JP4027266B2 - Method for slowly cooling glass article, method for heating glass article, method for producing glass molded article, and heat treatment apparatus - Google Patents

Method for slowly cooling glass article, method for heating glass article, method for producing glass molded article, and heat treatment apparatus Download PDF

Info

Publication number
JP4027266B2
JP4027266B2 JP2003146325A JP2003146325A JP4027266B2 JP 4027266 B2 JP4027266 B2 JP 4027266B2 JP 2003146325 A JP2003146325 A JP 2003146325A JP 2003146325 A JP2003146325 A JP 2003146325A JP 4027266 B2 JP4027266 B2 JP 4027266B2
Authority
JP
Japan
Prior art keywords
heat treatment
glass
furnace
article
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003146325A
Other languages
Japanese (ja)
Other versions
JP2004345916A (en
Inventor
伸広 前田
一弥 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33533207&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4027266(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2003146325A priority Critical patent/JP4027266B2/en
Priority to CNB2004100475153A priority patent/CN100376498C/en
Publication of JP2004345916A publication Critical patent/JP2004345916A/en
Application granted granted Critical
Publication of JP4027266B2 publication Critical patent/JP4027266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/06Annealing glass products in a continuous way with horizontal displacement of the glass products

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、光学ガラスや電子用ガラスのような、高精度の熱処理が要求される熱処理対象物に対して、その対象物をベルトコンベア等の搬送装置に積載・搬送して、炉内に温度勾配を生じるように場所によって設定温度を変化させたトンネル型の炉内を通過させる間に、所要の熱処理を連続的に加えることを目的としたガラス等の熱処理方法ならびに熱処理装置に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
一般にレヤーと呼ばれるガラスの連続徐冷炉は、非特許文献1に開示されているような構造を有する(図11・7参照)。光学ガラス等の徐冷では、長手方向(引き出し方向)に異なった温度設定をする複数の領域に分かれたトンネル式徐冷炉を用いることがある。この徐冷炉は、各領域の境界部には分割壁はなく、各領域は断熱されておらず、隣接する領域間で大きな温度差をつけようとすると、エネルギーロスが大きくなる。それだけではなく、所要の温度差がつけられない場合は温度差が小さくなった分、トンネル炉の全長を長くする必要が出てくる。これは設備全体の大型化につながり、設備コストの押し上げ要因となるだけでなく、設備が占める占有面積も大きくなるので土地代の負担増にもなる。
【0003】
また、徐冷炉内でのガラス板やガラスプレス品の搬送手段としては連続循環式のメッシュベルトを用いることが多い(メッシュベルトを用いる理由は比較的熱容量が小さいため、接触したガラスと多少の温度差がある場合でもガラスに与えるヒートショックが小さいためである)。メッシュベルトが炉の出口から出た後の復路は、経路の大半を室温の炉外を通過して、入り口のやや手前から再び炉内に進入する構造が一般的である。この構造では室温のメッシュベルトを短時間の間にガラスの徐冷点近くまで昇温する必要があるため、熱容量の大きな金属メッシュベルトの加熱のために非常に大きな熱量が必要になる。
【0004】
また、熱処理の精度が要求され、あるいは、対象物の汚染を嫌うような熱処理炉の場合、炉内壁に設置された加熱ヒーターの更に内側に均熱壁を設置して、炉内を2重構造にすることがある。均熱壁は、温度分布の良化と対象物の表面汚染防止を目的とするもので、ステンレス製又はセラミックス製が一般的である。ステンレス製の均熱壁は、特に、放射率が比較的小さいため、熱処理対象物に加熱が必要な場合も反対に冷却が必要な場合も、熱交換の妨げになる。その結果、加熱を目的とした場合は(均熱板表面の放射率が大きい場合に比較して)余計な熱エネルギーが必要なり、急速な冷却を目的とする場合、冷却速度が遅くなる分だけ設備の長さが余計に必要となる。
【0005】
本発明は、上記のような問題を解決するためになされたものであり、従来と比べ小さなスペースで、しかも少ないエネルギーでガラスの加熱を可能とするガラスの加熱方法及びガラス成形品の製造方法を提供することを第1の目的とする。
【0006】
また、本発明は、従来と比べ小さなスペースで、しかも少ないエネルギーでガラスの徐冷を可能とするガラスの徐冷方法及びガラス成形品の製造方法を提供することを第2の目的とする。
【0007】
さらに、本発明は、従来と比べ小さなスペースで、しかも少ないエネルギーでガラスのような物品の熱処理を可能とする熱処理装置を提供することを第3の目的とする。
【0008】
【非特許文献1】
成瀬省著 ガラス工学 176〜178頁 昭和42年2月10日
共立出版
【0009】
【課題を解決するための手段】
次に上記課題を解決するための手段である本発明について説明する。
[請求項1]
トンネル型の炉及び炉内部に沿って物品を搬送する搬送装置を有し、かつ炉外から導入した物品を、炉内を搬送しながら熱処理するための熱処理装置であって、
前記物品の搬送を妨げないように炉内を物品の搬送方向に複数の熱処理室に仕切る断熱壁と、前記各熱処理室内の雰囲気温度を独立に設定するための雰囲気温度設定装置とを備えること、および断熱壁により仕切られた各熱処理室内の物品搬送経路の上方を覆うように耐熱性の均熱壁を配し、均熱壁を裏面から加熱する加熱装置を備え、前記加熱装置への入力を前記雰囲気温度設定装置により行うことを特徴とする熱処理装置。
[請求項2]
前記搬送装置は、連続循環式の搬送部を有し、炉内の入口側に往路・復路切り替え部分を有し、かつ搬送部の復路の一部は炉内を移動するように設けられている、請求項1に記載の熱処理装置。
[請求項3]
トンネル型の炉及び炉内部に沿って物品を搬送する搬送装置を有し、かつ炉外から導入した物品を、炉内を搬送しながら徐冷処理するための熱処理装置であって、
前記物品の搬送を妨げないように炉内を物品の搬送方向に複数の熱処理室に仕切る断熱壁と、前記各熱処理室内の雰囲気温度を独立に設定するための雰囲気温度設定装置とを備えること、断熱壁により仕切られた各熱処理室内の物品搬送経路の上方を覆うように耐熱性の均熱壁を配し、均熱壁を裏面から加熱する加熱装置を備え、前記加熱装置への入力を前記雰囲気温度設定装置により行うこと、および前記搬送装置は、連続循環式の搬送部を有し、炉内の入口側に往路・復路切り替え部分を有し、かつ搬送部の復路の一部は炉内を移動するように設けられていることを特徴とする熱処理装置。
[請求項4]
前記均熱壁表面の放射率が0.9以上である請求項1〜3のいずれかに記載の熱処理装置。
[請求項5]
前記均熱壁表面に、放射率が0.9以上のセラミック塗料が塗布されている請求項4に記載の熱処理装置。
[請求項6]
請求項1〜5のいずれかに記載の熱処理装置を用いて、ガラス物品を搬送しながら徐冷するガラス物品の徐冷方法であって、
前記ガラス物品を、隣り合う各室が開口を介して連通する複数の熱処理室内を順番に、前記開口を通して搬送して徐冷し、
隣り合う前記室は互いに断熱壁により断熱され、かつ
前記室の雰囲気温度は独立に設定されていることを特徴とするガラス物品の徐冷方法。
[請求項7]
請求項1〜2のいずれかに記載の熱処理装置を用いて、ガラス物品を搬送しながら加熱するガラス物品の加熱方法であって、
前記ガラス物品を、隣り合う各室が開口を介して連通する複数の熱処理室内を順番に、前記開口を通して搬送して加熱し、
隣り合う前記室は互いに断熱壁により断熱され、かつ
前記室の雰囲気温度は独立に設定されていることを特徴とするガラス物品の加熱方法。
[請求項8]
熔融ガラス又は加熱、軟化したガラスを成形し、得られたガラス成形品を請求項1〜5のいずれかに記載の熱処理装置を用いて連続的に搬送しながら徐冷するガラス成形品の製造方法であって、
前記ガラス成形品を、隣り合う各室が開口を介して連通する複数の熱処理室内を順番に、前記開口を通して搬送して徐冷し、
隣り合う前記室は互いに断熱壁により断熱され、かつ
前記室の雰囲気温度は独立に設定されていることを特徴とするガラス成形品の製造方法。
[請求項9]
請求項1〜2のいずれかに記載の熱処理装置を用いて、ガラス物品を搬送しながら加熱、軟化し、軟化したガラス物品を成形するガラス成形品の製造方法であって、
前記ガラス物品を、隣り合う各室が開口を介して連通する複数の熱処理室内を順番に、前記開口を通して搬送して加熱し、
隣り合う前記室は互いに断熱壁により断熱され、かつ
前記室の雰囲気温度は独立に設定されていることを特徴とするガラス成形品の製造方法。
[請求項10]
ガラス物品又はガラス成形品の輪郭が搬送時に描く軌跡を搬送方向から見た断面において、最外縁部を結んだ閉じた線に対し、高さ方向にできる前記線と開口の間の隙間が50mm以内、幅方向にできる搬送手段と開口の間の隙間が搬送方向の左右でそれぞれ10mm以内である請求項6〜9のいずれか1項に記載の方法。
【0010】
【発明の実施の形態】
以下、発明の実施の形態について説明するが、本発明は以下に説明される形態に限定されるものではない。
【0011】
(ガラス物品の徐冷方法)
本発明のガラス物品の徐冷方法は、ガラス物品を搬送しながら徐冷する方法である。本発明のガラス物品の徐冷方法は、前記ガラス物品を、隣り合う各室が開口を介して連通する複数の熱処理室内を順番に、前記開口を通して搬送して徐冷し、隣り合う前記室は互いに断熱壁により断熱され、かつ前記室の雰囲気温度は独立に設定されていることを特徴とする。
【0012】
本発明のガラス物品の徐冷方法において、ガラス物品を、隣り合う各室が開口を介して連通する複数の熱処理室内を順番に搬送して徐冷する。ガラス物品の搬送は、例えば、ベルトコンベア等の公知の手段により実施でき、後述する本発明の熱処理装置の説明において説明されたものを適宜使用できる。隣り合う熱処理室は互いに断熱壁により断熱され、断熱壁に設けられた開口を通してガラス物品が搬送さる。そして、各熱処理室の雰囲気温度は独立に設定されている。
【0013】
各熱処理室の断熱のための断熱壁の断熱性は、本発明の徐冷方法において徐冷されるガラス物品の物性や徐冷前後の温度等を考慮して適宜設定することができ、例えば、断熱壁の熱伝導量を1.5×10-2W/(m2・K)未満とすることが望ましく、7×10-3W/(m2・K)未満とすることがより望ましい。ここで断熱壁の熱伝導量とは、断熱壁の厚さ方向に垂直な単位面積を通って流れる熱量と、断熱壁によって仕切られる熱処理室間の温度差との比である。断熱壁が一定の厚さで均質な材料からなる場合には、前記材料の熱伝導率に断熱壁の厚さを乗じた量に相当する。断熱壁の具体例については、本発明の熱処理装置の説明において詳述する。
【0014】
断熱壁で仕切られ、相互に断熱された各熱処理室は、雰囲気の温度を独立に設定することにより、ガラスの搬送速度を一定に保った状態でも各熱処理室で正確な温度設定ができ、さらには、隣接する熱処理室の間で、大きな温度差を設けることもできる。したがって、狭いスペース(短い炉長)でエネルギー消費の少ない徐冷が可能になる。
本発明のガラス物品の徐冷方法における、熱処理室の数や各熱処理室の雰囲気温度は、徐冷されるガラス物品の物性や徐冷前後の温度等を考慮して適宜設定することができる。但し、実用的には、熱処理室の数は、例えば、5〜15個の範囲であり、隣り合う熱処理室の温度差は、例えば、3〜150℃の範囲である。
【0015】
また多量のガラスを同時に徐冷することもできる。同時に徐冷するとは、複数のガラス物品を並行して徐冷する場合と、ガラス物品を順次熱処理室に流し、トータルとして複数のガラス物品を徐冷する場合の両方を含む。
【0016】
上記各熱処理室の雰囲気温度をより精密に設定するにはガラス物品の搬送方向を水平にし、断熱壁を垂直に設けることが望ましい。
隣り合う各熱処理室は開口を介して連通しているが、開口はガラス物品の搬送を妨げない程度に可能な限り小さくすることが熱処理室間の断熱効率を挙げるという観点から好ましい。このような観点から、ガラス物品の輪郭が搬送時に描く軌跡を搬送方向から見た断面において、最外縁部を結んだ閉じた線に対し、高さ方向にできる前記線と開口の間の隙間は50mm以内であり、幅方向にできる搬送手段と開口の間の隙間が搬送方向の左右でそれぞれ10mm以内であることが好ましい。この状態を図2に示す。ガラス物品の最外縁部を結んだ閉じた線に対し、高さ方向にできる前記線と開口の間の隙間は、好ましくは10mm以内である。幅方向にできる搬送手段と開口の間の隙間は、好ましくは、搬送方向の左右でそれぞれ3mm以内である。
【0017】
本発明のガラスの徐冷方法は、再加熱、軟化することにより再成形するためのガラス素材の徐冷、あるいはプレス成形品やガラス板の徐冷に好適である。また複数個のガラスを次々と上記搬送経路に供給して徐冷する場合や、上記搬送経路よりも長いガラス(例えば、ガラス板)を徐冷する場合にも好適である。また光学ガラスの徐冷に好適である。特に、徐冷によって光学ガラスの屈折率や分散を所定の値に調整する場合があるが、この場合、徐冷工程中のガラスの温度履歴を精密に制御することが好ましく、本発明の徐冷方法は、このような光学ガラスの徐冷に好適である。
【0018】
再加熱、軟化することにより再成形するためのガラス素材では、ガラス中に結晶核が含まれていると再加熱時に結晶化がおこり失透してしまう。そのため、ガラス素材を徐冷するためには結晶核が生成する温度範囲を速やかに通り過ぎる必要がある。上記徐冷方法によれば徐冷工程中の温度履歴を正確に設定することができるので、失透を効果的に防止できる温度制御をして、ガラス素材や光学素子成形用として好適なガラス素材を提供することもできる。
【0019】
(ガラス物品の加熱方法)
本発明のガラス物品の加熱方法は、ガラス物品を搬送しながら加熱する方法である。本発明のガラス物品の加熱方法は、前記ガラス物品を、隣り合う各室が開口を介して連通する複数の熱処理室内を順番に、前記開口を通して搬送して加熱し、隣り合う前記室は互いに断熱壁により断熱され、かつ前記室の雰囲気温度は独立に設定されていることを特徴とする。
【0020】
本発明のガラス物品の加熱方法は、ガラス物品が搬送さながら加熱されることを除き、本発明のガラス物品の徐冷方法と同一である。即ち、本発明のガラス物品の徐冷方法では、ガラス物品の搬送方向に温度が低下するように設定されるのに対し、本発明のガラス物品の加熱方法では、ガラス物品の搬送方向に温度が上昇するように設定される以外は、両者は同様である。
【0021】
本発明のガラス物品の加熱方法は、ガラス物品の加熱軟化方法に好適である。軟化したガラス物品はプレス成形などのように外力を加えることにより成形される。ガラス物品を軟化、成形してレンズ等の光学素子あるいは光学素子に近似する形状のブランクを成形する場合、失透を防止しつつガラスを軟化しなければならない。光学ガラスを軟化する場合、低温段階ではガラスが破損しないよう比較的ゆっくりと昇温し、ガラス中に結晶核が生じる温度領域ではガラスが失透しないよう速やかな加熱を行うことが望ましい。上記本発明の加熱方法によれば、ガラス物品の昇温時の温度履歴を精密にコントロールできるので、破損や失透を防止しつつ、狭いスペースでもガラス物品の加熱を行うことができるし、加熱のための電力等も節約することができる。
【0022】
この他、上記本発明の加熱方法を用いてガラス物品を結晶化することもできる。ガラス物品を結晶化する場合、ガラス物品を昇温し、その後、降温する必要がある。その場合、本発明の徐冷方法と加熱方法とを組合せて行うことができる。また、本発明の徐冷方法と加熱方法を組合せて行う場合、1つの炉でやる場合と、2つの炉(徐冷用と加熱用)とを組み合わせて行う場合のいずれも可能である。
【0023】
(ガラス成形品の製造方法)
本発明の第1のガラス成形品の製造方法は、熔融ガラス又は加熱、軟化したガラスを成形し、得られたガラス成形品を連続的に搬送しながら徐冷する方法である。本発明の第1のガラス成形品の製造方法は、前記ガラス成形品を、隣り合う各室が開口を介して連通する複数の熱処理室内を順番に、前記開口を通して搬送して徐冷し、隣り合う前記室は互いに断熱壁により断熱され、かつ前記室の雰囲気温度は独立に設定されていることを特徴とする。
本発明の第1のガラス成形品の製造方法におけるガラス成形品の徐冷工程は、上記本発明のガラス物品の徐冷方法で説明した方法をそのまま適用してガラス成形品を徐冷することができる。
【0024】
本発明の第1のガラス成形品の製造方法における、熔融ガラスを成形する方法は特に限定されない。例えば、以下の3つの方法を挙げることができる。
【0025】
(1)水平に保たれた底面と、この底面を挟んで対向する一対の側壁を有する鋳型に熔融ガラスを連続して鋳込み、板状に広げるとともに表面を冷却してガラス板に成形してから鋳型側面に設けられた開口部から前記側壁に平行な方向に連続してガラス板を引き出す方法。この方法では引き出したガラス板を引続き徐冷するため、徐冷時のガラスの搬送方向を水平にすることが望まれる。
【0026】
この方法は肉厚7mm以上のガラス板の成形に適している。肉厚が薄い場合は引張り速度の増大によりガラス板の目的とする幅が確保できなくなる可能性が有る。しかし、肉厚が厚い場合は自重によってガラスが変形しない粘度になるまで時間を要する。上記方法によれば肉厚が大きいガラス板の成形でも鋳型の底面を水平に保つことにより自重で変形しなくなる程度の粘度までガラスを鋳型上で冷却することができる。
【0027】
同様に鋳型に鋳込む際の熔融ガラスの粘度(流出時の粘度)が103dPa・S未満の場合に好適である。このような条件により必要なガラス板の幅を得やすくなる。
【0028】
このようにして成形したガラス板を一度、大気中において急冷した後、徐冷する。徐冷方法は、上記本発明のガラス物品の徐冷方法を採用する。即ち、上記ガラス板を比較的高温(例えば、ガラス転移温度近傍)に設定した最初の熱処理室に導入する。大気と前記最初の熱処理室における雰囲気との温度差は、通常、相当に大きい(例えば、600℃)。しかし、このような状況であっても徐冷のための各熱処理室が、断熱壁によって相互に断熱されていることから、ガラスを大気中から徐冷のための熱処理室に直接導入しても各熱処理室の雰囲気温度を所定の条件に維持することができる。即ち、本発明によれば、各熱処理室が断熱されているため、最初の熱処理室から次の熱処理室以降の熱処理室に逃げる無駄な熱量を大幅に低減できる。
【0029】
(2)パイプから所定量の熔融ガラス塊を金型に供給し、金型上でガラス塊に成形する方法。この方法では、ガスを噴出することにより金型上のガラスに風圧を加えてガラスを浮上しながら成形してもよい。大気中で成形されたガラス塊を徐冷する。徐冷方法は、上記本発明のガラス物品の徐冷方法を採用する。即ち、成形されたガラス塊を比較的高温(例えば、ガラス転移温度近傍)に設定した最初の熱処理室に導入する。ガラス塊を大気中から徐冷領域に直接導入しても各熱処理室の雰囲気温度を所定の条件に維持することができる点は方法(1)と同様である。さらに、金型に供給される直前の熔融ガラスの粘度が103dPa・S未満のものでも良好なガラス成形品を作製できる点についても方法(1)と同じである。
【0030】
(3)所定量の熔融ガラス塊をプレス成形する方法。例えば、熔融ガラス塊を下型上に供給し、上型と下型により熔融ガラス塊をプレスする。ガラスはプレスにより所望の形状の成形品になり、プレス成形型により熱が奪われて急速に表面が固化する。上記プレス成形は大気中にて行われる。大気中で成形されたプレス成形品を徐冷する。徐冷方法は、上記本発明のガラス物品の徐冷方法を採用する。即ち、プレス成形品を比較的高温(例えば、ガラス転移温度近傍)に設定した最初の熱処理室に導入する。プレス成形品を大気中から徐冷のための熱処理室に直接導入しても各熱処理室の雰囲気温度を所定の条件に維持することができる点については方法(1)や(2)と同様である。また、プレス成形型に供給される直前の熔融ガラスの粘度が103dPa・S未満のものでも良好なガラス成形品を作製できる点も方法(1)や(2)と同じである。
【0031】
次に上記の加熱、軟化したガラスを成形する方法を例示する。一度固化したガラスを加熱、軟化し、プレス成形する。この方法はプレス成形を大気中で行うものと窒素や窒素と水素の混合ガスなどの非酸化性雰囲気中で行うものに大別できる。大気中でプレス成形を行う場合は、プレス成形品を大気中から最初の徐冷のための熱処理室に直接導入しても問題ないことは上述の通りである。
【0032】
作製するガラス成形品は特に限定されないが、ガラス製光学素子、あるいは表面を機械加工することにより光学素子に仕上げられるガラス製光学素子の中間成形体、ガラス基板、あるいは表面を機械加工することによりガラス基板に仕上げられるガラス基板の中間成形体、プレス成形用ガラス素材(特に光学素子あるいは光学素子の中間成形体をプレス成形により作製する際のガラス素材)を例示できる。
【0033】
本発明の第1のガラス成形品の製造方法によれば、上記ガラスの徐冷方法の特長を活かしつつガラス成形品を製造することができる。
【0034】
本発明の第2のガラス成形品の製造方法は、ガラス物品を搬送しながら加熱、軟化し、軟化したガラス物品を成形する方法である。本発明の第2のガラス成形品の製造方法は、前記ガラス物品を、隣り合う各室が開口を介して連通する複数の熱処理室内を順番に、前記開口を通して搬送して加熱し、隣り合う前記室は互いに断熱壁により断熱され、かつ前記室の雰囲気温度は独立に設定されていることを特徴とする。
【0035】
例えば、所定量のガラスを上記本発明のガラス物品の加熱方法により加熱、軟化した後、プレス成形型に導入する。そして軟化状態のガラス物品をプレス成形型でプレスし、所望形状のガラス成形品を製造する。上記プレス成形は大気中で行ってもよい。大気中でプレス成形を行う場合、最後の熱処理室から加熱、軟化したガラス成形品が大気中に取り出される。このようにガラス成形品を高温の熱処理室から大気中に直接取り出しても、複数の熱処理室を相互に断熱しているので、各熱処理室の設定温度を容易に、所望の範囲に維持することができる。
【0036】
本発明の第2のガラス成形品の製造方法によれば、上記ガラスの加熱方法の特長を活かしつつガラス成形品を製造することができる。
【0037】
本発明第1のガラス成形品の製造方法と第2のガラス成形品の製造方法を連続する工程として、つなげて実施することもできる。例えば、第1のガラス成形品の製造方法によりプレス成形用ガラス素材を製造し、第2のガラス成形品の製造方法により前記ガラス素材を加熱、軟化し、プレス成形品を製造し、さらに、続けて第1のガラス成形品の製造方法によりプレス成形品を徐冷することもできる。
【0038】
上記本発明のガラス物品の徐冷方法、加熱方法、第1及び第2のガラス成形品の製造方法ともに、熱処理室の温度制御を精密にかつ容易にできることから、失透しやすい光学ガラス、例えば、チタン含有の光学ガラスへ適用することが有効である。
【0039】
(熱処理装置)
本発明の熱処理装置は、トンネル型の炉及び炉内部に沿って物品を搬送する搬送装置を有し、かつ炉外から導入した物品を、炉内を搬送しながら熱処理するための装置である。本発明の熱処理装置は、前記物品の搬送を妨げないように炉内を物品の搬送方向に複数の熱処理室に仕切る断熱壁と、前記各熱処理室内の雰囲気温度を独立に設定するための雰囲気温度設定装置とを備えることを特徴とする。
【0040】
以下、本発明の熱処理装置を、図面に基づいて説明する。
図1に示すように、本発明の熱処理装置10は、トンネル型の炉11及び炉内部に沿って物品を搬送する搬送装置12を有する。炉11外から物品20を導入し、炉11内を搬送しながら熱処理した後に物品20'を取り出す。
熱処理装置10は、物品20の搬送を妨げないように炉11内を物品の搬送方向に複数の熱処理室13に仕切る断熱壁14を有する。さらに、各熱処理室13内の雰囲気温度を独立に設定するための雰囲気温度設定装置(図示せず)を備える。
尚、加熱装置(加熱ヒーター)または冷却装置15が、各熱処理室13の天井及び底部に設けられ、雰囲気温度設定装置によって制御される。
【0041】
断熱壁は、本発明の目的を達成するために適当な断熱性を有することが必要であり、断熱性は、本発明の装置において徐冷または加熱されるガラス物品の物性や徐冷または加熱前後の温度等を考慮して適宜設定することができる。例えば、断熱壁は、熱伝導量が1.5×10-2W/(m2・K)未満である断熱性を有することが望ましく、より望ましくは、熱伝導量は7×10-3W/(m2・K)未満である。
