JP4026028B2 - Rolled film tube shape memory alloy actuator - Google Patents

Rolled film tube shape memory alloy actuator Download PDF

Info

Publication number
JP4026028B2
JP4026028B2 JP20955697A JP20955697A JP4026028B2 JP 4026028 B2 JP4026028 B2 JP 4026028B2 JP 20955697 A JP20955697 A JP 20955697A JP 20955697 A JP20955697 A JP 20955697A JP 4026028 B2 JP4026028 B2 JP 4026028B2
Authority
JP
Japan
Prior art keywords
film tube
memory alloy
shape memory
tube
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20955697A
Other languages
Japanese (ja)
Other versions
JPH1120018A (en
Inventor
敏也 石川
Original Assignee
敏也 石川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敏也 石川 filed Critical 敏也 石川
Priority to JP20955697A priority Critical patent/JP4026028B2/en
Publication of JPH1120018A publication Critical patent/JPH1120018A/en
Application granted granted Critical
Publication of JP4026028B2 publication Critical patent/JP4026028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Manipulator (AREA)
  • Springs (AREA)
  • Prostheses (AREA)

Description

【0001】
この発明は、通電と伸縮を伴う形状記憶合金ばねを短絡や絡み合いから保護し、流体を流して冷却や潤滑を行う、巻フィルムチューブを用いたアクチュエータに関するものである。
【0002】
従来より、形状記憶合金ばねを用いるアクチュエータには、通電と伸縮を伴う形状記憶合金ばねを短絡や絡み合いから保護し、流体を流して冷却や潤滑を行うのに、ゴムなどの樹脂チューブや蛇腹チューブが用いられて来た。
【0003】
これらには次のような問題があった。
(イ)ゴムなどの樹脂チューブは、折ったり曲げたりするには柔らかいが、伸ばしたり縮めたりするには固く、軸方向に伸縮する形状記憶合金ばねの動きを阻害するため、この中に挿入して用いるには向いていなかった。
(ロ)蛇腹チューブは、伸縮方向に柔らかいが、内径に対する外径を通常のチューブより大きくせざるをえず、複数本束ね合せると、かさ張るため空間利用率が悪かった。
本発明は、これらの欠点を解決して形状記憶合金ばねを用いるアクチュエータに提供するために発明されたものである。
【0004】
フィルム(1)に交互な切り込み(2)を連続的に入れ、略ジグザグ状にし、その切り込み(2)の停止部に丸穴(3)を設ける。次に、これを中心軸が切り込み(2)と直交する円筒状に巻いた巻フィルムチューブ(5)に、両端に電線(7)と糸(8)を取り付けた形状記憶合金ばね(9)を挿入し、両端に柔軟チューブ(10)を取り付ける。本発明は、以上の巻フィルムチューブ(5)を用いる伸縮型のアクチュエータ(11)である。
【0005】
以下、本発明の実施の形態を説明する。
(イ)必要に応じて、図1のように機械強度や耐熱性や絶縁性などに優れる樹脂または金属の薄いフィルム(1)に交互な切り込み(2)を連続的に入れ、略ジグザグ状にする。
(ロ)その切り込み(2)の停止部に丸穴(3)を設け切り込み(2)が広がってフィルム(1)が切れないようにする。
(ハ)それを図2のように、細い棒(4)に巻き付け、中心軸が切り込み(2)と直交する円筒状に巻き、棒(4)を外した巻フィルムチューブ(5)に、両端に電線(7)と糸(8)を取り付けた形状記憶合金ばね(9)を挿入し、両端に柔軟チューブ(10)を取り付ける。
(ニ)本発明中の巻フィルムチューブ(5)の作り方には、棒(4)を使って巻く方法以外に、二つのローラーに挟んで巻き癖をつけて巻いて行く方法もある。
(ホ)このとき必要に応じてローラーを加熱して熱処理しながら巻いてもよい。
(ヘ)図3に本発明の巻フィルムチューブ(5)の斜視図を示す。この節(6)の幅を狭め数を増やすと、軸方向の柔軟性と共に折曲方向の柔軟性も増す。
(ト)こうして本発明のアクチュエータ(11)は、流体を通すチューブとしての機能と、柔軟に伸縮するばねの機能を併せ持つ巻フィルムチューブ(5)に短絡や絡み合いから保護され、流体を流して冷却や潤滑を行う構造となる。本発明は、以上のような構造でこれを使用するときは、次のようにする。
【0006】
〈第1実施の形態〉
図4のように両端に電線(7)と糸(8)を取付けた形状記憶合金ばね(9)を、図5のように本発明の巻フィルムチューブ(5)に挿入し、両端に柔軟チューブ(10)を取り付けて伸縮型のアクチュエータ(11)とする。
形状記憶合金ばね(9)は、密着巻の状態を記憶しており、冷却状態で引き伸ばされたあと加熱されて変態温度以上になると、元に戻ろうとして軸方向に大きな収縮力を発生するように作られている。
このアクチュエータ(11)は、電線(7)にて形状記憶合金ばね(9)を通電加熱で短縮させ、その力を糸(8)にて取り出し、柔軟チューブ(10)にて冷却液(12)を巻フィルムチューブ(5)の中へ送り込み冷却することで伸長できるようにしたものである。
巻フィルムチューブ(5)と形状記憶合金ばね(9)は糸(8)を介して両端でつながっており、形状記憶合金ばね(9)の伸縮に合わせて巻フィルムチューブ(5)は伸縮する。
図6に同じ外径の巻フィルムチューブ(5)とシリコーンゴムチューブの軸方向についての荷重と変位の関係図を示す。
この図から、巻フィルムチューブ(5)は同じ外径のシリコーンゴムチューブと比べて軸方向に極めて柔らかく、アクチュエータ(11)に使用した場合、形状記憶合金ばね(9)の伸縮運動を妨げることがほとんど無いことがわかる。
また、これと同様の柔らかさを蛇腹チューブで実現するには、内径に対する外径を巻フィルムチューブ(5)よりも遥かに大きくする必要がある。
このアクチュエータ(11)を駆動するとき、加熱と冷却が重ならないように交番に行うと、応答性が向上し電力の無駄遣いを少なくできる。
この応答性が最高になる冷却液(12)の最適温度があり、それが形状記憶合金の変態温度によって決まることが実験によりわかっている。
また、冷却液(12)の流れを止め、通電加熱でアクチュエータを収縮させ負荷を持ち上げ通電を止め、冷却液の流れを止めたままにしておくと、すぐには伸長せず、しばらくの間無通電で負荷を持ち上げた状態を維持する。
これは、巻フィルムチューブ(5)内に熱が蓄えられ、形状記憶合金の変態温度以上の温度が暫く維持されるためである。
すなわち、巻フィルムチューブ(5)には保温効果があると言える。この保温効果を上手く利用して無通電状態を多くすることで、省エネルギーを図れる。
【0007】
〈第2実施の形態〉
このアクチュエータ(11)は、巻フィルムチューブ(5)により形状記憶合金ばね(9)どうしの短絡や絡み合いが全く起こらないので、図7のように束ね合わせて用いることができる。
このとき、柔軟チューブ(10)と糸(8)も、それぞれ必要に応じて束ね合わせ、場合によっては柔軟チューブ(10)内に糸(8)を通してもよい。
ここで、電線(7)を使って形状記憶合金ばね(9)を電気的に直列に接続すると、電気抵抗値が大きくなり、通電加熱を行う際に電流値を小さく電圧値を大きくできるので、電源の電力制御が電圧制御にて可能となり、リード線も細くできる。
また、巻フィルムチューブ(5)は、同じ伸縮量の蛇腹チューブと比較して、内径に対する外径がはるかに細く、空間利用率が大きいので、同じ本数束ね合わせたとき有利である。
【0008】
〈第3実施の形態〉
アクチュエータ(11)を適宜な数束ね合わせたアクチュエータの束(13)を、図8のように糸(8)を介して金属や繊維強化樹脂やセラミックスなどでできた関節(14)と骨(15)から成る骨格に取付けて、人体に近い内部構造をもつロボット又は義肢を作ることができる。
これは、各アクチュエータの束(13)に冷却液(12)を送る冷却液配送管(16)と温度の高くなった冷却液(12)を回収する冷却液回収管(17)を人体における動脈と静脈のように設け配管し、それらの枝管(18)の途中に冷却液(12)を制御する開閉バルブ(19)を設け、各アクチュエータの束(13)に電力を供給する電線(7)を神経のように設け配線し、全体をシリコーンゴムなどの柔軟材料のカバー(20)で皮膚のように覆った構造になっている。冷却液(12)の温度はアクチュエータ(11)から出る熱を拾って上昇して行くので、その熱をロボット又は義肢の外に捨てなければならない。
その方法として、義肢の場合は、電源と共にラジエータを設けたベルトやリックサックなどを装着者が腰部や肩部に装着できるようにすればよい。
ロボットの場合では、図9のように胸部に冷却塔(21)と冷却液(12)の循環ポンプ(22)を、腹部に給水タンク(23)と主電源(24)を、そして骨格内に補助電源(25)を設ける方法がある。このシステムの説明を以下に示す。
まず、ロボットの鼻部から入った空気(26)は、エアフィルター(27)を通過後、吸気道(28)を経て胸部に設けられたファン(29)によって冷却塔(21)下部に送り込まれ、そこから熱交換器(30)を摺り抜け、排気道(31)を経て口部から排出される。
このファン(29)には、吐き出し圧力が大きく騒音が低い、遠心ファンが適当である。
ところで水(32)は給水タンク(23)内に投入された給水ポンプ(33)によって汲み上げられ、散水管(34)を経てノズル(35)から下向きに散水され、熱交換器(30)の表面を濡らしているので、その表面を空気(26)が摺り抜けると水(32)が気化して熱を奪い熱交換器(30)を冷却する。
蒸発せずに残った水(32)はドレイン管(36)を経て給水タンク(23)に戻り、再び散水される。水(32)は、排気道(31)を通して補給できる。
熱交換器(30)は、多数に分岐した細管をコイル状に巻いたものや、フィンなどを取付けて表面積を大きくした金属のパイプなどでできており、その中に冷却液回収管(17)にてロボットの全身から回収した、温度の高くなった冷却液(12)を流して冷却する役目を担う。
冷却され温度の低くなった冷却液(12)は、循環ポンプ(22)にて冷却液配送管(16)を通じてロボットの全身に圧送される。
この冷却塔は、一般的には向流形押し込み通風密閉クーリングタワーに分類される。
循環ポンプ(22)はモータの両端に遠心ポンプを設けた二重ポンプであり、冷却液(12)の回収と圧送をそれぞれに分担することで、ロボットの体内に生じる大きな圧損に対抗できるようになっている。これは、人体の心臓の右心室と左心室に当たる。
ロボットの背中側の人体の腎臓に当たる場所には、冷却液(12)中のごみや水分などを取り除くフィルターを設ける。
冷却塔(21)と共に、ロボットの体表面を汗のように濡らすことで冷却する方法も併用する。
給水ポンプ(33)からは散水管(34)の他にもう一本、ロボットの体表面全体に水(32)を送るための体表面給水管(37)が出ていて、その先端はロボットの頭部や肩部や背部や腰部などの周辺に分散されている。
散水管(34)と体表面給水管(37)への水(32)の配分は散水用バルブ(38)と体表面給水用バルブ(39)にて行う。
主電源(24)には、リチウム電池などの二次電池やメタノール電池などの燃料電池などが適当である。図9では、これらを人体の腸のように配置したようすを表している。
また、骨格内の補助電源(25)には、リチウム電池などの二次電池が適当である。
ここで主電源(24)を燃料電池とする場合、大電流を流せるが充電に時間のかかる二次電池と、大電流は流せないが燃料の補給に時間がかからず、燃料を補給し続ける限り発電し続ける燃料電池を組み合わせたことになり、互いに補完し合うハイブリット電源となる。
以上に記述されたファン(29)と循環ポンプ(22)と給水ポンプ(33)と散水用バルブ(38)と体表面給水用バルブ(39)のモータなどの電装部及び、主電源(24)と補助電源(25)の全ては完全防水構造となっている。
【0009】
〈第4実施の形態〉
巻フィルムチューブ(5)は、図10のようにフィルム(1)の巻始め側の両端部に凸部(40)を設けることで、図11のように両端に突起部(41)を設けることができる。
この突起部(41)を利用して巻フィルムチューブ(5)を図12のように連結することができる。
この場合、ゴムなどの柔軟な樹脂でできたパイプ状の継手(42)に、突起部(41)を挿入して、接着剤などで固定して繋げる。この方法は、アクチュエータ(11)を連結する場合に役立つ。
ところで巻フィルムチューブ(5)は、フィルム(1)を巻いただけの構造なので、その中を流れる流体を完全には密閉することはできない。
しかし、適宜な長さの巻フィルムチューブ(5)に適宜な粘度の流体を適宜な圧力と流量で流せば、全く漏れが生じないことを実験で確認している。
この巻フィルムチューブ(5)を通常の液漏れが生じないチューブのようにするには、巻いたフィルム(1)の隙間に粘度の高いグリースなどを注入すれば良い。
しかし、これはむしろ漏れが少しくらいあってもかまわないような用途に使うのが好ましい。
その例として、前述のアクチュエータ(11)や、雨樋で受けた雨水を下に送る簡易型の排水管などがある。
この簡易型排水管に使う場合、突起部(41)と継手(42)を使って巻フィルムチューブ(5)を多数連結して必要な長さにすると良い。
また、雨水の量に合わせて巻フィルムチューブ(5)を太くするか、若しくは複数本束ねても良い。
【0010】
〈第5実施の形態〉
本発明の巻フィルムチューブ(5)は、竹の子ばねを交互に向きを変えて連結したようなものであり、フィルム(1)を巻いただけの構造であるため、その巻終わり側の端部は解放状態になっている。
そのため、経時に伴って少しずつ巻が緩み、引っ張り過ぎると開き切って元に戻らなくなる問題がある。
これらを防止するには、フィルム(1)の巻終わり側の端部を接着剤などで固定すればよい。
ところで竹の子ばねは、占める空間容積の割りに大きなエネルギを吸収でき、フィルム間摩擦を振動の減衰に利用できる特長をもっている。
このため、本発明は、防振ばねとして利用することができる。
具体例として、壊れやすいものや内部の液体をこぼしやすい容器などを吊るした状態で運ぶ、車両用懸架ばねなどが挙げられる。
【0011】
(イ)流体の移送や電線などの保護と絶縁に用いられて来たゴムなどの樹脂チューブは、折ったり曲げたりするには柔らかいが、伸ばしたり縮めたりするには固かった。そのため、図5のように内部に伸縮する形状記憶合金ばね(9)を挿入して用いる場合、の動きを妨げる問題があった。しかし、本発明のアクチュエータ(11)の巻フィルムチューブ(5)は、図6のように軸方向の柔軟性が極めて大きく、形状記憶合金ばね(9)の動きを阻害しないので、その保護と絶縁の役割を果たすと同時に流体を送り込むことが可能であるため、図7のようにアクチュエータ(11)を束ね合せて用いることができる。
(ロ)流体を移送したり電線などを保護するために用いられて来た蛇腹チューブは、伸縮方向には柔らかいが、その分、内径に対する外径を通常のチューブよりも大きくせざるをえなかった。これに対し、本発明のアクチュエータ(11)の巻フィルムチューブ(5)は、同じ伸縮量の蛇腹チューブと比べて内径に対する外径が十分小さいので、図7のようにアクチュエータ(11)を束ね合せて用いる場合、空間利用率が大きく有利である。
【図面の簡単な説明】
【図1】本発明巻フィルムチューブの展開図
【図2】本発明中の巻フィルムチューブを棒に巻き付けた状態を示す斜視図
【図3】本発明巻フィルムチューブの斜視図
【図4】本発明利用する形状記憶合金アクチュエータ用形状記憶合金ばねの正面図
【図5】本発明形状記憶合金アクチュエータの正面図
【図6】本発明中の巻フィルムチューブとシリコーンゴムチューブの荷重と変位の関係図
【図7】本発明束ね合せた状態の正面図
【図8】本発明を利用するロボットの腕の構造を示す断面図
【図9】本発明を利用するロボットの構造を示す断面図
【図10】本発明巻フィルムチューブに凸部を設けた展開図
【図11】本発明巻フィルムチューブに突起部を設けた斜視図
【図12】本発明巻フィルムチューブの連結状態の分解斜視図
[0001]
The present invention relates to an actuator using a wound film tube that protects a shape memory alloy spring accompanying energization and expansion / contraction from short circuit and entanglement, and cools and lubricates by flowing a fluid.
[0002]
Conventionally, an actuator using a shape memory alloy spring has a resin tube such as rubber or a bellows tube to protect the shape memory alloy spring that is energized and stretched from short circuit and entanglement, and to cool and lubricate by flowing a fluid. Has been used.
[0003]
These had the following problems.
(B) A resin tube such as rubber is soft to fold and bend, but hard to stretch and contract , and inserted into this to inhibit the movement of the shape memory alloy spring that expands and contracts in the axial direction. It was not suitable for use.
(B) The bellows tube is soft in the expansion and contraction direction, but the outer diameter relative to the inner diameter must be larger than that of a normal tube. When a plurality of the bellows tubes are bundled, the space utilization is poor due to the bulkiness.
The present invention was invented to solve these drawbacks and to provide an actuator using a shape memory alloy spring .
[0004]
Alternate cuts (2) are continuously made in the film (1) to form a substantially zigzag shape, and a round hole (3) is provided at the stop of the cut (2). Then, to this central axis cuts (2) winding the film tube had wound in a cylindrical shape perpendicular to the (5), the wire (7) and the thread shape memory alloy spring mounted (8) (9) at both ends Insert and attach flexible tube (10) to both ends. The present invention is an extendable actuator (11) using the above-described wound film tube (5) .
[0005]
Embodiments of the present invention will be described below.
(B) If necessary, alternately make incisions (2) in a thin resin or metal film (1) with excellent mechanical strength, heat resistance and insulation as shown in FIG. To do.
(B) A round hole (3) is provided at the stop of the cut (2) so that the cut (2) spreads and the film (1) is not cut.
(C) As shown in FIG. 2, it is wound around a thin rod (4), wound in a cylindrical shape whose central axis is orthogonal to the notch (2), and wound on a wound film tube (5) with both ends A shape memory alloy spring (9) with an electric wire (7) and a thread (8) attached thereto is inserted, and a flexible tube (10) is attached to both ends.
(D) The method for making the wound film tube (5) in the present invention includes not only a method of winding using the rod (4), but also a method of winding with a winding rod between two rollers.
(E) At this time, the roller may be heated and heat-treated as necessary.
Shows a perspective view of a winding film tube in the present invention (f) 3 (5). When the width of this node (6) is reduced and the number is increased, the flexibility in the bending direction is increased as well as the flexibility in the axial direction.
(G) Thus, the actuator (11) of the present invention is protected from short circuit and entanglement in the wound film tube (5) having both the function of a tube through which a fluid passes and the function of a spring that flexibly expands and contracts. It becomes a structure that performs lubrication . The present invention uses the following structure when it is used.
[0006]
<First embodiment>
A shape memory alloy spring (9) having electric wires (7) and threads (8) attached to both ends as shown in FIG. 4 is inserted into the wound film tube (5) of the present invention as shown in FIG. (10) is attached to form an extendable actuator (11).
The shape memory alloy spring (9) memorizes the state of tightly wound winding, and when it is heated after being stretched in the cooled state and becomes higher than the transformation temperature, it seems to generate a large contractive force in the axial direction in order to return to the original state. Is made.
The actuator (11) shortens the shape memory alloy spring (9) by energization heating with the electric wire (7), takes out the force with the thread (8), and cools the coolant (12) with the flexible tube (10). Can be stretched by being fed into a wound film tube (5) and cooled.
The wound film tube (5) and the shape memory alloy spring (9) are connected at both ends via a thread (8), and the wound film tube (5) expands and contracts as the shape memory alloy spring (9) expands and contracts.
FIG. 6 shows the relationship between the load and displacement in the axial direction of the wound film tube (5) having the same outer diameter and the silicone rubber tube.
From this figure, the wound film tube (5) is extremely soft in the axial direction compared to the silicone rubber tube of the same outer diameter, and when used in the actuator (11), it prevents the shape memory alloy spring (9) from expanding and contracting. You can see that there is almost no.
In order to realize the same softness as that of the bellows tube, it is necessary to make the outer diameter with respect to the inner diameter much larger than that of the wound film tube (5).
When the actuator (11) is driven, the response is improved and the waste of electric power can be reduced by alternately performing heating and cooling so as not to overlap.
Experiments have shown that there is an optimum temperature of the coolant (12) that maximizes this responsiveness, which is determined by the transformation temperature of the shape memory alloy.
Also, if the flow of the cooling liquid (12) is stopped, the actuator is contracted by energization heating to increase the load and stop the energization, and if the flow of the cooling liquid is stopped, it does not expand immediately, and there is no Maintain the load lifted by energization.
This is because heat is stored in the wound film tube (5) and the temperature above the transformation temperature of the shape memory alloy is maintained for a while.
That is, it can be said that the wound film tube (5) has a heat retaining effect. By making good use of this heat retention effect and increasing the non-energized state, energy saving can be achieved.
[0007]
<Second Embodiment>
This actuator (11) can be used by being bundled as shown in FIG. 7, since the short circuit and entanglement between the shape memory alloy springs (9) do not occur at all by the wound film tube (5).
At this time, the flexible tube (10) and the yarn (8) may be bundled as necessary, and the yarn (8) may be passed through the flexible tube (10) in some cases.
Here, when the shape memory alloy spring (9) is electrically connected in series using the electric wire (7), the electric resistance value is increased, and the current value can be decreased and the voltage value can be increased when conducting energization heating. Power control of the power supply becomes possible by voltage control, and the lead wire can also be made thin.
In addition, the wound film tube (5) has an outer diameter with respect to the inner diameter that is much thinner than that of the bellows tube having the same amount of expansion and contraction, and has a large space utilization factor, so it is advantageous when the same number is bundled.
[0008]
<Third embodiment>
An actuator bundle (13) in which an appropriate number of actuators (11) are bundled together is connected to a joint (14) and a bone (15) made of metal, fiber reinforced resin, ceramics, etc. via a thread (8) as shown in FIG. The robot or artificial limb having an internal structure close to that of the human body can be created.
This is because the coolant delivery pipe (16) for sending the coolant (12) to the bundle (13) of each actuator and the coolant recovery pipe (17) for collecting the coolant (12) having a high temperature are connected to the artery in the human body. An open / close valve (19) for controlling the coolant (12) is provided in the middle of the branch pipe (18), and an electric wire (7 for supplying electric power to the bundle (13) of each actuator is provided. ) Is provided like a nerve and wired, and the whole is covered like a skin with a cover (20) of a flexible material such as silicone rubber. Since the temperature of the coolant (12) picks up the heat from the actuator (11) and rises, the heat must be thrown out of the robot or prosthesis.
As a method for this, in the case of a prosthetic limb, it is only necessary to allow the wearer to wear a belt, a ricksack or the like provided with a radiator together with a power source on the waist or shoulder.
In the case of the robot, as shown in FIG. 9, the cooling tower (21) and the circulating pump (22) for the cooling liquid (12) are provided in the chest, the water supply tank (23) and the main power source (24) are provided in the abdomen, and the skeleton is provided. There is a method of providing an auxiliary power source (25). A description of this system is given below.
First, the air (26) entering from the nose of the robot passes through the air filter (27), and then is sent to the lower part of the cooling tower (21) by the fan (29) provided on the chest through the intake passage (28). From there, it passes through the heat exchanger (30) and is discharged from the mouth through the exhaust passage (31).
A centrifugal fan having a high discharge pressure and low noise is suitable for the fan (29).
By the way, the water (32) is pumped up by a water supply pump (33) charged into the water supply tank (23), sprayed downward from the nozzle (35) through the water spray pipe (34), and the surface of the heat exchanger (30). When the air (26) slides through the surface of the water (32), the water (32) is vaporized to remove heat and cool the heat exchanger (30).
The water (32) remaining without evaporating returns to the water supply tank (23) through the drain pipe (36) and is sprayed again. Water (32) can be replenished through the exhaust passage (31).
The heat exchanger (30) is made up of a coil of a large number of narrow tubes, or a metal pipe with a fin that is attached to increase the surface area, and a coolant recovery tube (17). The cooling liquid (12) with a high temperature collected from the whole body of the robot is poured to cool the robot.
The cooled coolant (12) having a low temperature is pumped to the whole body of the robot through the coolant delivery pipe (16) by the circulation pump (22).
This cooling tower is generally classified as a counter-current type forced draft cooling tower.
The circulation pump (22) is a double pump provided with centrifugal pumps at both ends of the motor, and by sharing the recovery and pumping of the cooling liquid (12), it is possible to cope with a large pressure loss generated in the body of the robot. It has become. This hits the right and left ventricles of the human heart.
A filter that removes dust, moisture, and the like in the coolant (12) is provided at a location on the back side of the robot that touches the human kidney.
Along with the cooling tower (21), a method of cooling the body surface of the robot by sweating is also used.
From the water supply pump (33), in addition to the water sprinkling pipe (34), another body surface water supply pipe (37) for feeding water (32) to the entire body surface of the robot comes out. Distributed around the head, shoulders, back and waist.
Water (32) is distributed to the water spray pipe (34) and the body surface water supply pipe (37) by the water spray valve (38) and the body surface water supply valve (39).
As the main power source (24), a secondary battery such as a lithium battery or a fuel cell such as a methanol battery is suitable. FIG. 9 shows a state in which these are arranged like a human intestine.
Further, a secondary battery such as a lithium battery is suitable for the auxiliary power source (25) in the skeleton.
Here, when the main power source (24) is a fuel cell, a secondary battery that can flow a large current but takes a long time to charge, and a large current that cannot flow but does not take a long time to refuel, and continues to refuel. It is a combination of fuel cells that continue to generate electricity for as long as possible, and a hybrid power source that complements each other.
Electrical components such as the motor of the fan (29), the circulation pump (22), the water supply pump (33), the watering valve (38) and the body surface water supply valve (39) described above, and the main power source (24) All of the auxiliary power sources (25) are completely waterproof.
[0009]
<Fourth embodiment>
The wound film tube (5) is provided with protrusions (40) at both ends on the winding start side of the film (1) as shown in FIG. 10, and provided with protrusions (41) at both ends as shown in FIG. Can do.
Using this protrusion (41), the wound film tube (5) can be connected as shown in FIG.
In this case, the protrusion (41) is inserted into a pipe-shaped joint (42) made of a flexible resin such as rubber, and is fixed by an adhesive or the like. This method is useful when connecting the actuator (11).
By the way, the wound film tube (5) has a structure in which only the film (1) is wound, so that the fluid flowing therethrough cannot be completely sealed.
However, it has been experimentally confirmed that if a fluid having an appropriate viscosity flows through an appropriate length of the wound film tube (5) at an appropriate pressure and flow rate, no leakage occurs.
In order to make this wound film tube (5) into a tube that does not cause normal liquid leakage, high viscosity grease or the like may be injected into the gap between the wound film (1).
However, it is preferable to use it for an application in which a slight leakage is acceptable.
Examples include the actuator (11) described above and a simple drain pipe that sends rainwater received by a rain gutter downward.
In the case of using this simple drain pipe, it is preferable to use a projection (41) and a joint (42) to connect a number of wound film tubes (5) to a required length.
Further, the wound film tube (5) may be thickened according to the amount of rainwater, or a plurality of bundles may be bundled.
[0010]
<Fifth embodiment>
The wound film tube (5) of the present invention has a structure in which the bamboo child springs are alternately connected to each other, and has a structure in which only the film (1) is wound. It is in a state.
For this reason, there is a problem that the winding is gradually loosened with time, and if it is pulled too much, it will not open and return to its original state.
In order to prevent these, the end of the film (1) on the winding end side may be fixed with an adhesive or the like.
By the way, the bamboo spring has a feature that it can absorb a large amount of energy for the occupied space volume and can use friction between films for damping vibration.
For this reason, this invention can be utilized as a vibration-proof spring.
Specific examples include suspension springs for vehicles that carry fragile items and containers that easily spill liquid inside.
[0011]
(A) Resin tubes such as rubber, which have been used for fluid transfer and electric wire protection and insulation, were soft to fold and bend but hard to stretch and shrink. Therefore, when used to insert the spring (9) the shape memory alloy to expand and contract the interior as shown in FIG. 5, there is a problem that prevents the movement of it. However, the wound film tube (5) of the actuator (11) of the present invention is extremely flexible in the axial direction as shown in FIG. 6 and does not hinder the movement of the shape memory alloy spring (9). Since the fluid can be fed simultaneously , the actuator (11) can be bundled and used as shown in FIG.
(B) The bellows tube that has been used for transporting fluids and protecting electric wires is soft in the direction of expansion and contraction, but the outer diameter relative to the inner diameter must be made larger than that of a normal tube. It was. On the other hand , the wound film tube (5) of the actuator (11) of the present invention has a sufficiently small outer diameter with respect to the inner diameter as compared with the bellows tube having the same expansion / contraction amount, so that the actuator (11) is bundled as shown in FIG. The space utilization rate is large and advantageous.
[Brief description of the drawings]
Perspective view of the wound film tubes developed view perspective view showing a state in which the winding film tube wound around the rod of FIG. 2 in the present invention [3] of the present invention in FIG. 1 winding film tube in the present invention 4] of the shape memory alloy actuator for shape-memory alloy spring for use in the present invention a front view [a front view of a shape memory alloy actuator of Fig present invention Figure 6 in the present invention winding film tube and a silicone rubber tube FIG. 7 is a front view showing a state in which the present invention is bundled together. FIG. 8 is a cross-sectional view showing a structure of a robot arm using the present invention. FIG. 9 is a structure of a robot using the present invention. the cross-sectional view [FIG. 10] developed view in which a convex portion to the winding film tube in the present invention [FIG. 11 is a perspective view in which a protruding portion on the winding film tube in the present invention shown FIG. 12 in the present invention connection of the winding film tube Exploded perspective view of the state

Claims (1)

フィルム(1)に交互な切り込み(2)を連続的に入れ、略ジグザグ状にし、その切り込み(2)の停止部に丸穴(3)を設け、これを中心軸が切り込み(2)と直交する円筒状に巻いた巻フィルムチューブ(5)に、両端に電線(7)と糸(8)を取り付けた形状記憶合金ばね(9)を挿入し、両端に柔軟チューブ(10)を取り付けた伸縮型のアクチュエータ(11)。 Alternate cuts (2) are continuously made in the film (1) to form a substantially zigzag shape, and a round hole (3) is provided at the stop of the cut (2), with the central axis orthogonal to the cut (2) the winding film tube which had wound cylindrically (5), inserting the electric wire (7) and the thread (8) mounting a shape memory alloy spring (9) at both ends, fitted with flexible tubing (10) at both ends stretch to Mold actuator (11).
JP20955697A 1997-07-01 1997-07-01 Rolled film tube shape memory alloy actuator Expired - Fee Related JP4026028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20955697A JP4026028B2 (en) 1997-07-01 1997-07-01 Rolled film tube shape memory alloy actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20955697A JP4026028B2 (en) 1997-07-01 1997-07-01 Rolled film tube shape memory alloy actuator

Publications (2)

Publication Number Publication Date
JPH1120018A JPH1120018A (en) 1999-01-26
JP4026028B2 true JP4026028B2 (en) 2007-12-26

Family

ID=16574784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20955697A Expired - Fee Related JP4026028B2 (en) 1997-07-01 1997-07-01 Rolled film tube shape memory alloy actuator

Country Status (1)

Country Link
JP (1) JP4026028B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122720B2 (en) * 2018-01-17 2022-08-22 憲 塚田 portable electronics holder
CN113172640B (en) * 2021-04-15 2022-10-25 清华大学 Software driver
CN113775682B (en) * 2021-11-12 2022-02-08 太原理工大学 Adjustable circular tube energy absorption/storage mechanism based on paper-cut structure
CN115742272B (en) * 2022-12-07 2023-05-19 杭州丽昂电气有限公司 Automatic molding production equipment for insulating sleeve

Also Published As

Publication number Publication date
JPH1120018A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
US4899787A (en) Flexible tube for endoscope
US3434162A (en) Totally implanted artificial heart power system utilizing a rechargeable thermal energy source
JP4026028B2 (en) Rolled film tube shape memory alloy actuator
JP6448583B2 (en) Wire harness
CN109204064A (en) Vehicle, external cooling device, charging unit and cooling system of vehicle
US11253142B2 (en) Variable-stiffness actuator system
KR102208716B1 (en) Battery thermal management system for hybrid and full electric vehicles using heat capacitor
CN111770258B (en) Rotatory heat dissipation formula security protection surveillance camera head
CN206650486U (en) Photovoltaic temperature adjustment mask
CN109728330A (en) Fuel cell system and thermal management method thereof
EP0745187B1 (en) Air treating device having a bellows compressor
EP1041699B1 (en) Electric motor or generator
KR102063730B1 (en) Actuator using shape memory alloy with active cooling module
CN107280716B (en) A kind of stiffness variable protection sheath and its application method for natural cavity operation
US20210050764A1 (en) Motor Provided with Cooling System
JP7259561B2 (en) Temperature control system with wire
US20180209270A1 (en) Energy Harvesting Heat Engine And Actuator
CN210107816U (en) Air conditioner condenser for vehicle
JPH0461840A (en) Curving device for insertion tool
CN109489110B (en) Phase-change heat-storage electric warmer
CN114176905A (en) Ear protection device for otolaryngology department nursing capable of effectively insulating sound
KR20190014438A (en) Hybrid heating and cooling apparatus
CA2084981A1 (en) Steam condenser with articulated electrically heated blankets or panels
CN215020304U (en) Multifunctional heat pump ice compress pillow
CN213778174U (en) Heat exchanger with temperature compensation and heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees