JP4035924B2 - 単結晶直径の制御方法及び結晶成長装置 - Google Patents

単結晶直径の制御方法及び結晶成長装置 Download PDF

Info

Publication number
JP4035924B2
JP4035924B2 JP19697699A JP19697699A JP4035924B2 JP 4035924 B2 JP4035924 B2 JP 4035924B2 JP 19697699 A JP19697699 A JP 19697699A JP 19697699 A JP19697699 A JP 19697699A JP 4035924 B2 JP4035924 B2 JP 4035924B2
Authority
JP
Japan
Prior art keywords
single crystal
diameter
temperature
heating means
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19697699A
Other languages
English (en)
Other versions
JP2001019588A (ja
Inventor
匡彦 水田
啓一 高梨
正人 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP19697699A priority Critical patent/JP4035924B2/ja
Publication of JP2001019588A publication Critical patent/JP2001019588A/ja
Application granted granted Critical
Publication of JP4035924B2 publication Critical patent/JP4035924B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は単結晶直径の制御方法及び結晶成長装置に関し、より詳細には例えば半導体材料として使用されるシリコン単結晶のような単結晶を成長させる際、前記単結晶の直径を制御しつつ引き上げるための単結晶直径の制御方法及び結晶成長装置に関する。
【0002】
【従来の技術】
単結晶を成長させるには種々の方法があるが、この中でもっとも代表的なチョクラルスキー法(以下、CZ法と記す)の場合、例えばシリコン(以下、Siと記す)溶融液の表面に種結晶を接触させて引き上げ速度を制御しながら引き上げることにより、円柱形状をしたSi単結晶を成長させている。この引き上げられるSi単結晶は後に、外周部分を研削することにより、円柱形状のインゴットに仕上げられるので、引き上げられるSi単結晶の水平断面における直径が変動すると製品歩留りが低下する。このように製品歩留まりを考慮すれば、引き上げられる単結晶は直胴部全体に亙って同一の直径値を維持していることが望ましい。
【0003】
そのため、従来から単結晶の引き上げにおいては直径制御が実施されており、CZ法における直径制御方法としては、単結晶直径の実測値と目標直径値との偏差を引き上げ速度にフィ−ドバックし、補助的にヒ−タ温度を調整する方法が提案されている。特開平4−219388号公報には、フィ−ドバック制御系を設計し、引き上げ速度のみを操作量とする制御方法が開示されている。
【0004】
また、特開平4−108687号公報には、引き上げ中の単結晶の重量を所定時間ごとに測定し、その単結晶重量の変化量から単結晶外径を算出し、算出された単結晶外径と目標直径値との偏差に応じて加熱手段であるヒ−タの温度を制御することにより単結晶直径の制御を行う方法が開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記した単結晶の引き上げ速度を操作量とする単結晶直径の制御方法では、単結晶直径を制御するために引き上げ速度を調整することから、単結晶の引き上げに伴って引き上げ速度を変動させることになり、結晶成長あるいは結晶欠陥に大きく影響を及ぼす熱的条件も変動させなけばならなくなる。従って、同一直径の単結晶が得られたとしても、引き上げ速度の変動に合わせて単結晶成長過程の熱的条件を変動させることから、結晶欠陥が生じ易くなり、高品質の単結晶が得られにくいといった課題があった。
【0006】
また一方、加熱手段であるヒ−タの温度を制御して単結晶の直径を制御する方法においては、ヒ−タ温度を変更してからその効果が現れて直径が変化し始めるまでの間にいわゆる無駄時間が存在するため応答性が悪く、単結晶の直径制御性能も悪く、あまり実用的ではないといった課題があった。
【0007】
本発明は上記課題に鑑みなされたものであり、結晶欠陥の少ない高品質の単結晶を、単結晶の直径を精度良く制御しながら、しかも効率的に製造することができる単結晶直径の制御方法及び結晶成長装置を提供することを目的としている。
【0008】
【課題を解決するための手段及びその効果】
上記目的を達成するために本発明に係る単結晶直径の制御方法(1)は、シリコン単結晶製造プロセスにおいて直胴部全体に亙って結晶欠陥品質が安定するよう引き上げ速度を一定に固定して引き上げる際に目標直径を維持して単結晶を成長させる単結晶直径の制御方法であって、
結晶用原料を溶融させる坩堝の周囲に配設された加熱手段温度の操作量を設定する際に、
前記加熱手段をステップ状に変化させた場合の前記単結晶直径値の応答をあらかじめ求めて一次遅れ系の伝達関数を仮定するとともに、前記単結晶直径の実測値と記憶されている前記目標直径値との偏差をフィ−ドバックして前記操作量を算出する主ル−プに加え、
前記単結晶と溶融液との界面近傍に現れる周囲よりも高輝度のフュージョンリングの幅の経時的な変動が前記単結晶直径に及ぼす影響量をあらかじめ求め、連続的に検出した前記フュージョンリングの幅の経時的な変動から求めた前記操作量を足しあわせてフィ−ドバックするマイナ−ル−プにより前記加熱手段温度の操作量を演算することにより、単結晶の直径値を目標直径値に制御することを特徴としている。
また、本発明に係る単結晶直径の制御方法(2)は、前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答特性を、前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答を調べるステップ応答試験を実施することにより求めることを特徴としている。
【0009】
溶融液から単結晶を引き上げ成長させる場合、図1に示すように、単結晶20と溶融液13との界面22の高さHkは、溶融液表面の高さHyより高くなっており、表面張力により界面端部と溶融液表面との間にメニスカス角(傾斜角)θを有する周囲よりも高輝度のリング状部分(以下、フュージョンリングと記す)21が形成される。フュージョンリング21は溶融液表面に対して傾斜しており、石英坩堝内壁面からの放射光が反射し易いため、溶融液表面の他の箇所に比べて明るく輝いて見える。このフュージョンリング21を撮像して画像処理を施すことにより、フュージョンリング幅Wを求めることは可能である。
フュージョンリング幅Wは単結晶20の直径が増大する前に広がり、単結晶20の直径が減少する前に狭まり、フュージョンリング幅Wの経時的な変動情報は単結晶直径の変動の先行情報として使用し得る。
【0010】
上記単結晶直径の制御方法によれば、単結晶直径の実測値と目標直径値との偏差に加え、単結晶直径の変動の先行情報としてのフュージョンリング幅の経時的な情報を基に、前記加熱手段の温度を設定するので、従来問題となっていた加熱手段の温度を設定してから単結晶の直径が変動するまでの応答時間が大きいという、いわゆる応答遅れの問題を解決することができる。
すなわち、単結晶の直径の実測値が判明する前に、フュージョンリング幅の変動情報を用いて単結晶直径の将来値を精度良く予測することが可能となるため、応答遅れの問題を解決することができる。また、単結晶直径の制御に引き上げ速度を使用しないことから、引き上げ速度をほぼ一定とした安定した単結晶の引き上げが可能となり、結晶欠陥の少ない高品質の単結晶を得ることができる。
【0011】
また、本発明に係る単結晶成長装置(1)は、結晶用原料を溶融させる坩堝と、
該坩堝の周囲に配設された加熱手段と、
前記坩堝内の溶融液よりシリコン単結晶を成長させながら引き上げる昇降手段と、
成長する前記単結晶の直径を計測する計測手段と、
前記単結晶と前記溶融液との界面近傍に表れる周囲よりも高輝度のフュージョンリングの幅を検出する検出手段と、
前記単結晶直径の実測値と目標直径値との偏差と、前記高輝度の前記フュージョンリングの幅の経時的な情報とを基に前記加熱手段の設定温度を算出する温度算出手段と、
算出された前記設定温度に基づいて前記加熱手段への供給電力量を制御する制御手段とを備え、
前記温度算出・制御手段が、あらかじめ求めた前記フュージョンリングの幅の経時的な変動が前記単結晶直径に及ぼす影響量から、前記検出手段で検出した前記単結晶直径の実測値と記憶されている目標直径値との偏差をフィ−ドバックして前記加熱手段温度の操作量を算出する主ル−プに加え、あらかじめ求めておいた前記フュージョンリング幅の経時的な変動が前記単結晶直径に及ぼす影響量から、前記検出手段で検出したフュージョンリングの幅により操作すべき前記加熱手段温度の操作量を足しあわせるマイナ−ル−プを挿入してフィ−ドバックする機能を有するものであることを特徴としている。
また、本発明に係る単結晶成長装置(2)は、上記単結晶成長装置(1)において、前記温度算出・制御手段には、前記フュージョンリングの幅の経時的な変動が前記単結晶直径に及ぼす影響量として、前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答を調べるステップ応答試験を実施することにより求められた前記応答特性が記憶されていることを特徴としている。
【0012】
上記した結晶成長装置によれば、溶融液と成長する単結晶との界面近傍に形成されるフュージョンリングの幅を検出し、単結晶直径の変動の先行情報となるフュージョンリング幅の経時的な情報に基づいて前記加熱手段への供給電力量を制御しつつ前記単結晶を引き上げることができるので、従来問題となっていた前記加熱手段の温度を設定してから単結晶の直径が変動するまでの応答時間が大きいという、いわゆる応答遅れの問題を解決しながら、しかも引き上げ速度をほぼ一定とした安定した単結晶の引き上げが可能となり、結晶欠陥の少ない高品質の単結晶を効率的に製造することができる。
【0013】
【発明の実施の形態】
以下、本発明に係る単結晶直径の制御方法及び結晶成長装置の実施の形態を図面に基づいて説明する。
図2は実施の形態に係る結晶成長装置を摸式的に示した断面図であり、図中11は炉本体を示している。炉本体11内の略中央部には有底円筒形状をした石英坩堝12aが配設されており、石英坩堝12a内には単結晶用原料を溶融させた溶融液13が充填されるようになっている。石英坩堝12aは黒鉛製サセプタ12bにより保持されており、これら石英坩堝12aと黒鉛製サセプタ12bとにより坩堝12が構成されている。黒鉛製サセプタ12b下部には回転軸14が取り付けられ、回転軸14の下部には坩堝回転手段と坩堝昇降手段(ともに図示せず)とが接続されており、これら坩堝回転・昇降手段により坩堝12が所定速度で回転させられるとともに、上下方向に駆動されるようになっている。また黒鉛製サセプタ12bの外周には円筒形状をしたヒータ15aが配設され、ヒータ15aには電力供給手段15bが接続されており、これらヒータ15a及び電力供給手段15bを含んで加熱手段15が構成されている。そして電力供給手段15bからの供給電力量を変更することにより、ヒータ15aの温度が調整され、坩堝12内における溶融液13の温度が調節されるようになっている。さらにヒータ15aと炉本体11との間には保温筒15cが配設されている。
【0014】
炉本体11の上方には中空円筒形状をしたケーシング11aが形成されており、ケーシング11a内における坩堝12の回転軸14の同軸上にはワイヤ17が垂下され、ワイヤ17下端部にはシードホルダ17aが装着され、シードホルダ17aには種結晶17bが取り付けられるようになっている。ケーシング11a上部にはワイヤ回転装置18を介してワイヤ引き上げ装置19が配設され、ワイヤ回転装置18及びワイヤ引き上げ装置19はそれぞれモータ18a、19aを備えており、モータ18aを駆動するとワイヤ17が回転させられ、モータ19aを駆動するとワイヤ17が上下方向に移動するようになっている。これらワイヤ17、ワイヤ回転装置18、ワイヤ引き上げ装置19等を含んで昇降手段16が構成されている。
【0015】
炉本体11上部には観測窓11bが形成され、観測窓11bを挟んで単結晶20と対向する所定箇所に2次元のCCDカメラ31が配設されており、CCDカメラ31は画像処理部32に接続されている。これらCCDカメラ31と画像処理部32とを含んで計測・検出手段30が構成されており、単結晶20の周囲に形成されるフュージョンリング21近傍における輝度分布を、CCDカメラ31により撮像するようになっている。
【0016】
そして図3に示したように、この輝度信号が画像処理部32において処理され、所定のしきい値Lにおける2個の輝度強度間の距離が演算され、フュージョンリング21の幅Wが連続的に検出されるようになっている。また計測・検出手段30は前記輝度信号の最大レベルの変化に伴って前記しきい値が補正されるように構成されており、この幅Wが輝度強度により影響を受けるのが防止されるようになっている。また計測・検出手段30は単結晶20の直径Dも測定し得るようになっている。
【0017】
計測・検出手段30は温度算出・制御手段33に接続されており、温度算出・制御手段33は、フュージョンリング幅及び単結晶直径の実測値を取り込む取り込み手段と、単結晶直径の実測値と目標直径値とを比較してヒータ温度の操作量を算出し、それに加えてフュージョンリング幅Wの実測値と所定時間前のフュージョンリング幅Wの実測値とを比較してヒ−タ温度の操作量を算出する温度算出部と、算出されたヒ−タ温度の操作量に基づいて必要とされる供給電力量の制御信号を電力供給手段15bに出力する出力部とを備えている。
【0018】
温度算出・制御手段33は電力供給手段15bに接続されるとともに、モータ19aに接続され、温度算出・制御手段33において演算されたフュージョンリング幅Wの変動状況に応じて必要とされる供給電力量、引き上げ速度情報が加熱手段15及び昇降手段16に出力されるようになっている。
【0019】
このように構成された装置を用い、例えば単結晶20を所定の目標直径DS になるように成長させ、その後できるだけ目標直径DS を維持して単結晶20を成長させる場合、まず石英坩堝12a内にSi単結晶用原料を充填し、加熱手段15により坩堝12を所定温度になるまで加熱し、溶融液13を形成する。次に坩堝12を所定速度で回転させるとともに、種結晶17bを溶融液13の表面に接触させる。そしてワイヤ17を所定速度で回転させつつ引き上げ、溶融液13が凝固して形成される単結晶20を成長させる。
【0020】
次に計測・検出手段30により、ショルダが形成されて単結晶20が所定の目標直径DS にまで成長したことを確認した後、前記引き上げ速度を所定値に設定・固定する。次にフュージョンリング21の幅Wを連続的に検出しながら、フュージョンリング幅Wの変動状況に応じて電力供給手段15bによる供給電力量を調整し、単結晶20の直径Dが所定の目標直径DS に維持されるように制御する。なお単結晶20が引き上げられるにつれ、溶融液13の上面レベルが低下して単結晶20の直径Dが変動するのを防ぐため、前記坩堝昇降手段を用い、溶融液13の上面レベルが常に一定の高さに維持されるように制御する。
【0021】
図4は温度算出・制御手段33の機能を説明するためのブロック図であり、温度算出・制御手段33は、単結晶直径の実測値と記憶されている目標直径値との偏差を加算点1にフィ−ドバックしてヒータ温度の操作量を算出する主ル−プに加え、あらかじめ求めておいたフュージョンリング幅の経時的な変動が単結晶直径に及ぼす影響量から、操作すべきヒ−タ温度の操作量を加算点2に足しあわせる機能を有することを特徴としている。すなわち、主ル−プにフュージョンリング幅Wの変動量からヒ−タ温度操作量を演算するマイナ−ル−プを挿入して加算点2にフィ−ドバックする構成となっている。
【0022】
なお、ヒ−タ温度が単結晶20の直径に及ぼす影響としては、無駄時間のある一次遅れ系の伝達関数を仮定する。また、プロセスの時定数及び無駄時間は、ヒ−タ温度をステップ状に変化させた場合の単結晶直径値の応答を調べるステップ応答試験を実施することにより求める。このように求めた応答特性を基に、例えば改良型限界感度法(比例制御で安定限界を越えて発振状態となるときの比例ゲイン及び限界周期と関連付けてPID制御のパラメ−タを調整するいわゆる限界感度法において、無駄時間を限界周期で除した基準化無駄時間と伝達特性のタイプとから予め決定した乗数因子を用いるパラメ−タ調整方法)により、コントロ−ラC1 、C2 を設計する。
【0023】
図5は、計算機によるシミュレ−ションにより得られた結果を示す線図であり、外乱としてステップ状の変化を与えた場合の応答特性を示しており、単純なフィ−ドバック制御系の応答特性(曲線A)に比べて、フュージョンリング幅の経時的な変動情報を利用した制御系の応答特性(曲線B)では、優れた特性が得られており、フュージョンリング幅の経時的な変動情報を利用することにより、外乱抑制に優れた単結晶直径の制御が可能となり、直径制御特性が大幅に向上することが明らかとなった。
【0024】
上記説明から明らかなように、実施の形態に係る単結晶直径の制御方法によれば、単結晶直径の実測値と目標直径値との偏差に加え、単結晶20と溶融液13との界面近傍に現れるフュージョンリング幅Wの経時的な情報を基に、加熱手段15の温度を設定するので、従来問題となっていた加熱手段15の温度を設定してから単結晶20の直径が変動するまでの応答時間が大きいという、いわゆる応答遅れの問題を解決することができる。
また、単結晶直径の制御に引き上げ速度を使用しないことから、引き上げ速度をほぼ一定とした安定した単結晶20の引き上げが可能となり、結晶欠陥の少ない高品質の単結晶20を得ることができる。
【0025】
また実施の形態に係る結晶成長装置によれば、溶融液13と成長する単結晶20との界面近傍に形成されるフュージョンリング21の幅Wを検出し、単結晶直径の変動の先行情報となるフュージョンリング幅Wの経時的な情報に基づいて加熱手段15への供給電力量を制御しつつ単結晶20を引き上げることができるので、従来問題となっていた加熱手段15の温度を設定してから単結晶20の直径が変動するまでの応答時間が大きいという、いわゆる応答遅れの問題を解決しながら、引き上げ速度をほぼ一定とした安定した単結晶20の引き上げが可能となり、結晶欠陥の少ない高品質の単結晶20を効率的に製造することができる。
【0026】
なお、上記した実施の形態では計測・検出手段30に2次元のCCDカメラ31が用いられた場合について説明したが、1次元のCCDカメラを用いて走査を行わせるようにしてもよい。
【0027】
また、上記した実施の形態では、Si単結晶を成長させる場合について説明したが、CZ法を用いてSi以外の単結晶を成長させる場合にも本発明を同様に適用することができる。
【図面の簡単な説明】
【図1】引き上げられた単結晶と溶融液との界面近傍を示す断面図である。
【図2】本発明の実施の形態に係る結晶成長装置を摸式的に示した断面図である。
【図3】実施の形態に係る結晶成長装置の検出手段により検出されるフュージョンリング近傍における輝度分布と、フュージョンリングの幅との関係を模式的に示した曲線図である。
【図4】実施の形態に係る温度算出・制御手段の機能を示すブロック図である。
【図5】計算機によるシミュレ−ションにより得られた外乱を与えた場合の実施例及び比較例に係る応答特性結果を示す線図である。
【符号の説明】
12 坩堝
13 溶融液
15 加熱手段
16 昇降手段
20 単結晶
21 フュージョンリング
30 計測・検出手段
33 温度算出・制御手段

Claims (4)

  1. シリコン単結晶製造プロセスにおいて直胴部全体に亙って結晶欠陥品質が安定するよう引き上げ速度を一定に固定して引き上げる際に目標直径を維持して単結晶を成長させる単結晶直径の制御方法であって、
    結晶用原料を溶融させる坩堝の周囲に配設された加熱手段温度の操作量を設定する際に、
    前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答をあらかじめ求めておき一次遅れ系の伝達関数を仮定するとともに、前記単結晶直径の実測値と記憶されている前記目標直径値との偏差をフィ−ドバックして前記操作量を算出する主ル−プに加え、
    前記単結晶と溶融液との界面近傍に現れる周囲よりも高輝度のフュージョンリングの幅の経時的な変動が前記単結晶直径に及ぼす影響量をあらかじめ求めておき、連続的に検出した前記フュージョンリングの幅の経時的な変動から求めた前記操作量を足しあわせてフィ−ドバックするマイナ−ル−プにより前記加熱手段温度の操作量を演算することにより、単結晶の直径値を目標直径値に制御することを特徴とする単結晶直径の制御方法。
  2. 前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答特性を、前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答を調べるステップ応答試験を実施することにより求めることを特徴とする請求項1記載の単結晶直径の制御方法。
  3. 結晶用原料を溶融させる坩堝と、
    該坩堝の周囲に配設された加熱手段と、
    前記坩堝内の溶融液よりシリコン単結晶を成長させながら引き上げる昇降手段と、
    成長する前記単結晶の直径を計測する計測手段と、
    前記単結晶と前記溶融液との界面近傍に表れる周囲よりも高輝度のフュージョンリングの幅を検出する検出手段と、
    前記単結晶直径の実測値と目標直径値との偏差と、前記高輝度の前記フュージョンリングの幅の経時的な情報とを基に前記加熱手段の設定温度を算出する温度算出手段と、
    算出された前記設定温度に基づいて前記加熱手段への供給電力量を制御する制御手段とを備え、
    前記温度算出・制御手段が、あらかじめ求めておいた前記フュージョンリングの幅の経時的な変動が前記単結晶直径に及ぼす影響量から、前記検出手段で検出した前記単結晶直径の実測値と記憶されている目標直径値との偏差をフィ−ドバックして前記加熱手段温度の操作量を算出する主ル−プに加え、あらかじめ求めておいた前記フュージョンリング幅の経時的な変動が前記単結晶直径に及ぼす影響量から、前記検出手段で検出したフュージョンリングの幅により操作すべき前記加熱手段温度の操作量を足しあわせるマイナ−ル−プを挿入してフィ−ドバックする機能を有するものであることを特徴とする結晶成長装置。
  4. 前記温度算出・制御手段には、前記フュージョンリングの幅の経時的な変動が前記単結晶直径に及ぼす影響量として、前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答を調べるステップ応答試験を実施することにより求められた前記応答特性が記憶されていることを特徴とする請求項3記載の単結晶成長装置。
JP19697699A 1999-07-12 1999-07-12 単結晶直径の制御方法及び結晶成長装置 Expired - Lifetime JP4035924B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19697699A JP4035924B2 (ja) 1999-07-12 1999-07-12 単結晶直径の制御方法及び結晶成長装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19697699A JP4035924B2 (ja) 1999-07-12 1999-07-12 単結晶直径の制御方法及び結晶成長装置

Publications (2)

Publication Number Publication Date
JP2001019588A JP2001019588A (ja) 2001-01-23
JP4035924B2 true JP4035924B2 (ja) 2008-01-23

Family

ID=16366780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19697699A Expired - Lifetime JP4035924B2 (ja) 1999-07-12 1999-07-12 単結晶直径の制御方法及び結晶成長装置

Country Status (1)

Country Link
JP (1) JP4035924B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110685007A (zh) * 2019-10-11 2020-01-14 浙江晶盛机电股份有限公司 直拉法生长硅单晶过程中测量晶体直径的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955237B2 (ja) * 2005-08-12 2012-06-20 Sumco Techxiv株式会社 無駄時間をもつ時変系制御対象のための制御システム及び方法
JP5116222B2 (ja) * 2005-08-12 2013-01-09 Sumco Techxiv株式会社 単結晶製造装置及び方法
JP4918897B2 (ja) * 2007-08-29 2012-04-18 株式会社Sumco シリコン単結晶引上方法
JP4947044B2 (ja) * 2008-12-16 2012-06-06 株式会社Sumco 単結晶引上げ装置の融液表面位置検出装置及びその単結晶引上げ装置
JP5446277B2 (ja) * 2009-01-13 2014-03-19 株式会社Sumco シリコン単結晶の製造方法
JP5182234B2 (ja) * 2009-06-22 2013-04-17 株式会社Sumco シリコン単結晶の製造方法
DE102009056638B4 (de) * 2009-12-02 2013-08-01 Siltronic Ag Verfahren zum Ziehen eines Einkristalls aus Silizium mit einem Abschnitt mit gleich bleibendem Durchmesser
JP5854757B2 (ja) * 2011-10-21 2016-02-09 三菱マテリアルテクノ株式会社 単結晶インゴット直径制御方法
JP5716689B2 (ja) * 2012-02-06 2015-05-13 信越半導体株式会社 シリコン単結晶の製造方法及びシリコン単結晶の製造装置
KR101874712B1 (ko) 2016-12-07 2018-07-04 에스케이실트론 주식회사 잉곳 성장 제어장치 및 그 제어방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110685007A (zh) * 2019-10-11 2020-01-14 浙江晶盛机电股份有限公司 直拉法生长硅单晶过程中测量晶体直径的方法
CN110685007B (zh) * 2019-10-11 2021-02-12 浙江晶盛机电股份有限公司 直拉法生长硅单晶过程中测量晶体直径的方法

Also Published As

Publication number Publication date
JP2001019588A (ja) 2001-01-23

Similar Documents

Publication Publication Date Title
CN109196144B (zh) 单晶硅的制造方法及装置
EP2011905B1 (en) Method for measuring distance between reference reflector and melt surface
US6241818B1 (en) Method and system of controlling taper growth in a semiconductor crystal growth process
US9260796B2 (en) Method for measuring distance between lower end surface of heat insulating member and surface of raw material melt and method for controlling thereof
CN111690980A (zh) 一种用于放肩过程的晶体生长控制方法、装置、***及计算机存储介质
KR20020081287A (ko) 성장 속도 및 직경 편차를 최소화하도록 실리콘 결정의성장을 제어하는 방법
JP4035924B2 (ja) 単結晶直径の制御方法及び結晶成長装置
KR100669300B1 (ko) 다결정 실리콘 충전물로부터 용융된 실리콘 용융체를제조하는 방법 및 장치
KR20120030028A (ko) 단결정 인상 장치 및 단결정 인상 방법
JP6939714B2 (ja) 融液面と種結晶の間隔測定方法、種結晶の予熱方法、及び単結晶の製造方法
JP3704710B2 (ja) 種結晶着液温度の設定方法及びシリコン単結晶の製造装置
JP3867476B2 (ja) シリコン単結晶の製造方法及びシリコン単結晶の製造装置
JP2003176199A (ja) 単結晶引上げ装置および引上げ方法
JP3484758B2 (ja) 結晶成長装置及び結晶成長方法
KR101540863B1 (ko) 잉곳 직경 제어장치 및 이를 포함하는 잉곳성장장치 및 그 방법
KR102064617B1 (ko) 잉곳 성장 제어장치 및 이에 적용되는 잉곳 성장 제어방법
CN216304033U (zh) 监控单晶炉中硅熔液的液面的状态及坩埚的状态的***
WO2022075061A1 (ja) 単結晶の製造方法
JP3611364B2 (ja) 単結晶の直径制御方法
US20240125006A1 (en) Method for detecting surface state of raw material melt, method for producing single crystal, and apparatus for producing cz single crystal
JPS61122187A (ja) 単結晶引上機
JP3670504B2 (ja) シリコン単結晶製造方法
KR101379798B1 (ko) 단결정 실리콘 잉곳 성장 장치 및 방법
KR101607162B1 (ko) 단결정 성장 방법
JP2004099346A (ja) 単結晶引上げ装置及び単結晶引上げ方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4035924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term