【0042】
上記熱処理装置の一形態は、トンネル型の炉の内部が、熱処理対象物であるガラス物品およびそれを搬送するコンベア等の搬送装置が通過できる最小限の隙間のみを残して炉内断熱壁によって進行方向で複数の室(領域)に隔てられている。そして、各室が任意の雰囲気温度に設定できるよう独立した加熱回路または冷却機構からなる雰囲気温度設定装置を備えるものである。
【0043】
例えば、トンネル式の加熱炉又は徐冷炉内の長手方向に、加熱又は冷却回路において独立して温度制御できる各熱処理室の境界位置の天井、底部及び/又は側壁に外側から断熱壁を挿入するための開口部を設け、その開口部から断熱材(例えばセラミックファイバーボード)でできた上記断熱壁を差し込み、内側の空間がガラス等の熱処理対象物およびそれを搬送するコンベア等の搬送装置が通過できる最小限の隙間(開口)のみを残して断熱壁で仕切られた状態を作り出すことができる。
【0044】
例えば、図2〜4に示すように、複数の断熱壁14をトンネル式の加熱炉11の天井、底部及び側壁から炉内に挿入し、ガラス物品及びに搬送装置が通過するに必要な隙間(開口)を残して、各熱処理室13を遮断することが好ましい。図4に示すように、天井、底部及び左右の側壁の外側から複数の断熱壁14を挿入して、ガラス物品20及びに搬送装置の搬送部17(17aは往路、17bは復路)を通すための開口部19(19aは往路用、19bは復路用)を設ける。断熱壁14aは天井側から、14bは側壁側から、14cも側壁側から、14dは底部側からそれぞれ挿入されている。
尚、図4は、図3に示す熱処理装置のC-C-断面である。図3に示す熱処理装置は、図1に示す本発明の熱処理装置の態様とは異なる態様であり、詳細については後述する。
【0045】
熱処理対象物であるガラス物品の大きさが大幅に変わる時は、その寸法や形状に応じて外側から挿入する断熱壁の位置を変更することができ、その際、炉内の隣接した熱処理室間の壁の開口面積はできるだけ小さくすることが好ましい。したがって、上記熱処理装置としては、熱処理対象物の大きさの変化に合わせて、熱処理対象物を載せた搬送装置が通過する上記断熱壁の隙間が最小限に保てるよう、上記断熱壁が開度調整機能を持つことが望ましい。
【0046】
上記のように、隣り合う熱処理室を連通している開口は、ガラス物品の搬送を妨げない程度に可能な限り小さくすることが熱処理室間の断熱効率を挙げるという観点から好ましい。このような観点から、ガラス物品の輪郭が搬送時に描く軌跡を搬送方向から見た断面において、最外縁部を結んだ閉じた線に対し、高さ方向にできる前記線と開口の間の隙間は50mm以内であり、幅方向にできる搬送手段と開口の間の隙間が搬送方向の左右でそれぞれ10mm以内であることが好ましい。この状態を図2に示す。ガラス物品の最外縁部を結んだ閉じた線に対し、高さ方向にできる前記線と開口の間の隙間は、好ましくは10mm以内である。幅方向にできる搬送手段と開口の間の隙間は、好ましくは、搬送方向の左右でそれぞれ3mm以内である。
【0047】
本発明の熱処理装置において、各熱処理室の温度をより精密に設定するには搬送方向を水平にし、断熱壁を垂直に設けることが望ましい。
【0048】
本発明の熱処理装置においては、前記搬送装置は、連続循環式の搬送部を有し、炉内の入口側に往路・復路切り替え部分を有し、かつ搬送部の復路の一部は炉内を移動するように設けられていることが好ましい。
徐冷炉内でガラス物品を搬送するための搬送部としては、例えば、連続循環式のメッシュベルトやキャタピラを用いることができる。
【0049】
従来の徐冷炉においても、搬送手段として連続循環式のメッシュベルトやキャタピラは用いられていた。本発明の装置においても、搬送手段として連続循環式のメッシュベルトやキャタピラは用いることができる。しかし、図6に示すように、従来の徐冷炉においては、出口から出たメッシュベルトやキャタピラは、徐冷炉の外を移動して、入り口側に戻る経路を取っていた。それに対して、本発明の装置では、図2及び図3に示すように、出口から出たメッシュベルトやキャタピラ17が入り口側11bに戻る経路を、出口側11aから往路の近くで再び炉11内に戻し炉内の各熱処理室の断熱壁14の隙間を往路とは逆に通過させながら入り口側へたどる経路とすることが好ましい。この装置においては、往路・復路切り替え部分18を炉内の入口側に有する。
【0050】
搬送部の復路の一部が炉内を移動するように設けられていることで、一旦出口から出て室温まで低下したメッシュベルトやキャタピラが、ガラス物品の冷却過程で放出、廃棄されるべき熱量の一部をもらいながら徐々に高温の室内へ搬送していくため、復路を、炉外を通過して入り口のやや手前から再び炉内に進入する構造に比べ、メッシュベルトやキャタピラを加熱するための熱量が最小限で済むという利点がある。
【0051】
さらに、本発明の熱処理装置では、断熱壁により仕切られた各熱処理室内の物品搬送経路に面する位置に耐熱性の均熱壁を配することが好ましい。均熱壁は、加熱による対象物の温度ムラを抑制すること以外に、対象物へのゴミの付着等の汚染を防止するためにも有用である。均熱壁は、熱処理対象物と、炉内壁面に近接して設置された加熱装置の間に設けられる。例えば、図3及び図3のA−A断面である図5に示すように、加熱ヒーター15とガラス物品20との間に均熱壁16が設けられる。さらに、加熱装置は、均熱壁を裏面から加熱するように設け、加熱装置への入力を各領域毎に独立して設定可能にすることが、各熱処理室の熱処理条件を独立して精密に設定する上で好ましい。また、上記均熱壁としては、表面の放射率が0.9以上であるものを用いることが、熱効率を向上させる上で好ましい。
【0052】
より具体的には、例えば、加熱装置である加熱ヒーターの炉内の内側にステンレス製又はセラミックス製の均熱壁を設け、その均熱壁の内面及び外面に放射率が0.9以上のセラミック塗料を塗布することで熱処理対象物の熱効率を大幅に増大させることができる。特に、側壁と天井を構成する金属又はセラミック製の均熱壁の内面及び外面に、放射率が0.9以上のセラミック塗料を塗布しておくことが望ましい。
【0053】
本発明の装置で熱処理するガラス物品には特に制限はないが、例えば、ガラス板やガラス製プレス成形品であることができる。
本発明の熱処理装置は、熱処理条件を適宜設定することにより、上記本発明のガラスの徐冷方法、加熱方法、第1及び第2のガラス成形品の製造方法に使用することができる。
【0054】
【実施例】
以下本発明を実施例によりさらに詳細に説明する。
(実施例1)
本発明を図3に示す熱処理装置を用いた場合について説明する。
高温状態のガラスを成形して得られたガラス熱間成形品除歪用のベルトコンベア式の連続徐冷炉10において、全長約20mのトンネル型の炉11内はガラス成形品20の搬送方向に11の熱処理室13に分けられている。それぞれの熱処理室12の天井と床面には熱処理室毎に独立調整ができる加熱ヒーター15ないしは冷却装置が設置されている。各熱処理室13間は熱伝導量が7x10-3W/(m2・K)未満の厚み50mmのセラミックファイバー製の断熱ボードからなる断熱壁14で、コンベア12とガラス成形品20が通過できる最小限必要な隙間を残して仕切られている。コンベア12上方の断熱壁14は炉外から差し入れる構造になっており、ガラス成形品20の大きさが変化した場合は、隙間の大きさを調整して必要以上の隙間が開かないように操作する。
【0055】
耐熱金属製メッシュベルトのコンベア12の復路は、炉出口11aで往路の真下から炉内に戻り、往路のコンベアと平行に炉内各熱処理室を入り口11b側に向かって逆走し、炉最前部の熱処理室内で再び往路に戻る構造である。ガラス成形品20は図示しない炉外の成形設備から炉最前部のコンベア上に順次搬送・積載され、毎分約8cmの速度でコンベアが移動しながら除歪が終了し、炉外に出たコンベア上で常温近くになったところで順次取り出される。炉内各熱処理室のコンベア上方にはコンベアを取り囲むように厚さ1.6mmのステンレス板製で上下両面に放射率が0.92の塗料を塗布された均熱壁16が、断熱壁14部を除いた全炉内長に渡って設置され、各熱処理室内の雰囲気を均熱化している。
【0056】
上記ガラスの加熱方法ならびに熱処理装置を用いることで、隣接した熱処理室間であっても100℃以上の温度差をつけることが可能となるため、除歪の温度スケジュールをほとんど制約無く設定できるだけでなく、高温に保持すべき空間を必要最小限にでき、なおかつ気流による熱量の逃げも小さく抑制されるため、従来構造の炉に比べ、電力消費量を1/3以下(条件によっては更に小さく)に抑えることができ、ガラス成形品の歪を50nm/cm以下にするために必要な炉の長さも、従来は全長約40m要していたものが、約20mで実現することができた。
【0057】
1例として屈折率(nd)1.847、アッベ数(νd)23.8、転移点610℃、SiO2及びTiO2を含む光学ガラスが得られる熔融ガラスを大気中にて一方の側面が開口した鋳型に連続して流し込んでガラス板に成形し、その板を上記開口部から一定スピードで水平方向に引き出し、熱処理装置の徐冷条件に設定された炉内へ直接送り込んだ。なお、鋳型からのガラス板の引き出し方向と徐冷炉内のガラス板の搬送方向が正確に一致するよう、熱処理装置を設置した。したがって、徐冷炉内のガラス板の搬送方向は水平になっている。
【0058】
上記光学ガラスからなる10mm厚のガラス板材の除歪(徐冷)を以下の条件で行った。1〜11の各熱処理室の温度設定は、以下の通りとした。580℃(熱処理室1)、580℃(熱処理室2)、575℃(熱処理室3)、545℃(熱処理室4)、485℃(熱処理室5)、410℃(熱処理室6)、350℃(熱処理室7)、290℃(熱処理室8)、150℃(熱処理室9)、90℃(熱処理室10)、50℃(熱処理室11)。
【0059】
本実施例ではガラス板の成形について説明したが、大気中において熔融ガラス塊を金型上に受けてガラス塊を次々と成形し、成形したガラス塊を上記熱処理装置に直接導入して徐冷し、ガラス塊を製造することもできるし、大気中において熔融ガラス塊をプレス成形型を構成する下型上に供給し、上型と下型でプレス成形し、得られたプレス成形品を上記熱処理装置に直接導入して徐冷し、ガラス成形品を製造することもできる。
【0060】
さらにガラスを加熱、軟化し、大気中でプレス成形した後、大気中から直接上記熱処理装置に導入して徐冷し、プレス成形品を作製することもできる。
【0061】
(実施例2)
実施例1で徐冷されたガラス板を所要の重量に切断し、面取り加工を施してカットピースと呼ばれるガラス片を作製した。ガラス板は十分除歪されているので、上記加工によって破損することはなかった。
【0062】
次にこのガラスカットピースを積載した珪藻土製の軟化皿を、炉内に並べ、ほぼ平坦に設置された耐火物製ベースプレートの上を間欠的に滑らせながら順送りして炉内を通過させることで、該ガラスカットピースをプレス成形に適した粘度まで昇温させた。ガラスの加熱に使用する熱処理装置は全長5mのトンネル型軟化炉を備え、炉内はカットピースの搬送方向に10の熱処理室に分かれ、それぞれの熱処理室の天井と床面及び場所によっては側面にも熱処理室毎に独立調整ができる加熱ヒーターが設置されている。そして各加熱ヒーターには独立した加熱回路が設けられている。各熱処理室間は熱伝導量が7x10-3W/(m2・K)未満の厚み50mmのセラミックファイバー製の断熱ボードからなる断熱壁で、軟化皿とその上のガラスが通過できる最小限必要な隙間を残して仕切られている。コンベア上方の断熱壁は炉外から差し入れる構造になっており、軟化皿とその上のガラスの大きさが変化した場合も隙間の大きさを調整して必要以上の隙間が開かないように調整されている。
【0063】
上記熱処理装置を用いることで、従来構造の炉(断熱壁がない炉)に比べ、電力消費量を8割以下に抑えることができ、適度なガラス軟化状態にするために必要な炉の長さも、従来の8割程度で済むようになったため、軟化に要する時間を2割短縮できた。
【0064】
実施例1において例示したSiO2、TiO2を含有する光学ガラスからなる30gのカットピースの軟化の場合、各熱処理室の温度設定は以下の通りとした。500℃(熱処理室1)、500℃(熱処理室2)、550℃(熱処理室3)、600℃(熱処理室4)、650℃(熱処理室5)、650℃(熱処理室6)、750℃(熱処理室7)、810℃(熱処理室8)、910℃(熱処理室9)、1070℃(熱処理室10)。
【0065】
加熱軟化した上記カットピースをプレス成形型に導入してレンズ形状にプレス成形した。プレス成形品は実施例1に示した熱処理装置と同様の装置で徐冷した。徐冷後、プレス成形品には研削、研磨加工を行い、屈折率(nd)1.847、アッベ数(νd)23.8の光学ガラスからなり、歪が取り除かれたレンズを作製した。
【0066】
なお、徐冷、加熱の各工程において適正な温度スケジュールを実現したので、作製されたレンズのいずれにも失透は見られなかった。
【0067】
【発明の効果】
以上のように本発明によれば、従来と比べ小さなスペースで、しかも少ないエネルギーでガラス物品やガラス成形品の加熱を可能とする加熱方法や、ガラス成形品の製造方法を提供することができる。
また、従来と比べ小さなスペースで、しかも少ないエネルギーでガラス物品やガラス成形品の徐冷を可能とする徐冷方法、ガラス成形品の製造方法を提供することもできる。
さらに、従来と比べ小さなスペースで、しかも少ないエネルギーでガラス物品等の物品の熱処理を可能とする熱処理装置を提供することもできる。
【図面の簡単な説明】
【図1】本発明の熱処理装置の1つの態様の説明図である。
【図2】本発明の熱処理装置の1つの態様の説明図である。
【図3】本発明の熱処理装置の1つの態様の説明図である。
【図4】図3に示す熱処理装置のC-C断面図である。
【図5】図3に示す熱処理装置のA-A断面図である。
【図6】従来の熱処理装置の1例の説明図である。
[0001]
BACKGROUND OF THE INVENTION
In the present invention, for example, an object to be heat-treated such as optical glass or electronic glass, which requires high-precision heat treatment, is loaded and conveyed on a conveyor device such as a belt conveyor. The present invention relates to a heat treatment method and a heat treatment apparatus for glass and the like for the purpose of continuously applying a required heat treatment while passing through a tunnel type furnace whose set temperature is changed depending on a location so as to generate a temperature gradient.
[0002]
[Prior art and problems to be solved by the invention]
A glass continuous annealing furnace generally called a layer has a structure as disclosed in Non-Patent Document 1 (see FIGS. 11 and 7). In slow cooling of optical glass or the like, a tunnel-type slow cooling furnace divided into a plurality of regions having different temperature settings in the longitudinal direction (drawing direction) may be used. In this slow cooling furnace, there is no partition wall at the boundary of each region, and each region is not insulated, and energy loss increases when attempting to create a large temperature difference between adjacent regions. Not only that, but if the required temperature difference cannot be achieved, it will be necessary to increase the total length of the tunnel furnace as the temperature difference becomes smaller. This leads to an increase in the size of the entire equipment, which not only increases the equipment cost, but also increases the occupied area occupied by the equipment, which increases the burden of land costs.
[0003]
In addition, a continuous circulation mesh belt is often used as a means for transporting glass plates and glass press products in a slow cooling furnace (the reason for using a mesh belt is that it has a relatively small heat capacity, so it has a slight temperature difference from the glass in contact with it. This is because the heat shock given to the glass is small even if there is.) In general, the return path after the mesh belt exits from the exit of the furnace has a structure in which most of the path passes through the outside of the furnace at room temperature and enters the furnace again slightly before the entrance. In this structure, since it is necessary to raise the temperature of the mesh belt at room temperature to near the annealing point of the glass in a short time, a very large amount of heat is required for heating the metal mesh belt having a large heat capacity.
[0004]
In addition, in the case of a heat treatment furnace that requires precision of heat treatment or dislikes contamination of the target object, a soaking wall is installed further inside the heater installed on the inner wall of the furnace, and the inside of the furnace has a double structure. It may be. The soaking wall is intended to improve the temperature distribution and prevent surface contamination of the object, and is generally made of stainless steel or ceramics. Since the soaking wall made of stainless steel has a relatively low emissivity, heat exchange is hindered when the object to be heat-treated needs to be heated or, on the contrary, when cooling is required. As a result, extra heat energy is required for heating purposes (compared to the case where the emissivity of the soaking plate surface is large), and for rapid cooling purposes, the cooling rate is reduced. Extra length of equipment is required.
[0005]
The present invention has been made in order to solve the above-described problems. A glass heating method and a glass molded product manufacturing method capable of heating glass with a smaller space and less energy than conventional methods. The first purpose is to provide it.
[0006]
The second object of the present invention is to provide a method for slowly cooling glass and a method for producing a glass molded product, which allows the glass to be gradually cooled with a smaller space and less energy than in the past.
[0007]
Furthermore, a third object of the present invention is to provide a heat treatment apparatus that enables heat treatment of an article such as glass with a smaller space and less energy than conventional ones.
[0008]
[Non-Patent Document 1]
Naruse, Glass Engineering, pages 176-178 February 10, 1967
Kyoritsu Publishing
[0009]
[Means for Solving the Problems]
Next, the present invention, which is a means for solving the above problems, will be described.
[Claim 1]
A heat treatment apparatus having a tunnel-type furnace and a conveying apparatus that conveys articles along the furnace interior, and heat-treating articles introduced from outside the furnace while conveying the inside of the furnace,
Including a heat insulating wall that partitions the interior of the furnace into a plurality of heat treatment chambers in the article conveyance direction so as not to hinder the conveyance of the articles, and an atmospheric temperature setting device for independently setting the atmospheric temperature in each of the heat treatment chambers, And a heating device that heat-heats the soaking wall so as to cover the upper part of the article conveyance path in each heat treatment chamber partitioned by the heat insulating wall, and heats the soaking wall from the back surface, and inputs to the heating device A heat treatment apparatus, which is performed by the atmosphere temperature setting apparatus.
[Claim 2]
The transfer device has a continuous circulation type transfer section, has a forward / return switching portion on the inlet side in the furnace, and a part of the return path of the transfer section is provided to move in the furnace. The heat treatment apparatus according to claim 1.
[Claim 3]
A heat treatment apparatus for carrying a tunnel-type furnace and a conveying device for conveying an article along the inside of the furnace, and for gradually cooling the article introduced from outside the furnace while conveying the inside of the furnace,
Including a heat insulating wall that partitions the interior of the furnace into a plurality of heat treatment chambers in the article conveyance direction so as not to hinder the conveyance of the articles, and an atmospheric temperature setting device for independently setting the atmospheric temperature in each of the heat treatment chambers, A heat-resistant soaking wall is provided so as to cover the upper part of the article conveyance path in each heat treatment chamber partitioned by the heat insulating wall, and includes a heating device that heats the soaking wall from the back surface, and the input to the heating device is To be done with the ambient temperature setting device The transfer device has a continuous circulation type transfer unit, has a forward / return switching part on the inlet side in the furnace, and a part of the return path of the transfer unit is provided to move in the furnace. The heat processing apparatus characterized by the above-mentioned.
[Claim 4]
The heat treatment apparatus according to any one of claims 1 to 3, wherein an emissivity of the surface of the soaking wall is 0.9 or more.
[Claim 5]
The heat treatment apparatus according to claim 4, wherein a ceramic paint having an emissivity of 0.9 or more is applied to the surface of the soaking wall.
[Claim 6]
A method for gradually cooling a glass article, wherein the glass article is slowly cooled while being conveyed using the heat treatment apparatus according to claim 1,
The glass article is sequentially cooled through a plurality of heat treatment chambers in which adjacent chambers communicate with each other through the openings, and gradually cooled.
The adjacent chambers are insulated from each other by thermal insulation walls; and
The method for slow cooling a glass article, wherein the ambient temperature of the chamber is set independently.
[Claim 7]
A method for heating a glass article, wherein the glass article is heated while being conveyed using the heat treatment apparatus according to claim 1,
The glass article is heated by sequentially transporting through a plurality of heat treatment chambers in which adjacent chambers communicate with each other through the openings,
The adjacent chambers are insulated from each other by thermal insulation walls; and
The method for heating a glass article, wherein the ambient temperature of the chamber is set independently.
[Claim 8]
A method for producing a glass molded product, comprising molding molten glass or heated and softened glass, and gradually cooling the obtained glass molded product while continuously conveying it using the heat treatment apparatus according to claim 1. Because
The glass molded article is gradually cooled by conveying through the openings in order, through a plurality of heat treatment chambers in which adjacent chambers communicate with each other through the openings,
The adjacent chambers are insulated from each other by thermal insulation walls; and
The method for producing a glass molded product, wherein the ambient temperature of the chamber is set independently.
[Claim 9]
A method for producing a glass molded article, wherein the heat treatment apparatus according to any one of claims 1 to 2 is used to heat, soften and soften a glass article while conveying the glass article,
The glass article is heated by sequentially transporting through a plurality of heat treatment chambers in which adjacent chambers communicate with each other through the openings,
The adjacent chambers are insulated from each other by thermal insulation walls; and
The method for producing a glass molded product, wherein the ambient temperature of the chamber is set independently.
[Claim 10]
In the cross-section of the outline of the glass article or glass molded product when it is transported as viewed from the transport direction, the gap between the line and the opening that can be in the height direction is within 50 mm with respect to the closed line that connects the outermost edges. The method according to any one of claims 6 to 9, wherein gaps between the conveying means and the opening formed in the width direction are each within 10 mm on the left and right in the conveying direction.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below, but the present invention is not limited to the embodiments described below.
[0011]
(Slow cooling method for glass articles)
The glass article slow cooling method of the present invention is a method of slow cooling while conveying a glass article. In the method for slow cooling glass articles according to the present invention, the glass articles are transported through the openings in order in the plurality of heat treatment chambers in which adjacent chambers communicate with each other through the openings, and the adjacent chambers are gradually cooled. The chambers are insulated from each other by heat insulating walls, and the ambient temperature of the chamber is set independently.
[0012]
In the method for slowly cooling a glass article of the present invention, the glass article is gradually cooled by being conveyed sequentially in a plurality of heat treatment chambers in which adjacent chambers communicate with each other through an opening. The conveyance of the glass article can be carried out by a known means such as a belt conveyor, for example, and those described in the description of the heat treatment apparatus of the present invention described later can be appropriately used. Adjacent heat treatment chambers are insulated from each other by a heat insulating wall, and the glass article is conveyed through an opening provided in the heat insulating wall. And the atmospheric temperature of each heat processing chamber is set independently.
[0013]
The heat insulating property of the heat insulating wall for heat insulation of each heat treatment chamber can be appropriately set in consideration of the physical properties of the glass article to be slowly cooled in the slow cooling method of the present invention, the temperature before and after slow cooling, for example, The heat conductivity of the heat insulation wall is 1.5 × 10 -2 W / (m 2 ・ K is preferably less than 7 × 10 -3 W / (m 2 -It is more desirable to make it less than K). Here, the heat conduction amount of the heat insulating wall is a ratio between the amount of heat flowing through the unit area perpendicular to the thickness direction of the heat insulating wall and the temperature difference between the heat treatment chambers partitioned by the heat insulating wall. When the heat insulating wall is made of a uniform material with a constant thickness, this corresponds to an amount obtained by multiplying the thermal conductivity of the material by the thickness of the heat insulating wall. Specific examples of the heat insulating wall will be described in detail in the description of the heat treatment apparatus of the present invention.
[0014]
Each heat treatment chamber partitioned by a heat insulating wall and insulated from each other can be set accurately in each heat treatment chamber even when the glass conveyance speed is kept constant by setting the temperature of the atmosphere independently. Can also provide a large temperature difference between adjacent heat treatment chambers. Therefore, slow cooling with low energy consumption is possible in a narrow space (short furnace length).
In the method for slowly cooling a glass article of the present invention, the number of heat treatment chambers and the atmospheric temperature of each heat treatment chamber can be appropriately set in consideration of the physical properties of the glass article to be slowly cooled, the temperatures before and after the slow cooling, and the like. However, practically, the number of heat treatment chambers is, for example, in the range of 5 to 15, and the temperature difference between adjacent heat treatment chambers is in the range of, for example, 3 to 150 ° C.
[0015]
A large amount of glass can be gradually cooled at the same time. Slow cooling at the same time includes both the case where a plurality of glass articles are gradually cooled in parallel and the case where a plurality of glass articles are gradually cooled as a total by flowing the glass articles sequentially into a heat treatment chamber.
[0016]
In order to set the atmospheric temperature in each of the heat treatment chambers more precisely, it is desirable that the conveying direction of the glass article is horizontal and the heat insulating wall is provided vertically.
The adjacent heat treatment chambers communicate with each other through an opening, but it is preferable from the viewpoint of increasing the heat insulation efficiency between the heat treatment chambers that the opening is made as small as possible without impeding the conveyance of the glass article. From such a point of view, in the cross section when the trajectory drawn by the outline of the glass article is viewed from the transport direction, the gap between the line and the opening that can be in the height direction is the closed line connecting the outermost edges. It is preferably within 50 mm, and the gap between the conveying means and the opening formed in the width direction is preferably within 10 mm on the left and right in the conveying direction. This state is shown in FIG. The gap between the line and the opening formed in the height direction with respect to the closed line connecting the outermost edges of the glass article is preferably within 10 mm. The gap between the conveying means and the opening formed in the width direction is preferably 3 mm or less on the left and right in the conveying direction.
[0017]
The glass slow cooling method of the present invention is suitable for slow cooling of a glass material for reheating by reheating and softening, or for slow cooling of a press-molded product and a glass plate. Moreover, it is suitable also when supplying a several glass one by one to the said conveyance path | route one by one, and slow-cooling glass (for example, glass plate) longer than the said conveyance path | route. Moreover, it is suitable for slow cooling of optical glass. In particular, the refractive index and dispersion of the optical glass may be adjusted to predetermined values by slow cooling. In this case, it is preferable to precisely control the temperature history of the glass during the slow cooling process. The method is suitable for slow cooling of such optical glass.
[0018]
In a glass material for re-molding by reheating and softening, if crystal nuclei are contained in the glass, crystallization occurs during reheating and devitrification occurs. Therefore, in order to gradually cool the glass material, it is necessary to quickly pass through the temperature range where crystal nuclei are generated. According to the above slow cooling method, the temperature history during the slow cooling process can be set accurately, so that temperature control that can effectively prevent devitrification is performed, and a glass material suitable for glass material or optical element molding Can also be provided.
[0019]
(Method for heating glass articles)
The method for heating a glass article of the present invention is a method of heating while conveying a glass article. In the method for heating a glass article according to the present invention, the glass article is heated by sequentially transporting the glass article through a plurality of heat treatment chambers in which adjacent chambers communicate with each other through the openings, and the adjacent chambers are insulated from each other. It is insulated by the wall, and the ambient temperature of the chamber is set independently.
[0020]
The method for heating a glass article of the present invention is the same as the method for slowly cooling a glass article of the present invention except that the glass article is heated while being conveyed. That is, in the glass article slow cooling method of the present invention, the temperature is set so as to decrease in the glass article transport direction, whereas in the glass article heating method of the present invention, the temperature is in the glass article transport direction. Both are similar except that they are set to rise.
[0021]
The method for heating a glass article of the present invention is suitable for a method for softening a glass article by heating. The softened glass article is formed by applying an external force such as press molding. When a glass article is softened and molded to form an optical element such as a lens or a blank having a shape similar to an optical element, the glass must be softened while preventing devitrification. When the optical glass is softened, it is desirable to raise the temperature relatively slowly so that the glass is not damaged at a low temperature stage, and to perform rapid heating so that the glass does not devitrify in a temperature region where crystal nuclei are generated in the glass. According to the heating method of the present invention, since the temperature history at the time of raising the temperature of the glass article can be precisely controlled, the glass article can be heated even in a narrow space while preventing breakage and devitrification. It is possible to save power and the like.
[0022]
In addition, the glass article can be crystallized using the heating method of the present invention. When crystallizing a glass article, it is necessary to raise the temperature of the glass article and then lower the temperature. In that case, it can carry out combining the slow cooling method and heating method of this invention. Further, when the slow cooling method and the heating method of the present invention are combined, any one of the cases where the annealing is performed in one furnace and the combination of two furnaces (for slow cooling and heating) can be performed.
[0023]
(Glass molded product manufacturing method)
The manufacturing method of the 1st glass molded product of this invention is a method of shape | molding molten glass or the glass which heated and softened, and cooling gradually, conveying the obtained glass molded product continuously. In the first method for producing a glass molded product of the present invention, the glass molded product is sequentially cooled through a plurality of heat treatment chambers in which adjacent chambers communicate with each other through the openings. The matching chambers are insulated from each other by heat insulating walls, and the ambient temperature of the chambers is set independently.
In the slow cooling step of the glass molded product in the first method for producing a glass molded product of the present invention, the glass molded product may be gradually cooled by directly applying the method described in the method of slowly cooling a glass article of the present invention. it can.
[0024]
The method for molding the molten glass in the first method for producing a glass molded article of the present invention is not particularly limited. For example, the following three methods can be mentioned.
[0025]
(1) After continuously casting molten glass into a mold having a bottom surface kept horizontal and a pair of side walls facing each other across the bottom surface, spreading the glass into a plate shape and cooling the surface to form a glass plate A method of pulling out a glass plate continuously in a direction parallel to the side wall from an opening provided on a side surface of the mold. In this method, since the drawn glass sheet is gradually cooled, it is desirable to make the glass transport direction horizontal during the slow cooling.
[0026]
This method is suitable for forming a glass plate having a thickness of 7 mm or more. When the wall thickness is thin, there is a possibility that the target width of the glass plate cannot be secured due to an increase in the pulling speed. However, when the wall thickness is large, it takes time until the viscosity is such that the glass does not deform due to its own weight. According to the above method, even when a glass plate having a large thickness is formed, the glass can be cooled on the mold to a viscosity that does not cause deformation due to its own weight by keeping the bottom surface of the mold horizontal.
[0027]
Similarly, the viscosity of the molten glass when cast into the mold (viscosity at the time of outflow) is 10 Three It is suitable when it is less than dPa · S. Such conditions make it easier to obtain the required glass plate width.
[0028]
The glass plate thus formed is once cooled in the atmosphere and then slowly cooled. The slow cooling method employs the above slow cooling method of the glass article of the present invention. That is, the glass plate is introduced into the first heat treatment chamber set at a relatively high temperature (for example, near the glass transition temperature). The temperature difference between the atmosphere and the atmosphere in the first heat treatment chamber is usually quite large (for example, 600 ° C.). However, even in such a situation, the heat treatment chambers for slow cooling are insulated from each other by the heat insulating walls, so even if glass is introduced directly from the atmosphere into the heat treatment chamber for slow cooling. The atmospheric temperature of each heat treatment chamber can be maintained at a predetermined condition. That is, according to the present invention, since each heat treatment chamber is insulated, the amount of wasted heat escaping from the first heat treatment chamber to the heat treatment chamber after the next heat treatment chamber can be greatly reduced.
[0029]
(2) A method of supplying a predetermined amount of molten glass lump from a pipe to a mold and forming the glass lump on the mold. In this method, gas may be blown to apply pressure to the glass on the mold to form the glass while floating. The glass lump formed in the atmosphere is slowly cooled. The slow cooling method employs the above slow cooling method of the glass article of the present invention. That is, the formed glass lump is introduced into the first heat treatment chamber set at a relatively high temperature (for example, near the glass transition temperature). Similar to the method (1), even if the glass block is directly introduced from the atmosphere into the slow cooling region, the atmospheric temperature of each heat treatment chamber can be maintained at a predetermined condition. Furthermore, the viscosity of the molten glass immediately before being supplied to the mold is 10 Three It is the same as the method (1) in that a good glass molded product can be produced even if it is less than dPa · S.
[0030]
(3) A method of press-molding a predetermined amount of molten glass block. For example, the molten glass lump is supplied onto the lower mold, and the molten glass lump is pressed by the upper mold and the lower mold. The glass becomes a molded product having a desired shape by pressing, and the surface is rapidly solidified due to heat being removed by the pressing mold. The press molding is performed in the atmosphere. Slowly cool the press-molded product molded in the atmosphere. The slow cooling method employs the above slow cooling method of the glass article of the present invention. That is, the press-formed product is introduced into the first heat treatment chamber set at a relatively high temperature (for example, near the glass transition temperature). Similar to methods (1) and (2), the atmospheric temperature of each heat treatment chamber can be maintained at a predetermined condition even if the press-formed product is directly introduced from the atmosphere into the heat treatment chamber for slow cooling. is there. Further, the viscosity of the molten glass immediately before being supplied to the press mold is 10 Three Even in the case of less than dPa · S, it is the same as the methods (1) and (2) that a good glass molded product can be produced.
[0031]
Next, a method for forming the above heated and softened glass will be exemplified. Once solidified, the glass is heated, softened, and press-molded. This method can be broadly divided into those in which press molding is performed in the air and those in a non-oxidizing atmosphere such as nitrogen or a mixed gas of nitrogen and hydrogen. As described above, when press molding is performed in the atmosphere, there is no problem even if the press-molded product is directly introduced into the heat treatment chamber for the first slow cooling from the atmosphere.
[0032]
The glass molded article to be produced is not particularly limited, but the glass optical element, or the intermediate molded body of the glass optical element that is finished into an optical element by machining the surface, the glass substrate, or the glass by machining the surface Examples thereof include an intermediate molded body of a glass substrate to be finished on a substrate and a glass material for press molding (particularly a glass material for producing an optical element or an intermediate molded body of an optical element by press molding).
[0033]
According to the first method for producing a glass molded product of the present invention, a glass molded product can be produced while taking advantage of the characteristics of the glass slow cooling method.
[0034]
The manufacturing method of the 2nd glass molded product of this invention is a method of heating and softening, conveying the glass article, and shape | molding the softened glass article. In the second method for producing a glass molded product according to the present invention, the glass article is heated and conveyed through the openings sequentially in a plurality of heat treatment chambers in which the adjacent chambers communicate with each other through the openings. The chambers are insulated from each other by heat insulating walls, and the ambient temperature of the chamber is set independently.
[0035]
For example, a predetermined amount of glass is heated and softened by the method for heating a glass article of the present invention, and then introduced into a press mold. Then, the softened glass article is pressed with a press mold to produce a glass molded article having a desired shape. You may perform the said press molding in air | atmosphere. When press molding is performed in the air, the glass molded product heated and softened from the last heat treatment chamber is taken out into the air. Even if the glass molded product is directly taken out from the high-temperature heat treatment chamber into the atmosphere, the heat treatment chambers are insulated from each other, so that the set temperature of each heat treatment chamber can be easily maintained within a desired range. Can do.
[0036]
According to the second method for producing a glass molded article of the present invention, a glass molded article can be produced while taking advantage of the characteristics of the glass heating method.
[0037]
The manufacturing method of the 1st glass molded product of this invention and the manufacturing method of the 2nd glass molded product can also be connected and implemented as a continuous process. For example, the glass material for press molding is manufactured by the manufacturing method of the first glass molded product, the glass material is heated and softened by the manufacturing method of the second glass molded product, and the press molded product is manufactured. The press-molded product can be gradually cooled by the first glass molded product manufacturing method.
[0038]
Since both the method for slowly cooling the glass article of the present invention, the heating method, and the method for manufacturing the first and second glass molded articles can be precisely and easily controlled in the temperature of the heat treatment chamber, optical glass that is easily devitrified, for example, It is effective to apply to optical glass containing titanium.
[0039]
(Heat treatment equipment)
The heat treatment apparatus of the present invention is an apparatus for heat-treating an article introduced from the outside of the furnace while transporting the inside of the furnace, having a tunnel-type furnace and an inside of the furnace. The heat treatment apparatus of the present invention includes a heat insulating wall that partitions the furnace into a plurality of heat treatment chambers in the article conveyance direction so as not to prevent the conveyance of the articles, and an atmospheric temperature for independently setting the atmospheric temperature in each of the heat treatment chambers And a setting device.
[0040]
Hereinafter, the heat processing apparatus of this invention is demonstrated based on drawing.
As shown in FIG. 1, a heat treatment apparatus 10 of the present invention includes a tunnel-type furnace 11 and a transport apparatus 12 that transports articles along the furnace interior. The article 20 is introduced from the outside of the furnace 11 and heat-treated while being conveyed in the furnace 11, and then the article 20 ′ is taken out.
The heat treatment apparatus 10 includes a heat insulating wall 14 that partitions the inside of the furnace 11 into a plurality of heat treatment chambers 13 in the article conveyance direction so as not to hinder the conveyance of the article 20. Furthermore, an atmospheric temperature setting device (not shown) for independently setting the atmospheric temperature in each heat treatment chamber 13 is provided.
A heating device (heating heater) or a cooling device 15 is provided on the ceiling and bottom of each heat treatment chamber 13, and is controlled by an ambient temperature setting device.
[0041]
In order to achieve the object of the present invention, the heat insulating wall needs to have an appropriate heat insulating property. The heat insulating property is the physical property of the glass article to be slowly cooled or heated in the apparatus of the present invention, and before or after the slow cooling or heating. The temperature can be appropriately set in consideration of the temperature and the like. For example, the heat insulation wall has a thermal conductivity of 1.5 × 10 -2 W / (m 2 It is desirable to have a heat insulating property that is less than K), and more desirably, the heat conduction amount is 7 × 10 -3 W / (m 2 -Less than K).
[0042]
In one form of the heat treatment apparatus, the inside of the tunnel type furnace is advanced by a heat insulating wall in the furnace, leaving only a minimum gap through which a glass article as a heat treatment object and a transfer device such as a conveyor for transferring the glass article can pass. It is divided into a plurality of chambers (regions) in the direction. And each chamber is provided with the atmospheric temperature setting apparatus which consists of an independent heating circuit or cooling mechanism so that it can set to arbitrary atmospheric temperatures.
[0043]
For example, in order to insert a heat insulation wall from the outside into the ceiling, bottom and / or side wall of the boundary position of each heat treatment chamber which can be temperature controlled independently in the heating or cooling circuit in the longitudinal direction in the tunnel type heating furnace or slow cooling furnace The opening is provided, and the heat insulating wall made of a heat insulating material (for example, ceramic fiber board) is inserted through the opening, and the inner space is the minimum through which a heat treatment object such as glass and a conveying device such as a conveyor for conveying the object can pass. It is possible to create a state of being partitioned by a heat insulating wall leaving only a limited gap (opening).
[0044]
For example, as shown in FIGS. 2 to 4, a plurality of heat insulating walls 14 are inserted into the furnace from the ceiling, bottom, and side walls of the tunnel-type heating furnace 11, and gaps necessary for the transfer device to pass through the glass article ( It is preferable to block each heat treatment chamber 13 leaving an opening. As shown in FIG. 4, a plurality of heat insulating walls 14 are inserted from the outside of the ceiling, bottom, and left and right side walls, and the glass article 20 and the transfer unit 17 of the transfer device (17a is the forward path, 17b is the return path). Are provided with openings 19 (19a for the forward path and 19b for the return path). The heat insulating wall 14a is inserted from the ceiling side, 14b is inserted from the side wall side, 14c is also inserted from the side wall side, and 14d is inserted from the bottom side.
4 is a CC-cross section of the heat treatment apparatus shown in FIG. The heat treatment apparatus shown in FIG. 3 is an aspect different from the aspect of the heat treatment apparatus of the present invention shown in FIG. 1, and details will be described later.
[0045]
When the size of the glass article that is the object of heat treatment changes significantly, the position of the heat insulating wall inserted from the outside can be changed according to the size and shape, and at that time, between adjacent heat treatment chambers in the furnace The opening area of the wall is preferably as small as possible. Therefore, as the heat treatment apparatus, the opening degree of the heat insulation wall is adjusted so that the gap of the heat insulation wall through which the transfer device carrying the heat treatment object passes is kept to a minimum in accordance with the change in the size of the heat treatment object. It is desirable to have a function.
[0046]
As described above, it is preferable from the viewpoint of increasing the heat insulation efficiency between the heat treatment chambers that the openings communicating with the adjacent heat treatment chambers are as small as possible without impeding the conveyance of the glass article. From such a point of view, in the cross section when the trajectory drawn by the outline of the glass article is viewed from the transport direction, the gap between the line and the opening that can be in the height direction is the closed line connecting the outermost edges. It is preferably within 50 mm, and the gap between the conveying means and the opening formed in the width direction is preferably within 10 mm on the left and right in the conveying direction. This state is shown in FIG. The gap between the line and the opening formed in the height direction with respect to the closed line connecting the outermost edges of the glass article is preferably within 10 mm. The gap between the conveying means and the opening formed in the width direction is preferably 3 mm or less on the left and right in the conveying direction.
[0047]
In the heat treatment apparatus of the present invention, in order to set the temperature of each heat treatment chamber more precisely, it is desirable that the conveying direction is horizontal and the heat insulating wall is provided vertically.
[0048]
In the heat treatment apparatus of the present invention, the transfer device has a continuous circulation type transfer unit, has a forward / return switching portion on the inlet side in the furnace, and a part of the return path of the transfer unit passes through the furnace. It is preferable to be provided so as to move.
For example, a continuous circulation mesh belt or a caterpillar can be used as the transport unit for transporting the glass article in the slow cooling furnace.
[0049]
Also in the conventional slow cooling furnace, a continuous circulation type mesh belt or a caterpillar has been used as a conveying means. Also in the apparatus of the present invention, a continuous circulation type mesh belt or a caterpillar can be used as the conveying means. However, as shown in FIG. 6, in the conventional slow cooling furnace, the mesh belt and the caterpillar that have come out from the outlet take a route that moves outside the slow cooling furnace and returns to the entrance side. On the other hand, in the apparatus of the present invention, as shown in FIG. 2 and FIG. 3, the path where the mesh belt and the caterpillar 17 that have come out from the outlet return to the inlet side 11b is again in the furnace 11 near the outgoing path from the outlet side 11a. It is preferable to set the path to the entrance side while passing through the gap between the heat insulating walls 14 of the heat treatment chambers in the furnace in the opposite direction to the forward path. This apparatus has a forward / return switching portion 18 on the inlet side in the furnace.
[0050]
The amount of heat that should be released and discarded during the cooling process of glass articles when mesh belts and caterpillars that have once exited from the outlet and dropped to room temperature are provided so that a part of the return path of the transport section moves in the furnace. In order to heat the mesh belt and caterpillar compared to the structure where it passes through the outside of the furnace and enters the furnace again from a little before the entrance, it is gradually transported to a hot room while receiving a part of it. There is an advantage that the amount of heat is minimal.
[0051]
Furthermore, in the heat treatment apparatus of the present invention, it is preferable to provide a heat-resistant soaking wall at a position facing the article conveyance path in each heat treatment chamber partitioned by the heat insulating walls. The soaking wall is useful not only for suppressing temperature unevenness of an object due to heating, but also for preventing contamination such as adhesion of dust to the object. The soaking wall is provided between the object to be heat-treated and a heating device installed close to the inner wall surface of the furnace. For example, as shown in FIG. 5 which is an AA cross section of FIGS. 3 and 3, a soaking wall 16 is provided between the heater 15 and the glass article 20. Furthermore, the heating device is provided so that the soaking wall is heated from the back surface, and the input to the heating device can be set independently for each region, so that the heat treatment conditions of each heat treatment chamber can be accurately and independently set. It is preferable in setting. In addition, it is preferable to use a soaking wall having a surface emissivity of 0.9 or more in order to improve thermal efficiency.
[0052]
More specifically, for example, a soaking wall made of stainless steel or ceramics is provided inside the furnace of a heater that is a heating device, and the emissivity is 0.9 or more on the inner and outer surfaces of the soaking wall. By applying the paint, the thermal efficiency of the heat treatment object can be greatly increased. In particular, it is desirable to apply a ceramic paint having an emissivity of 0.9 or more to the inner and outer surfaces of a soaking wall made of metal or ceramic constituting the side wall and the ceiling.
[0053]
Although there is no restriction | limiting in particular in the glass article heat-processed with the apparatus of this invention, For example, it can be a glass plate and a glass press-molded product.
The heat treatment apparatus of the present invention can be used in the glass slow cooling method, the heating method, and the first and second glass molded product manufacturing methods of the present invention by appropriately setting the heat treatment conditions.
[0054]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
The case where the present invention uses the heat treatment apparatus shown in FIG. 3 will be described.
In a belt-conveyor-type continuous annealing furnace 10 for removing distortion of a glass hot-molded product obtained by molding glass in a high temperature state, the inside of a tunnel-type furnace 11 having a total length of about 20 m is 11 in the conveying direction of the glass molded product 20. It is divided into a heat treatment chamber 13. A heater 15 or a cooling device that can be independently adjusted for each heat treatment chamber is installed on the ceiling and floor of each heat treatment chamber 12. Between each heat treatment chamber 13, the thermal conductivity is 7x10 -3 W / (m 2 A heat insulating wall 14 made of a ceramic fiber heat insulating board having a thickness of less than 50 mm and separated by a minimum necessary gap through which the conveyor 12 and the glass molded product 20 can pass. The heat insulation wall 14 above the conveyor 12 is inserted from the outside of the furnace, and when the size of the glass molded product 20 changes, the size of the gap is adjusted so that it does not open more than necessary. To do.
[0055]
The return path of the conveyor belt 12 made of heat-resistant metal mesh belt returns to the furnace from directly under the forward path at the furnace outlet 11a, and runs backward in the heat treatment chamber in the furnace toward the entrance 11b in parallel with the forward conveyor. This is a structure that returns to the forward path again in the heat treatment chamber. The glass molded product 20 is sequentially transported and loaded from a molding facility outside the furnace (not shown) onto the conveyor at the foremost part of the furnace. The conveyor is moved at a speed of about 8 cm per minute, and the distortion removal is completed. It is sequentially taken out when it is near room temperature. Above the conveyor in each heat treatment chamber in the furnace is a heat insulation wall 16 made of a stainless steel plate with a thickness of 1.6 mm so as to surround the conveyor and coated with a paint with an emissivity of 0.92 on both the upper and lower sides. It is installed over the entire length of the furnace except for, and the atmosphere in each heat treatment chamber is soaked.
[0056]
By using the above glass heating method and heat treatment apparatus, it becomes possible to set a temperature difference of 100 ° C. or more even between adjacent heat treatment chambers, so that not only the temperature schedule for distortion removal can be set with almost no restrictions. Because the space to be kept at a high temperature can be minimized and the escape of heat due to the airflow is suppressed to a small level, the power consumption can be reduced to 1/3 or less (or even smaller depending on the conditions) compared to a conventional furnace. The length of the furnace required to reduce the strain of the glass molded product to 50 nm / cm or less can be reduced to about 20 m, which conventionally required a total length of about 40 m.
[0057]
As an example, refractive index (nd) 1.847, Abbe number (νd) 23.8, transition point 610 ° C., SiO 2 2 And TiO 2 The molten glass from which the optical glass containing is obtained is continuously poured into a mold having an opening on one side surface in the atmosphere and formed into a glass plate, and the plate is drawn out horizontally from the opening at a constant speed, and a heat treatment apparatus It was fed directly into the furnace set to the slow cooling conditions. In addition, the heat processing apparatus was installed so that the drawing direction of the glass plate from a casting_mold | template and the conveyance direction of the glass plate in a slow cooling furnace might correspond exactly. Therefore, the conveyance direction of the glass plate in the slow cooling furnace is horizontal.
[0058]
The 10 mm-thick glass plate made of the optical glass was subjected to strain removal (slow cooling) under the following conditions. The temperature settings of the heat treatment chambers 1 to 11 were as follows. 580 ° C. (heat treatment chamber 1), 580 ° C. (heat treatment chamber 2), 575 ° C. (heat treatment chamber 3), 545 ° C. (heat treatment chamber 4), 485 ° C. (heat treatment chamber 5), 410 ° C. (heat treatment chamber 6), 350 ° C. (Heat treatment chamber 7) 290 ° C. (heat treatment chamber 8), 150 ° C. (heat treatment chamber 9), 90 ° C. (heat treatment chamber 10), 50 ° C. (heat treatment chamber 11).
[0059]
In this embodiment, the glass plate was formed, but the molten glass lump was received on the mold in the atmosphere to form the glass lump one after another, and the formed glass lump was directly introduced into the heat treatment apparatus and gradually cooled. It is also possible to produce glass lumps, supply molten glass lumps on the lower mold constituting the press mold in the air, press mold with the upper mold and lower mold, and the obtained press molded product is subjected to the above heat treatment It can also be directly introduced into the apparatus and gradually cooled to produce a glass molded product.
[0060]
Further, after the glass is heated and softened and press-molded in the air, it can be directly introduced into the heat treatment apparatus from the air and gradually cooled to produce a press-molded product.
[0061]
(Example 2)
The glass plate slowly cooled in Example 1 was cut into a required weight, and chamfered to give a glass piece called a cut piece. Since the glass plate was sufficiently distorted, it was not damaged by the above processing.
[0062]
Next, the softened dishes made of diatomaceous earth loaded with this glass cut piece are arranged in the furnace, and they are passed forward through the furnace while being slid intermittently on the refractory base plate installed almost flat. The glass cut piece was heated to a viscosity suitable for press molding. The heat treatment equipment used for heating the glass is equipped with a tunnel-type softening furnace with a total length of 5 m. The furnace is divided into 10 heat treatment chambers in the direction of carrying the cut pieces, and depending on the ceiling, floor and location of each heat treatment chamber There is also a heater that can be adjusted independently for each heat treatment chamber. Each heater is provided with an independent heating circuit. Heat conduction between each heat treatment chamber is 7x10 -3 W / (m 2 K is a heat insulating wall made of a ceramic fiber heat insulating board with a thickness of less than 50 mm, and is partitioned with a minimum necessary gap through which the softening dish and the glass on it can pass. The heat insulation wall above the conveyor is inserted from the outside of the furnace, and even if the size of the softening pan and the glass on it is changed, the gap size is adjusted so that it does not open more than necessary. Has been.
[0063]
By using the above heat treatment apparatus, the power consumption can be reduced to 80% or less compared with a furnace having a conventional structure (furnace having no heat insulation wall), and the length of the furnace necessary for achieving an appropriate glass softening state is also achieved. Since the conventional method requires about 80%, the time required for softening can be reduced by 20%.
[0064]
SiO illustrated in Example 1 2 TiO 2 In the case of softening a 30 g cut piece made of optical glass containing, the temperature setting of each heat treatment chamber was as follows. 500 ° C. (heat treatment chamber 1), 500 ° C. (heat treatment chamber 2), 550 ° C. (heat treatment chamber 3), 600 ° C. (heat treatment chamber 4), 650 ° C. (heat treatment chamber 5), 650 ° C. (heat treatment chamber 6), 750 ° C. (Heat treatment chamber 7), 810 ° C. (heat treatment chamber 8), 910 ° C. (heat treatment chamber 9), 1070 ° C. (heat treatment chamber 10).
[0065]
The heat-softened cut piece was introduced into a press mold and press-molded into a lens shape. The press-formed product was gradually cooled by the same apparatus as the heat treatment apparatus shown in Example 1. After slow cooling, the press-molded product was ground and polished, and a lens made of optical glass having a refractive index (nd) of 1.847 and an Abbe number (νd) of 23.8, from which distortion was removed, was produced.
[0066]
In addition, since an appropriate temperature schedule was realized in each step of slow cooling and heating, no devitrification was observed in any of the produced lenses.
[0067]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a heating method that enables heating of a glass article or a glass molded product in a smaller space and less energy than conventional methods, and a method for manufacturing a glass molded product.
In addition, it is possible to provide a slow cooling method and a glass molded product manufacturing method capable of gradually cooling a glass article or a glass molded article with a small space and less energy than conventional ones.
Furthermore, it is possible to provide a heat treatment apparatus that enables heat treatment of an article such as a glass article with a smaller space and less energy than conventional ones.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of one embodiment of a heat treatment apparatus of the present invention.
FIG. 2 is an explanatory view of one embodiment of the heat treatment apparatus of the present invention.
FIG. 3 is an explanatory diagram of one embodiment of the heat treatment apparatus of the present invention.
4 is a CC cross-sectional view of the heat treatment apparatus shown in FIG.
5 is a cross-sectional view of the heat treatment apparatus shown in FIG. 3 taken along the line AA.
FIG. 6 is an explanatory diagram of an example of a conventional heat treatment apparatus.

Claims (10)

トンネル型の炉及び炉内部に沿って物品を搬送する搬送装置を有し、かつ炉外から導入した物品を、炉内を搬送しながら熱処理するための熱処理装置であって、
前記物品の搬送を妨げないように炉内を物品の搬送方向に複数の熱処理室に仕切る断熱壁と、前記各熱処理室内の雰囲気温度を独立に設定するための雰囲気温度設定装置とを備えること、および断熱壁により仕切られた各熱処理室内の物品搬送経路の上方を覆うように耐熱性の均熱壁を配し、均熱壁を裏面から加熱する加熱装置を備え、前記加熱装置への入力を前記雰囲気温度設定装置により行うことを特徴とする熱処理装置。
A heat treatment apparatus having a tunnel-type furnace and a conveying apparatus that conveys articles along the furnace interior, and heat-treating articles introduced from outside the furnace while conveying the inside of the furnace,
Including a heat insulating wall that partitions the interior of the furnace into a plurality of heat treatment chambers in the article conveyance direction so as not to hinder the conveyance of the articles, and an atmospheric temperature setting device for independently setting the atmospheric temperature in each of the heat treatment chambers, And a heating device that heat-heats the soaking wall so as to cover the upper part of the article conveyance path in each heat treatment chamber partitioned by the heat insulating wall, and heats the soaking wall from the back surface, and inputs to the heating device A heat treatment apparatus, which is performed by the atmosphere temperature setting apparatus.
前記搬送装置は、連続循環式の搬送部を有し、炉内の入口側に往路・復路切り替え部分を有し、かつ搬送部の復路の一部は炉内を移動するように設けられている、請求項1に記載の熱処理装置。The transfer device has a continuous circulation type transfer section, has a forward / return switching portion on the inlet side in the furnace, and a part of the return path of the transfer section is provided to move in the furnace. The heat treatment apparatus according to claim 1. トンネル型の炉及び炉内部に沿って物品を搬送する搬送装置を有し、かつ炉外から導入した物品を、炉内を搬送しながら徐冷処理するための熱処理装置であって、
前記物品の搬送を妨げないように炉内を物品の搬送方向に複数の熱処理室に仕切る断熱壁と、前記各熱処理室内の雰囲気温度を独立に設定するための雰囲気温度設定装置とを備えること、断熱壁により仕切られた各熱処理室内の物品搬送経路の上方を覆うように耐熱性の均熱壁を配し、均熱壁を裏面から加熱する加熱装置を備え、前記加熱装置への入力を前記雰囲気温度設定装置により行うこと、および前記搬送装置は、連続循環式の搬送部を有し、炉内の入口側に往路・復路切り替え部分を有し、かつ搬送部の復路の一部は炉内を移動するように設けられていることを特徴とする熱処理装置。
A heat treatment apparatus for carrying a tunnel-type furnace and a conveying device for conveying an article along the inside of the furnace, and for gradually cooling the article introduced from outside the furnace while conveying the inside of the furnace,
Including a heat insulating wall that partitions the interior of the furnace into a plurality of heat treatment chambers in the article conveyance direction so as not to hinder the conveyance of the articles, and an atmospheric temperature setting device for independently setting the atmospheric temperature in each of the heat treatment chambers, A heat-resistant soaking wall is provided so as to cover the upper part of the article conveyance path in each heat treatment chamber partitioned by the heat insulating wall, and includes a heating device that heats the soaking wall from the back surface, and the input to the heating device is What is performed by the atmospheric temperature setting device , and the transfer device has a continuous circulation type transfer unit, has a forward / return switching part on the inlet side in the furnace, and a part of the return path of the transfer unit is in the furnace It is provided so that it may move, The heat processing apparatus characterized by the above-mentioned.
前記均熱壁表面の放射率が0.9以上である請求項1〜3のいずれかに記載の熱処理装置。The heat treatment apparatus according to any one of claims 1 to 3, wherein an emissivity of the surface of the soaking wall is 0.9 or more. 前記均熱壁表面に、放射率が0.9以上のセラミック塗料が塗布されている請求項4に記載の熱処理装置。The heat treatment apparatus according to claim 4, wherein a ceramic paint having an emissivity of 0.9 or more is applied to the surface of the soaking wall. 請求項1〜5のいずれかに記載の熱処理装置を用いて、ガラス物品を搬送しながら徐冷するガラス物品の徐冷方法であって、
前記ガラス物品を、隣り合う各室が開口を介して連通する複数の熱処理室内を順番に、前記開口を通して搬送して徐冷し、
隣り合う前記室は互いに断熱壁により断熱され、かつ
前記室の雰囲気温度は独立に設定されていることを特徴とするガラス物品の徐冷方法。
A method for gradually cooling a glass article, wherein the glass article is slowly cooled while being conveyed using the heat treatment apparatus according to claim 1,
The glass article is sequentially cooled through a plurality of heat treatment chambers in which adjacent chambers communicate with each other through the openings, and gradually cooled.
The method for gradually cooling glass articles, wherein the adjacent chambers are insulated from each other by a heat insulating wall, and the ambient temperature of the chambers is set independently.
請求項1〜2のいずれかに記載の熱処理装置を用いて、ガラス物品を搬送しながら加熱するガラス物品の加熱方法であって、
前記ガラス物品を、隣り合う各室が開口を介して連通する複数の熱処理室内を順番に、前記開口を通して搬送して加熱し、
隣り合う前記室は互いに断熱壁により断熱され、かつ
前記室の雰囲気温度は独立に設定されていることを特徴とするガラス物品の加熱方法。
A method for heating a glass article, wherein the glass article is heated while being conveyed using the heat treatment apparatus according to claim 1,
The glass article is heated by sequentially transporting through a plurality of heat treatment chambers in which adjacent chambers communicate with each other through the openings,
The method for heating a glass article, wherein the adjacent chambers are insulated from each other by a heat insulating wall, and the ambient temperature of the chambers is set independently.
熔融ガラス又は加熱、軟化したガラスを成形し、得られたガラス成形品を請求項1〜5のいずれかに記載の熱処理装置を用いて連続的に搬送しながら徐冷するガラス成形品の製造方法であって、
前記ガラス成形品を、隣り合う各室が開口を介して連通する複数の熱処理室内を順番に、前記開口を通して搬送して徐冷し、
隣り合う前記室は互いに断熱壁により断熱され、かつ
前記室の雰囲気温度は独立に設定されていることを特徴とするガラス成形品の製造方法。
A method for producing a glass molded product, comprising molding molten glass or heated and softened glass, and gradually cooling the obtained glass molded product while continuously conveying it using the heat treatment apparatus according to claim 1. Because
The glass molded article is gradually cooled by conveying through the openings in order, through a plurality of heat treatment chambers in which adjacent chambers communicate with each other through the openings,
The adjacent chambers are insulated from each other by a heat insulating wall, and the ambient temperature of the chambers is set independently.
請求項1〜2のいずれかに記載の熱処理装置を用いて、ガラス物品を搬送しながら加熱、軟化し、軟化したガラス物品を成形するガラス成形品の製造方法であって、
前記ガラス物品を、隣り合う各室が開口を介して連通する複数の熱処理室内を順番に、前記開口を通して搬送して加熱し、
隣り合う前記室は互いに断熱壁により断熱され、かつ
前記室の雰囲気温度は独立に設定されていることを特徴とするガラス成形品の製造方法。
A method for producing a glass molded article, wherein the heat treatment apparatus according to any one of claims 1 to 2 is used to heat, soften and soften a glass article while conveying the glass article,
The glass article is heated by sequentially transporting through a plurality of heat treatment chambers in which adjacent chambers communicate with each other through the openings,
The adjacent chambers are insulated from each other by a heat insulating wall, and the ambient temperature of the chambers is set independently.
ガラス物品又はガラス成形品の輪郭が搬送時に描く軌跡を搬送方向から見た断面において、最外縁部を結んだ閉じた線に対し、高さ方向にできる前記線と開口の間の隙間が50mm以内、幅方向にできる搬送手段と開口の間の隙間が搬送方向の左右でそれぞれ10mm以内である請求項6〜9のいずれか1項に記載の方法。In the cross section of the outline of the glass article or glass molded product when it is transported, as viewed from the transport direction, the gap between the line and the opening that can be made in the height direction is within 50 mm with respect to the closed line connecting the outermost edges. The method according to any one of claims 6 to 9, wherein gaps between the conveying means and the opening formed in the width direction are each within 10 mm on the left and right in the conveying direction.
JP2003146325A 2003-05-23 2003-05-23 Method for slowly cooling glass article, method for heating glass article, method for producing glass molded article, and heat treatment apparatus Expired - Fee Related JP4027266B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003146325A JP4027266B2 (en) 2003-05-23 2003-05-23 Method for slowly cooling glass article, method for heating glass article, method for producing glass molded article, and heat treatment apparatus
CNB2004100475153A CN100376498C (en) 2003-05-23 2004-05-21 Slowly cooling method for glass articles, heating method for glass articles, production method for glass formed articles and heat treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146325A JP4027266B2 (en) 2003-05-23 2003-05-23 Method for slowly cooling glass article, method for heating glass article, method for producing glass molded article, and heat treatment apparatus

Publications (2)

Publication Number Publication Date
JP2004345916A JP2004345916A (en) 2004-12-09
JP4027266B2 true JP4027266B2 (en) 2007-12-26

Family

ID=33533207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146325A Expired - Fee Related JP4027266B2 (en) 2003-05-23 2003-05-23 Method for slowly cooling glass article, method for heating glass article, method for producing glass molded article, and heat treatment apparatus

Country Status (2)

Country Link
JP (1) JP4027266B2 (en)
CN (1) CN100376498C (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004040307A1 (en) * 2004-08-19 2006-02-23 Walter Frank Foam glass cooling section
KR101272074B1 (en) * 2005-01-19 2013-06-05 호야 가부시키가이샤 Mold press molding mold and method for producing optical element
JP4897256B2 (en) * 2005-07-26 2012-03-14 昭和鉄工株式会社 heating furnace
JP4918182B2 (en) * 2006-09-26 2012-04-18 Hoya株式会社 Manufacturing method and manufacturing apparatus for glass molded body, and manufacturing method for optical element
JP5154700B2 (en) * 2010-08-04 2013-02-27 AvanStrate株式会社 Glass plate manufacturing method, glass plate manufacturing apparatus, and glass plate cooling method
CN102596828B (en) * 2010-09-30 2013-04-10 安瀚视特股份有限公司 Glass sheet manufacturing method
JPWO2014103478A1 (en) * 2012-12-28 2017-01-12 旭硝子株式会社 Slow cooling device, slow cooling method, glass plate manufacturing apparatus, and glass plate manufacturing method
US20160152505A1 (en) * 2013-08-07 2016-06-02 Hoya Corporation Photosensitive Glass Molding and Method of Manufacturing the Same
CN103645526B (en) * 2013-12-24 2016-03-16 成都恒达光学有限公司 A kind of production technology of pentaprism
JP6587140B2 (en) * 2015-12-22 2019-10-09 日本電気硝子株式会社 Glass plate manufacturing equipment
CN107285615B (en) * 2016-04-12 2020-09-01 成都光明光电有限责任公司 Crystallization heat treatment device for zero-expansion microcrystalline glass
DE102018101839A1 (en) 2018-01-26 2019-08-01 Schott Schweiz Ag Apparatus and method for the continuous heat treatment of pharmaceutical glass containers
CN108751684B (en) * 2018-07-17 2024-01-12 浙江宇清热工科技股份有限公司 Modularized design microcrystalline glass heat treatment production line
CN113912272B (en) * 2021-11-05 2022-05-24 广东南星玻璃有限公司 Machining device and machining method for plane-concave integrated glass panel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755753A (en) * 1969-09-04 1971-02-15 Nippon Sheet Glass Co Ltd PROCESS FOR THE MANUFACTURE OF A SHEET OF GLASS
US4092143A (en) * 1974-09-24 1978-05-30 U.S. Philips Corporation Tunnel furnace for the thermal treatment of glass products
FR2660302B1 (en) * 1990-03-30 1992-08-07 Selas Sa INSTALLATION FOR HEATING, FORMING AND TEMPERING GLASS SHEETS.
CN2144798Y (en) * 1992-12-12 1993-10-27 张永江 High-efficacy energy-saving drying machine
CN2238835Y (en) * 1995-12-20 1996-10-30 烟台市风机厂 Net annealing furnace for glass product
US6240746B1 (en) * 1997-04-04 2001-06-05 Asahi Glass Company Ltd. Glass plate bending method and apparatus
CN1266029A (en) * 2000-03-03 2000-09-13 于延锋 Toughened glass heating furnace

Also Published As

Publication number Publication date
CN100376498C (en) 2008-03-26
JP2004345916A (en) 2004-12-09
CN1572739A (en) 2005-02-02

Similar Documents

Publication Publication Date Title
JP4027266B2 (en) Method for slowly cooling glass article, method for heating glass article, method for producing glass molded article, and heat treatment apparatus
US9938179B2 (en) Method and system for forming shaped glass articles
US9010153B2 (en) Method of making shaped glass articles
US20120216573A1 (en) Apparatus and method for mass producing 3d articles from 2d glass-containing sheets
EP1748962A2 (en) Closed cassette and method for heat treating glass sheets
CN107108311A (en) For the apparatus and method for the sheet glass for being molded or shaping heating
CN105683104A (en) Method of reforming glass
CN104310766B (en) A kind of heating furnace for second melting farad flexible glass processed
JPH0710572A (en) Method of bending and tempering plate glass supported on ring-like metal die and furnace device
JP7463972B2 (en) Glass sheet forming equipment
US20060230790A1 (en) Method and furnace for bending glass panels
GB1060128A (en) Improvements in or relating to the production of glass sheets
JP2012116705A (en) Molding apparatus and molding method for optical device
JPH02111636A (en) Method and apparatus for forming curved surface to glass plate by heating
JP2016113343A (en) Molding apparatus of curved sheet glass and molding method of curved sheet glass
CN107352780B (en) Glass processing device and processing method
KR20020078834A (en) Apparatus and method for manufacturing tempered glass of curved surface
JP5953906B2 (en) Optical element molding apparatus and molding method
JP2002348134A (en) Manufacturing method and apparatus for molded article of glass, and manufacturing method for optical part
JP2011136882A (en) Molding device for optical element
TWI580650B (en) Glass substrate manufacturing method and glass substrate
RU67577U1 (en) FURNACE FOR ANNEALING FLAT GLASSES
RU2356858C2 (en) Method for glass sheet bending
JP2003183039A (en) Method for manufacturing optical element
JP2013252986A (en) Molding apparatus for optical element, mold and molding method for optical element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4027266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees