of the zinc oxide film was 3.3 nm / min. After a 10 nm thick zinc oxide film was grown, oxygen radical irradiation was stopped and the growth was temporarily interrupted. Thereafter, the substrate temperature was raised to 500 ° C. while irradiating only the zinc molecular beam, and oxygen radical irradiation was added again to resume the growth, and finally a zinc oxide film having a thickness of 600 nm was obtained.

図8は、先願技術と本発明の二つの方法で、厚さ5nmの弗化カルシウム薄膜の上に成膜した酸化亜鉛膜の、{0001}を極点としたX線回折の極点図である。別途測定したθ/2θ法のX線回折では,いずれの酸化亜鉛膜からも(0001)面の回折ピークのみが観測されている。先願技術による図8の(b)では、ピーク分布がリング状になっているので、酸化亜鉛膜は面内に回転ドメインを含むc軸配向膜である。この結果は、弗化カルシウム薄膜の厚さが15nm未満の場合には酸化亜鉛膜中に回転ドメインが発生するという、先願技術が開示する内容と一致している。他方、本発明の方法で弗化カルシウム薄膜を成膜した図8の(a)の場合には、極点図形が酸化亜鉛の結晶構造に対応する6回対称になっており、面内回転ドメインが発生していないことが判る。   FIG. 8 is a pole figure of X-ray diffraction of a zinc oxide film formed on a calcium fluoride thin film having a thickness of 5 nm by the two methods of the prior application and the present invention, with {0001} as a pole. . In the X-ray diffraction of the θ / 2θ method measured separately, only the diffraction peak on the (0001) plane is observed from any zinc oxide film. In FIG. 8B according to the prior application technique, since the peak distribution is in a ring shape, the zinc oxide film is a c-axis oriented film including a rotational domain in the plane. This result is consistent with the content disclosed in the prior application technique that a rotating domain is generated in the zinc oxide film when the thickness of the calcium fluoride thin film is less than 15 nm. On the other hand, in the case of FIG. 8A in which a calcium fluoride thin film is formed by the method of the present invention, the pole figure is 6-fold symmetric corresponding to the crystal structure of zinc oxide, and the in-plane rotation domain is It turns out that it has not occurred.

図8の結果は弗化カルシウム薄膜の厚さを5nmとしているが、これより厚い場合、本発明による酸化亜鉛膜の6回対称図形は弗化カルシウム薄膜の厚さとともにさらにシャープになり、結晶性の改善が進むことが判った。このとき、弗化カルシウム薄膜の厚さが12nm程度までは酸化亜鉛膜に割れや剥離は全く、又15nmまではほとんど観測されなかった。しかし、さらに厚くした場合には徐々に割れを生ずるようになり、20nmを超えると、先願技術の半分程度に減少しているが、20%以上の割合で割れが発生した。この結果は、弗化カルシウム薄膜の厚さとともに熱応力が増加することを示している。   The result of FIG. 8 shows that the thickness of the calcium fluoride thin film is 5 nm, but if it is thicker than this, the six-fold symmetric pattern of the zinc oxide film according to the present invention becomes sharper with the thickness of the calcium fluoride thin film, and the crystallinity It was found that the improvement of At this time, no cracking or peeling was observed in the zinc oxide film until the thickness of the calcium fluoride thin film was about 12 nm, and almost no observation was observed up to 15 nm. However, when the thickness is further increased, cracks gradually occur. When the thickness exceeds 20 nm, the number of cracks is reduced to about half that of the prior application technique, but cracks occur at a rate of 20% or more. This result shows that the thermal stress increases with the thickness of the calcium fluoride thin film.

一方、弗化カルシウム薄膜の厚さを3nmよりも薄くすると、本発明による成長方法においても、酸化亜鉛膜の極点図形に回転ドメインからの回折が徐々に目立つようになった。   On the other hand, when the thickness of the calcium fluoride thin film was made thinner than 3 nm, diffraction from the rotating domain gradually became conspicuous in the pole figure of the zinc oxide film even in the growth method according to the present invention.

この変化は連続的で、回転ドメインの無い酸化亜鉛膜を得る下限厚さの決定は困難であったが、少なくとも1nm以上は必要と見積もられた。現状の技術レベルでは、厚さ1nm未満では基板全面を覆う連続膜となっていないためである。   This change was continuous, and it was difficult to determine the lower limit thickness for obtaining a zinc oxide film having no rotation domain, but it was estimated that at least 1 nm or more was necessary. This is because, at the current technical level, when the thickness is less than 1 nm, it is not a continuous film covering the entire surface of the substrate.

作製した酸化亜鉛膜の電気特性をホール測定で評価したところ、先願技術では、膜面に割れが入った場合は勿論、割れが入らない場合でも、室温における電気抵抗が非常に高いことが往々であった。また、測定できた場合でも、電子密度が1017cm-3程度であるときの電子移動度は高々数cm2・Vsで、サファイア基板上に成膜した高品質な酸化亜鉛
単結晶膜の典型的な値である80〜100cm2/Vsよりもはるかに小さかった。ただ
し、ドナー不純物のアルミニウムをドーピングして膜中の電子密度を1018〜1021cm-3に増加させれば、移動度は20〜30cm2/Vsに上昇した。この値は、アルミニウ
ムをドープして、サファイア基板上に成膜した高品質n形酸化亜鉛単結晶膜の典型値の1/2〜1/3である。このような特性は、弗化カルシウム薄膜の厚さが先願技術に開示の15〜100nmであっても、また、15nm以下の厚さであっても、共通して観測された。電子密度が低いときに移動度が極端に低下する現象は、結晶粒界等の構造欠陥を多く含む半導体の一般的性質である。このことから、先願技術で作製した酸化亜鉛膜は、割れの発生に至らない場合においても、構造欠陥を多量に含んでいると結論される。
When the electrical characteristics of the prepared zinc oxide film were evaluated by hole measurement, it was found that the electrical resistance at room temperature was very high in the prior application technology, not only when the film surface was cracked but also when it was not cracked. Met. Further, even when it can be measured, the electron mobility when the electron density is about 10 17 cm −3 is at most several cm 2 · Vs, which is typical of a high-quality zinc oxide single crystal film formed on a sapphire substrate. It was much smaller than the typical value of 80 to 100 cm 2 / Vs. However, if the electron density in the film was increased to 10 18 to 10 21 cm −3 by doping with donor impurity aluminum, the mobility increased to 20 to 30 cm 2 / Vs. This value is 1/2 to 1/3 of a typical value of a high-quality n-type zinc oxide single crystal film doped on aluminum and formed on a sapphire substrate. Such characteristics were commonly observed regardless of whether the thickness of the calcium fluoride thin film was 15 to 100 nm disclosed in the prior application technique or a thickness of 15 nm or less. The phenomenon that the mobility is extremely lowered when the electron density is low is a general property of a semiconductor containing many structural defects such as crystal grain boundaries. From this, it can be concluded that the zinc oxide film produced by the prior application technique contains a large amount of structural defects even when cracking does not occur.

一方、本発明による酸化亜鉛膜は、室温における電子密度が1017〜1018cm-3と若干高かったが、その移動度は20cm2/Vs程度であり、先願技術よりも大幅に改善さ
れた。また、この膜に酸素雰囲気中500℃で10分間の熱処理を施したところ、電子密度が1017cm-3台の中頃まで低下し、移動度は50〜80cm2/Vsに上昇した。こ
れらの値は、サファイア基板上の高品質酸化亜鉛単結晶膜のものとほとんど同レベルである。因みに、先願技術で成膜した場合は熱処理の効果がこれほど明白でなく、熱処理によって移動度が低下する、若しくは測定できなくなる場合もあった。上昇した場合も高々10cm2/Vsを超えることは無かった。先願技術と本発明のこのような差異は、熱処理
前の状態ですでに酸化亜鉛膜の品質に大きな違いがあることを意味しており、本発明の酸化亜鉛膜はc軸が基板面と垂直に配向して結晶方位が膜面内で回転したドメインを含まず、かつ、巨視的にも微視的にも連続した単結晶膜であることを示している。
On the other hand, the zinc oxide film according to the present invention has a slightly high electron density of 10 17 to 10 18 cm −3 at room temperature, but its mobility is about 20 cm 2 / Vs, which is a significant improvement over the prior application technique. It was. When this film was subjected to a heat treatment at 500 ° C. for 10 minutes in an oxygen atmosphere, the electron density decreased to the middle of 10 17 cm −3 and the mobility increased to 50-80 cm 2 / Vs. These values are almost the same as those of a high-quality zinc oxide single crystal film on a sapphire substrate. Incidentally, when the film was formed by the prior application technique, the effect of the heat treatment was not so obvious, and the mobility was sometimes lowered by the heat treatment or could not be measured. Even when it rose, it did not exceed 10 cm 2 / Vs at most. Such a difference between the prior application technique and the present invention means that there is already a great difference in the quality of the zinc oxide film before the heat treatment. The zinc oxide film of the present invention has a c-axis different from that of the substrate surface. This shows that the film is a single crystal film that does not include domains that are oriented vertically and whose crystal orientation is rotated in the film plane and that is macroscopically and microscopically continuous.

なお、ここでは、弗化カルシウム薄膜の初期の2分子層を650℃で、残りを250℃で成膜する2段階成長法を例示したが、初期層の厚さやそれぞれの成長における基板温度はこれに限定されるものではない。初期層の厚さは1分子層でも良く、3分子層以上であっても構わないが、1nmを超えると膜表面に島構造が発現して好ましくない。初期層の成膜温度は450℃〜900℃の範囲であれば良いが、この範囲より低いと結晶性が低下し、高いと再蒸発のために膜形成が進まなかった。   Here, the two-stage growth method in which the initial bimolecular layer of the calcium fluoride thin film is formed at 650 ° C. and the rest at 250 ° C. is exemplified, but the thickness of the initial layer and the substrate temperature in each growth are as follows. It is not limited to. The thickness of the initial layer may be one molecular layer or three or more molecular layers, but if it exceeds 1 nm, an island structure appears on the film surface, which is not preferable. The film formation temperature of the initial layer may be in the range of 450 ° C. to 900 ° C., but if it is lower than this range, the crystallinity is lowered, and if it is higher, film formation does not proceed due to reevaporation.

本発明における弗化カルシウム薄膜成長の重要な点は2段階成長法にあるのではなく、シリコン基板との格子不整合が少ない状態で、高度な結晶性を保ち、かつ島構造の発現が抑制された、均一な厚さの単結晶薄膜を得ることにある。このためには全体を低い温度で成長することが望ましいが、現状の技術レベルでは、温度とともに結晶性が低下することを防げなかった。本発明の実施例で説明した2段階成長法はこの課題を解決するもので、シリコン基板面と接する数分子層を高温で成膜する第1段階を経れば、その後の第2段階は低温でも高品質膜のエピタキシャル成長が可能となることを利用している。本実施例では、第2段階部分の基板温度が250℃の場合を例示したが、150〜400℃の範囲、さらに好適には200〜300℃の範囲で良好な結果が得られる。   The important point of calcium fluoride thin film growth in the present invention is not in the two-step growth method, but it maintains high crystallinity and suppresses the expression of island structures with little lattice mismatch with the silicon substrate. Another object is to obtain a single crystal thin film having a uniform thickness. For this purpose, it is desirable to grow the whole at a low temperature, but at the current technical level, the crystallinity cannot be prevented from decreasing with the temperature. The two-stage growth method described in the embodiment of the present invention solves this problem. After passing through the first stage in which several molecular layers in contact with the silicon substrate surface are formed at a high temperature, the subsequent second stage is performed at a low temperature. However, it utilizes the fact that epitaxial growth of high quality films is possible. In this embodiment, the case where the substrate temperature of the second stage portion is 250 ° C. is exemplified, but good results are obtained in the range of 150 to 400 ° C., more preferably in the range of 200 to 300 ° C.

また、本発明では純粋な酸化亜鉛について説明したが、開示した技術が酸化亜鉛ベースの混晶半導体、ならびに酸化亜鉛と酸化亜鉛ベースの混晶半導体を組み合わせたヘテロ接
合にも適用できることは明白である。ここで酸化亜鉛をベースにした混晶半導体とは例えばZnxMg1-xOやZnOx1-xを、そのヘテロ接合とは例えばZnO/ZnxMg1-xOを指し、いずれも酸化亜鉛膜をデバイスに適用するに際して重要な材料である。
Also, although pure zinc oxide has been described in the present invention, it is clear that the disclosed technique can be applied to zinc oxide-based mixed crystal semiconductors and heterojunctions combining zinc oxide and zinc oxide-based mixed crystal semiconductors. . Here, the mixed crystal semiconductor based on zinc oxide refers to, for example, Zn x Mg 1-x O or ZnO x S 1-x , and the heterojunction refers to, for example, ZnO / Zn x Mg 1-x O. This is an important material when a zinc oxide film is applied to a device.

単結晶シリコン基板と弗化カルシウム薄膜と酸化亜鉛膜との薄膜積層構造体の実施例を模式的に示す図であり、(a)は本発明の実施例、(b)は先願技術の実施例を示す。It is a figure which shows typically the Example of the thin film laminated structure of a single crystal silicon substrate, a calcium fluoride thin film, and a zinc oxide film, (a) is an Example of this invention, (b) is implementation of prior art application An example is shown. 本発明の一実施例の薄膜積層構造体を製造するための一例である分子線エピタキシャル装置の模式図である。It is a schematic diagram of the molecular beam epitaxial apparatus which is an example for manufacturing the thin film laminated structure of one Example of this invention. 単結晶シリコン基板上に弗化カルシウム薄膜を成長後に観測された反射高速電子線回折パターンを示す図であり、(a)は本発明の実施例、(b)は先願技術の実施例を示す。It is a figure which shows the reflection high-energy electron diffraction pattern observed after growing a calcium fluoride thin film on a single crystal silicon substrate, (a) shows the Example of this invention, (b) shows the Example of prior application technology. . 単結晶シリコン基板上に弗化カルシウム薄膜を形成する過程で観察された、膜の厚さと格子定数の関係を示す図であり、(a)は本発明の実施例、(b)は先願技術の実施例を示す。It is a figure which shows the relationship between the thickness of a film | membrane and a lattice constant observed in the process of forming a calcium fluoride thin film on a single crystal silicon substrate, (a) is an Example of this invention, (b) is prior art technology. Examples of 単結晶シリコン基板上に弗化カルシウム薄膜を成長後に観測された原子間力顕微鏡写真を示す図であり、(a)は本発明の実施例、(b)は先願技術の実施例を示す。It is a figure which shows the atomic force microscope photograph observed after growing a calcium fluoride thin film on a single crystal silicon substrate, (a) is an Example of this invention, (b) shows the Example of prior application technology. 単結晶シリコン基板上に成長させた弗化カルシウム薄膜からの{311}を極点とするX線回折の極点図であり、(a)は本発明の実施例、(b)は先願技術の実施例を示す。It is a pole figure of the X-ray diffraction which makes {311} the pole from the calcium fluoride thin film grown on the single crystal silicon substrate. (A) is an example of the present invention, (b) is an implementation of the prior application technique. An example is shown. アルミニウム/弗化カルシウム薄膜/p形シリコン基板のダイオード構造における電流電圧特性を示す図であり、(a)は本発明の実施例、(b)は先願技術の実施例を示す。It is a figure which shows the current-voltage characteristic in the diode structure of an aluminum / calcium fluoride thin film / p-type silicon substrate, (a) is an Example of this invention, (b) shows the Example of prior application technique. 単結晶シリコン基板上に弗化カルシウム薄膜を成長させその弗化カルシウム薄膜の上に成長させた酸化亜鉛膜からの{10−11}を極点としたX線回折の極点図形を示す図であり、(a)は本発明の実施例、(b)は先願技術の実施例を示す。It is a figure which shows the pole figure of the X-ray diffraction which made the calcium fluoride thin film grow on the single crystal silicon substrate, and made {10-11} the pole from the zinc oxide film grown on the calcium fluoride thin film, (A) shows an embodiment of the present invention, and (b) shows an embodiment of the prior application technique.

符号の説明Explanation of symbols

1 面方位(111)の単結晶シリコン基板
2 650℃で成膜した弗化カルシウム薄膜
3 250℃で成膜した弗化カルシウム薄膜
4 酸化亜鉛膜
5 弗化カルシウムを入れた坩堝
6 亜鉛を入れた坩堝
7 放電ガンを用いた酸素ラジカル源
8 高速反射電子線回折に使用する電子銃
9 高速反射電子線回折に使用する蛍光スクリーン
10 基板加熱装置
11 真空槽
12 排気系
DESCRIPTION OF SYMBOLS 1 Single crystal silicon substrate of (111) orientation 2 Calcium fluoride thin film formed at 650 ° C. 3 Calcium fluoride thin film formed at 250 ° C. 4 Zinc oxide film 5 Crucible containing calcium fluoride 6 Zinc was added Crucible 7 Oxygen radical source using discharge gun 8 Electron gun used for high-speed reflected electron diffraction 9 Phosphor screen used for high-speed reflected electron diffraction 10 Substrate heating device 11 Vacuum chamber 12 Exhaust system

Claims (3)

単結晶シリコン基板上に弗化カルシウム単結晶薄膜をエピタキシャル成長させ、前記弗化カルシウム単結晶薄膜上に酸化亜鉛単結晶膜をエピタキシャル成長させる方法であって、前記単結晶シリコン基板表面と接する最初の3分子層未満、厚さにして1nm未満の弗化カルシウム膜の層を、450℃〜900℃の温度範囲の高温で形成し、それ以降の弗化カルシウム膜を150℃〜400℃の温度範囲で形成することを特徴とする薄膜積層構造体の製造方法。   A method of epitaxially growing a calcium fluoride single crystal thin film on a single crystal silicon substrate and epitaxially growing a zinc oxide single crystal film on the calcium fluoride single crystal thin film, the first three molecules being in contact with the surface of the single crystal silicon substrate A calcium fluoride film layer having a thickness of less than 1 nm and a thickness of less than 1 nm is formed at a high temperature in a temperature range of 450 ° C. to 900 ° C., and a subsequent calcium fluoride film is formed in a temperature range of 150 ° C. to 400 ° C. A method for producing a thin film laminated structure, comprising: 単結晶シリコン基板上に弗化カルシウム単結晶薄膜をエピタキシャル成長させ、前記弗化カルシウム単結晶薄膜上に酸化亜鉛単結晶膜をエピタキシャル成長させる方法であって、前記単結晶シリコン基板表面と接する最初の3分子層未満、厚さにして1nm未満の弗化カルシウム膜の層を450℃〜700℃の温度範囲で形成し、それ以降の弗化カルシウム膜を200℃〜300℃の温度範囲で形成することを特徴とする薄膜積層構造体の製造方法。   A method of epitaxially growing a calcium fluoride single crystal thin film on a single crystal silicon substrate and epitaxially growing a zinc oxide single crystal film on the calcium fluoride single crystal thin film, the first three molecules being in contact with the surface of the single crystal silicon substrate Forming a calcium fluoride film layer having a thickness of less than 1 nm less than 1 nm in a temperature range of 450 ° C. to 700 ° C., and forming a subsequent calcium fluoride film in a temperature range of 200 ° C. to 300 ° C. A method for producing a thin film laminated structure. 前記エピタキシャル成長は、化学的気相堆積法、真空蒸着法、スパッタリング法、分子線エピタシシャル法及びレーザアブレーション法のいずれかの方法又はそれらの組合わせの方法で行うことを特徴とする請求項1又は2記載の薄膜積層構造体の製造方法。   3. The epitaxial growth is performed by any one of a chemical vapor deposition method, a vacuum evaporation method, a sputtering method, a molecular beam epitaxy method, a laser ablation method, or a combination thereof. The manufacturing method of the thin film laminated structure of description.
JP2003385344A 2003-11-14 2003-11-14 Method for manufacturing thin film laminated structure Expired - Fee Related JP3929964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385344A JP3929964B2 (en) 2003-11-14 2003-11-14 Method for manufacturing thin film laminated structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385344A JP3929964B2 (en) 2003-11-14 2003-11-14 Method for manufacturing thin film laminated structure

Publications (2)

Publication Number Publication Date
JP2005145753A JP2005145753A (en) 2005-06-09
JP3929964B2 true JP3929964B2 (en) 2007-06-13

Family

ID=34693441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385344A Expired - Fee Related JP3929964B2 (en) 2003-11-14 2003-11-14 Method for manufacturing thin film laminated structure

Country Status (1)

Country Link
JP (1) JP3929964B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009532B1 (en) 2007-02-26 2011-01-18 주식회사 엘지화학 Zinc oxide-based multilayer thin film and method for preparing the same
JP5272390B2 (en) * 2007-11-29 2013-08-28 豊田合成株式会社 Group III nitride semiconductor manufacturing method, group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp
JP6876895B2 (en) * 2015-02-25 2021-05-26 株式会社Flosfia Crystalline oxide semiconductor film, semiconductor device
JP6562248B2 (en) * 2015-05-12 2019-08-21 国立研究開発法人情報通信研究機構 Method for forming superconducting tunnel junction element

Also Published As

Publication number Publication date
JP2005145753A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
KR100532277B1 (en) ELECTRODE FOR P-TYPE SiC
US9200379B2 (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
TWI407491B (en) Method for separating semiconductor and substrate
US7781067B2 (en) Aligned crystalline semiconducting film on a glass substrate and method of making
CN102623521A (en) Method for preparing cuprous oxide film
JP2019524982A (en) IIIA nitride growth system and method
CN112802890A (en) Semiconductor epitaxial structure and application and manufacturing method thereof
JP2013539234A (en) Microelectronic structure including cuprous oxide semiconductor with improved pn heterojunction
JP3929964B2 (en) Method for manufacturing thin film laminated structure
KR20090023094A (en) Manufacture method for zno-containing compound semiconductor layer
WO2006073189A1 (en) Functional device and method for forming oxide material
JP4036073B2 (en) Quartz substrate with thin film
JP5296995B2 (en) Semiconductor device, semiconductor device manufacturing method, light emitting device, and electronic device
JPH11243056A (en) Manufacture of iii-group nitride semiconductor
JP2012136759A (en) Ito film, method of manufacturing the ito film, semiconductor light-emitting element, and method of manufacturing the light-emitting element
JPH04233277A (en) Transistor provided with layer of cubic boron nitride
TW200907124A (en) Method for forming group-III nitride semiconductor epilayer on silicon substrate
CN114068444A (en) Protection structure for gallium nitride high-temperature annealing and application thereof
JP4048316B2 (en) Manufacturing method and manufacturing apparatus of zinc oxide single crystal film on single crystal silicon substrate and laminated structure
JP3956343B2 (en) Manufacturing method of semiconductor device
CN110993504A (en) Ga based on SiC substrate2O3Preparation method of film and Ga based on SiC substrate2O3Film(s)
US20140202378A1 (en) METHOD FOR PRODUCING AN ORGANISED NETWORK OF SEMICONDUCTOR NANOWIRES, IN PARTICULAR MADE OF ZnO
Kim et al. Effect of Oxygen Plasma on β-Ga2O3 Deep Ultraviolet Photodetectors Fabricated by Plasma-Assisted Pulsed Laser Deposition
RU2399986C1 (en) METHOD OF PREPARING TRANSPARENT OHMIC CONTACT STRUCTURE BeO/Au/BeO/p-GaN
WO2012032960A1 (en) Method for producing group iii nitride semiconductor light emitting element and group iii nitride semiconductor light emitting element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees