JP4032731B2 - インバータ試験装置 - Google Patents

インバータ試験装置 Download PDF

Info

Publication number
JP4032731B2
JP4032731B2 JP2001386172A JP2001386172A JP4032731B2 JP 4032731 B2 JP4032731 B2 JP 4032731B2 JP 2001386172 A JP2001386172 A JP 2001386172A JP 2001386172 A JP2001386172 A JP 2001386172A JP 4032731 B2 JP4032731 B2 JP 4032731B2
Authority
JP
Japan
Prior art keywords
inverter
motor
inductance
output
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001386172A
Other languages
English (en)
Other versions
JP2003153547A (ja
Inventor
博年 河村
Original Assignee
神鋼電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼電機株式会社 filed Critical 神鋼電機株式会社
Priority to JP2001386172A priority Critical patent/JP4032731B2/ja
Publication of JP2003153547A publication Critical patent/JP2003153547A/ja
Application granted granted Critical
Publication of JP4032731B2 publication Critical patent/JP4032731B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、モータを負荷とするインバータの試験を行うインバータ試験装置に関するものである。
【0002】
【従来の技術】
図5はモータを負荷とする従来のインバータ試験装置の一例を示す回路構成図である。
図5において、被試験インバータ100の交流出力端子のU相、V相、W相に複数の抵抗R、インダクタンスL及びスイッチからなる疑似負荷回路200をそれぞれ接続すると共に、電流制御方式の場合には、モータの角度センサ300を設けたものである。
【0003】
次に動作について説明する。
一般にインバータの制御方式は、電流制御ループによる電流制御方式と電流制御ループを持たない電圧制御方式(V/F制御等)とに大別される。
電流制御方式の場合は、角度センサ300で検出したモータ回転子の位置を示す角度θm( 位相)に対して、運転条件に応じた角度θm +θc で振幅ic の所定電流が流れるように被試験インバータ100が制御される。このとき、被試験インバータ100の出力電圧の角度(電流に対する位相)と振幅が実際の負荷であるモータの運転時と同等になるように、各疑似負荷回路200のスイッチを切り換えてR,Lを選択する。尚、角度センサ300として、例えばレゾルバ、エンコーダ等を用い、上記角度θm が得られるように、角度センサ300を数ワット程度の小型のモータ(図示せず)を用いて回すことにより、角度センサ300よりθm に応じた模擬角度センサ信号Sθを発生するようになされる。
【0004】
また、電圧制御方式の場合は、運転条件に応じた角速度(出力周波数)と振幅の電圧が被試験インバータ100から出力される。このとき、被試験インバータ100の出力電流の角度(電圧に対する位相)と振幅がモータの運転時と同等になるように、各疑似負荷回路200のスイッチを切り換えてR,Lを選択する。尚、電圧制御方式の場合は、角度センサ300は省略される。
【0005】
上記のようにモータの運転状況に応じた電圧・電流の振幅、位相、力率、トルクが得られるようにR−Lを切り換えながら試験を行うことにより、発熱や電圧・電流波形等をチェックし、被試験インバータ100の評価を行う。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来のインバータ試験装置では、
1、モータの力行運転での試験が行われるが、回生運転での試験は不可能
2、力行運転での様々の運転条件に対応可能とするには、疑似負荷回路200を構成するR,L,スイッチの数を多くする必要があり、このため構成が複雑になり、重量も含めて装置が大型化し、コストもかかる。
3、試験時の電力は全て熱になり、無駄になってしまう。
4、定常時の特性に合わせてR,Lを選択するので、過渡時の特性をモータ運転時と同じにすることができない。
5、電流制御方式の場合、角度センサ300から模擬角度センサ信号Sθを発生させるために、角度センサ300を回すための小型モータ等の手段を別に用意しなければならない。
等々の問題があった。
【0007】
本発明は上記の問題を解決するためになされたもので、実際にモータを接続することなくモータの運転を模擬的に行うことにより、インバータの試験を行うことを目的としている。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明によるインバータ試験装置は、被試験用の第1のインバータの疑似負荷となる第2のインバータと、第1のインバータの交流出力が1次側に入力され、第2のインバータの交流出力が2次側に入力されるトランスと、第1のインバータの実負荷であるモータについて設定された運転条件及びモータ特性と検出された第1のインバータの出力電圧・電流のいずれかまたは両方に基づいて、第1のインバータを制御する第1の制御信号と第2のインバータを制御する第2の制御信号を生成することにより、モータの運転を模擬する制御手段とを有し前記第1のインバータは、電圧指令、周波数指令に基づいて出力電圧を所定の値に制御され、前記制御手段は、前記第1のインバータの出力電圧・周波数と負荷指令による電流の振幅及び位相に基づいて第2のインバータの出力電圧の振幅・位相を制御するようにしたものである。
【0009】
従って、本発明によれば、モータの回転数等の運転条件とモータ定数等のモータ特性を制御手段に設定すると共に、第1のインバータの出力電流・電圧を検出し、制御手段は、上記運転条件、モータ特性及び出力電流・電圧に基づいて第2のインバータを制御することにより、実際のモータを接続することなく、モータを接続したのと同様の運転状態を模擬的に実現することができる。
また、本発明によれば、前記第1のインバータは、電圧指令、周波数指令に基づいて出力電圧を所定の値に制御され、前記制御手段は、前記第1のインバータの出力電圧・周波数と負荷指令による電流の振幅及び位相に基づいて第2のインバータの出力電圧の振幅・位相を制御する。これにより、電流制御法による負荷試験が可能になる。
【0010】
また、被試験用の第1のインバータの疑似負荷となる第2のインバータと、第1のインバータの交流出力が1次側に入力され、第2のインバータの交流出力が2次側に入力されるトランスと、第1のインバータの実負荷であるモータについて設定された運転条件及びモータ特性と検出された第1のインバータの出力電圧・電流のいずれかまたは両方に基づいて、第1のインバータを制御する第1の制御信号と第2のインバータを制御する第2の制御信号を生成することにより、モータの運転を模擬する制御手段と、前記第1、第2のインバータの出力はPWM信号であり、前記第1のインバータとトランスとの間に前記モータのインダクタンスに相当するフィルタと、を有し、前記フィルタは、模擬の対象となるモータのインダクタンスに応じて当該フィルタのインダクタンスを変更するためのタップが複数備えられ、当該タップの位置は、インダクタンスの始端と各タップとの間のインダクタンスが、模擬対象とする各モータの内部インダクタンスに等しくなるように設定されており、前記第1のインバータは、電圧指令、周波数指令に基づいて出力電圧を所定の値に制御され、前記制御手段は、前記第1のインバータの出力電圧・周波数と負荷指令による電流の振幅及び位相に基づいて第2のインバータの出力電圧の振幅・位相を制御することを特徴とする。
【0012】
さらにまた、前記第1、第2のインバータの出力はPWM信号であり、前記第1のインバータとトランスとの間に前記モータのインダクタンスに相当するフィルタを設ける。これにより、PWM信号の波形が正弦波に変換され、モータの電流波形を再現することが可能になる。
さらにまた、前記第1のインバータの出力電圧・電流とモータ定数からモータのトルク、速度、回転位置、損失、効率、温度等を計算して、表示又は出力する。これにより、模擬の対象とされるモータの運転状態を把握することが可能になる。
【0013】
さらにまた、前記フィルタは、模擬の対象となるモータのインダクタンスに応じた複数のインダクタを切り替え可能に備える。これにより、前記複数のインダクタンスの中からモータの内部インダクタンスに応じたものを選択すれば、複数のモータを負荷としたときの各電流波形が再現される。従って、複数のモータを模擬の対象とすることが可能になる。
さらにまた、前記フィルタは、模擬の対象となるモータのインダクタンスに応じて当該フィルタのインダクタンスを変更するためのタップを備える。これにより、前記複数のタップの中からモータの内部インダクタンスに応じたものを選択すれば、複数のモータを負荷としたときの各電流波形が再現される。従って、同様に複数のモータを模擬の対象とすることが可能になる。
さらにまた、前記フィルタは、前記モータのインダクタンスに略等しいインダクタンスを有する。これにより、PWM信号はモータのインダクタンスに等しいインダクタンスにより波形変換され、従って模擬の対象とするモータの電流波形と略等しい電流波形を再現することが可能になる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1は本発明の第1の実施の形態によるインバータ試験装置を示す回路構成図である。
本試験装置は、IPMモータ(埋込磁石型同期モータ)を実際の負荷として想定した場合の電流制御方式によるものであり、図示のように、被試験インバータ1(以下、インバータ1と言う)に対して疑似負荷用インバータ2(以下、インバータ2と言う)を用いている。インバータ1、2としては、小型化に有利な電圧(源)型インバータが用いられる。
【0015】
図1において、商用交流電源3からの交流電圧はトランス4を介して整流回路5で直流電圧に変換され、試験電圧調整用のチョッパ回路6で調整された後、インバータ1に供給される。また、上記直流電圧はインバータ2にも供給される。インバータ1の交流出力端子からは、PWM変調された矩形波電圧としてのPWM1 信号が出力される。このPWM1 信号は、インダクタンスLからなるフィルタ7により正弦波に変換されてトランス8の1次側に加えられる。インバータ2の交流出力端子からは、PWM変調された矩形波電圧としてのPWM2 信号が出力される。このPWM2 信号は、インダクタンスl、コンデンサc、抵抗rからなるフィルタ9を介して基本波の正弦波が取り出され、トランス8の2次側に加えられる。尚、フィルタ7におけるインダクタンスLは、負荷としてのモータのインダクタンスに相当するものである。この第1の実施の形態では、フィルタ7のインダクタンスは、インバータ1の実負荷となるモータのインダクタンスに略等しいものとする。ただし、ここで言う「等しい」とは、負荷としてモータに与える影響に有意な差異を生じない程度のインダクタンスのちがいを含むことを意味する。もちろん、文言通りの「同値」をも含む。
【0016】
インバータ1から出力される上記PWM1 信号のU相及びW相の各電流iu ,iw (電流制御方式により所定の値に制御される)が変流器10で検出されてモータ模擬運転制御部11に加えられる。また、上記PWM1 信号をフィルタ7を通じて得られる正弦波の電圧vu ′,vw ′が検出されてモータ模擬運転制御部11に加えられる。
【0017】
モータ模擬運転制御部11には、負荷としてのモータの運転条件とモータ特性が入力され設定される。運転条件としては、所望のモータ速度N、トルク(負荷)、制御モード等である。モータ特性としては、モータ定数や電圧・電流方程式である。モータ定数は、モータ等価回路の各構成要素である。IPMモータの場合のモータ定数としては、モータの電機子抵抗R、モータ固定子上のd,q直交座標軸におけるd軸上のモータインダクタンLd とq軸上のモータインダクタンスLq 、モータ誘起電圧定数φa 及びフィルタ7のインダクタンスLが入力される。また、モータ模擬運転制御部11には、角度センサ模擬制御部12が設けられている。
【0018】
次にインバータ1の試験について原理的に説明する。
インバータ1とインバータ2をインピーダンスを介して接続された2つの交流電圧源として考えた場合、インバータ1、2の各出力電圧の関係によってインバータ1から見たインピーダンスが変化する。このインピーダンスはモータの負荷インピーダンスに相当する。例えば各出力電圧を同相とすれば、インバータ1の負荷インピーダンスは各出力電圧の振幅に応じた抵抗成分となる。また、インバータ1の出力電圧の位相に対して電流が90°遅れるようにインバータ2の出力電圧を制御すれば、負荷インピーダンスはインダクタンス成分となる。即ち、インバータ1の出力電圧に対してインバータ2の出力電圧の振幅・位相を制御することにより、負荷インピーダンスが可変となる。
【0019】
従って、本実施の形態によれば、疑似負荷としてのインバータ2の出力電圧の振幅・位相を制御することにより、実際の負荷であるモータを模擬的に運転した状態とすることができる。これにより、任意の運転条件で任意の負荷におけるインバータ1の試験を行うことができる。
【0020】
次に、実際の試験動作について説明する。
電流制御方式によるインバータ1の試験を行う場合は、インバータ1の出力電流iu ,iw は、インバータ2の出力電圧に関わらず所定の値に制御される。尚、図示のインバータ1は、電流制御を行うための制御回路を含むものとする。
モータ模擬運転制御部11には、前述した運転条件であるNとモータ定数であるR,Ld ,Lq ,L,φa がオペレータにより入力設定される。角度センサ模擬制御部12は、Nに応じた模擬角度センサ信号Sθを出力し、インバータ1はこの模擬角度センサ信号Sθに基づいて出力電流が所定の値に制御される。
【0021】
また、モータ模擬運転制御部1は、運転条件N,モータ定数R,Ld ,Lq ,L,φa に基づいてインバータ2をスイッチングするゲート信号を生成して出力し、インバータ2はこのゲート信号に応じて動作する。即ち、インバータ2は、インバータ1の動作に応じた電圧・電流の振幅・位相となるように制御されることになる。モータ模擬運転制御部11は、インバータ1の出力電流iu ,iw 及び出力電圧vu ′,vw ′を見ながら制御を行う。出力電圧vu ′,vw ′の振幅・位相は、負荷により決まる。
【0022】
即ち、インバータ1の出力電流が一定の状態において、出力電圧の振幅・位相が所望となるようにインバータ2の出力電圧の振幅・位相を制御することにより、インバータ1にあたかもモータが接続されているかのような状態でインバータ1の試験を行うことができる。
以上により、モータの任意の運転条件に応じて任意の力率、負荷のインピーダンスを設定して、インバータ1の試験を行うことができる。
【0023】
次に、本実施の形態においては、インバータ1とインバータ2との間にトランス8を設けることにより、インバータ1の3相出力電圧の中性点変動の影響をなくし、良好な制御が行われるようにしている。
即ち、インバータにおいては、図2(a)に示すように、出力電圧(線間電圧)の範囲を広げるために、中性点電圧変動回路15により中性点電圧を所定のタイミングで変動させることがある。この場合、負荷がモータの場合は、中性点電圧がどのように変動してもモータへの影響はないが、図2(b)のように負荷がインバータ2の場合は、中性点電圧変動回路15、16により中性点電圧を変動させると、その影響によりインバータ1とインバータ2との間で電流ix が流れてしまう。この電流ix をゼロに制御することは困難である。そこで、本実施の形態においては、トランス8を設けることにより、上記電流ix を遮断するようにしている。
【0024】
次に、インバータ1、2の各出力電圧はPWM波形であり、遅れなしでインバータ1の基本波電圧の振幅と位相を検出することが難しいため、フィルタ7、9によりPWM波形を正弦波状にして、トランス8の1次側の電圧vu ′,vw ′を検出する。ここで、フィルタ7のインダクタンスは実負荷となるモータのインダクタンスに略等しく設定されているので、フィルタ7からトランス8の1次側に供給される電圧(vu ′,vw ′等)は実際のモータに与えられる波形に等しくなり、負荷に供給されるべき波形を忠実に再現することが可能になる。このトランス8の1次側の電圧と電流iu ,iw に基づいてインバータ1の出力電圧vuを次式により算出する。
u =L・iu +vu ′------(1)
【0025】
負荷がIPMモータの場合は、
【0026】
【数1】
Figure 0004032731
【0027】
による電圧方程式を満足するように制御が行われる。(2)式において、
d , Vq :d,q軸の電機子電圧、id , iq :d,q軸の電機子電流、R:電機子抵抗、Ld , Lq :d,q軸インダクタンス、ωm :角速度(Nに対応)、p:d/dt、φa :永久磁石による電機子鎖交磁束の最大値×(3/2の平方根)、pn :極対数である。Tは出力トルクで
T=〔pn {φaq +(Ld −Lq )idq }------(3)
である。
【0028】
図3は上記(2)式による電圧変換方程式をハード構成で実現した場合のモータ模擬運転制御部11を示すもので、加算器、乗算器、補正回路、微分回路、2/3回路(3相−2相変換回路)、PWM回路13等により図示のように構成されている。尚、(2)式における pd , pq は過度項であり、実際の運転においては値が小さいので、本実施の形態では無視される。
【0029】
図3において、上記入力されたR,Ld ,Lq 、θm (模擬角度センサ信号Sθが示す角度:Nに対応),φa ,L、及び電圧vu ′,vw ′、電流iu ,iw を用いて図示の各演算が行われる。これにより、相電圧指令Vou * ,Vov * ,Vow * を生成し、これに基づいてPWM回路13よりインバータ2のゲート信号が生成される。
【0030】
図3において、iu ,iw をθm を角度補正した値に基づいて3相−2相変換して直交2軸上のid ,iq を得ると共に、vu ′,vw ′をθm を角度補正した値に基づいて3相−2相変換してvd ,vq を得る。また、Ld ,Lq と実際のLとの差分を求め、この差分とR,id ,iq に基づいてvd * ,vq * を求める。このvd * ,vq * と実際のvd ,vq とを突き合わせ、その結果を θmを角度補正した値に基づいて2相−3相変換することにより、Vou * ,Vov * ,Vow * が得られる。
この第1の実施の形態では、フィルタ7、7A,7Bのインダクタンスを、模擬の対象とするモータの内部インダクタンスに略等しくしたので、PWMに起因する電流リップルが正確に再現される。従って、この電流リップルに起因するインバータの発熱などの影響を模擬することが可能になる。
【0031】
次に、本実施の形態の第2の実施の形態について説明する。
上述した第1の実施の形態では、モータ回転数N(θm )を予め設定して制御を行っているが、Nを設定せずに、インバータ1の出力電流・電圧からモータトルクを計算し、そのトルクと試験で想定する機械のイナーシャ(重量相当等)からN(θm )を算出して制御に用いることにより、モータの加減速時の状態を模擬することができる。
即ち、モータが停止している状態からインバータ1が動作して加速していくとき、どのように加速していくのかは、どのようなパターンで電流・電圧が加えられたかによって決まる。
【0032】
例えば、電気自動車を駆動するモータの場合、モータ模擬運転制御部11により、入力される出力電圧・電流(vu ′,vw ′,iu ,iw )によりとれだけトルクが出ているかを計算することができ、そのトルクに応じてどのように加速していくのかを、車体の重さ等からモータ軸換算でのイナーシャが分かっていれば、走行抵抗等を考慮して計算することができる。
【0033】
即ち、計算したトルクとイナーシャ、走行抵抗等から、どれだけ加速すればどれだけの回転数Nとなり、次にどれだけの回転数Nとなるかを計算し、そのNに基づいて模擬角度センサ信号Sθを作ってインバータ1にフィードバックすることにより、実際にモータを加減速している状態で様々な試験を行うことができる。
従って、本実施の形態の場合は、モータ模擬運転制御部11には、車体重量やイナーシャ、走行抵抗等の機械的定数が入力設定される。
【0034】
図4は本発明の第3の実施の形態によるインバータ試験装置を示すもので、電圧制御方式の場合を示している。図4においては、図1と対応する部分には同一番号を付して重複する説明は省略する。
図4において、制御回路20は、電圧指令と周波数指令に応じて所定の電流変換式を用いて被試験インバータ1を出力電圧を所定の値に制御する。
【0035】
また、モータ模擬運転制御部11において、インバータ1の出力電圧vu ,vw から電圧位相検出回路21により電圧位相θを検出する。また、出力電流iu ,iw をθに基づいて3相−2相変換してid ,iq を得る。このid ,iq と、負荷指令に基づいて決定される電流の振幅・位相を持つid * ,iq * とが突き合わされてvd * ,vq * が得られる。このvd * ,vq * がθに基づいて2相−3相変換されることにより、相電圧指令Vou * ,Vov * ,Vow * が得られる。そして、この相電圧指令に基づいてPWM回路22によりインバータ2のゲート信号を生成することができる。
【0036】
本実施の形態によれば、インバータ1の出力電圧が所定の値の状態において、出力電圧の振幅・位相が所望となるようにインバータ2の出力電流の振幅・位相を制御することにより、インバータ1にモータが接続されているのと同等の状態でインバータ1の試験を行うことができ、モータの任意の運転条件に応じて任意の負荷インピーダンスを設定して、インバータ1の試験を行うことができる。
【0037】
尚、上述した各実施の形態は、IPMモータを負荷とした場合について説明したが、電圧方程式があれば、IMモータ(誘導電動機)、SPM(表面磁石同期)モータ等々どのようなモータでも模擬運転可能である。
【0038】
また、第4の実施の形態として、図1に示すように、モータ模擬運転制御部1において、第1のインバータ1の出力電圧・電流とモータ定数からモータのトルク、速度、回転位置、損失効率、温度等を計算して、表示又は出力するように構成してもよい。
【0039】
(変形例)
以下、上述の第1ないし第4の実施の形態の変形例を説明する。
上述の各実施の形態では、フィルタ7が特定のモータの内部インダクタンスに相当するものとしたので、模擬の対象が特定のモータに制約されることになる。そこで、以下に説明する変形例では、模擬の対象とするモータの内部インダクタンスに応じてフィルタ7のインダクタンスを調整可能とし、上述の制約を回避する。尚、一般には、インダクタは、誘導性を有するものを表し、インダクタンスはその値を表すが、ここでは説明の便宜上、これらの用語の意味は一般的な定義に従うものとしながらも、インダクタとインダクタンスとを同一の符号で表す。
【0040】
図6に、フィルタ7の第1の変形例として、インダクタンスの調整が可能なフィルタ7Aの構成を示す。このフィルタ7Aは、u相、v相、w相の各相について、模擬の対象とするモータのインダクタンスに応じた複数のインダクタを切り替え可能に備える。具体的には、u相について2つのインダクタLu1,Lu2が設けられ、スイッチSWu1,SWu2によって何れかが選択される。同様に、v相についてはインダクタLv1,Lv2が設けられ、w相についてはインダクタLw1,Lw2が設けられる。
【0041】
ここで、インダクタンスLu1,Lv1,Lw1の組と、インダクタンスLu2,Lv2,Lw2の組は、異なる2つのモータの内部インダクタンスにそれぞれ相当するものであり、これらインダクタンスの組は、スイッチSWu1,SWv1,SWw1の組およびスイッチSWu2,SWv2,SWw2の組によりそれぞれ選択される。何れを選択するかは模擬の対象とするモータの内部インダクタンスにより決定され、モータの内部インダクタンスに等しいインダクタンスの組が選択される。
この第1の変形例によれば、インダクタを選択することにより、電気的特性の異なる2機のモータを模擬の対象とすることができ、各モータの各電流波形を正確に再現することができる。また、選択するインダクタの数を増やすことにより、模擬の対象とするモータの種類を任意に増やすことができる。
【0042】
図7に、第2の変形例を示す。同図に示すフィルタ7Bは、模擬の対象となるモータに応じてインダクタンスを変更するためのタップを備える。即ち、u相が供給されるインダクタLuは、模擬の対象となる複数のモータのうち、最大インダクタンスを有するモータを想定して設定される。この例では、最大インダクタンスを有するモータの内部インダクタンスと等しく設定される。インダクタLuの始端寄りの中点と終端寄りの中点にはタップTuaおよびTubがそれぞれ設けられ、終端部にはタップTucが設けられる。
【0043】
各タップの位置は、インダクタンスLuの始端と各タップとの間のインダクタンスが、模擬の対象とする各モータの内部インダクタンスに等しくなるように設定される。端子Sはトランス8の1次側に接続される。タップTua,Tub,Tucのうち、模擬の対象とするモータのインダクタンスに相当するものが端子Suに選択的に接続される。残りのv相、w相のインダクタLvおよびインダクタLwについても、上述のu相と同様に、タップTua,Tub,TucおよびタップTva,Tvb,Tvcがそれぞれ設けられ、端子Svおよび端子Swに選択的に接続される。
【0044】
従って、この第2の変形例によれば、タップを選択することにより、電気的特性の異なる3機のモータを模擬の対象とすることができ、各モータの各電流波形を正確に再現することができる。また、選択するタップ数を増やすことにより、模擬の対象とするモータの種類を任意に増やすことができる。さらに、1つのインダクタを共用して複数のモータの内部インダクタンスを再現するので、装置の大型化やコストの上昇を有効に抑えることができる。
【0045】
【発明の効果】
以上説明したように本発明によれば、モータを実際に使用することなく、モータの動作を模擬的に行いながらインバータの試験を行うことができる。また、従来のR−L負荷の切り換えではできなかった回生運転試験を行うことができる。また、R−L負荷の切り換えの場合に比べて装置の大幅な省エネルギー化が可能となる。さらに、電流制御の場合、被試験インバータの電圧、力率の調整が可能となる。
また、被試験インバータと疑似負荷用インバータとの間にトランスを設けたことにより、被試験インバータにおける中性点電圧の変動による影響をなくし、良好な制御を行うことができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態による電流制御方式のインバータ試験装置を示す回路構成図である。
【図2】 図1におけるトランス8を設けた理由を説明するための構成図である。
【図3】 電流制御方式におけるモータ模擬運転制御部のハード構成例を示す構成図である。
【図4】 本発明の第3の実施の形態による電圧制御方式のインバータ試験装置のハード構成例を示す構成図である。
【図5】 従来のインバータ試験装置の一例を示す構成図である。
【図6】 本発明の実施の形態に係るフィルタの第1の変形例を示す図である。
【図7】 本発明の実施の形態に係るフィルタの第2の変形例を示す図である。
【符号の説明】
1 被試験インバータ
2 疑似負荷用インバータ
7,7A,7B フィルタ
8 トランス
9 フィルタ
10 変流器
11 モータ模擬運転制御部
12 角度センサ模擬制御部
13、22 PWM回路
u1,Lu2,Lv1,Lv2,Lw1,Lw2 インダクタンス(インダクタ)
SWu1,SWu2,SWv1,SWv2,SWw1,SWw2 スイッチ
u,Lv,,Lw インダクタンス(インダクタ)
ua,Tub,Tuc,Tva,Tvb,Tvc,Twa,Twb,Twc タップ
u,Sv,Sw 端子

Claims (7)

  1. 被試験用の第1のインバータの疑似負荷となる第2のインバータと、
    第1のインバータの交流出力が1次側に入力され、第2のインバータの交流出力が2次側に入力されるトランスと、
    第1のインバータの実負荷であるモータについて設定された運転条件及びモータ特性と検出された第1のインバータの出力電圧・電流のいずれかまたは両方に基づいて、第1のインバータを制御する第1の制御信号と第2のインバータを制御する第2の制御信号を生成することにより、モータの運転を模擬する制御手段とを有し、
    前記第1のインバータは、電圧指令、周波数指令に基づいて出力電圧を所定の値に制御され、前記制御手段は、前記第1のインバータの出力電圧・周波数と負荷指令による電流の振幅及び位相に基づいて第2のインバータの出力電圧の振幅・位相を制御することを特徴とするインバータ試験装置。
  2. 被試験用の第1のインバータの疑似負荷となる第2のインバータと、
    第1のインバータの交流出力が1次側に入力され、第2のインバータの交流出力が2次側に入力されるトランスと、
    第1のインバータの実負荷であるモータについて設定された運転条件及びモータ特性と検出された第1のインバータの出力電圧・電流のいずれかまたは両方に基づいて、第1のインバータを制御する第1の制御信号と第2のインバータを制御する第2の制御信号を生成することにより、モータの運転を模擬する制御手段と、
    前記第1、第2のインバータの出力はPWM信号であり、前記第1のインバータとトランスとの間に前記モータのインダクタンスに相当するフィルタと、を有し、
    前記フィルタは、模擬の対象となるモータのインダクタンスに応じて当該フィルタのインダクタンスを変更するためのタップが複数備えられ、当該タップの位置は、インダクタンスの始端と各タップとの間のインダクタンスが、模擬対象とする各モータの内部インダクタンスに等しくなるように設定されており、
    前記第1のインバータは、電圧指令、周波数指令に基づいて出力電圧を所定の値に制御され、前記制御手段は、前記第1のインバータの出力電圧・周波数と負荷指令による電流の振幅及び位相に基づいて第2のインバータの出力電圧の振幅・位相を制御することを特徴とするインバータ試験装置。
  3. 前記第1、第2のインバータの出力はPWM信号であり、前記第1のインバータとトランスとの間に前記モータのインダクタンスに相当するフィルタを設けたことを特徴とする請求項記載のインバータ試験装置。
  4. 前記第1のインバータの出力電圧・電流とモータ定数からモータのトルク、速度、回転位置、損失、効率、温度等を計算して、表示又は出力することを特徴とする請求項1から3のうちいずれかに記載のインバータ試験装置。
  5. 前記フィルタは、模擬の対象となるモータのインダクタンスに応じた複数のインダクタを切り替え可能に備えたことを特徴とする請求項記載のインバータ試験装置。
  6. 前記フィルタは、模擬の対象となるモータのインダクタンスに応じて当該フィルタのインダクタンスを変更するためのタップを備えたことを特徴とする請求項記載のインバータ試験装置。
  7. 前記フィルタは、前記モータのインダクタンスに略等しいインダクタンスを有することを特徴とする請求項2、3、5、6の何れかに記載のインバータ試験装置。
JP2001386172A 2001-08-27 2001-12-19 インバータ試験装置 Expired - Fee Related JP4032731B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386172A JP4032731B2 (ja) 2001-08-27 2001-12-19 インバータ試験装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001256872 2001-08-27
JP2001-256872 2001-08-27
JP2001386172A JP4032731B2 (ja) 2001-08-27 2001-12-19 インバータ試験装置

Publications (2)

Publication Number Publication Date
JP2003153547A JP2003153547A (ja) 2003-05-23
JP4032731B2 true JP4032731B2 (ja) 2008-01-16

Family

ID=26621062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386172A Expired - Fee Related JP4032731B2 (ja) 2001-08-27 2001-12-19 インバータ試験装置

Country Status (1)

Country Link
JP (1) JP4032731B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932665A (zh) * 2015-12-31 2017-07-07 联合汽车电子有限公司 新能源汽车三相逆变器测试***

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524557B2 (ja) * 2003-12-08 2010-08-18 シンフォニアテクノロジー株式会社 インバータ
JP4581470B2 (ja) * 2004-04-26 2010-11-17 シンフォニアテクノロジー株式会社 インバータ試験装置
DE102005048464B4 (de) 2005-10-07 2014-11-06 Dspace Digital Signal Processing And Control Engineering Gmbh Verfahren und Vorrichtung zum Simulieren einer induktiven Last
JP4998693B2 (ja) * 2006-11-06 2012-08-15 シンフォニアテクノロジー株式会社 モータ模擬装置、およびモータ模擬方法
JP5334803B2 (ja) * 2009-11-09 2013-11-06 東洋電機製造株式会社 モータ模擬装置
DE102012111051A1 (de) * 2012-11-16 2014-05-22 Set Power Systems Gmbh Vorrichtung und Verfahren zum Emulieren
JP2015195667A (ja) * 2014-03-31 2015-11-05 シンフォニアテクノロジー株式会社 インバータ試験装置
JP6575252B2 (ja) * 2015-09-14 2019-09-18 富士電機株式会社 負荷模擬装置
CN116243096B (zh) * 2023-05-10 2023-07-21 深圳弘远电气有限公司 用于弱电网大功率电力变换装置的测试电路及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932665A (zh) * 2015-12-31 2017-07-07 联合汽车电子有限公司 新能源汽车三相逆变器测试***
CN106932665B (zh) * 2015-12-31 2020-04-07 联合汽车电子有限公司 新能源汽车三相逆变器测试***

Also Published As

Publication number Publication date
JP2003153547A (ja) 2003-05-23

Similar Documents

Publication Publication Date Title
JP4131421B2 (ja) インバータ試験装置
Le-Huy et al. A versatile nonlinear switched reluctance motor model in Simulink using realistic and analytical magnetization characteristics
US7944161B2 (en) DC bus discharge in an electric motor system
JP2008167655A (ja) インバータ試験装置
JP2004048868A5 (ja)
CN102263531A (zh) 控制电机转矩的方法和装置
Lee et al. Fourier-series-based phase delay compensation of brushless DC motor systems
JP4032731B2 (ja) インバータ試験装置
Lee et al. DC-link voltage design of high-bandwidth motor emulator for interior permanent-magnet synchronous motors
CN111966080A (zh) 一种基于传递函数的永磁同步电机及其机械负载的模拟***及控制方法
EP3258594A1 (en) Controlling a multiple-set electrical machine
JP4998693B2 (ja) モータ模擬装置、およびモータ模擬方法
JP4042403B2 (ja) インバータ試験装置
Singh et al. Performance investigation of permanent magnet synchronous motor drive using vector controlled technique
JP4035991B2 (ja) インバータ用試験装置及び回転角信号発生装置
Silva et al. Torque and speed modes simulation of a DTC-Controlled induction motor
Sun et al. Faults analysis and simulation for interior permanent magnet synchronous motor using Simulink@ MATLAB
JP2008295229A (ja) モータ模擬装置、およびモータ模擬方法
JP4079201B2 (ja) インバータ試験装置
Kamera et al. Sensorless technique for rotor position detection of an permanent magnet synchronous machine using direct torque control
Naunin The calculation of the dynamic behavior of electric machines by space-phasors
JP6971439B2 (ja) 二重三相巻線永久磁石同期形電動機の数学モデルと同モデルに立脚した模擬・特性解析・制御装置
Diab Novel robust simultaneous estimation of stator and rotor resistances and rotor speed to improve induction motor efficiency
Qu et al. Zero voltage vector selection in a saturation controller-based direct torque control for permanent-magnet synchronous motors
JP4070467B2 (ja) 永久磁石型同期電動機の電動機定数及び負荷トルクの同定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4032731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees