JP4033361B2 - Support structure for elevator guide rails in base-isolated buildings - Google Patents

Support structure for elevator guide rails in base-isolated buildings Download PDF

Info

Publication number
JP4033361B2
JP4033361B2 JP20245497A JP20245497A JP4033361B2 JP 4033361 B2 JP4033361 B2 JP 4033361B2 JP 20245497 A JP20245497 A JP 20245497A JP 20245497 A JP20245497 A JP 20245497A JP 4033361 B2 JP4033361 B2 JP 4033361B2
Authority
JP
Japan
Prior art keywords
rail
guide rail
guide rails
reinforcing
elevator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20245497A
Other languages
Japanese (ja)
Other versions
JPH1135247A (en
Inventor
正宏 西村
正人 森
佳人 酒井
明男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP20245497A priority Critical patent/JP4033361B2/en
Publication of JPH1135247A publication Critical patent/JPH1135247A/en
Application granted granted Critical
Publication of JP4033361B2 publication Critical patent/JP4033361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • B66B7/028Guideways; Guides with earthquake protection devices

Landscapes

  • Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、免震建物のエレベータ用ガイドレールの支持構造に関するものである。
【0002】
【従来の技術】
建物の中間に免震装置を備えた構造が開発されている。その場合に免震階の上下では水平変位が生じるから、従来のエレベータの構造ではその通過が困難になってしまう。
【0003】
本発明は上記したような従来の問題を解決するためになされたもので、エレベータの運転中に地震が発生して免震階の上階と下階とで水平変位が生じても、エレベータが破損したり落下したりせず、地震後には通常の運転を再開することができる、免震建物のエレベータ用ガイドレールの支持構造を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の免震建物のエレベータ用ガイドレールの支持構造は、中間の階層に免震装置を備えた建物において、エレベータシャフトにはその上端から下端までエレベータのガイドレールを設置し、ガイドレールは免震階を含む2層、あるいは数層においては躯体への固定を行わず、水平変位に応じて弾性変形を許容する構成とし、この躯体への固定を行わない区間を層間変位吸収範囲とし、少なくとも前記層間変位吸収範囲において補強レールを前記ガイドレールと補強レールを拘束せずに接近して平行に設置し、補強レールは、前記ガイドレールの前記層間変位吸収範囲では前記ガイドレールと接合せずに内部応力的に相互に独立させて設置した、免震建物のエレベータ用ガイドレールの支持構造を特徴としたものである。
【0005】
【本発明の実施の態様】
以下図面を参照しながら本発明の免震建物のエレベータ用ガイドレールの支持構造の実施例について説明する。
【0006】
<イ>免震建物。
本発明のエレベータを設置する建物は、図1に示すように中間の階層に免震装置1を備えてある。免震装置1として例えばゴム製の短柱など公知の構成を利用することができる。
この免震装置1の存在によって、地震時にはその上下の階層において水平方向の層間変位が発生する。
【0007】
<ロ>ガイドレール。
この建物のエレベータシャフトにはその上端から下端までエレベータのガイドレール2を設置し、このガイドレール2に沿ってかご3が昇降する構成である。このガイドレール2は従来の構造と同様のものである。ただしガイドレール2は免震階を含む複数階以外の位置において躯体に固定してその間を層間変位吸収範囲として構成する。すなわち免震階を含んだ2層、あるいは数層においては躯体への固定を行わず、この躯体への固定を行わない区間を層間変位吸収範囲とし、水平変位応じて弾性変形を許容する構成を採用する。ガイドレール2の中間には、水平の枠であるタイバンド4を取り付けて地震時にもガイドレール2の間隔を確保する。
【0008】
<ハ>補強レール。
このガイドレール2に添わせて、層間変位吸収範囲に補強レールを平行に設置する。この補強レール4は層間変位吸収範囲内でガイドレール2と一体化させず、相互に独立した状態で接近させて設置する。
そのための構成として例えば、補強レール4はガイドレール2と同一の形状の型鋼をフランジを向き合わせて配置し(図6)、あるいはガイドレール2のフランジを取り囲む溝型鋼(図7)を採用することができる。
【0009】
<ニ>固定位置。
ガイドレール2の躯体への固定位置と、補強レール4の躯体への固定位置とは、同一の位置で固定することができる。(図2)
あるいはガイドレール2の躯体への固定位置と、補強レール4の躯体への固定位置とを別の位置とし、補強レール4の躯体への固定間隔を、ガイドレール2の層間変位吸収範囲よりも広く構成することもできる。その場合には別々の位置で独立した部材で固定する構成を採用することができる。(図3)
あるいは補強レール4の固定は躯体に増し打ちしたコンクリート段部に補強レール4の両端を埋め込んで固定することができる。(図4)
このようにガイドレール2の層間変位吸収範囲よりも、補強レール4の躯体への固定間隔を、ガイドレール2の層間変位吸収範囲よりも広く構成することによって、補強レール4の変形モードを連続梁として構成し、よりガイドレール2の変形モードに近付けることができる。
【0010】
<ホ>地震時の層間変位への対応。
地震が発生した場合には図5に示すように、上下階の水平変位に対してガイドレール2は免震階を含む取り付け位置の間、すなわち、層間変位吸収範囲で弾性変形を生じる。ガイドレール2と補強レール4とは相互に独立しているから、補強レール4も同様に弾性変形して追従する。このように相互に独立して変形するから、内部応力を増加させることがない。
【0011】
<ヘ>地震時の水平力への対応。
地震慣性力による水平力に対してはガイドレール2に接近して平行に補強レール4が配置してあるから、両レールは一体となって対抗することができる。
このように水平力に対する強度を補強レール4が補うから、ガイドレール2が破損することがない。
【0012】
本発明の免震建物のエレベータ用ガイドレールの支持構造は以上説明したようになるから次のような効果を得ることができる。
<イ>ガイドレール2の強度を高めるだけであれば、より大きい断面の鋼材を使用すればよい。しかし部材の断面サイズを大きくすると強度は高まるが弾性変形は困難となり、層間変位による強制変形で内部応力が高まってしまう。したがって地震力に耐えることだけを考慮してガイドレール2のサイズを大きくすると、水平変位に対応する層間変位吸収の範囲をより広く取らなければならなくなり、免震に要する階層が大幅に増加する。しかし請求項1乃至請求項3に係る本発明の構造は、層間変位吸収の範囲内においてガイドレール2と補強レール4を拘束せずに単に平行に配置したものである。そのためにガイドレール2の層間変位への追従性能(弾性変形性能)はそのまま維持することができ、水平力に対してだけ補強レール4が補う構成である。したがって変形を吸収するガイドレール2の範囲は短くなり、免震に要する階層が少なくてすむから工事が簡単で経済的である。
<ロ>また、請求項3に係る発明によれば、ガイドレール2の層間変位吸収範囲よりも、補強レール4の固定する間隔を広く取り付けることにより、補強レール4の変形モードを連続梁として構成でき、よりガイドレール2の変形モードに近付けることができる。
【図面の簡単な説明】
【図1】本発明の免震建物のエレベータの実施例の説明図。
【図2】ガイドレールと補強レールの取り付け状態の説明図。
【図3】ガイドレールと補強レールの取り付け状態の説明図。
【図4】ガイドレールと補強レールの取り付け状態の説明図。
【図5】地震時の状態の説明図
【図6】ガイドレールと補強レールの組み合わせ状態の説明図。
【図7】ガイドレールと補強レールの組み合わせ状態の説明図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a support structure of the elevator guide rails of seismic isolation building.
[0002]
[Prior art]
A structure with seismic isolation devices in the middle of the building has been developed. In such a case, horizontal displacement occurs above and below the base isolation floor, which makes it difficult to pass through the conventional elevator structure.
[0003]
The present invention has been made to solve the above-described conventional problems. Even if an earthquake occurs during operation of the elevator and horizontal displacement occurs between the upper and lower floors of the base isolation floor, the elevator is It is an object of the present invention to provide a support structure for an elevator guide rail for a base-isolated building that is not damaged or dropped and that can resume normal operation after an earthquake.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the structure for supporting an elevator guide rail of a seismic isolation building according to the present invention is an elevator from the upper end to the lower end of an elevator shaft in a building having a seismic isolation device at an intermediate level. The guide rail is configured not to be fixed to the chassis in two or several layers including the seismic isolation floor, but to be elastically deformed according to the horizontal displacement, and fixed to this chassis. and ward between the interlayer displacement absorption range is not performed, is placed in parallel close the reinforcing rails at least the interlayer displacement absorption range without constraining the guide rail and the reinforcing rail, the reinforcing rail of the guide rail wherein the interlayer displacement absorption Osamuhan circumference was installed internal stress to be independent from each other without bonding with the guide rail, the supporting structure of the elevator guide rails of the seismic isolation building It is obtained by the butterfly.
[0005]
[Embodiments of the present invention]
Embodiments of a guide rail support structure for an earthquake-isolated building according to the present invention will be described below with reference to the drawings.
[0006]
<I> Base-isolated building.
The building in which the elevator according to the present invention is installed has a seismic isolation device 1 in an intermediate level as shown in FIG. As the seismic isolation device 1, a known configuration such as a rubber short column can be used.
Due to the presence of the seismic isolation device 1, horizontal interlayer displacement occurs in the upper and lower layers during an earthquake.
[0007]
<B> Guide rail.
An elevator guide rail 2 is installed on the elevator shaft of this building from its upper end to its lower end, and the car 3 is raised and lowered along this guide rail 2. This guide rail 2 is the same as the conventional structure. However, the guide rail 2 is fixed to the frame at a position other than a plurality of floors including the base isolation floor, and the space between them is configured as an interlayer displacement absorption range. That second layer containing MenShinkai, or in several layers without fixation to building frame, a section that does not perform fixing to the building frame and interlayer displacement absorption range, allowing elastic deformation in response to horizontal displacement structure Is adopted. A tie band 4 that is a horizontal frame is attached in the middle of the guide rail 2 to ensure a space between the guide rails 2 even during an earthquake.
[0008]
<C> Reinforcement rail.
Along with the guide rail 2, a reinforcing rail is installed in parallel in the interlayer displacement absorbing range. The reinforcing rails 4 are not integrated with the guide rails 2 within the interlayer displacement absorption range, but are installed close to each other.
As a configuration for that purpose, for example, the reinforcing rail 4 is made of a steel plate having the same shape as the guide rail 2 with the flanges facing each other (FIG. 6), or a groove steel (FIG. 7) surrounding the flange of the guide rail 2. Can do.
[0009]
<D> Fixed position.
And fixing the position of the guide rail 2 to the building frame, the fixed position of the skeleton of the reinforcing rail 4 may be fixed at the same position. (Figure 2)
Alternatively, the fixing position of the guide rail 2 to the housing and the fixing position of the reinforcing rail 4 to the housing are different positions, and the fixing interval of the reinforcing rail 4 to the housing is wider than the interlayer displacement absorption range of the guide rail 2. Can also be configured. In that case, the structure fixed by the independent member in a separate position is employable. (Figure 3)
Alternatively, the reinforcing rails 4 can be fixed by embedding both ends of the reinforcing rails 4 in a concrete step portion that has been struck and added to the frame. (Fig. 4)
Than this manner interlayer displacement absorption range of the guide rail 2, the fixed interval to skeleton of the reinforcing rail 4, by wide rather configuration than that of the interlayer displacement absorption range of the guide rail 2, the continuous deformation mode of the reinforcing rail 4 It can be configured as a beam and can be brought closer to the deformation mode of the guide rail 2.
[0010]
<E> Response to interlayer displacement during an earthquake.
As shown in FIG. 5, when an earthquake occurs, the guide rail 2 is elastically deformed between the mounting positions including the base isolation floor , that is, in the interlayer displacement absorption range, with respect to the horizontal displacement of the upper and lower floors. Since the guide rail 2 and the reinforcing rail 4 are independent of each other, the reinforcing rail 4 follows the same elastic deformation. As described above, the internal stress is not increased because they are deformed independently of each other.
[0011]
<F> Response to horizontal force during an earthquake.
Since the reinforcing rail 4 is arranged in parallel to the guide rail 2 with respect to the horizontal force due to the seismic inertia force, both rails can be countered together.
Since the reinforcing rail 4 supplements the strength against the horizontal force in this way, the guide rail 2 is not damaged.
[0012]
Since the support structure for the elevator guide rail of the seismic isolation building of the present invention is as described above, the following effects can be obtained.
<A> If only the strength of the guide rail 2 is increased, a steel material having a larger cross section may be used. However, if the cross-sectional size of the member is increased, the strength increases, but elastic deformation becomes difficult, and internal stress increases due to forced deformation due to interlayer displacement. Therefore, if the size of the guide rail 2 is increased considering only withstanding the seismic force, the range of interlayer displacement absorption corresponding to the horizontal displacement must be made wider, and the level required for seismic isolation is greatly increased. However, in the structure of the present invention according to claims 1 to 3 , the guide rail 2 and the reinforcing rail 4 are simply arranged in parallel within the range of interlayer displacement absorption without being constrained. Therefore, the follow-up performance (elastic deformation performance) of the guide rail 2 to the interlayer displacement can be maintained as it is, and the reinforcing rail 4 compensates only for the horizontal force. Therefore, the range of the guide rail 2 that absorbs deformation is shortened, and the number of layers required for seismic isolation is reduced, so that the construction is simple and economical.
<B> In addition, according to the invention according to claim 3, than the interlayer displacement absorption range of the guide rail 2, the wide attaching Rukoto intervals to fix the reinforcing rail 4, the deformation mode of the reinforcing rail 4 as a continuous beam It can comprise, and it can approach the deformation mode of the guide rail 2 more.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of an elevator for a base-isolated building according to the present invention.
FIG. 2 is an explanatory diagram of a mounting state of a guide rail and a reinforcing rail.
FIG. 3 is an explanatory diagram of a state in which a guide rail and a reinforcing rail are attached.
FIG. 4 is an explanatory diagram of a state in which a guide rail and a reinforcing rail are attached.
FIG. 5 is an explanatory diagram of a state during an earthquake. FIG. 6 is an explanatory diagram of a combined state of a guide rail and a reinforcing rail.
FIG. 7 is an explanatory diagram of a combination state of a guide rail and a reinforcing rail.

Claims (3)

中間の階層に免震装置を備えた建物において、エレベータシャフトにはその上端から下端までエレベータのガイドレールを設置し、ガイドレールは免震階を含む2層、あるいは数層においては躯体への固定を行わず、水平変位に応じて弾性変形を許容する構成とし、この躯体への固定を行わない区間を層間変位吸収範囲とし、少なくとも前記層間変位吸収範囲において補強レールを前記ガイドレールと補強レールを拘束せずに接近して平行に設置し、補強レールは、前記ガイドレールの前記層間変位吸収範囲では前記ガイドレールと接合せずに内部応力的に相互に独立させて設置した、免震建物のエレベータ用ガイドレールの支持構造In buildings with seismic isolation devices in the middle level, elevator guide rails are installed on the elevator shaft from the upper end to the lower end, and these guide rails have two or more layers including seismic isolation floors. without fixing, a structure that allows elastic deformation in accordance with horizontal displacement, the inter-ward fixed not performed to precursor was interlayer displacement absorption range, the reinforcing and the guide rail reinforcement rail at least the interlayer displacement absorption range placed in parallel close without restraining the rail, said reinforcement rails, in the interlayer displacement absorption Osamuhan circumference of the guide rails were installed internal stress to be independent from each other without bonding with the guide rail Support structure for elevator guide rails in base-isolated buildings. 前記ガイドレールの躯体への固定位置と、前記補強レールの躯体への固定位置とを同一の位置とした、請求項1記載の、免震建物のエレベータ用ガイドレールの支持構造 Support structure of the fixed position of the guide rail to the building frame, and the same position and the fixing position of the skeleton of the reinforcing rail of claim 1, wherein, the seismic isolation building elevator guide rails. 前記ガイドレールの躯体への固定位置と、前記補強レールの躯体への固定位置とを別の位置とし、前記補強レールの躯体への定間隔を、前記ガイドレールの層間変位吸収範囲よりも広く構成した、請求項1記載の、免震建物のエレベータ用ガイドレールの支持構造A fixed position on the skeleton of the guide rail, and a fixing position of the skeleton of the reinforcing rail and another position, a solid Teima septum to skeleton of the reinforcing rail, than the interlayer displacement absorption range of the guide rail wide rather configured, according to claim 1, wherein the support structure of the elevator guide rails of seismic isolation building.
JP20245497A 1997-07-11 1997-07-11 Support structure for elevator guide rails in base-isolated buildings Expired - Fee Related JP4033361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20245497A JP4033361B2 (en) 1997-07-11 1997-07-11 Support structure for elevator guide rails in base-isolated buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20245497A JP4033361B2 (en) 1997-07-11 1997-07-11 Support structure for elevator guide rails in base-isolated buildings

Publications (2)

Publication Number Publication Date
JPH1135247A JPH1135247A (en) 1999-02-09
JP4033361B2 true JP4033361B2 (en) 2008-01-16

Family

ID=16457803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20245497A Expired - Fee Related JP4033361B2 (en) 1997-07-11 1997-07-11 Support structure for elevator guide rails in base-isolated buildings

Country Status (1)

Country Link
JP (1) JP4033361B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265837B2 (en) * 1999-04-20 2009-05-20 三菱電機株式会社 Elevator equipment for seismic isolation
JP4265836B2 (en) * 1999-04-20 2009-05-20 三菱電機株式会社 Elevator equipment for seismic isolation
CN106185537B (en) * 2016-08-24 2018-07-17 黄仕 A kind of high-rise escape elevator
US11214464B2 (en) 2018-05-16 2022-01-04 Otis Elevator Company Elevator seismic performance apparatus

Also Published As

Publication number Publication date
JPH1135247A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
JP2011501049A (en) Seismic isolation device for structure, construction method of the device, and seismic isolation member
KR101896278B1 (en) Light weight type truss sound absorption tunnel
JP2007239306A (en) Method of mounting base isolation damper
JP4033361B2 (en) Support structure for elevator guide rails in base-isolated buildings
KR101900701B1 (en) Long width type truss sound absorption tunnel and construction method
JP3677712B2 (en) Seismic isolation and control building
JP3884645B2 (en) Damping wall
JP2001207675A (en) Damping construction method incorporating damping structure and damping device
JP3981953B2 (en) Brace damper and damping control structure
JPS6214057Y2 (en)
JP2000045563A (en) Vibration-damping wall panel
JP2005132597A (en) Guide rail fixing device for elevator
JP3827475B2 (en) Hybrid vibration damping method and vibration damping structure
JPH1113302A (en) Elastoplastic damper
JP7257265B2 (en) Damper mounting structure
JPH11336370A (en) Unit building, construction method thereof and base isolated building
JPH0640493U (en) Vibration reduction device
JPH04118475A (en) Earthquake resistant reinforced structure for building
JP4933880B2 (en) Connection structure between building units and unit buildings
JPH11293930A (en) Earthquake-resistive reinforcing member and earthquake-resistive reinforcing construction
JP3848510B2 (en) Housing vibration control method
JP3680293B2 (en) Hanging seismic isolation structure using underpass and its construction method
JP3542854B2 (en) Damping structure of unit building
JP3967824B2 (en) Building floor sound insulation
JP2003155796A (en) Fitting structure of floor panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees