JP4030729B2 - Method for producing flocculant - Google Patents

Method for producing flocculant Download PDF

Info

Publication number
JP4030729B2
JP4030729B2 JP2001135375A JP2001135375A JP4030729B2 JP 4030729 B2 JP4030729 B2 JP 4030729B2 JP 2001135375 A JP2001135375 A JP 2001135375A JP 2001135375 A JP2001135375 A JP 2001135375A JP 4030729 B2 JP4030729 B2 JP 4030729B2
Authority
JP
Japan
Prior art keywords
aqueous solution
water glass
flocculant
oxidizing agent
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001135375A
Other languages
Japanese (ja)
Other versions
JP2002326003A5 (en
JP2002326003A (en
Inventor
裕次 谷村
太覚 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP2001135375A priority Critical patent/JP4030729B2/en
Publication of JP2002326003A publication Critical patent/JP2002326003A/en
Publication of JP2002326003A5 publication Critical patent/JP2002326003A5/ja
Application granted granted Critical
Publication of JP4030729B2 publication Critical patent/JP4030729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、凝集剤の製造方法に関する。
【0002】
【従来の技術】
ポリ硫酸第二鉄水溶液は、鉄系の無機高分子凝集剤であり、例えば、凝集、脱リン、及び脱臭等に効果があることが知られている。ポリ硫酸第二鉄は、例えば、硫酸第一鉄水溶液中の硫酸を、硫酸第一鉄1モル当たり0.5モル未満になるようにして酸化することにより調製することができる(特公昭51−17516号公報参照)。
しかし、ポリ硫酸第二鉄水溶液を単独で使用した場合には、沈澱するのに充分な大きさのフロックが形成されないため、フロックの沈降性が悪く、微細なフロックが処理水中に残ってしまう欠点があった。
本発明者は、ポリ硫酸第二鉄水溶液のフロック形成を更に向上させることを目的として鋭意探求したところ、ポリ硫酸第二鉄水溶液と水ガラスとを含有する凝集剤では、ポリ硫酸第二鉄水溶液単独の凝集効果と水ガラス単独の凝集効果との単なる相加効果に比べ、遥かに高い相乗効果を示すことを見出した(特願2000−202492号)。ポリ硫酸第二鉄水溶液と水ガラスとを含有する凝集剤は、特願2000−202492号明細書に記載されているように、例えば、ポリ硫酸第二鉄水溶液の撹拌下に、水ガラス水溶液を徐々に添加することにより調製することができる。
【0003】
【発明が解決しようとする課題】
本発明者は、特願2000−202492号明細書に記載の前記凝集剤よりも更に凝集効果の高い凝集剤を得ることを目的として鋭意探求したところ、硫酸第一鉄と硫酸とを含有する水溶液の撹拌下に、酸化剤水溶液及び水ガラス水溶液を徐々に添加して得られる凝集剤が、特願2000−202492号明細書に記載の前記凝集剤よりも高い凝集効果を示すことを見出した。しかも、前記操作により得られた凝集剤は、特願2000−202492号明細書に記載の前記凝集剤よりも、長期安定性の点で遙かに優れた効果を示した。
本発明はこのような知見に基づくものであり、従って、本発明の課題は、特願2000−202492号明細書に記載の前記凝集剤よりも更に凝集効果が高く、しかも、長期安定性を有する凝集剤を得ることのできる製造方法を提供することにある。
【0004】
【課題を解決するための手段】
前記課題は、本発明による、硫酸第一鉄と硫酸とを含有する水溶液の撹拌下に、酸化剤及び水ガラスを水溶液の形で添加する凝集剤の製造方法であって、前記酸化剤及び水ガラスを、同時に、且つ、前記硫酸第一鉄・硫酸含有水溶液中で水ガラスのゲル化が生じない程度に連続的又は断続的に少量ずつ添加することを特徴とする、凝集剤の製造方法により解決することができる。
また、本発明は前記製造方法によって得られる凝集剤にも関する。
【0005】
【発明の実施の形態】
本発明の製造方法では、硫酸第一鉄と硫酸とを含有する水溶液(以下、硫酸第一鉄・硫酸含有水溶液と称する)の撹拌下に、酸化剤水溶液及び水ガラス水溶液を徐々に添加する。
前記硫酸第一鉄・硫酸含有水溶液に含有される硫酸第一鉄の含有量は、特に限定されるものではないが、鉄イオン濃度として1〜7%であることが好ましく、2〜4%であることがより好ましい。
また、硫酸第一鉄・硫酸含有水溶液に含有される硫酸の含有量は、特に限定されるものではないが、7〜13%であることが好ましく、9〜11.5%であることがより好ましい。
【0006】
本発明の製造方法で用いる水ガラスとしては、例えば、ケイ酸ナトリウム(例えば、1号水ガラス、2号水ガラス、3号水ガラス、又は4号水ガラス)、ケイ酸カリウム、若しくはケイ酸リチウム、又はそれらの混合物を挙げることができ、ケイ酸ナトリウムを用いることが好ましく、3号水ガラスを用いることが特に好ましい。
水ガラス水溶液の希釈の程度は、特に限定されるものではないが、例えば、シリカ濃度(すなわち、二酸化ケイ素濃度)として1〜6%となるように希釈した水ガラス水溶液を用いることができる。
【0007】
本発明の製造方法で用いる酸化剤は、酸化により硫酸第一鉄をポリ硫酸第二鉄に変換可能な酸化剤である限り、特に限定されるものではなく、例えば、過酸化水素、酸素、硝酸、塩素、又は塩素酸ソーダを挙げることができる。低温での製造が可能であり、操作が簡単であり、しかも、不純物の混入を防ぐことができる点で、過酸化水素を用いることが好ましい。
酸化剤水溶液における酸化剤濃度は、用いる酸化剤の種類に応じて適宜決定することができ、特に限定されるものではない。例えば、酸化剤として過酸化水素を用いる場合には、過酸化水素水溶液中の過酸化水素濃度は、1〜50%であることが好ましい。
【0008】
本発明の製造方法では、硫酸第一鉄と水ガラスとのモル比は、特に限定されるものではないが、Fe2+/SiO2(モル比)が0.5〜1であることが好ましい。また、硫酸第一鉄と酸化剤とのモル比は、特に限定されるものではないが、例えば、酸化剤として過酸化水素を用いる場合には、Fe2+/H22(モル比)が1〜2であることが好ましい。
【0009】
本発明の製造方法では、例えば、硫酸第一鉄・硫酸含有水溶液に、酸化剤水溶液及び水ガラス水溶液を一度に大量に添加すると、硫酸第一鉄・硫酸含有水溶液中で水ガラスがゲル化することがある。これは、水ガラスが、アルカリ性又は酸性条件下に比べて、中性付近で最もゲル化しやすく、また、加熱によってもゲル化しやすいことによる。より詳細には、酸性である硫酸第一鉄・硫酸含有水溶液と、アルカリ性である水ガラス水溶液とが大量且つ同時に接触すると、その接触面(界面)において中性となるため、水ガラスのゲル化が生じる。また、硫酸第一鉄・硫酸含有水溶液に酸化剤水溶液を大量に添加すると、熱が発生するため、水ガラスのゲル化が生じる。更に、混合することができたとしても、不安定なものができてしまう。
従って、本明細書において「硫酸第一鉄・硫酸含有水溶液の撹拌下に、酸化剤水溶液及び水ガラス水溶液を徐々に添加する」とは、硫酸第一鉄・硫酸含有水溶液を撹拌しながら、硫酸第一鉄・硫酸含有水溶液中で水グラスのゲル化が生じない程度に、酸化剤水溶液及び水ガラス水溶液を連続的又は断続的に少量ずつ添加することを意味する。
【0010】
また、本発明の製造方法では、硫酸第一鉄・硫酸含有水溶液に、酸化剤水溶液及び水ガラス水溶液を添加する。これとは逆に、酸化剤水溶液及び水ガラス水溶液に、硫酸第一鉄・硫酸含有水溶液を添加すると、水ガラス水溶液がアルカリ性であるため、水酸化鉄の沈殿が生じる。
更に、本発明の製造方法では、酸化剤水溶液及び水ガラス水溶液を同時に、徐々に添加する。すなわち、酸化剤水溶液又は水ガラス水溶液の一方を徐々に添加し、その添加が完了した後、残るもう一方の水溶液を徐々に添加することはない。酸化剤水溶液の全量を先に添加してから、水ガラスを添加する方法では、ポリ硫酸鉄溶液が生成した後に水ガラスを添加することになり、公知方法と何ら変わりなく、凝集効果の向上が見られない。また、水ガラス水溶液の全量を添加してから、酸化剤水溶液を添加する方法では、製造過程では特に問題ない(ゲル化又は水酸化鉄の沈殿生成など)が、得られる製造品は前法と同様に凝集効果の向上が見られない。
【0011】
本発明の製造方法では、酸化剤水溶液と水ガラス水溶液とを別々に調製し、別々の水溶液として、硫酸第一鉄・硫酸含有水溶液に同時に添加することもできるし、あるいは、酸化剤及び水ガラスの両方を含有する水溶液を調製し、酸化剤含有水ガラス水溶液として、硫酸第一鉄・硫酸含有水溶液に添加することもできる。
前者の場合(すなわち、酸化剤水溶液と水ガラス水溶液とを別々に調製した場合)には、酸化剤水溶液及び水ガラス水溶液を添加する態様としては、例えば、同時且つ両者を連続して添加することもできるし、両者を交互且つ不連続に添加することもできるし、あるいは、一方の水溶液を連続に、もう一方の水溶液を不連続に添加することもできる。
【0012】
本発明の製造方法においては、硫酸第一鉄・硫酸含有水溶液への酸化剤水溶液及び水ガラス水溶液の添加を、液温が25℃以下になるように調整しながら実施することが好ましく、前記添加の開始から完了までの全期間に亘って、液温が25℃以下の条件下で実施することがより好ましい。液温が25℃を越えると、水ガラスがゲル化することがあるか、あるいは、不安定なものができてしまうことがある。
本発明の製造方法において、硫酸第一鉄・硫酸含有水溶液へ酸化剤水溶液及び水ガラス水溶液を添加する際のpHは、0.5〜2であることが好ましく、pHが2を越える場合には、酸(例えば、硫酸又は塩酸など)を添加することが好ましい。pHが2を越えるか、あるいは、0.5未満になると、ゲル化速度が上がることがある。
【0013】
本発明の製造方法により得られる凝集剤に含有されるポリ硫酸第二鉄は、式(I):
[Fe2(OH)n(SO43-n/2m (I)
(式中、nは2より小さい数であり、mは10より大きい数である)
で表される化合物であり、その塩基度は、式:
(n/6)×100%
で示される(特公昭51−17516号公報参照)。
本発明の製造方法により得られる凝集剤におけるポリ硫酸第二鉄の含有量は、特に限定されるものではないが、鉄イオン濃度として、1〜5%であることが好ましい。1%未満であると、満足する凝集効果が得られないことがある。また、この場合、凝集効果が弱いため、多くの添加量が必要となり、その結果、凝集剤輸送コストが高くなることがある。5%を越えると、凝集剤水溶液が製造後、短期間でゲル化し、凝集剤として使用不能となることがある。
【0014】
本発明の製造方法により得られる凝集剤に含有することのできる水ガラスとしては、例えば、ケイ酸ナトリウム(例えば、1号水ガラス、2号水ガラス、3号水ガラス、又は4号水ガラス)、ケイ酸カリウム、若しくはケイ酸リチウム、又はそれらの混合物を挙げることができ、ケイ酸ナトリウムを用いることが好ましく、3号水ガラスを用いることが特に好ましい。
【0015】
本発明の製造方法により得られる凝集剤における水ガラスの含有量は、これに限定されるものではないが、シリカ濃度(すなわち、二酸化ケイ素濃度)として、0.5〜4%であることが好ましい。0.5%未満であると、満足する凝集効果が得られないことがある。また、この場合、凝集効果が弱いため、多くの添加量が必要となり、凝集剤輸送コストが高くなることがある。4%を越えると、凝集剤水溶液がゲル化し、凝集剤として使用不能となることがある。
【0016】
本発明の製造方法により得られる凝集剤を用いて処理することのできる被処理液としては、これに限定されるものではないが、従来公知の凝集剤と同様の適用対象、例えば、産業排水又は染色排水を挙げることができる。
前記凝集剤の使用方法に関しても、従来公知の凝集剤と同様にして使用することができ、例えば、被処理液に、好ましくは撹拌下、前記凝集剤を添加することにより、被処理液の凝集処理を実施することができる。
前記凝集剤の添加量は、適用対象である被処理液の種類及び状態に応じて適宜決定することができ、例えば、通常の産業排水であれば、50〜5000ppmの添加量で使用することができる。
【0017】
【作用】
本発明の製造方法により得られる凝集剤は、後述の実施例における評価例1に示すように、特願2000−202492号に記載の凝集剤、すなわち、ポリ硫酸第二鉄水溶液の撹拌下に、水ガラス水溶液を徐々に添加することにより得られる凝集剤に比べ、高い凝集効果を示す。また、後述の実施例における評価例2に示すように、特願2000−202492号に記載の凝集剤よりも、長期安定性に優れている。
【0018】
【実施例】
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
【実施例1】
硫酸第一鉄7水和物110gと5.9%硫酸490gとをビーカーに入れ、充分に撹拌することにより、硫酸第一鉄・硫酸含有水溶液を調製した。別のビーカーに、3号水ガラス原液(シリカ濃度=30%)66.67gを入れた後、純水で希釈し、水ガラス水溶液365gを調製した。充分に撹拌した後、更に、34.5%過酸化水素水35gを前記水ガラス水溶液に加え、過酸化水素含有水ガラス水溶液を調製した。
先に調製した硫酸第一鉄・硫酸含有水溶液に、撹拌下、前記の過酸化水素含有水ガラス水溶液を徐々に添加することにより、凝集剤[鉄イオン濃度=2.2%(ポリ硫酸第二鉄濃度として20%に相当する),シリカ濃度=2%]1000gを調製した。過酸化水素含有水ガラス水溶液の前記添加は、液温が25℃以上にならないように注意しながら、約30〜60分間かけて実施した。添加終了後、得られた凝集剤のpHを、濃硫酸で1.4に調整した。
【0019】
前記操作を、それぞれ独立して7回実施して得られた各凝集剤における、全鉄濃度(g/L)、Fe2+濃度(g/L)、SO4濃度(g/L)、及びSiO2濃度(g/L)を表1に示す。
【0020】

Figure 0004030729
【0021】
【比較例1】
本比較例では、特願2000−202492号に記載の凝集剤、すなわち、ポリ硫酸第二鉄水溶液の撹拌下に、水ガラス水溶液を徐々に添加することにより得られる凝集剤を、以下の手順に従って調製した。
すなわち、3号水ガラス原液(シリカ濃度=30%)6.67gをビーカーに入れた後、純水で希釈し、水ガラス水溶液80gを調製した。別のビーカーに、ポリ硫酸第二鉄水溶液(鉄イオン濃度=11%)20gを入れた後、先に調製した水ガラス水溶液80gを、撹拌下、pHが2を越えないように濃硫酸を適宜添加しながら、徐々に添加することにより、比較用凝集剤(鉄イオン濃度=2.2%,ポリ硫酸第二鉄濃度=20%,シリカ濃度=2%)100gを調製した。添加終了後、得られた比較用凝集剤のpHを、濃硫酸で1.4に調整した。
【0022】
前記操作を、それぞれ独立して6回実施して得られた各比較用凝集剤における、全鉄濃度(g/L)、SO4濃度(g/L)、及びSiO2濃度(g/L)を表2に示す。
【0023】
Figure 0004030729
【0024】
【評価例1】
《凝集効果に関する評価》
被処理液として、水道水にカオリンを濃度が100mg/Lとなるように添加した懸濁水(濁度=70〜75)を調製し、前記実施例1で調製した本発明製造方法による凝集剤及び前記比較例1で調製した比較用凝集剤のジャーテストを実施した。
具体的には、前記実施例1で調製した本発明製造方法による凝集剤としては、標品番号4〜7のものを使用し、前記比較例1で調製した比較用凝集剤としては、標品番号4〜6のものを使用した。なお、本評価試験は、各凝集剤を調製した直後(3時間以内)に実施した。
【0025】
ビーカーに、被処理液である前記懸濁水1000mLを入れた後、撹拌(回転数=60rpm)しながら、各凝集剤を種々濃度となるように添加し、更に10分間撹拌した。各凝集剤の添加量は、100mg/L、200mg/L、300mg/L、400mg/L、及び500mg/Lの5段階とした。これらの添加量は、それぞれ、ポリ硫酸第二鉄濃度に換算して、20mg/L、40mg/L、60mg/L、80mg/L、及び100mg/Lとなる添加量であった。なお、凝集剤添加後、pHが6.5未満の場合には、NaOHにてpHを6.5に調整した。
凝集剤添加後、フロック生成時間(単位=秒)、フロック径(単位=mm)、及び沈降時間(単位=秒)を観察し、撹拌停止から10分間経過後に、上澄みの濁度(単位=度)を測定した。
なお、「フロック生成時間」は、凝集剤を添加してからフロックが生成するまでの時間である。また、「フロック径」は、肉眼による観察により決定した値であり、「沈降時間」は、撹拌を停止してから、ほとんどのフロックの沈降が完了するまでの時間である。更に、「濁度」は、通常の上水試験方法に従って、撹拌停止から10分間経過した後の上清を採取し、光電分光光度計を用いて測定した。
【0026】
凝集剤添加量(単位=mg/L)と濁度(単位=度)との関係を図1に示し、凝集剤添加量(単位=mg/L)とフロック生成時間(単位=秒)との関係を図2に示し、凝集剤添加量(単位=mg/L)とフロック径(単位=mm)との関係を図3に示し、凝集剤添加量(単位=mg/L)と沈降時間(単位=秒)との関係を図4に示す。図1〜図4に示す数値は、本発明製造方法による凝集剤については、4種類の標品(すなわち、標品番号4〜7の標品)を使用して実施した4回の測定値の平均値であり、比較用凝集剤については、3種類の標品(すなわち、標品番号4〜6の標品)を使用して実施した3回の測定値の平均値である。
【0027】
図1及び図2において、曲線Aは、前記実施例1で調製した本発明製造方法による凝集剤の結果を示し、曲線Bは、前記比較例1で調製した比較用凝集剤の結果を示す。
図3において、横軸に示す記号「A」は、前記実施例1で調製した本発明製造方法による凝集剤を意味し、横軸に示す記号「B」は、前記比較例1で調製した比較用凝集剤を意味する。また、各記号「A」及び「B」の直後の括弧内の数字は、各凝集剤の添加量(単位=mg/L)を示す。
図4において、曲線Aは、前記実施例1で調製した本発明製造方法による凝集剤の結果を示し、曲線Bは、前記比較例1で調製した比較用凝集剤の結果を示す。なお、本発明製造方法による凝集剤に関する結果の内、添加量が100mg/Lの場合については、4種類の標品の全てにおいて沈降時間が5分間を越えていた。また、比較用凝集剤に関する結果の内、添加量が100mg/Lの場合については、3種類の標品の全てにおいて沈降が認められず、添加量が200mg/Lの場合については、標品番号4の標品を除く2種類の標品(すなわち、標品番号5〜6の標品)において沈降時間が5分間を越え、標品番号4の標品の沈降時間は5分間であった。
【0028】
【評価例2】
《長期安定性に関する評価》
前記実施例1で調製した本発明製造方法による凝集剤及び前記比較例1で調製した比較用凝集剤の各々を、密閉したガラス管に入れ、直射日光の当たらない場所で室温にて保存した。なお、前記実施例1で調製した本発明製造方法による凝集剤としては、標品番号4〜7のものを使用し、前記比較例1で調製した比較用凝集剤としては、標品番号4〜6のものを使用した。
表3に結果を示す。表3において、記号「○」は、安定性が特に良好であることを示し、記号「△」は、安定性が良好であることを示し、記号「×」は、ゲル化したことを示す。
【0029】
《表3》
7日 14日 30日 45日 60日
本発明製造方法による凝集剤 ○ ○ ○ ○ △
比較用凝集剤 ○ ○ ×
【0030】
【発明の効果】
本発明の製造方法によれば、特願2000−202492号明細書に記載の凝集剤よりも更に高い凝集効果と長期安定性とを示す凝集剤を提供することができる。
【図面の簡単な説明】
【図1】本発明製造方法による凝集剤又は比較用凝集剤を用いて被処理液を処理した場合の、凝集剤添加量と濁度との関係を示すグラフである。
【図2】本発明製造方法による凝集剤又は比較用凝集剤を用いて被処理液を処理した場合の、凝集剤添加量とフロック生成時間との関係を示すグラフである。
【図3】本発明製造方法による凝集剤又は比較用凝集剤を用いて被処理液を処理した場合の、凝集剤添加量とフロック径との関係を示すグラフである。
【図4】本発明製造方法による凝集剤又は比較用凝集剤を用いて被処理液を処理した場合の、凝集剤添加量と沈降時間との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a flocculant.
[0002]
[Prior art]
An aqueous polyferric sulfate solution is an iron-based inorganic polymer flocculant, and is known to be effective in, for example, aggregation, dephosphorization, and deodorization. Polyferric sulfate can be prepared, for example, by oxidizing sulfuric acid in an aqueous ferrous sulfate solution to less than 0.5 mol per mol of ferrous sulfate (Japanese Patent Publication No. 51- No. 17516).
However, when a polyferric sulfate aqueous solution is used alone, flocs large enough to precipitate are not formed, so that the flocs are poorly settled and fine flocs remain in the treated water. was there.
The inventor has eagerly searched for the purpose of further improving the floc formation of a polyferric sulfate aqueous solution. In the flocculant containing the polyferric sulfate aqueous solution and water glass, the polyferric sulfate aqueous solution is used. It has been found that the synergistic effect is much higher than the mere additive effect of the single agglomeration effect and that of water glass alone (Japanese Patent Application No. 2000-202492). As described in Japanese Patent Application No. 2000-202492, for example, a flocculant containing a ferric sulfate aqueous solution and water glass is prepared by stirring the water glass aqueous solution while stirring the polyferric sulfate aqueous solution. It can be prepared by gradually adding.
[0003]
[Problems to be solved by the invention]
The inventor has eagerly searched for the purpose of obtaining a flocculant having a higher flocculating effect than the flocculant described in Japanese Patent Application No. 2000-202492, and found that an aqueous solution containing ferrous sulfate and sulfuric acid. It was found that an aggregating agent obtained by gradually adding an oxidizing agent aqueous solution and a water glass aqueous solution under stirring of the above exhibits a higher aggregating effect than the aggregating agent described in Japanese Patent Application No. 2000-202492. And the flocculant obtained by the said operation showed the effect far superior in terms of long-term stability than the said flocculant described in Japanese Patent Application No. 2000-202492.
The present invention is based on such knowledge. Therefore, the object of the present invention is to have a higher aggregating effect than the flocculant described in Japanese Patent Application No. 2000-202492, and to have long-term stability. It is providing the manufacturing method which can obtain a flocculant.
[0004]
[Means for Solving the Problems]
  The object is to oxidize under stirring of an aqueous solution containing ferrous sulfate and sulfuric acid according to the present invention.AgentWater glassIn the form of an aqueous solutionAddedA method for producing a flocculant, in which the oxidizing agent and water glass are added little by little simultaneously or intermittently to the extent that gelation of water glass does not occur in the ferrous sulfate / sulfuric acid-containing aqueous solution. AddedThis can be solved by a method for producing an aggregating agent.
  The present invention also relates to a flocculant obtained by the production method.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the production method of the present invention, an oxidizing agent aqueous solution and a water glass aqueous solution are gradually added while stirring an aqueous solution containing ferrous sulfate and sulfuric acid (hereinafter referred to as ferrous sulfate / sulfuric acid-containing aqueous solution).
The content of ferrous sulfate contained in the ferrous sulfate / sulfuric acid-containing aqueous solution is not particularly limited, but is preferably 1 to 7% as an iron ion concentration, and 2 to 4%. More preferably.
Further, the content of sulfuric acid contained in the ferrous sulfate / sulfuric acid-containing aqueous solution is not particularly limited, but is preferably 7 to 13%, more preferably 9 to 11.5%. preferable.
[0006]
Examples of the water glass used in the production method of the present invention include sodium silicate (for example, No. 1 water glass, No. 2 water glass, No. 3 water glass, or No. 4 water glass), potassium silicate, or lithium silicate. Or a mixture thereof, sodium silicate is preferably used, and No. 3 water glass is particularly preferably used.
Although the grade of dilution of water glass aqueous solution is not specifically limited, For example, the water glass aqueous solution diluted so that it may become 1 to 6% as silica concentration (namely, silicon dioxide concentration) can be used.
[0007]
The oxidizing agent used in the production method of the present invention is not particularly limited as long as it is an oxidizing agent capable of converting ferrous sulfate to polyferric sulfate by oxidation. For example, hydrogen peroxide, oxygen, nitric acid , Chlorine, or sodium chlorate. It is preferable to use hydrogen peroxide because it can be manufactured at a low temperature, is easy to operate, and prevents impurities from being mixed.
The oxidizing agent concentration in the oxidizing agent aqueous solution can be appropriately determined according to the type of oxidizing agent used, and is not particularly limited. For example, when hydrogen peroxide is used as the oxidizing agent, the hydrogen peroxide concentration in the aqueous hydrogen peroxide solution is preferably 1 to 50%.
[0008]
In the production method of the present invention, the molar ratio of ferrous sulfate to water glass is not particularly limited, but Fe2+/ SiO2The (molar ratio) is preferably 0.5 to 1. The molar ratio of ferrous sulfate and oxidizing agent is not particularly limited. For example, when hydrogen peroxide is used as the oxidizing agent, Fe2+/ H2O2The (molar ratio) is preferably 1 to 2.
[0009]
In the production method of the present invention, for example, when a large amount of an oxidizing agent aqueous solution and a water glass aqueous solution are added to a ferrous sulfate / sulfuric acid containing aqueous solution at a time, the water glass gels in the ferrous sulfate / sulfuric acid containing aqueous solution. Sometimes. This is because water glass is most easily gelled in the vicinity of neutrality as compared with alkaline or acidic conditions, and is also easily gelled by heating. More specifically, when a large amount of an acidic ferrous sulfate / sulfuric acid-containing aqueous solution and an alkaline water glass aqueous solution are in contact with each other at the same time, the contact surface (interface) becomes neutral. Occurs. In addition, when a large amount of an oxidizing agent aqueous solution is added to the ferrous sulfate / sulfuric acid-containing aqueous solution, heat is generated, and water glass is gelled. Furthermore, even if it can be mixed, an unstable thing will be made.
Therefore, in this specification, “the oxidant aqueous solution and the water glass aqueous solution are gradually added while stirring the ferrous sulfate / sulfuric acid-containing aqueous solution” means that the sulfuric acid containing sulfuric acid is stirred while It means that the oxidizing agent aqueous solution and the water glass aqueous solution are added little by little continuously or intermittently to such an extent that gelation of the water glass does not occur in the ferrous / sulfuric acid-containing aqueous solution.
[0010]
Moreover, in the manufacturing method of this invention, oxidizing agent aqueous solution and water glass aqueous solution are added to ferrous sulfate and a sulfuric acid containing aqueous solution. On the contrary, when ferrous sulfate / sulfuric acid-containing aqueous solution is added to the oxidizing agent aqueous solution and the water glass aqueous solution, the aqueous solution of water glass is alkaline, so that iron hydroxide is precipitated.
Furthermore, in the production method of the present invention, the oxidizing agent aqueous solution and the water glass aqueous solution are gradually added simultaneously. That is, one of the oxidizing agent aqueous solution and the water glass aqueous solution is gradually added, and after the addition is completed, the other remaining aqueous solution is not gradually added. In the method of adding water glass after first adding the total amount of the oxidizer aqueous solution, the water glass is added after the polyiron sulfate solution is formed, and there is no difference from the known method, and the agglomeration effect is improved. can not see. In addition, the method of adding the total amount of water glass aqueous solution and then adding the oxidizing agent aqueous solution has no particular problem in the production process (such as gelation or iron hydroxide precipitation). Similarly, the improvement of the aggregation effect is not observed.
[0011]
In the production method of the present invention, the aqueous oxidant solution and the aqueous water glass solution are prepared separately, and can be simultaneously added to the ferrous sulfate / sulfuric acid-containing aqueous solution as separate aqueous solutions. Alternatively, the oxidant and water glass can be added. An aqueous solution containing both of the above can be prepared and added to the ferrous sulfate / sulfuric acid-containing aqueous solution as an oxidizing agent-containing water glass aqueous solution.
In the former case (that is, when the oxidizing agent aqueous solution and the water glass aqueous solution are prepared separately), as an aspect of adding the oxidizing agent aqueous solution and the water glass aqueous solution, for example, both are added simultaneously and continuously. Alternatively, both can be added alternately and discontinuously, or one aqueous solution can be added continuously and the other aqueous solution can be added discontinuously.
[0012]
In the production method of the present invention, the addition of the oxidizing agent aqueous solution and the water glass aqueous solution to the ferrous sulfate / sulfuric acid-containing aqueous solution is preferably carried out while adjusting the liquid temperature to 25 ° C. or less. More preferably, the liquid temperature is 25 ° C. or lower over the entire period from the start to the completion. When the liquid temperature exceeds 25 ° C., the water glass may gel or may become unstable.
In the production method of the present invention, the pH when adding the aqueous oxidizing agent solution and the aqueous water glass solution to the ferrous sulfate / sulfuric acid-containing aqueous solution is preferably 0.5 to 2, and when the pH exceeds 2, It is preferable to add an acid (for example, sulfuric acid or hydrochloric acid). When the pH exceeds 2 or less than 0.5, the gelation rate may increase.
[0013]
The ferric sulfate contained in the flocculant obtained by the production method of the present invention has the formula (I):
[Fe2(OH)n(SOFour)3-n / 2]m        (I)
(Where n is a number less than 2 and m is a number greater than 10)
The basicity of the compound is represented by the formula:
(N / 6) x 100%
(See Japanese Patent Publication No. 51-17516).
The content of polyferric sulfate in the flocculant obtained by the production method of the present invention is not particularly limited, but the iron ion concentration is preferably 1 to 5%. If it is less than 1%, a satisfactory aggregation effect may not be obtained. In this case, since the coagulation effect is weak, a large amount of addition is required, and as a result, the coagulant transport cost may increase. If it exceeds 5%, the flocculant aqueous solution may gel in a short period of time after production, making it unusable as a flocculant.
[0014]
The water glass that can be contained in the flocculant obtained by the production method of the present invention is, for example, sodium silicate (for example, No. 1 water glass, No. 2 water glass, No. 3 water glass, or No. 4 water glass). , Potassium silicate, or lithium silicate, or a mixture thereof. Sodium silicate is preferably used, and No. 3 water glass is particularly preferably used.
[0015]
The water glass content in the flocculant obtained by the production method of the present invention is not limited to this, but the silica concentration (ie, silicon dioxide concentration) is preferably 0.5 to 4%. . If it is less than 0.5%, a satisfactory aggregation effect may not be obtained. In this case, since the coagulation effect is weak, a large amount of addition is required, and the coagulant transport cost may increase. If it exceeds 4%, the flocculant aqueous solution may gel and become unusable as a flocculant.
[0016]
The liquid to be treated that can be treated using the flocculant obtained by the production method of the present invention is not limited to this, but the same application object as that of conventionally known flocculants, such as industrial wastewater or Mention may be made of dye wastewater.
Regarding the method of using the flocculant, it can be used in the same manner as conventionally known flocculants. For example, the flocculant of the liquid to be treated is added to the liquid to be treated, preferably with stirring. Processing can be performed.
The addition amount of the flocculant can be appropriately determined according to the type and state of the liquid to be treated. For example, in the case of normal industrial wastewater, the addition amount is 50 to 5000 ppm. it can.
[0017]
[Action]
  The flocculant obtained by the production method of the present invention is, as shown in Evaluation Example 1 in the examples described later, under the stirring of the flocculant described in Japanese Patent Application No. 2000-202492, that is, an aqueous polyferric sulfate solution. Compared to a flocculant obtained by gradually adding a water glass aqueous solution, a high coagulation effect is exhibited. In the examples described laterEvaluationAs shown in Example 2, the long-term stability is superior to the flocculant described in Japanese Patent Application No. 2000-202492.
[0018]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
[Example 1]
A ferrous sulfate / sulfuric acid-containing aqueous solution was prepared by placing 110 g of ferrous sulfate heptahydrate and 490 g of 5.9% sulfuric acid in a beaker and thoroughly stirring the mixture. In another beaker, 66.67 g of No. 3 water glass stock solution (silica concentration = 30%) was added, and then diluted with pure water to prepare 365 g of a water glass aqueous solution. After sufficiently stirring, 35 g of 34.5% hydrogen peroxide solution was further added to the water glass aqueous solution to prepare a hydrogen glass-containing water glass aqueous solution.
By gradually adding the hydrogen peroxide-containing water glass aqueous solution with stirring to the previously prepared ferrous sulfate / sulfuric acid-containing aqueous solution, the flocculant [iron ion concentration = 2.2% (polysulfuric acid (Corresponding to 20% as iron concentration), silica concentration = 2%] 1000 g was prepared. The addition of the aqueous hydrogen peroxide-containing water glass solution was carried out over about 30 to 60 minutes, taking care not to bring the liquid temperature to 25 ° C. or higher. After completion of the addition, the pH of the obtained flocculant was adjusted to 1.4 with concentrated sulfuric acid.
[0019]
The total iron concentration (g / L), Fe in each flocculant obtained by carrying out the above operation seven times independently.2+Concentration (g / L), SOFourConcentration (g / L) and SiO2The concentration (g / L) is shown in Table 1.
[0020]
Figure 0004030729
[0021]
[Comparative Example 1]
In this comparative example, the flocculant described in Japanese Patent Application No. 2000-202492, that is, the flocculant obtained by gradually adding a water glass aqueous solution under stirring of a ferric sulfate aqueous solution, Prepared.
That is, 6.67 g of No. 3 water glass stock solution (silica concentration = 30%) was put in a beaker and diluted with pure water to prepare 80 g of a water glass aqueous solution. In another beaker, 20 g of an aqueous polyferric sulfate solution (iron ion concentration = 11%) is added, and then 80 g of the previously prepared water glass aqueous solution is stirred with concentrated sulfuric acid so that the pH does not exceed 2. By gradually adding while adding, 100 g of a comparative flocculant (iron ion concentration = 2.2%, polyferric sulfate concentration = 20%, silica concentration = 2%) was prepared. After completion of the addition, the pH of the obtained comparative flocculant was adjusted to 1.4 with concentrated sulfuric acid.
[0022]
The total iron concentration (g / L), SO, in each comparative flocculant obtained by carrying out the above operations 6 times independently.FourConcentration (g / L) and SiO2The concentration (g / L) is shown in Table 2.
[0023]
Figure 0004030729
[0024]
[Evaluation Example 1]
《Evaluation on aggregation effect》
As the liquid to be treated, suspended water (turbidity = 70 to 75) in which kaolin is added to tap water so as to have a concentration of 100 mg / L is prepared, and the flocculant according to the production method of the present invention prepared in Example 1 and A jar test of the comparative flocculant prepared in Comparative Example 1 was performed.
Specifically, as the flocculant according to the production method of the present invention prepared in Example 1, those having standard numbers 4 to 7 were used, and as the comparative flocculant prepared in Comparative Example 1, the standard was used. Numbers 4-6 were used. This evaluation test was carried out immediately after each flocculant was prepared (within 3 hours).
[0025]
Into a beaker, 1000 mL of the suspension water as the liquid to be treated was added, and then each aggregating agent was added to various concentrations while stirring (rotation speed = 60 rpm), and further stirred for 10 minutes. The addition amount of each flocculant was made into five steps of 100 mg / L, 200 mg / L, 300 mg / L, 400 mg / L, and 500 mg / L. These addition amounts were the addition amounts that would be 20 mg / L, 40 mg / L, 60 mg / L, 80 mg / L, and 100 mg / L, respectively, in terms of polyferric sulfate concentration. When the pH was less than 6.5 after adding the flocculant, the pH was adjusted to 6.5 with NaOH.
After adding the flocculant, the floc formation time (unit = second), the floc diameter (unit = mm), and the sedimentation time (unit = second) were observed. After 10 minutes from the stirring stop, the turbidity of the supernatant (unit = degree) ) Was measured.
The “floc generation time” is the time from when the flocculant is added until the floc is generated. The “floc diameter” is a value determined by observation with the naked eye, and the “sedimentation time” is the time from when stirring is stopped until the sedimentation of most of the flocs is completed. Furthermore, the “turbidity” was measured using a photoelectric spectrophotometer after collecting the supernatant after 10 minutes had passed since the stirring was stopped according to the usual water test method.
[0026]
The relationship between the flocculant addition amount (unit = mg / L) and turbidity (unit = degree) is shown in FIG. 1, and the flocculant addition amount (unit = mg / L) and floc generation time (unit = second) are shown. The relationship is shown in FIG. 2, the relationship between the flocculant addition amount (unit = mg / L) and the floc diameter (unit = mm) is shown in FIG. 3, the flocculant addition amount (unit = mg / L) and the settling time ( FIG. 4 shows the relationship with (unit = second). The numerical values shown in FIG. 1 to FIG. 4 are the values of four measurements carried out using the four kinds of preparations (namely, preparations of preparation numbers 4 to 7) for the flocculant produced by the production method of the present invention. It is an average value, and for the comparative flocculant, it is an average value of three measurements carried out using three types of samples (namely, samples of standard numbers 4 to 6).
[0027]
1 and 2, curve A shows the result of the flocculant prepared by the production method of the present invention prepared in Example 1, and curve B shows the result of the comparative flocculant prepared in Comparative Example 1.
In FIG. 3, the symbol “A” shown on the horizontal axis means the flocculant prepared by the production method of the present invention prepared in Example 1, and the symbol “B” shown on the horizontal axis shows the comparison prepared in Comparative Example 1. Means flocculant for use. The numbers in parentheses immediately after the symbols “A” and “B” indicate the amount of each flocculant added (unit = mg / L).
In FIG. 4, curve A shows the result of the flocculant prepared by the production method of the present invention prepared in Example 1, and curve B shows the result of the comparative flocculant prepared in Comparative Example 1. Of the results relating to the flocculant produced by the production method of the present invention, when the addition amount was 100 mg / L, the settling time exceeded 5 minutes in all four types of samples. Of the results for the comparative flocculant, when the addition amount is 100 mg / L, no sedimentation was observed in all three types of preparations, and when the addition amount was 200 mg / L, the standard number The sedimentation time exceeded 5 minutes in the two types of specimens (namely, specimens of specimen numbers 5 to 6) except for specimen 4 and the sedimentation time of the specimen of specimen number 4 was 5 minutes.
[0028]
[Evaluation Example 2]
<Evaluation on long-term stability>
Each of the flocculant by the manufacturing method of the present invention prepared in Example 1 and the comparative flocculant prepared in Comparative Example 1 was put in a sealed glass tube and stored at room temperature in a place not exposed to direct sunlight. In addition, as the flocculant by this invention manufacturing method prepared in the said Example 1, the thing of sample numbers 4-7 is used, and as the flocculant for comparison prepared in the said Comparative Example 1, sample numbers 4 ~ 6 were used.
Table 3 shows the results. In Table 3, the symbol “◯” indicates that stability is particularly good, the symbol “Δ” indicates that stability is good, and the symbol “x” indicates gelation.
[0029]
<< Table 3 >>
7th 14th 30 days 45 days 60 days
Flocculant by the production method of the present invention ○ ○ ○ ○ △
Comparative flocculant ○ ○ ×
[0030]
【The invention's effect】
According to the production method of the present invention, it is possible to provide an aggregating agent exhibiting a higher aggregating effect and long-term stability than the aggregating agent described in Japanese Patent Application No. 2000-202492.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of flocculant added and turbidity when a liquid to be treated is treated with a flocculant produced by the production method of the present invention or a comparative flocculant.
FIG. 2 is a graph showing the relationship between the amount of flocculant added and floc generation time when the liquid to be treated is treated with the flocculant produced by the production method of the present invention or the comparative flocculant.
FIG. 3 is a graph showing the relationship between the amount of flocculant added and the floc diameter when a liquid to be treated is treated with a flocculant produced by the production method of the present invention or a comparative flocculant.
FIG. 4 is a graph showing the relationship between the amount of flocculant added and the settling time when a liquid to be treated is treated with a flocculant produced by the production method of the present invention or a comparative flocculant.

Claims (3)

硫酸第一鉄と硫酸とを含有する水溶液の撹拌下に、酸化剤及び水ガラスを水溶液の形で添加する凝集剤の製造方法であって、前記酸化剤及び水ガラスを、反応中の液温が25℃以下且つpH0.5〜2の条件下で、前記硫酸第一鉄・硫酸含有水溶液中で水ガラスのゲル化が生じない程度に連続的又は断続的に少量ずつ添加し;
前記添加を、
(A)酸化剤及び水ガラスの両方を含有する水溶液を調製し、酸化剤含有水ガラス水溶液として添加する方法、
(B)酸化剤水溶液と水ガラス水溶液とを別々に調製し、前記酸化剤水溶液及び水ガラス水溶液を同時且つ連続的に添加する方法、
(C)酸化剤水溶液と水ガラス水溶液とを別々に調製し、前記酸化剤水溶液及び水ガラス水溶液を同時且つ断続的に添加する方法、
(D)酸化剤水溶液と水ガラス水溶液とを別々に調製し、前記酸化剤水溶液及び水ガラス水溶液を交互且つ断続的に添加する方法、並びに
(E)酸化剤水溶液と水ガラス水溶液とを別々に調製し、前記酸化剤水溶液又は水ガラス水溶液のいずれか一方の水溶液を連続的に、もう一方の水溶液を断続的に添加する方法
からなる群から選んだ方法により実施し;
得られた凝集剤におけるポリ硫酸第二鉄の含有量が鉄イオン濃度として1〜5%であり、前記凝集剤における水ガラスの含有量が二酸化ケイ素濃度として0.5〜4%である
ことを特徴とする、凝集剤の製造方法。
A method for producing an aggregating agent in which an oxidizing agent and water glass are added in the form of an aqueous solution under stirring of an aqueous solution containing ferrous sulfate and sulfuric acid, the oxidizing agent and water glass being heated at a liquid temperature during the reaction. Is added in small portions continuously or intermittently to such an extent that gelation of water glass does not occur in the ferrous sulfate / sulfuric acid-containing aqueous solution under the conditions of 25 ° C. or lower and pH 0.5-2 ;
Said addition,
(A) A method of preparing an aqueous solution containing both an oxidizing agent and water glass, and adding the aqueous solution as an oxidizing agent-containing water glass aqueous solution,
(B) A method of separately preparing an aqueous oxidizing agent solution and an aqueous water glass solution and adding the aqueous oxidizing agent solution and the aqueous water glass solution simultaneously and continuously,
(C) A method of separately preparing an oxidizing agent aqueous solution and a water glass aqueous solution, and adding the oxidizing agent aqueous solution and the water glass aqueous solution simultaneously and intermittently,
(D) A method of separately preparing an oxidizer aqueous solution and a water glass aqueous solution, and alternately and intermittently adding the oxidizer aqueous solution and the water glass aqueous solution; and
(E) A method in which an aqueous oxidizing agent solution and an aqueous water glass solution are separately prepared, and either one of the aqueous oxidizing agent solution or the aqueous water glass solution is continuously added, and the other aqueous solution is intermittently added.
Carried out by a method selected from the group consisting of:
The content of polyferric sulfate in the obtained flocculant is 1 to 5% as iron ion concentration, and the content of water glass in the flocculant is 0.5 to 4% as silicon dioxide concentration <br> A method for producing a flocculant characterized by the above.
前記酸化剤が過酸化水素である、請求項に記載の製造方法。It said oxidizing agent is hydrogen peroxide, the production method according to claim 1. 請求項1又は2に記載の製造方法によって得られる凝集剤。A flocculant obtained by the production method according to claim 1 or 2 .
JP2001135375A 2001-05-02 2001-05-02 Method for producing flocculant Expired - Fee Related JP4030729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001135375A JP4030729B2 (en) 2001-05-02 2001-05-02 Method for producing flocculant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001135375A JP4030729B2 (en) 2001-05-02 2001-05-02 Method for producing flocculant

Publications (3)

Publication Number Publication Date
JP2002326003A JP2002326003A (en) 2002-11-12
JP2002326003A5 JP2002326003A5 (en) 2005-03-17
JP4030729B2 true JP4030729B2 (en) 2008-01-09

Family

ID=18982849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001135375A Expired - Fee Related JP4030729B2 (en) 2001-05-02 2001-05-02 Method for producing flocculant

Country Status (1)

Country Link
JP (1) JP4030729B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964555A (en) * 2014-04-19 2014-08-06 青岛食之礼中草药研究所 Compound type water treatment flocculating agent and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707012B2 (en) * 2003-06-05 2011-06-22 栗田工業株式会社 Sludge malodor control method
CN101218179B (en) * 2005-08-24 2010-12-08 株式会社德山 Method for treatment of wastewater containing fumed silica
WO2007023872A1 (en) 2005-08-24 2007-03-01 Tokuyama Corporation Method for processing waste water containing silicon powder
JP5472087B2 (en) * 2010-12-27 2014-04-16 八州家 三上 Polyferric sulfate ferric solution and method for producing the same
KR101403942B1 (en) 2011-11-17 2014-06-09 주식회사 워켐 The preparing method of ferric salt from waste water
JP6327782B2 (en) * 2012-03-07 2018-05-23 日立造船株式会社 Method for removing radioactive cesium from wastewater containing radioactive cesium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964555A (en) * 2014-04-19 2014-08-06 青岛食之礼中草药研究所 Compound type water treatment flocculating agent and preparation method thereof

Also Published As

Publication number Publication date
JP2002326003A (en) 2002-11-12

Similar Documents

Publication Publication Date Title
US5785862A (en) Preparation and uses of polyferric sulphate
US5246686A (en) Basic aluminum chlorosulfate flocculating agents
JP2008290896A (en) Producing method of zirconia sol
JPS5845909B2 (en) Arsenic removal method from aqueous media
JP4030729B2 (en) Method for producing flocculant
CN109133293A (en) A kind of preparation process of use in waste water treatment bodied ferric sulfate crystal
CN107324466A (en) Method is prepared in situ in a kind of river course water treatment coagulant
JP2005125153A (en) Method and apparatus for treating fluorine-containing waste water
JP2000202207A (en) Coagulant for water treatment and production thereof
JP2002326003A5 (en)
JPS5820892B2 (en) Production method of basic ferric sulfate
KR100452960B1 (en) Preparing method of water-soluble high ratio silicates
JP2019206469A (en) Silicon-containing basic aluminum chloride aqueous solution
JP2021050131A (en) Basic aqueous aluminum silicate solution
JPH0859245A (en) Production of basic ferric sulfate solution
JP2000279708A (en) Inorganic flocculating agent for water treatment and its production
JP2000154013A (en) Production of activated silica
JP4250298B2 (en) Novel flocculant and method for producing the same
TWI814139B (en) Method for removing boron from boron-containing solution
JP2002018206A (en) New coagulant and its manufacturing method
JPH10230102A (en) Manufacture of iron-containing polyaluminum chloride aqueous solution
JP2024089040A (en) Boron-containing basic aluminum chloride
JP2024089041A (en) Boron-added coagulation method
JP4043649B2 (en) Water treatment agent
KR20000020134A (en) Inorganic coagulant and the preparation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees