JP4029327B2 - Laser welding quality evaluation method and quality evaluation apparatus - Google Patents

Laser welding quality evaluation method and quality evaluation apparatus Download PDF

Info

Publication number
JP4029327B2
JP4029327B2 JP2002281026A JP2002281026A JP4029327B2 JP 4029327 B2 JP4029327 B2 JP 4029327B2 JP 2002281026 A JP2002281026 A JP 2002281026A JP 2002281026 A JP2002281026 A JP 2002281026A JP 4029327 B2 JP4029327 B2 JP 4029327B2
Authority
JP
Japan
Prior art keywords
metal plate
welding
upper metal
width
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002281026A
Other languages
Japanese (ja)
Other versions
JP2004114095A (en
Inventor
清市 松本
芳朗 粟野
和久 三瓶
隆之 佐伯
綱次 北山
宗久 松井
吾朗 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002281026A priority Critical patent/JP4029327B2/en
Publication of JP2004114095A publication Critical patent/JP2004114095A/en
Application granted granted Critical
Publication of JP4029327B2 publication Critical patent/JP4029327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ溶接の品質即ち接合の良否を評価する品質評価方法及び装置に関する。
【0002】
【従来の技術】
レーザ溶接とは、レーザ発振器から発せられるレーザ光を被溶接品(ワーク)に照射し、ワークの一部を溶融させた後固化した溶接ビードによりワーク同士を溶接する接合法である。熱源の種類によりアーク溶接、電子ビーム溶接及びレーザ溶接等に分類され、熱源の移動の有無によりスポット溶接及びライン溶接に分類され、2つのワークの位置関係により重ね溶接及び突合せ溶接等に分類される。
【0003】
ここで、下金属板の上に上金属板を重ね、上金属板の表面に沿ってレーザ光を移動させて両金属板を溶接(接合)する場合を考える。溶接ビードにより両金属板が確実に溶接されたかどうかは外観から判断することは困難であるため、溶接中又は溶接後に、接合の良否を評価することがある。
【0004】
従来の品質評価方法(例えば、特許文献1参照)は、重ねレーザ溶接において、時間的制約を受けずに溶接品質を評価するために、溶接終了後、被溶接材の溶接ビードを含めた熱影響変色部の幅を測定している。測定した幅を予め設定した基準値と比較し、熱影響変色部の幅が基準値以内の時溶接品質を良否を評価している。
【0005】
熱影響変色部は黒変しており、CCDカメラ等の撮像素子で観察できる。下金属板と上金属板との接触状態の良否に応じて上金属板から下金属板への熱伝導が異なり、それによって熱影響変色部の幅が変化することを利用している。
【0006】
【特許文献1】
特開平10−58170号公報
【0007】
【発明が解決しようとする課題】
しかし、上記従来例には以下の点で改良の余地がある。まず、測定に画像処理を利用しており、熱影響部とそれ以外の部分(溶接ビード、熱影響変色部の更に両外側の部分)との間の輝度差が小さいため、熱影響変色部の幅が正確に検出できるとは言い難い。また、CCDカメラを高温の溶接ビード及び熱影響変色部の直上方に配置することは困難であり、溶接の終了後に品質を評価している。これでは、評価に時間要し、リアルタイムで評価することはできない。
【0008】
本発明は上記事情に鑑みてなされたもので、2枚の金属板を重ね合わせレーザ光を照射して重ね溶接する際、溶接ビードによる接合の良否を、正確にしかもリアルタイムで評価できる品質評価方法及び品質評価装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本願の発明者は、重ね溶接において、レーザ光が照射され材料が溶融している部分(溶融部分)及びその両側の隣接する部分(隣接部分)の違いに注目した。溶融部分ではレーザ光の熱により金属板の一部が溶融し、キーホール内に溶融金属が流れ込み、溶接終了後固化して溶接ビードとなる。
【0010】
これに対して、隣接部分では金属材料は溶融せず、所定温度以上になると酸化し、溶接終了後縞模様状の熱影響部となる。酸化するためには隣接部分が所定温度であることが必要である。上金属板から下金属板に熱が伝導し、それによって上金属板の温度が低下する。そして、熱伝導度は上金属板と下金属板との接触状態により変わる。
【0011】
本願の第1発明による品質評価方法は、下金属板の上に重ねた上金属板の表面にそって、レーザ光を照射する溶接トーチを移動させ、両金属板をレーザ光で溶融させた後その溶融部分を固化させて溶接ビードとすることで両金属板を接合するレーザ溶接において、溶接の品質を評価する方法であって、溶接時に上金属板の表面の溶融部分の両側に隣接して形成され溶融部分から熱的影響を受けて所定温度以上となる一対の隣接部分の少なくとも一方における熱情報を検出する検出工程と;検出された熱情報に基づき隣接部分の幅を求め、予め準備した基準値と比較することにより接合の良否を判定する判定工程と;から成り、前記基準値は、前記下金属板及び前記上金属板と同じ材料、板厚の下試験片及び上試験片について、両者の隙間がゼロとなるように密着させること以外は該下金属板及び該上金属板をレーザ溶接するときと同じ条件でレーザ溶接した場合に形成される隣接部分の幅を、該下金属板及び該上金属板における前記隣接部分の幅を求めるときと同じように、予め求めたものであることを特徴とする。
【0012】
この品質評価方法において、上金属板から下金属板への熱伝導度は上金属板と下金属板との接触状態に関連し、熱伝導度が変わると隣接部分の幅が変わる。よって、隣接部分の幅を調べることにより、両金属板の接触状態即ち溶接の良否を評価することができる。
【0013】
請求項2の品質評価方法は、請求項1において、検出工程と判定工程とを併行して行う。
【0014】
本願の第2発明によるレーザ溶接の品質評価装置は、下金属板の上に重ねた上金属板の表面にそって、レーザ光を照射する溶接トーチを移動させ、両金属板をレーザ光で溶融させた後その溶融部分を固化させて溶接ビードとすることで両金属板を接合するレーザ溶接において、溶接の品質を評価する装置であって、溶接時に上金属板の表面の溶融部分の両側に隣接して形成され溶融部分から熱的影響を受けて所定温度以上となる一対の隣接部分の少なくとも一方における熱情報を検出する赤外線センサと;検出された熱情報に基づき隣接部分の幅を求め、予め準備した基準値と比較することにより接合の良否を判定する信号処理部と;から成り、前記基準値は、前記下金属板及び前記上金属板と同じ材料、板厚の下試験片及び上試験片について、両者の隙間がゼロとなるように密着させること以外は該下金属板及び該上金属板をレーザ溶接するときと同じ条件でレーザ溶接した場合に形成される隣接部分の幅を、該下金属板及び該上金属板における前記隣接部分の幅を求めるときと同じように、予め求めたものであることを特徴とする。
【0015】
この品質評価装置において、上金属板から下金属板への熱伝導度は上金属板と下金属板との接触状態に関連し、熱伝導度が変わると隣接部分の幅が変わる。よって、赤外線センサ及び信号処理部で隣接部分の幅を調べることにより、両金属板の接触状態即ち溶接の良否を評価することができる。
【0016】
請求項4の品質評価装置は、請求項3において、赤外線センサは上金属板から離れた位置に配置され、赤外線センサと上金属板の上方に配置された保護ガラスとが光ファイバで接続されている。請求項5の品質評価装置は、請求項4において、保護ガラスは、熱遮蔽部と熱透過部とを持ち、熱透過部に光ファイバが接続されている。
【0017】
【発明の実施の形態】
<レーザ溶接の品質評価方法>
▲1▼金属板、レーザ光
金属には鋼及びアルミニウム等が含まれる。上金属板の材料と下金属板の材料とは同じであることが望ましい。金属板の望ましい厚さは0.5から1.2mmである。上金属板の板厚と下金属板の板厚とは同じでも、異なっても良い。
【0018】
上金属板と下金属板とは側縁で溶接されても良いし、その他の部分で溶接されても良い。金属板全体が平坦でも良いし、溶接される部分が残りの部分に対して屈曲していても良い。
【0019】
金属板が鋼板のプレス加工品である場合、溶接される部分全体を完全に平面状に加工することは困難であり、特定部分に僅かな湾曲部が生ずることがある。湾曲部が存在すると両鋼板間の接触状態が変化し、隙間が大きい部分の接合が不良となり易い。本発明はこのような場合の品質評価に特に有効である。
【0020】
レーザ光は光であるが、単一の波長しか持たずかつ位相差がないため極めて小さな光に集光でき、電子ビームと同等にパワー密度を上げることができる。また、大気中を伝送可能で、かつ大気圧中で種々のガスを利用して溶接できる。代表的なレーザとしてYAGレーザや、CO2レーザがある。両者は出力と波長が主に異なる。最大出力はCO2レーザの方が大きく、波長はCO2レーザの方が長い。YAGレーザは光ファイバで伝送できる特長がある。何れも赤外域であるため、金属の表面で良く反射される。YAGレーザもCO2レーザも連続発振される場合とパルス発振される場合とがある。
【0021】
レーザ光を照射する溶接トーチは上金属板の表面に沿って移動される。移動軌跡は直線状でも曲線状でも良い。その際、溶接トーチの移動速度、出力は金属板の材料及び板厚や溶入深さ等を考慮して決める。
<2>検出工程
溶接時においては、上金属板と下金属板との接触状態により上金属板の隣接部分から下金属板への熱伝導度が変わり、それに伴って同隣接部分の温度が変わり、所定温度以上となる隣接部分の幅が変化する。このため、溶接時に隣接部分の熱情報に基づいて所定温度以上となる隣接部分の幅を求めることにより、上金属板と下金属板との接触状態の良否、すなわち接合の良否を判断することができる。
したがって、検出工程では、溶接時に上金属板の表面の溶融部分の両側に隣接して形成され溶融部分から熱的影響を受けて所定温度以上となる一対の隣接部分の少なくとも一方における熱情報を検出する。検出は隣接部分とそれ以外の部分との温度差が大きい溶接時に行う。尚、溶接の終了後、溶融部分が溶接ビードになり、隣接部分が熱影響部になる。
<3>判定工程
判定工程では、上記検出工程で検出した隣接部分の熱情報に基づき隣接部分(所定温度以上となっている部分)の幅を求め、これを予め準備した隣接部分の幅に関する基準値と比較する。基準値は、下金属板及び上金属板と同じ材料、板厚の下試験片及び上試験片を準備し、接触面を研磨して隙間ゼロの状態で密着させて溶接し、その際形成される隣接部分の幅を測定することにより求める。
【0022】
溶接不良の態様には引けや分離がある。「引け」とは、上金属板から下金属板にかけて溶接ビードが形成されているが、上金属板と下金属板とは密着していない。また、上金属板に露出した上端部及び下金属板に露出した下端部にくぼみが形成されている。これに対して、「分離」とは、上金属板及び下金属板にそれぞれ溶接ビードが形成されているが、両方の溶接ビードは繋がっていない。また、上金属板に露出した上端部及び下金属板に露出した下端部にくぼみが形成されている。何れも、溶接前に上金属板と下金属板とを重ねてセットした際、両金属板間に所定値以上の隙間が存在することに起因して発生すると考えられ、本発明により評価できる。
<レーザ溶接の品質評価装置>
▲1▼赤外線センサ
赤外線センサは、金属板から発せられる赤外線を主とする熱線のエネルギを捕らえて測温するセンサである。種々のタイプのものがあり、赤外線の持つ熱効果によってセンサが暖められ、温度の上昇により生ずる素子の電気的変化を検知する加熱型のものが望ましいが、光電変換型のものでも良い。上金属板の隣接部分等の熱は光ファイバにより上金属板から離れた赤外線センサに導くことができ、その際赤外線センサの入力部に特定波長のみを透過する光学フィルタを配置することができる。
【0023】
また、上金属板の上方に保護ガラスを配置し、該保護ガラスと赤外線センサとを光ファイバで接続することもできる。保護ガラスは、溶接時に飛散するスパッタの光ファイバへの付着を防止すると共に、溶融分から光ファイバへの熱放射を阻止するようになっていることが望ましい。
▲2▼信号処理回路
信号処理回路は例えば、各赤外線センサから入力される信号に基づき、二次元平面に横長のイメージ像を形成し、このイメージ像の長さを、基準値に対応するイメージ像の長さと比較する。そして前者が後者よりも大きいときはその旨の信号又は警告を発する。警告等が発せられたときは、溶接トーチの出力を下げる、又は移動速度を遅くする等の対策を施す。
【0024】
【実施例】
以下、本発明の実施例を添付図面を基にして説明する。
(品質評価装置)
図1に示すように、この実施例では下鋼板10と上鋼板12とをレーザ溶接により溶接し、溶接の良否を赤外線センサ25,26及び信号処理回路30で評価する。下鋼板10及び上鋼板12はプレス加工され板厚は共に0.7mmであり、両鋼板間の隙間は角部にスペーサを介在させることにより0.1mmにセットされている。
【0025】
図1及び図2に示すように、溶接トーチ15の背後で、上鋼板12の上方に保護ガラス20が配置され、上鋼板12から離れた位置に配置された一対の赤外線センサ25及び26に光ファイバ27で接続されている。保護ガラス20は横長形状を持ち、長さ方向の中央部のマスク(遮蔽部)21と、その両側の一対の透過部22及び23とを含む。
【0026】
マスク21は後述する溶融部分41aの幅と等しい幅を持ち、溶融部分41aから光ファイバ27への熱放射を遮断している。各透過部22及び23はそれぞれ隣接部分42a及び43aと同じ幅を持ち、隣接部分42a及び43aからの熱放熱を透過させる。マスク21と透過部22及び23との間には下方に延びる一対のバリヤ24が形成されている。
【0027】
一対の赤外線センサ25及び26の出力部は信号処理回路30に接続され、その入力部(受光部)に所定の波長のみを取り出す光学フィルタ28が取り付けられている。
(品質評価方法)
次に、上記品質評価装置による品質評価について説明する。図1において、レーザ溶接時、レーザ光を照射する溶接トーチ15を上鋼板12の表面に沿って線状に移動させる。その際、保護ガラス20を溶接トーチ15の後方に配置し、共に移動させる。下鋼板10及び上鋼板12のうちレーザ光が照射され溶融している溶融部分41aにキーホールが形成され、その周囲の材料がキーホール内に流入する。図3に示すように、溶融部分41aは固化すると溶接ビード41bになり、隣接部分42a、43aは熱影響部42b、43bになる。
【0028】
赤外線センサ25及び26により、隣接部分42a及び43aの熱放射の情報を検出する。以上が検出工程に対応する。
そして、赤外線センサ25及び26により得られる隣接部分42a及び43aの熱放射の情報を信号処理回路30において幅情報に変換する。その結果、図4中yで示すように、溶融部分41a及び一対の隣接部分42a、43aの幅の合計はw2であった。
【0029】
上記幅w2を予め準備しておいた基準値w1と比較する。基準値は、下鋼板10及び上鋼板12と同じ板厚の下試験片及び上試験片(不図示)を作成し、下試験片の上面及び上試験片の下面を研磨して隙間ゼロの状態で密着させる。その上で、溶接トーチ15により上記溶接と同じ条件で溶接を行い、その際の隣接部分42a及び43aの熱放射を赤外線センサ25及び26で調べ、信号処理回路30により幅の情報に変換したものである。その結果、図4中xで示すように、溶融部分及び一対の隣接部分の幅の合計はw1であった。
【0030】
このように、下鋼板10と上鋼板12とを溶接する際の溶融部分41a及び隣接部分42a,43aの幅の合計w2は、下試験片と上試験片とを溶接する際の溶融部分及び隣接部分の幅の合計w1よりも大きい。よって、この溶接は不良と判定する。以上が判定工程に対応する
【0031】
図5に溶接終了後の横断面の顕微鏡写真を示す。図5(b)は、両鋼板10及び12の顕微鏡写真である。これから判るように、下鋼板10にも上鋼板12にも、溶接ビード41b及び熱影響部42b、43bが形成されている。しかし、下鋼板10と上鋼板12とは厚さ方向に離れており、それぞれの溶接ビード41b及び熱影響部42b、43bはつながっていない(前記「分離」に相当)。
【0032】
一方、図5(a)は両試験片の顕微鏡写真である。上試験片と下試験片とは溶接ビードにより接合され、溶接ビードの幅は下方に進むにつれて漸増している。また、溶接ビードの両側で上試験片及び下試験片に亘って形成された熱影響部の幅は、全体的にほぼ一定となっている。溶接ビード及び熱影響部以外の部分では下試験片と上試験片とは密着している。
【0033】
このように、図4に示した溶融部分41a並びに隣接部分42及び43の幅の合計による品質評価と、実際の金属組織とが対応していることが確認された。
(効果)
上述したように、本実施例では、上鋼板12に近接して配置しマスク21と透過部22及び23とを持つ保護ガラス20を溶接トーチ15と共に移動させ、上鋼板12から離れた位置に赤外線センサ25及び26を配置した。これにより以下の効果が得られる。
【0034】
第1に、上鋼板12の隣接部分42a及び43aの幅と隣接部分の幅に関する基準値との大小関係を正確に判断することができる。これは、保護ガラス20が長手方向中間部のマスク21と、その両側の透過部22及び23と、バリヤ24とを備えることによる。両側の透過部22及び23は隣接部分42a及び43aの熱を透過するが、中間部のマスク21は溶融部分41aの熱を遮断する。その結果、主に隣接部分42a及び43aの熱が透過部22及び23を通して光ファイバ27に伝達され、透過する熱情報に基づき隣接部分42a及び43aの幅の正確な測定が可能になる。
【0035】
第2に、隣接部分42a及び43aの幅と、隣接部分の幅に関する基準値との大小関係をリアルタイムで比較することができる。これも、保護ガラス20がマスク21と、透過部22及び23と、バリヤ24とを備えることによる。レーザ光の照射時、溶融部分41から保護ガラス20に向かって上方に飛散するスパッタは、バリヤ24により側方への飛散を抑制され、透過部22及び23に衝突することが防止される。その結果、レーザ光の照射時に溶接トーチ15の後方で隣接部分42及び43の熱情報を検出し、リアルタイムで接合の良否を評価できる。
【0036】
【発明の効果】
以上述べてきたように、本発明の品質評価方法及び品質評価装置によれば、2枚の金属板を重ね合わせレーザ光を照射して重ね溶接する際、接合の良否を正確にしかもリアルタイムで評価することができる。
【0037】
請求項2の品質評価方法によれば、溶接と同時に(リアルタイムで)品質評価を行うことができる。請求項4の品質評価装置によれば、熱情報を上金属板から離れた赤外線センサで検出することができる。請求項5の品質評価装置によれば、熱情報をより正確に検出することができる。
【図面の簡単な説明】
【図1】本発明の実施例(品質評価方法及び品質評価装置)を示す斜視説明図である。
【図2】上記品質評価装置を構成する保護ガラス及び赤外線センサを示す模式図である。
【図3】溶接ビード及び熱影響部の拡大断面図である。
【図4】信号処理回路における信号処理を説明する説明図である。
【図5】(a)は試験片による接合状態を示す顕微鏡写真、(b)実施例の鋼板による接合状態を示す顕微鏡写真である。
【符号の説明】
10:下鋼板 12:上鋼板
15:溶接トーチ 20:保護ガラス
21:マスク 22,23:透過部
27:光ファイバ 28:光学フィルタ
30:信号処理回路 41a:溶融部分
41b:溶接ビード 42a,43a:隣接部分
42b,43b:熱影響部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a quality evaluation method and apparatus for evaluating the quality of laser welding, that is, the quality of joining.
[0002]
[Prior art]
Laser welding is a joining method in which workpieces are welded together by welding beads that are irradiated with laser light emitted from a laser oscillator to be welded (workpiece), partially melted and then solidified. It is classified into arc welding, electron beam welding, laser welding, etc. according to the type of heat source, classified into spot welding and line welding according to the presence or absence of movement of the heat source, and classified into lap welding, butt welding, etc. according to the positional relationship between the two workpieces. .
[0003]
Here, consider a case where the upper metal plate is overlapped on the lower metal plate, the laser beam is moved along the surface of the upper metal plate, and the two metal plates are welded (joined). Since it is difficult to judge from the appearance whether or not both metal plates are securely welded by the weld bead, the quality of the joint may be evaluated during or after welding.
[0004]
The conventional quality evaluation method (for example, refer to Patent Document 1) is a thermal effect including the weld bead of the welded material after the end of welding in order to evaluate the welding quality without being subjected to time constraints in the lap laser welding. The width of the discolored part is measured. The measured width is compared with a preset reference value, and when the width of the heat-affected discoloration portion is within the reference value, the quality of the weld is evaluated.
[0005]
The heat-affected discoloration portion has turned black and can be observed with an image sensor such as a CCD camera. It utilizes the fact that the heat conduction from the upper metal plate to the lower metal plate differs depending on whether the contact state between the lower metal plate and the upper metal plate is good, and the width of the heat-affected discoloration portion changes accordingly.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 10-58170
[Problems to be solved by the invention]
However, the conventional example has room for improvement in the following points. First, image processing is used for the measurement, and the difference in luminance between the heat affected zone and the other parts (the weld bead and the heat affected color changing part) is small. It is hard to say that the width can be detected accurately. In addition, it is difficult to dispose the CCD camera directly above the high-temperature weld bead and the heat-affected discoloration part, and the quality is evaluated after the end of welding. This requires time for evaluation and cannot be evaluated in real time.
[0008]
The present invention has been made in view of the above circumstances, and a quality evaluation method capable of accurately and in real time evaluating the quality of joining with a weld bead when two metal plates are overlapped and irradiated with laser light for overlap welding. And it aims at providing a quality evaluation apparatus.
[0009]
[Means for Solving the Problems]
The inventor of the present application paid attention to the difference between the portion where the laser beam is irradiated and the material is melted (melted portion) and the adjacent portions (adjacent portions) on both sides in the lap welding. In the melted portion, a part of the metal plate is melted by the heat of the laser beam, the molten metal flows into the keyhole, and solidifies after the end of welding to form a weld bead.
[0010]
On the other hand, the metal material is not melted in the adjacent portion, but is oxidized when the temperature exceeds a predetermined temperature, and becomes a heat-affected zone having a stripe pattern after the end of welding. In order to oxidize, it is necessary that the adjacent part is at a predetermined temperature. Heat is conducted from the upper metal plate to the lower metal plate, thereby lowering the temperature of the upper metal plate. And thermal conductivity changes with the contact state of an upper metal plate and a lower metal plate.
[0011]
In the quality evaluation method according to the first invention of the present application, the welding torch for irradiating the laser beam is moved along the surface of the upper metal plate stacked on the lower metal plate, and both the metal plates are melted by the laser beam. In laser welding in which both molten metal plates are joined by solidifying the molten portion to form a weld bead, a method for evaluating the quality of the welding, adjacent to both sides of the molten portion on the surface of the upper metal plate during welding. A detection step of detecting thermal information in at least one of a pair of adjacent portions that are thermally affected by the formed molten portion and have a predetermined temperature or higher; a width of the adjacent portion is obtained based on the detected thermal information, and prepared in advance a determination step of determining acceptability of bonding by comparison with a reference value; formed Ri from the reference value, the same material as the lower metal plate and the upper metal plate, the thickness of the lower test piece and the upper test piece , The gap between the two The width of the adjacent portion formed when laser welding is performed under the same conditions as the laser welding of the lower metal plate and the upper metal plate except that the lower metal plate and the upper metal plate are In the same manner as when the width of the adjacent portion is obtained, it is obtained in advance .
[0012]
In this quality evaluation method, the thermal conductivity from the upper metal plate to the lower metal plate is related to the contact state between the upper metal plate and the lower metal plate, and the width of the adjacent portion changes when the thermal conductivity changes. Therefore, the contact state of both metal plates, that is, the quality of welding can be evaluated by examining the width of the adjacent portion.
[0013]
The quality evaluation method according to claim 2 is performed in parallel with the detection step and the determination step in claim 1.
[0014]
The quality evaluation apparatus for laser welding according to the second invention of the present application moves the welding torch for irradiating laser light along the surface of the upper metal plate superimposed on the lower metal plate, and melts both metal plates with the laser light. In the laser welding which joins both metal plates by solidifying the molten part after making it into a weld bead, it is an apparatus for evaluating the quality of welding, on both sides of the molten part on the surface of the upper metal plate during welding An infrared sensor that detects thermal information in at least one of a pair of adjacent portions that are formed adjacent to each other and are affected by heat from the melted portion and have a predetermined temperature or higher; obtains the width of the adjacent portion based on the detected thermal information; a previously prepared reference value determines signal processing unit the quality of bonding by comparing with; formed Ri from the reference value, the same material as the lower metal plate and the upper metal plate, thickness under test piece and For top specimen The width of the adjacent portion formed when the lower metal plate and the upper metal plate are laser-welded under the same conditions as in laser welding except that the gap between them is zero is determined. In the same manner as when the width of the adjacent portion in the plate and the upper metal plate is obtained, it is obtained in advance .
[0015]
In this quality evaluation apparatus, the thermal conductivity from the upper metal plate to the lower metal plate is related to the contact state between the upper metal plate and the lower metal plate, and the width of the adjacent portion changes when the thermal conductivity changes. Therefore, the contact state of both metal plates, that is, the quality of welding can be evaluated by examining the width of the adjacent portion with the infrared sensor and the signal processing unit.
[0016]
According to a fourth aspect of the present invention, there is provided the quality evaluation apparatus according to the third aspect, wherein the infrared sensor is disposed at a position away from the upper metal plate, and the infrared sensor and the protective glass disposed above the upper metal plate are connected by an optical fiber. Yes. The quality evaluation apparatus according to claim 5 is the quality evaluation apparatus according to claim 4, wherein the protective glass has a heat shielding part and a heat transmission part, and an optical fiber is connected to the heat transmission part.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
<Quality evaluation method for laser welding>
(1) Metal plates and laser light metals include steel and aluminum. The material of the upper metal plate and the material of the lower metal plate are desirably the same. The desired thickness of the metal plate is 0.5 to 1.2 mm. The thickness of the upper metal plate and the thickness of the lower metal plate may be the same or different.
[0018]
The upper metal plate and the lower metal plate may be welded at the side edges, or may be welded at other portions. The whole metal plate may be flat, or the part to be welded may be bent with respect to the remaining part.
[0019]
When the metal plate is a press-formed product of a steel plate, it is difficult to process the entire welded portion completely into a flat shape, and a slight curved portion may occur in a specific portion. When the curved portion exists, the contact state between the two steel plates changes, and the joining of the portion having a large gap tends to be poor. The present invention is particularly effective for quality evaluation in such a case.
[0020]
Although laser light is light, it has only a single wavelength and has no phase difference, so that it can be condensed into extremely small light, and the power density can be increased to the same level as an electron beam. Further, it can be transmitted in the atmosphere and can be welded using various gases at atmospheric pressure. Typical lasers include a YAG laser and a CO 2 laser. Both differ mainly in output and wavelength. Maximum output greater in the CO 2 laser, the wavelength longer towards the CO 2 laser. The YAG laser has a feature that it can be transmitted through an optical fiber. Since both are in the infrared region, they are well reflected on the metal surface. Both YAG laser and CO 2 laser may be oscillated continuously or pulsed.
[0021]
A welding torch for irradiating a laser beam is moved along the surface of the upper metal plate. The movement trajectory may be linear or curved. At that time, the moving speed and output of the welding torch are determined in consideration of the material of the metal plate, the plate thickness, the penetration depth, and the like.
<2> Detection process
During welding, change the thermal conductivity of the lower metal plate from the adjacent portion of the upper metal plate by contact between the upper metal plate and lower metal plate, the temperature of the adjacent portion changes I accompanied, higher than a predetermined temperature The width of the adjacent part changes. For this reason, it is possible to determine the quality of the contact state between the upper metal plate and the lower metal plate, that is, the quality of the joint, by obtaining the width of the adjacent portion that is equal to or higher than the predetermined temperature based on the heat information of the adjacent portion during welding. it can.
Therefore, in the detection process, thermal information is detected in at least one of a pair of adjacent portions that are formed adjacent to both sides of the molten portion on the surface of the upper metal plate during welding and that are thermally affected by the molten portion and have a predetermined temperature or higher. To do. Detection intends line when the temperature difference is large welding between adjacent portions and other portions. In addition, after completion | finish of welding, a fusion | melting part turns into a weld bead and an adjacent part turns into a heat affected zone.
<3> Determination Step In the determination step, the width of the adjacent portion (the portion having a predetermined temperature or more) is obtained based on the thermal information of the adjacent portion detected in the detection step, and this is a reference for the width of the adjacent portion prepared in advance. Compare with the value. The reference value is formed at the same time as the lower metal plate and the upper metal plate are prepared using the same material and thickness as the lower test piece and the upper test piece, and the contact surface is polished and brought into close contact with zero gap. It is obtained by measuring the width of adjacent parts.
[0022]
Examples of poor welding include shrinkage and separation. In “shrinking”, a weld bead is formed from an upper metal plate to a lower metal plate, but the upper metal plate and the lower metal plate are not in close contact with each other. Moreover, the hollow is formed in the upper end part exposed to the upper metal plate, and the lower end part exposed to the lower metal plate. On the other hand, “separation” means that weld beads are formed on the upper metal plate and the lower metal plate, respectively, but the two weld beads are not connected. Moreover, the hollow is formed in the upper end part exposed to the upper metal plate, and the lower end part exposed to the lower metal plate. In any case, when the upper metal plate and the lower metal plate are set to overlap each other before welding, it is considered to be generated due to the presence of a gap of a predetermined value or more between both metal plates, and can be evaluated by the present invention.
<Quality evaluation equipment for laser welding>
(1) Infrared sensor An infrared sensor is a sensor that measures the temperature by capturing the energy of heat rays, mainly infrared rays emitted from a metal plate. There are various types, and a heating type that detects an electrical change of an element caused by an increase in temperature is desirable, although a sensor is warmed by the thermal effect of infrared rays, but a photoelectric conversion type may also be used. The heat of the adjacent portion of the upper metal plate can be guided to the infrared sensor separated from the upper metal plate by the optical fiber, and an optical filter that transmits only a specific wavelength can be disposed at the input portion of the infrared sensor.
[0023]
Moreover, a protective glass can be arrange | positioned above an upper metal plate, and this protective glass and an infrared sensor can also be connected with an optical fiber. It is desirable that the protective glass is adapted to prevent spatters scattered during welding from adhering to the optical fiber and to prevent thermal radiation from the melt to the optical fiber.
(2) Signal processing circuit The signal processing circuit forms, for example, a horizontally long image image on a two-dimensional plane based on a signal input from each infrared sensor, and the length of this image image is an image image corresponding to a reference value. Compare with the length of. When the former is larger than the latter, a signal or warning to that effect is issued. When a warning or the like is issued, take measures such as reducing the output of the welding torch or slowing the moving speed.
[0024]
【Example】
Embodiments of the present invention will be described below with reference to the accompanying drawings.
(Quality evaluation device)
As shown in FIG. 1, in this embodiment, the lower steel plate 10 and the upper steel plate 12 are welded by laser welding, and the quality of the welding is evaluated by the infrared sensors 25 and 26 and the signal processing circuit 30. The lower steel plate 10 and the upper steel plate 12 are pressed and both have a thickness of 0.7 mm, and the gap between both steel plates is set to 0.1 mm by interposing a spacer at the corner.
[0025]
As shown in FIGS. 1 and 2, behind the welding torch 15, a protective glass 20 is disposed above the upper steel plate 12, and light is transmitted to a pair of infrared sensors 25 and 26 disposed at positions away from the upper steel plate 12. They are connected by a fiber 27. The protective glass 20 has a horizontally long shape, and includes a mask (shielding portion) 21 at the center in the length direction and a pair of transmission portions 22 and 23 on both sides thereof.
[0026]
The mask 21 has a width equal to the width of a melted portion 41a, which will be described later, and blocks heat radiation from the melted portion 41a to the optical fiber 27. Each of the transmission parts 22 and 23 has the same width as that of the adjacent parts 42a and 43a, respectively, and transmits the heat radiation from the adjacent parts 42a and 43a. A pair of barriers 24 extending downward are formed between the mask 21 and the transmission parts 22 and 23.
[0027]
The output portions of the pair of infrared sensors 25 and 26 are connected to the signal processing circuit 30, and an optical filter 28 for extracting only a predetermined wavelength is attached to the input portion (light receiving portion).
(Quality evaluation method)
Next, quality evaluation by the quality evaluation apparatus will be described. In FIG. 1, during laser welding, a welding torch 15 that emits laser light is moved linearly along the surface of the upper steel plate 12. At that time, the protective glass 20 is disposed behind the welding torch 15 and moved together. Keyhole is formed in the fused portion 41 a of the laser beam out of the lower steel plate 10 and the upper steel plate 12 is melted is irradiated, the surrounding material that flows into the keyhole. As shown in FIG. 3, when the molten portion 41a is solidified, it becomes a weld bead 41b, and the adjacent portions 42a and 43a become heat affected portions 42b and 43b.
[0028]
The infrared sensors 25 and 26 detect the information of the thermal radiation of the adjacent portions 42a and 43a. The above corresponds to the detection process.
Then, the signal processing circuit 30 converts the heat radiation information of the adjacent portions 42a and 43a obtained by the infrared sensors 25 and 26 into width information . As a result, as shown in FIG. 4 y, the sum of the width of the fused portion 41a and a pair of adjacent portions 42a, 43a were w2.
[0029]
The width w2 is compared with a reference value w1 prepared in advance. The reference value is a state in which a lower test piece and an upper test piece (not shown) having the same thickness as the lower steel plate 10 and the upper steel plate 12 are prepared, and the upper surface of the lower test piece and the lower surface of the upper test piece are polished to have no gap. Adhere with. Then, welding is performed under the same conditions as the above welding by the welding torch 15, the thermal radiation of the adjacent portions 42a and 43a at that time is examined by the infrared sensors 25 and 26, and converted into width information by the signal processing circuit 30 It is. As a result, as indicated by x in FIG. 4, the total width of the melted portion and the pair of adjacent portions was w1.
[0030]
As described above, the total width w2 of the molten portion 41a and the adjacent portions 42a and 43a when the lower steel plate 10 and the upper steel plate 12 are welded is the molten portion and the adjacent portion when welding the lower test piece and the upper test piece. It is larger than the total width w1 of the portions. Therefore, this welding is determined to be defective. The above corresponds to the determination process .
[0031]
FIG. 5 shows a photomicrograph of the cross section after the end of welding. FIG. 5B is a photomicrograph of both steel plates 10 and 12. As can be seen, the lower steel plate 10 and the upper steel plate 12 are formed with weld beads 41b and heat-affected portions 42b and 43b. However, the lower steel plate 10 and the upper steel plate 12 are separated from each other in the thickness direction, and the weld beads 41b and the heat affected portions 42b and 43b are not connected (corresponding to the “separation”).
[0032]
On the other hand, FIG. 5A is a photomicrograph of both test pieces. The upper test piece and the lower test piece are joined by a weld bead, and the width of the weld bead gradually increases as it goes downward. Moreover, the width of the heat affected zone formed over the upper test piece and the lower test piece on both sides of the weld bead is substantially constant as a whole. The lower test piece and the upper test piece are in close contact with each other except the weld bead and the heat-affected zone.
[0033]
Thus, it was confirmed that the quality evaluation by the sum of the fused portion 41a and the width of the adjacent portion 42 a and 43 a shown in FIG. 4, the actual metal structure corresponds.
(effect)
As described above, in the present embodiment, the protective glass 20 having the mask 21 and the transmission parts 22 and 23 arranged close to the upper steel plate 12 is moved together with the welding torch 15, and the infrared rays are moved away from the upper steel plate 12. Sensors 25 and 26 were arranged. As a result, the following effects can be obtained.
[0034]
First, the width of the adjacent portions 42a and 43a of the upper steel plate 12, it is possible to accurately determine the magnitude relation between the reference value for the width of the adjacent portion. This is because the protective glass 20 includes a mask 21 in the middle in the longitudinal direction, transmission parts 22 and 23 on both sides, and a barrier 24. The transmitting portions 22 and 23 on both sides transmit the heat of the adjacent portions 42a and 43a, while the intermediate mask 21 blocks the heat of the melting portion 41a. As a result, mainly the heat of the adjacent portions 42a and 43a is transmitted to the optical fiber 27 through the transmission portions 22 and 23, and the width of the adjacent portions 42a and 43a can be accurately measured based on the transmitted heat information.
[0035]
Second, the magnitude relationship between the widths of the adjacent portions 42a and 43a and the reference value related to the width of the adjacent portions can be compared in real time. This is also because the protective glass 20 includes a mask 21, transmission parts 22 and 23, and a barrier 24. Sputters that scatter upward from the melted portion 41 toward the protective glass 20 when irradiated with laser light are suppressed from being scattered laterally by the barrier 24, and are prevented from colliding with the transmitting portions 22 and 23. As a result, it detects the thermal information of the adjacent portions 42 a and 43 a at the rear of the welding torch 15 at the irradiation with the laser light, can be evaluated the quality of the joint in real time.
[0036]
【The invention's effect】
As described above, according to the quality evaluation method and the quality evaluation apparatus of the present invention, when two metal plates are overlapped and irradiated with laser light for overlap welding, the quality of joining is evaluated accurately and in real time. can do.
[0037]
According to the quality evaluation method of the second aspect, quality evaluation can be performed simultaneously with welding (in real time). According to the quality evaluation apparatus of claim 4, the thermal information can be detected by the infrared sensor separated from the upper metal plate. According to the quality evaluation apparatus of the fifth aspect, the heat information can be detected more accurately.
[Brief description of the drawings]
FIG. 1 is a perspective explanatory view showing an embodiment (a quality evaluation method and a quality evaluation apparatus) of the present invention.
FIG. 2 is a schematic diagram showing a protective glass and an infrared sensor constituting the quality evaluation apparatus.
FIG. 3 is an enlarged cross-sectional view of a weld bead and a heat affected zone.
FIG. 4 is an explanatory diagram illustrating signal processing in a signal processing circuit.
FIG. 5A is a photomicrograph showing a bonding state by a test piece, and FIG. 5B is a photomicrograph showing a bonding state by a steel plate of an example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10: Lower steel plate 12: Upper steel plate 15: Welding torch 20: Protective glass 21: Mask 22, 23: Transmission part 27: Optical fiber 28: Optical filter 30: Signal processing circuit 41a: Melting part 41b: Weld bead 42a, 43a: Adjacent portions 42b, 43b: heat affected zone

Claims (5)

下金属板の上に重ねた上金属板の表面にそって、レーザ光を照射する溶接トーチを移動させ、両該金属板を該レーザ光で溶融させた後その溶融部分を固化させて溶接ビードとすることで両該金属板を接合するレーザ溶接において、溶接の品質を評価する方法であって、
溶接時に前記上金属板の表面の前記溶融部分の両側に隣接して形成され該溶融部分から熱的影響を受けて所定温度以上となる一対の隣接部分の少なくとも一方における熱情報を検出する検出工程と、
検出された前記熱情報に基づき前記隣接部分の幅を求め、予め準備した基準値と比較することにより接合の良否を判定する判定工程と、から成り、
前記基準値は、前記下金属板及び前記上金属板と同じ材料、板厚の下試験片及び上試験片について、両者の隙間がゼロとなるように密着させること以外は該下金属板及び該上金属板をレーザ溶接するときと同じ条件でレーザ溶接した場合に形成される隣接部分の幅を、該下金属板及び該上金属板における前記隣接部分の幅を求めるときと同じように、予め求めたものであることを特徴とするレーザ溶接の品質評価方法。
A welding torch that irradiates a laser beam is moved along the surface of the upper metal plate stacked on the lower metal plate, both the metal plates are melted with the laser beam, and then the melted portion is solidified to form a weld bead. In laser welding for joining both the metal plates, a method for evaluating the quality of welding,
A detection step of detecting thermal information in at least one of a pair of adjacent portions that are formed adjacent to both sides of the molten portion on the surface of the upper metal plate during welding and receive a thermal influence from the molten portion and reach a predetermined temperature or higher. When,
It obtains the width of the adjacent portion on the basis of the detected thermal information, a determination step of determining acceptability of bonding by comparison with previously prepared reference value, formed Ri from
The reference value is the same material as the lower metal plate and the upper metal plate, and the lower metal plate and the upper test piece except that the gap between them is zero with respect to the lower test piece and the upper test piece. As in the case of obtaining the width of the adjacent portion in the lower metal plate and the upper metal plate, the width of the adjacent portion formed when laser welding is performed under the same conditions as the laser welding of the upper metal plate is previously determined. A method for evaluating the quality of laser welding, which is obtained .
前記検出工程と前記判定工程は併行して行う請求項1に記載の品質評価方法。The quality evaluation method according to claim 1, wherein the detection step and the determination step are performed in parallel. 下金属板の上に重ねた上金属板の表面にそって、レーザ光を照射する溶接トーチを移動させ、両該金属板を該レーザ光で溶融させた後その溶融部分を固化させて溶接ビードとすることで両該金属板を接合するレーザ溶接において、溶接の品質を評価する装置であって、
溶接時に前記上金属板の表面の前記溶融部分の両側に隣接して形成され該溶融部分から熱的影響を受けて所定温度以上となる一対の隣接部分の少なくとも一方における熱情報を検出する赤外線センサと、
検出された前記熱情報に基づき前記隣接部分の幅を求め、予め準備した基準値と比較することにより接合の良否を判定する信号処理部と、から成り、
前記基準値は、前記下金属板及び前記上金属板と同じ材料、板厚の下試験片及び上試験片について、両者の隙間がゼロとなるように密着させること以外は該下金属板及び該上金属板をレーザ溶接するときと同じ条件でレーザ溶接した場合に形成される隣接部分の幅を、該下金属板及び該上金属板における前記隣接部分の幅を求めるときと同じように、予め求めたものであることを特徴とするレーザ溶接の品質評価装置。
A welding torch that irradiates a laser beam is moved along the surface of the upper metal plate stacked on the lower metal plate, both the metal plates are melted with the laser beam, and then the melted portion is solidified to form a weld bead. In laser welding for joining both the metal plates, a device for evaluating the quality of welding,
Infrared sensor for detecting thermal information in at least one of a pair of adjacent portions which are formed adjacent to both sides of the molten portion on the surface of the upper metal plate during welding and which are thermally affected by the molten portion and have a predetermined temperature or higher. When,
Obtains the width of the adjacent portion on the basis of the detected thermal information, Ri consists, and determining the signal processing unit the quality of bonding by comparison with previously prepared standard value,
The reference value is the same material as the lower metal plate and the upper metal plate, and the lower metal plate and the upper test piece except that the gap between them is zero with respect to the lower test piece and the upper test piece. As in the case of obtaining the width of the adjacent portion in the lower metal plate and the upper metal plate, the width of the adjacent portion formed when laser welding is performed under the same conditions as the laser welding of the upper metal plate is previously determined. A quality evaluation apparatus for laser welding, characterized by being obtained .
前記赤外線センサは前記上金属板から離れた位置に配置され、該赤外線センサと該上金属板の上方に配置された保護ガラスとが光ファイバで接続されている請求項3に記載の品質評価装置。The quality evaluation apparatus according to claim 3, wherein the infrared sensor is arranged at a position away from the upper metal plate, and the infrared sensor and a protective glass arranged above the upper metal plate are connected by an optical fiber. . 前記保護ガラスは、熱遮蔽部と熱透過部とを持ち、該熱透過部に前記光ファイバが接続されている請求項4に記載の品質評価装置。The quality evaluation apparatus according to claim 4, wherein the protective glass has a heat shielding part and a heat transmission part, and the optical fiber is connected to the heat transmission part.
JP2002281026A 2002-09-26 2002-09-26 Laser welding quality evaluation method and quality evaluation apparatus Expired - Fee Related JP4029327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281026A JP4029327B2 (en) 2002-09-26 2002-09-26 Laser welding quality evaluation method and quality evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281026A JP4029327B2 (en) 2002-09-26 2002-09-26 Laser welding quality evaluation method and quality evaluation apparatus

Publications (2)

Publication Number Publication Date
JP2004114095A JP2004114095A (en) 2004-04-15
JP4029327B2 true JP4029327B2 (en) 2008-01-09

Family

ID=32275585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281026A Expired - Fee Related JP4029327B2 (en) 2002-09-26 2002-09-26 Laser welding quality evaluation method and quality evaluation apparatus

Country Status (1)

Country Link
JP (1) JP4029327B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5971533B2 (en) * 2012-05-15 2016-08-17 トヨタ自動車株式会社 Welding method, welding apparatus, and battery manufacturing method
WO2022270512A1 (en) * 2021-06-21 2022-12-29 株式会社アマダ Laser processing and measuring device, and laser processing results evaluation method

Also Published As

Publication number Publication date
JP2004114095A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP4531396B2 (en) Method and apparatus for evaluating workpiece joints
JP5459922B2 (en) Method and apparatus for measuring process parameters of a material processing process
CA2364086C (en) Laser welding system
JP5375527B2 (en) Laser welded steel pipe manufacturing method
JP4349075B2 (en) Laser processing method and processing state judgment method
WO2009157570A1 (en) Method for manufacturing laser-welded steel pipe
US20100123080A1 (en) Process and system for the nondestructive quality determination of a weld seam, and a welding device
JPH07185849A (en) Method and laser welding device for effecting process control and/or quality control upon laser butt welding of plate
JPH06285655A (en) Method and equipment for welding
JP5158924B2 (en) Method for determining weldability and route gap suitability in laser butt welding
JP2018079502A (en) Welding quality judgment method
JP4324052B2 (en) Laser welding quality evaluation method
US20160039046A1 (en) Method of Beam-Type Joining
JP4029327B2 (en) Laser welding quality evaluation method and quality evaluation apparatus
JP4026404B2 (en) Laser welding quality monitoring method and apparatus
JP4078882B2 (en) Laser welding monitoring method
JP2005007415A (en) Quality control method in laser welding
JPH1058170A (en) Method and device for judging quality of laser beam welding
JPH071166A (en) Method for laser beam welding and welding equipment
JPH11226766A (en) Method for controlling laser welding position
JP3603829B2 (en) Quality inspection method for laser welding
JPH06285658A (en) Method and equipment for lap welding of metallic material
Kamimuki et al. Behaviour of monitoring signals during detection of welding defects in YAG laser welding. Study of monitoring technology for YAG laser welding (Report 2)
JPH1076383A (en) Method for monitoring laser welding
JP3720939B2 (en) Laser automatic welding equipment and welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees