JP4025864B2 - Contact detection method and apparatus for machine tool - Google Patents

Contact detection method and apparatus for machine tool Download PDF

Info

Publication number
JP4025864B2
JP4025864B2 JP2001026472A JP2001026472A JP4025864B2 JP 4025864 B2 JP4025864 B2 JP 4025864B2 JP 2001026472 A JP2001026472 A JP 2001026472A JP 2001026472 A JP2001026472 A JP 2001026472A JP 4025864 B2 JP4025864 B2 JP 4025864B2
Authority
JP
Japan
Prior art keywords
tool
workpiece
contact
coil
spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001026472A
Other languages
Japanese (ja)
Other versions
JP2002233933A (en
Inventor
八洲男 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2001026472A priority Critical patent/JP4025864B2/en
Publication of JP2002233933A publication Critical patent/JP2002233933A/en
Application granted granted Critical
Publication of JP4025864B2 publication Critical patent/JP4025864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • B23Q17/2241Detection of contact between tool and workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工具と被加工物との接触を検出する工作機械用接触検出方法およびその装置に関するものである。
【0002】
【従来の技術】
工作機械において、工具と被加工物との接触状態を検出する方法および装置は、工具の磨耗や浮き上がり等による基準点変動を補正して加工精度を確保する用途に用いられる。また、加工中の工具の折損検出による自動警報などの用途にも用いられている。さらに、工具と被加工物との接触前の近接状態が検出できれば、空送り時間の短縮により加工能率の向上が可能となる。
【0003】
このような用途のために、従来、LCタッチセンサと呼ばれる装置が使われている。この技術の一例(以下、「従来例1」と呼ぶ。)は、特公昭 60-8178号公報に開示されており、図7を用いて説明する。図7は工作機械用接触検出装置の従来例1の概略図である。従来例1は、工具Tと被加工物Wとが接触したときに、工作機械本体01を通した電気的ループ02が構成されることを利用したものである。このループ02の開閉状態は、ループ02が貫通するリングセンサ03に流れる電流値の変化に現れるので、抵抗0Rの両端電圧の増減で検出される。
従来例1は、ループ02と、リングセンサ03の回路とが電気的に絶縁されており、外来電気ノイズによるループ02の回路全体の電位変化に対しては、リングセンサ03の検出回路が動作せず、ループ02内を流れる電流変化のみに基づく検出方式であるために、外来電気ノイズに強く、工具Tと被加工物Wとの接触の検出の確実性が高い特徴がある。
【0004】
しかしながら、最近の工作機械には、高速回転による加工能率の向上のため、主軸が空気式軸受けやセラミック製軸受けなどの絶縁性の軸受けで支持されているものがある。そして、この様な絶縁された主軸を持つ工作機械が増大している。図7に図示するタッチセンサは、鋼製軸受けによる主軸と工作機械本体の電気的な導通を前提としているので、絶縁された主軸を持つ上記のような工作機械に適用することができない。
【0005】
また、絶縁された主軸を持つ機械について、専用の接点式センサを用いた従来の技術として、特開平10-94946号公報に開示された技術がある(従来例2)。この従来例2は、被加工物の基準となる位置の検出が可能である。しかし、加工用の工具の接触検出については適用することができず、また、ブラシの接触抵抗が増大するので、高速回転中の状態には適用することができない。
【0006】
さらに、工具が回転中で、かつ、軸受けが絶縁性である場合にも、工具と被加工物との接触を検出できる従来の技術(従来例3)が、特開平10-217069 号公報に開示されており、図8を用いて説明する。図8は工作機械用接触検出装置の従来例3の概略図である。従来例3は、交流電源011、抵抗器012、主軸013および給電電極014によって、工作機械本体016を通した電気的ループを構成し、被加工物Wと工具Tとの接触によるループ開閉時のインピーダンス変化を抵抗器012の両端の電圧値の増減で検出する技術である。この抵抗器012の電圧は、電圧検出器017が検出している。なお、主軸013は軸受け018で工作機械本体016に対して絶縁されている。また、給電電極014は、主軸013に対して容量結合している。
【0007】
【発明が解決しようとする課題】
ところで、この従来例3は、工作機械本体016と検出回路(交流電源011、抵抗器012および給電電極014など)が容量結合(コンデンサ結合)されているので、工具Tと被加工物Wとの接近により容量変化があった場合には、接触検出のみならず、同一回路で接近検出も可能となる利点がある。しかし、前述したように、工作機械の周辺には、多数の電気的ノイズ源があり、工作機械本体016の電位は、たとえ確実に接地されていてもノイズの影響をうける。このため、従来例3は、外来ノイズによる誤検出の可能性が大きいという問題がある。
【0008】
そこで本発明は、絶縁された主軸を持つ工作機械においても、外来ノイズに影響されることを極力防止して、工具と被加工物との接触を確実に検出できる工作機械用接触検出方法およびその装置を提供することを目的とする。また、工具が回転中の状態であっても、工具と被加工物との接触を確実に検出できる工作機械用接触検出方法およびその装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
このため、本発明が採用した課題解決手段は、
工具あるいは被加工物を主軸に取り付け、この主軸を回転駆動するとともに、前記工具を被加工物に接触させて加工する工作機械における前記工具と被加工物との接触を検出する工作機械用接触検出方法において、対向電極を前記主軸に容量結合する様に配置するとともに、環状回路用コイルを介して工作機械本体に接続し、前記主軸、対向電極、環状回路用コイル、工作機械本体、被加工物および工具で、前記工具と被加工物とが接触状態の時に閉じ、前記工具と被加工物とが非接触状態の時に開く環状回路を構成し、この環状回路が貫通するように励起コイルおよび検出コイルを配置し、前記環状回路に誘導起電力を発生すべく前記励起コイルに交流電流を流し、前記環状回路に流れる交流電流によって検出コイルに発生した電圧を検出することを特徴とする工作機械用接触検出方法であり、
工具あるいは被加工物を主軸に取り付け、この主軸を回転駆動するとともに、前記工具を被加工物に接触させて加工する工作機械における前記工具と被加工物との接触を検出する工作機械用接触検出装置において、対向電極を前記主軸に容量結合する様に配置するとともに、環状回路用コイルを介して工作機械本体に接続し、前記主軸、対向電極、環状回路用コイル、工作機械本体、被加工物および工具で、前記工具と被加工物とが接触状態の時に閉じ、前記工具と被加工物とが非接触状態の時に開く環状回路を構成し、この環状回路が貫通するように励起コイルを配置し、前記環状回路に誘導起電力を発生すべく前記励起コイルに交流電流を流し、前記励起コイルに流れる電流の大きさを検出することを特徴とする工作機械用接触検出方法であり、
前記閉じた状態での前記環状回路における共振周波数の値、および、励起コイルに供給する交流電流の周波数の値を、周辺で発生するノイズの固有周波数の値から避けた値に設定することを特徴とする工作機械用接触検出方法であり、
工具あるいは被加工物を主軸に取り付け、この主軸を回転駆動するとともに、前記工具を被加工物に接触させて加工する工作機械における前記工具と被加工物との接触を検出する工作機械用接触検出装置において、対向電極が前記主軸に容量結合する様に配置されるとともに、環状回路用コイルを介して工作機械本体に接続され、前記主軸、対向電極、環状回路用コイル、工作機械本体、被加工物および工具で、前記工具と被加工物とが接触状態の時に閉じ、前記工具と被加工物とが非接触状態の時に開く環状回路が構成され、この環状回路が貫通するように励起コイルおよび検出コイルが配置され、前記環状回路に誘導起電力を発生すべく前記励起コイルに交流電流を流す交流電流発生手段が設けられ、かつ、前記環状回路に流れる交流電流によって検出コイルに発生した電圧を検出する電圧検出手段が設けられていることを特徴とする工作機械用接触検出装置であり、
前記電圧検出手段は、前記交流電流発生手段の発生する交流電流と略同じ周波数の電流を通過させるバンドパスフィルターを介して、電圧を検出することを特徴とする工作機械用接触検出装置であり、
工具あるいは被加工物を主軸に取り付け、この主軸を回転駆動するとともに、前記工具を被加工物に接触させて加工する工作機械における前記工具と被加工物との接触を検出する工作機械用接触検出装置において、対向電極が前記主軸に容量結合する様に配置されるとともに、環状回路用コイルを介して工作機械本体に接続され、前記主軸、対向電極、環状回路用コイル、工作機械本体、被加工物および工具で、前記工具と被加工物とが接触状態の時に閉じ、前記工具と被加工物とが非接触状態の時に開く環状回路が構成され、この環状回路が貫通するように励起コイルが配置され、前記環状回路に誘導起電力を発生すべく前記励起コイルに交流電流を流す交流電流発生手段が設けられ、かつ、前記励起コイルに流れる電流の大きさを検出する電流検出手段が設けられていることを特徴とする工作機械用接触検出装置であり、
前記電流検出手段は、前記交流電流発生手段の発生する交流電流と略同じ周波数の電流を通過させるバンドパスフィルターを介して、電流を検出することを特徴とする工作機械用接触検出装置であり、
前記交流電流発生手段の供給する交流電流の周波数が、閉じた状態での前記環状回路における共振周波数を超え、かつ、その共振周波数の近傍の周波数であることを特徴とする工作機械用接触検出装置であり、
前記工具が被加工物に接触したと判定するための接触用設定値が設定され、前記検出手段の検出値が接触用設定値に達した場合に、工具が被加工物に接触したと判定する判定手段が設けられていることを特徴とする工作機械用接触検出装置であり、
前記工具が被加工物に近接したと判定するための近接用設定値、および、前記工具が被加工物に接触したと判定するための接触用設定値が設定され、前記検出手段の検出値が近接用設定値に達した場合に、工具が被加工物に近接したと判定し、かつ、前記検出手段の検出値が接触用設定値に達した場合に、工具が被加工物に接触したと判定する判定手段が設けられていることを特徴とする工作機械用接触検出装置である。
【0010】
【実施の形態】
次に、本発明における工作機械用接触検出方法およびその装置の実施の一形態を図1ないし図6を用いて説明する。図1は本発明の実施の形態の工作機械用接触検出装置の概略図である。図2はリングコイルの説明図で、(a)がリングコイルの斜視図、(b)が励起コイルと検出コイルとが兼用される場合のリングコイルへの配線図である。図3は工具と被加工物とのギャップをスイッチとして図示した場合の工作機械用接触検出装置の工具周辺部の等価回路である。図4は工具が被加工物に接触した時の工具周辺部の等価回路である。図5は工具が被加工物に非接触の時の工具周辺部の等価回路である。図6は検出感度のグラフである。
【0011】
以下、図面を参照しながら本発明の実施の形態について説明する。
図1において、Tは工具、Wは被加工物、1は工作機械の本体、2は主軸、3は工作機械本体1のうち主軸2を保持する主軸頭、6は対向電極、7は環状回路用コイル、8は励起コイル、9は検出コイル、10は発信器、11は電圧検出手段としての検出回路、12〜14は検出回路11の構成要素であって、12は増幅器、13は比較回路、14は警報回路、15はNC装置、16はモータ部、17は軸受け、Fはバンドパスフィルターである。
【0012】
主軸2は、工作機械本体1の主軸頭3に、軸受け17で回転可能に支持されている。この軸受け17は、空気式軸受けやセラミック製軸受けなどの絶縁性の軸受けであり、工作機械本体1と主軸2とは電気的に絶縁されている。また、主軸2は、駆動手段であるモータ部16で回転駆動される。このモータ部16はNC装置15で制御されている。工具Tは導電性で、主軸2の先端に取り付けられており、工具Tと主軸2とは電気的に導通している。また、主軸頭3が上下動することにより、工具Tは被加工物Wに対して離接することができる。
対向電極6は、主軸頭3の一部に機械的に保持され、電気的には主軸頭3と絶縁されている。この対向電極6は、たとえばリング状の導電体であって、主軸2の対応する部分の外径よりわずかに大きい内径を持ち、主軸2の外面と対向電極6の内面とが空気コンデンサを構成して容量結合する。対向電極6は、その中心が主軸2の軸心と合致させて保持されており、結合の容量は、主軸2が静止状態でも、また、回転状態でもほぼ一定である。
【0013】
対向電極6と環状回路用コイル7とは、配線7aで接続され電気的に導通している。また、環状回路用コイル7と工作機械本体1とは別な配線7bで接続されており、対向電極6は環状回路用コイル7を介して工作機械本体1に接続されている。工作機械本体1と被加工物Wとは共に導電体なので、機械的接触により電気的に導通している。
【0014】
前記主軸2、対向電極6、環状回路用コイル7、工作機械本体1、被加工物Wおよび工具Tなどで、工具Tと被加工物Wとが接触状態の時に閉じ、工具Tと被加工物Wとが非接触状態の時に開く環状回路を構成する。
【0015】
次に、この実施の形態の工作機械用接触検出装置の電気的な等価回路を図3〜5によって説明する。
図3は、工具Tと被加工物Wとのギャップをスイッチ20とした、図1の工作機械用接触検出装置の工具周辺部の等価回路である。主軸2と対向電極6との間の空気コンデンサの容量をC1とし、主軸2と主軸頭3とは電気的に絶縁されているが、接近しているので、両者の間の分布容量を合計した値をC2とし、主軸頭3と対向電極6との間の機械的保持部分の容量をC3とし、環状回路用コイル7のインダクタンスをL とするとき、図1の工作機械用接触検出装置の工具周辺部は、図3の回路で表すことができる。なお、スイッチ20が開いている時の容量(工具Tと被加工物Wとが離れている時のギャップの容量)はCsとする。
スイッチ20に並列に容量C1および容量C2が接続され、この容量C2に直列に容量C3が接続されている。そして、容量C1の他端と容量C3の他端とが合流して接続され、これに環状回路用コイル7およびスイッチ20が順次直列に接続されている。また、容量C2と容量C3との間から分岐して、スイッチ20に接続されている。
【0016】
次に、工具Tと被加工物Wとが接触している時(ギャップであるスイッチ20が閉)の場合の等価回路を図4に示す。図3でスイッチ20が閉じ、容量C2の両端がショートされるので、容量C2が無効となる。このときの回路の合成容量CcはCc=C1+C3となる。
また、工具Tと被加工物Wとが非接触時(スイッチ20が開)の場合の等価回路を図5に示す。なお、工具Tと被加工物Wとが大きく離れており、容量Csは略0とし無視する。このときの容量C1、容量C2および容量C3による合成容量CoはCo=C1・C2/(C1+C2)+C3となる。
【0017】
スイッチ20の開における合成容量Coは、スイッチ20の閉の合成容量Ccとの比較において、容量C3は共通で、C1> C1 ・C2/(C1+C2)なので、Cc>Coであり、C1≠0だから、ギャップであるスイッチ20の開閉の状態に応じて合成容量が異なる。これは、閉状態の合成容量Ccと開状態の合成容量Coとの間の任意の開閉判断用容量Chの値で、ギャップ開閉の状態判別が可能となることになり、設計の自由度が大きい点で好ましい。すなわち、合成容量が開閉判断用容量Chよりも大きい場合には、ギャップが閉じていると判断し、逆に、合成容量が開閉判断用容量Chよりも小さい場合には、ギャップが開いていると判断する。ただし、C1<<C2ならばCo≒C1+C3となってスイッチ20の開閉時の合成容量が類似の値となり、開閉の判別が困難となるので好ましくない。すなわち容量C1の値は容量C2に比べて極端に小さくしてはならない条件がある。
【0018】
図4、5の等価回路は、いずれの場合も、環状回路用コイル7と合成容量(CoまたはCc)とが直列になった環状回路(以下「ループ」という)を構成している。一般にLCR の直列ループのインピーダンスZ は、 Z=R+i( ωL −1/ωC)であらわされる。ここでRはコイルや配線の直流抵抗の合計値である。ω=1/(L・C)1/2 のとき、直列共振が可能であり、このときのループのインピーダンスの絶対値は最小値(R) となる。
ループに加える起電力の角周波数ωを共振角周波数ω=1/(L・C)1/2 付近としておけば、ループのインピーダンスが小さくなるので、ループを流れる電流が増大して、励起コイル8および検出コイル9によるインピーダンス状態の検出が確実にできる。
【0019】
実際に適用する角周波数ω0 の選定は、接触状態における合成容量Ccによって、直列共振が起きる角周波数ωc =1/(L・Cc)1/2よりわずかに大きい角周波数としておく。このように角周波数を一定とした場合、図6によって検出感度の状態を説明する。後述するように検出回路の出力電圧は、インピーダンスの大きさに反比例するので、図6の縦軸は検出感度を1/Z2で示している。前述したようにCc>Coであり、ギャップであるスイッチ20が開から閉になるにしたがって、i/ωC の絶対値は減少して、インピーダンスが減少するから、回路の検出感度が増大する。さらに、工具Tと被加工物Wとが接近したとき、等価回路でスイッチ20の部分に発生する容量結合Csを考えると、図5の(ギャップであるスイッチ20の開)において、CoとCsは並列結合となるので、Cc>Co+Cs >Coとなり、工具Tが離れた状態から、接近・接触の方向に移動があったとき、ループの検出感度が、途中で増減の変化をすることなく、一様に増大することになる。これは、検出側で閾値を設けた検出回路が単調に増加する設定値を使うことができ、回路が簡単になるので好ましい。
【0020】
次に、励起コイル8および検出コイル9を用いたループのインピーダンス検出について説明する。
励起コイル8は、図2(a)で示したような、トロイダルコア26にコイル巻線27を施したトロイダルコイルであるリングコイル28であり、ループの配線7aが貫通している。励起コイル8の巻線に、交流電流発生手段としての発信器10から定電流回路による角周波数ω0 の交流電流I1(t) を流した場合、励起コイル8のコアに生じる磁束密度B1(t) は、2πR1・B1(t) =μ1 ・N1・I1(t) となり、コア中にΦ1(t)= B1(t)・S1=S1・μ1 ・N1・I1(t) /2πR1なる磁束が発生する。ここでN1は励起コイル8の巻数、μ1 はコアの透磁率、S1は励起コイル8の断面積、R1はコアの半径、である。
励起コイル8の電流が時間変化する時、励起コイル8を貫通する環状配線には、e1(t)=−dΦ1(t)/dtなる起電力が発生する。
ループのインピーダンスZ は、Z=R +i( ωL −1/ωC)であらわされ、ループに流れる電流I7は、I7(t) =e1(t)/Z となる。
【0021】
検出コイル9は、励起コイル8と同様に、図2(a)のトロイダルコア26にコイル巻線27を施したリングコイル28であり、ループの配線7aが貫通している。
ループに流れる電流I7(t) によって、ループの配線7aの周りの検出コイル9のコアに生じる磁束密度B2(t) は、2πR2・B2(t) =μ2 ・I7(t) となり、コイルの磁束Φ2(t)は、Φ2(t)=B2(t) ・ S2 となる。ここでR2はトロイダルコアの半径、μ2 はコアの透磁率、S2は検出コイル9の断面積である。変化する磁束Φ2(t)によって、検出コイル9の巻線にはV =−N2dΦ2(t)/dt なる電圧が発生する。ここでN2は検出コイル9の巻数である。
これらをまとめて、位相分を除いて検出される信号の大きさ(絶対値)のみを正弦波で考えると、
V =N2・Φ2(t) → V(t)=N2・B2(t) ・S2 → V =N2・μ2 ・S2・e1(t)/(Z・2πR2)→ V =N1・N2・μ1 ・μ2 ・S1・S2・I1(t) /(Z ・2πR2・2πR1)
すなわち、励起コイル8の電流I1(t) が一定ならば、ループのインピーダンスZ に反比例した電圧V が検出コイル9に発生することになる。
【0022】
検出コイル9に発生した電圧V は、バンドパスフィルターFを介して検出回路11に入力される。すなわち、検出回路11の入力側にバンドパスフィルターFが接続されている。バンドパスフィルターFは発信器10の発生する交流電流の周波数と略同じ周波数の電流を通過させ、一方、発信器10の交流電流の周波数を含む帯域から外れた周波数の電流を阻止する。そして、検出回路11のうち、増幅器12で電圧を増幅し、判定手段としての比較器13であらかじめ設定した接近電圧(すなわち、近接用設定値)、接触電圧(すなわち、接触用設定値)と比較する。なお、接近電圧は接触電圧よりも低く設定されている。そして、検出した電圧が接近電圧よりも低い場合には、離れていると判定する。また、検出した電圧が接近電圧以上で、かつ、接触電圧よりも低い場合には、接近していると判定する。さらに、検出した電圧が接触電圧以上の場合には、接触していると判定する。このそれぞれの大小判定によって接近警報・接触警報の信号を警報回路14で作成して、NC装置15に送って工作機の工具Tの接近速度や加工指令を制御する。また、工具Tの破損などの加工異常の検知や、加工開始時点の検知などを行うことができる。そして、加工開始時点の検知をすることにより、非加工時間を短縮することができる。さらに、外来電気ノイズによるループの回路全体の電位変化に対しては、検出コイル9などの検出回路が動作せず、ループ内を流れる電流変化のみに基づく検出方式であるために、外来電気ノイズに強く、工具Tと被加工物Wとの接触の検出の確実度が向上する。環状回路用コイル7のインダクタンスL や容量C1,C3などを変更することにより、接触状態におけるループの共振角周波数を選択することができる。したがって、回路定数・電源(発信器)を設定することで、共振周波数を数十KHz から数百KHz の高周波域から、周辺で発生するノイズの固有周波数を避けた周波数を選択することができる。たとえば、150KHz を選択することができる。そのため、より外来電気ノイズに強くすることができる。そして、バンドパスフィルターFが設けられているので、発信器10の発生する交流電流を含む帯域以外の交流電流は阻止され、外来電気ノイズにさらに強くなる。
【0023】
次に、励起コイルと検出コイルを兼用する場合のループのインピーダンス検出について説明する。
このときのリングコイルは、前記励起コイル8と同じものを用い、図2(b)にあるように定電圧の交流発信器10から抵抗Rdを介して励起コイル8の巻線に角周波数ωの電圧E1(t) を供給する。なお、検出コイル9は、励起コイル8と兼用しており、設けられていない。そして、抵抗Rdに流れる電流I1(t) を電圧で検出するように、抵抗Rdの両端に検出回路11を接続する。この様にして、抵抗Rdと検出回路11とで電流検出手段が構成されている。励起コイル8に流れる電流I1(t) は、E1(t) と上記の式で発生する起電力V(t)との位相を考慮したI1(t) =(E1(t) −V(t))/Rdで表される。ループのインピーダンスが最小のときは最大のV(t)となる。このときのインピーダンスは、R のみの純抵抗分であり、ループのインピーダンスによる位相の差を生じない。しかし、励起・検出コイル8,9を共用しているので、E1(t) とV(t)との位相が逆となりこのとき最大の電流が流れる。抵抗RdにはI1(t) に比例した電圧が現れるので、検出電圧が最大となる。
【0024】
ループのインピーダンスの大きさが最小値の21/2 倍になるとき、位相角は最大値から±45度ずれている。V の絶対値は1/21/2 となるが、E1(t) とV(t)との位相が逆方向から±45度ずれているので、電流の絶対値は最大値から比べて1/21/2 よりも低い低下率となる。即ちこの方式では、コイルを別々に設けた場合に比べて容量変化による検出電圧の変化率が小さくなり、検出感度が落ちることになる。しかし、コイルが共用できるので、スペース的に制約がある場合や、十分な検出感度があって装置を小型化したい場合に有効である。
【0025】
この様にして、励起コイルと検出コイルとを兼用した場合には、抵抗Rdに発生した電圧V は、図1に図示する検出回路11と同様にして、検出回路11のうち、増幅器12で電圧を増幅し、比較器13であらかじめ設定した接近電圧(すなわち、近接用設定値)、接触電圧(すなわち、接触用設定値)と比較する。それぞれの大小判定によって接近警報・接触警報の信号を警報回路14で作成して、NC装置15に送って工作機の工具Tの接近速度や加工指令を制御する。なお、抵抗Rdと発信器10との間や抵抗Rdと検出回路11との間など(すなわち検出回路11の入力側)にバンドパスフィルターFを設けることも可能である。
【0026】
以上、本発明の実施の形態について説明したが、本発明の趣旨の範囲内で種々の形態を実施することが可能である。
たとえば、(1)主軸2に工具Tを取り付ける代わりに、被加工物Wを取り付けることも可能である。
(2)工作機械は、切削や研磨など種々の用途に使用可能である。
(3)接触状態におけるループの共振周波数は、適宜選択可能である。ただし、10KHz から500KHz が好ましい。
(4)励起コイル8および検出コイル9は、その形式は適宜選択可能であるが、トロイダルコイルであることが好ましい。
(5)発信器10の周波数は、適宜選択可能であるが、接触状態の環状回路において直列共振を引き起こさせる値に設定する。
【0027】
【発明の効果】
以上述べた如く、本発明によれば、対向電極を主軸に容量結合する様に配置するとともに、環状回路用コイルを介して工作機械本体に接続し、主軸、対向電極、環状回路用コイル、工作機械本体、被加工物および工具で、前記工具と被加工物とが接触状態の時に閉じ、前記工具と被加工物とが非接触状態の時に開く環状回路を構成し、環状回路が貫通するように励起コイルおよび検出コイルを配置し、環状回路に誘導起電力を発生すべく励起コイルに交流電流を流しているので、絶縁された主軸を持つ工作機械においても、工具と被加工物との接触を検出することが可能である。また、外来ノイズの影響が少なく、工具と被加工物の接触を確実に検出できる。主軸が回転中の状態であっても、また、静止状態でも、検出可能である。さらに、被加工物と工具の接近時に容量が発生するときは、被加工物と工具との接近も検出可能となる。加工中に検出電圧が低下したときは、工具の折損を検出できる。そして、接触状態における環状回路の共振角周波数を選択することができるので、外来電気ノイズの固有周波数を避けることで、より外来電気ノイズに強くすることができる。また、励起コイルと検出コイルとを兼用している場合には、コイルが共用できるので、部品点数を削減することができるとともに、コンパクトにすることができる。さらに、バンドパスフィルターを設けた場合には、さらに外来電気ノイズに強くすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の工作機械用接触検出装置の概略図である。
【図2】リングコイルの説明図で、(a)がリングコイルの斜視図、(b)が励起コイルと検出コイルとが兼用される場合のリングコイルへの配線図である。
【図3】工具と被加工物とのギャップをスイッチとして図示した場合の工作機械用接触検出装置の工具周辺部の等価回路である。
【図4】工具が被加工物に接触した時の工具周辺部の等価回路である。
【図5】工具が被加工物に非接触の時の工具周辺部の等価回路である。
【図6】検出感度のグラフである。
【図7】工作機械用接触検出装置の従来例1の概略図である。
【図8】工作機械用接触検出装置の従来例3の概略図である。
【符号の説明】
F バンドパスフィルター
T 工具
W 被加工物
1 工作機械本体
2 主軸
6 対向電極
7 環状回路用コイル
8 励起コイル
9 検出コイル
10 発信器(交流電流発生手段)
11 検出回路(電圧検出手段)
13 比較器(判定手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a machine tool contact detection method and apparatus for detecting contact between a tool and a workpiece.
[0002]
[Prior art]
In a machine tool, a method and an apparatus for detecting a contact state between a tool and a workpiece are used for applications in which machining accuracy is ensured by correcting a reference point variation due to wear or lifting of the tool. It is also used for applications such as automatic alarms by detecting tool breakage during machining. Furthermore, if the proximity state before the contact between the tool and the workpiece can be detected, the machining efficiency can be improved by shortening the idle feed time.
[0003]
Conventionally, an apparatus called an LC touch sensor has been used for such applications. An example of this technique (hereinafter referred to as “conventional example 1”) is disclosed in Japanese Patent Publication No. 60-8178 and will be described with reference to FIG. FIG. 7 is a schematic diagram of Conventional Example 1 of a contact detection device for machine tools. Conventional Example 1 utilizes the fact that an electrical loop 02 is formed through the machine tool body 01 when the tool T and the workpiece W come into contact with each other. Since the open / closed state of the loop 02 appears in a change in the value of the current flowing through the ring sensor 03 penetrating the loop 02, the open / closed state of the loop 02 is detected by an increase / decrease in the voltage across the resistor 0R.
In Conventional Example 1, the loop 02 and the circuit of the ring sensor 03 are electrically insulated, and the detection circuit of the ring sensor 03 is operated in response to a potential change in the entire circuit of the loop 02 due to external electrical noise. In addition, since the detection method is based only on a change in the current flowing in the loop 02, the detection method is strong against external electrical noise and has high reliability in detecting contact between the tool T and the workpiece W.
[0004]
However, some recent machine tools have a main shaft supported by an insulating bearing such as a pneumatic bearing or a ceramic bearing in order to improve machining efficiency by high-speed rotation. And machine tools having such insulated spindles are increasing. The touch sensor shown in FIG. 7 is premised on electrical connection between the main shaft and the machine tool body by a steel bearing, and therefore cannot be applied to the above-described machine tool having an insulated main shaft.
[0005]
As a conventional technique using a dedicated contact sensor for a machine having an insulated main shaft, there is a technique disclosed in Japanese Patent Laid-Open No. 10-94946 (Conventional Example 2). This conventional example 2 can detect a position serving as a reference of a workpiece. However, it cannot be applied to contact detection of a machining tool, and it cannot be applied to a state during high-speed rotation because the contact resistance of the brush increases.
[0006]
Furthermore, Japanese Patent Laid-Open No. 10-217069 discloses a conventional technique (conventional example 3) that can detect contact between a tool and a workpiece even when the tool is rotating and the bearing is insulative. This will be described with reference to FIG. FIG. 8 is a schematic diagram of Conventional Example 3 of a contact detection device for machine tools. In the conventional example 3, an electrical loop passing through the machine tool body 016 is constituted by the AC power source 011, the resistor 012, the main shaft 013, and the power supply electrode 014, and when the loop is opened and closed by the contact between the workpiece W and the tool T. This is a technique for detecting an impedance change by increasing or decreasing the voltage value across the resistor 012. The voltage of the resistor 012 is detected by the voltage detector 017. The main shaft 013 is insulated from the machine tool main body 016 by a bearing 018. The feeding electrode 014 is capacitively coupled to the main shaft 013.
[0007]
[Problems to be solved by the invention]
By the way, in this conventional example 3, since the machine tool main body 016 and the detection circuit (the AC power supply 011, the resistor 012, the feeding electrode 014, etc.) are capacitively coupled (capacitor coupled), the tool T and the workpiece W are When there is a capacity change due to the approach, there is an advantage that not only the contact detection but also the approach detection can be performed by the same circuit. However, as described above, there are a number of electrical noise sources around the machine tool, and the electric potential of the machine tool body 016 is affected by noise even if it is reliably grounded. For this reason, Conventional Example 3 has a problem that there is a high possibility of erroneous detection due to external noise.
[0008]
Therefore, the present invention provides a machine tool contact detection method capable of reliably detecting contact between a tool and a workpiece, and preventing the influence of external noise as much as possible even in a machine tool having an insulated main spindle. An object is to provide an apparatus. It is another object of the present invention to provide a machine tool contact detection method and apparatus capable of reliably detecting contact between a tool and a workpiece even when the tool is rotating.
[0009]
[Means for Solving the Problems]
Therefore, the problem solving means adopted by the present invention is:
Contact detection for machine tools that detects the contact between the tool and the workpiece in a machine tool that attaches a tool or workpiece to the spindle and drives the spindle to rotate and makes the tool contact the workpiece. In the method, the counter electrode is disposed so as to be capacitively coupled to the main shaft, and is connected to the machine tool main body via an annular circuit coil, and the main shaft, the counter electrode, the annular circuit coil, the machine tool main body, and the workpiece And a tool that forms an annular circuit that closes when the tool and the workpiece are in contact with each other and opens when the tool and the workpiece are not in contact with each other. A coil is arranged, an alternating current is passed through the excitation coil to generate an induced electromotive force in the annular circuit, and a voltage generated in the detection coil is detected by the alternating current flowing through the annular circuit. A machine tool for contact detection method comprising Rukoto,
Contact detection for machine tools that detects the contact between the tool and the workpiece in a machine tool that attaches a tool or workpiece to the spindle and drives the spindle to rotate and makes the tool contact the workpiece. In the apparatus, the counter electrode is disposed so as to be capacitively coupled to the main shaft, and is connected to the machine tool main body via an annular circuit coil, and the main shaft, the counter electrode, the annular circuit coil, the machine tool main body, and the workpiece And a tool that forms an annular circuit that closes when the tool and the workpiece are in contact with each other and opens when the tool and the workpiece are not in contact with each other. A contact detection method for a machine tool, wherein an alternating current is passed through the excitation coil to generate an induced electromotive force in the annular circuit, and the magnitude of the current flowing through the excitation coil is detected. Yes,
The value of the resonance frequency in the annular circuit in the closed state and the value of the frequency of the alternating current supplied to the excitation coil are set to values that are avoided from the value of the natural frequency of noise generated in the vicinity. A contact detection method for machine tools,
Contact detection for machine tools that detects the contact between the tool and the workpiece in a machine tool that attaches a tool or workpiece to the spindle and drives the spindle to rotate and makes the tool contact the workpiece. In the apparatus, the counter electrode is disposed so as to be capacitively coupled to the main shaft, and is connected to the machine tool main body via an annular circuit coil, and the main shaft, the counter electrode, the annular circuit coil, the machine tool main body, and the workpiece An annular circuit is formed by an object and a tool that is closed when the tool and the workpiece are in contact with each other and opened when the tool and the workpiece are not in contact with each other. The detection coil is disposed, AC current generating means for supplying an AC current to the excitation coil is provided to generate an induced electromotive force in the annular circuit, and an AC current flowing in the annular circuit is provided. Voltage detecting means for detecting a voltage generated in the detection coil by a machine tool contact detecting apparatus characterized by is provided,
The voltage detection means is a contact detection device for a machine tool that detects a voltage through a band-pass filter that passes current having substantially the same frequency as the alternating current generated by the alternating current generation means,
Contact detection for machine tools that detects the contact between the tool and the workpiece in a machine tool that attaches a tool or workpiece to the spindle and drives the spindle to rotate and makes the tool contact the workpiece. In the apparatus, the counter electrode is disposed so as to be capacitively coupled to the main shaft, and is connected to the machine tool main body via an annular circuit coil, and the main shaft, the counter electrode, the annular circuit coil, the machine tool main body, and the workpiece An annular circuit is formed by an object and a tool that closes when the tool and the workpiece are in contact with each other and opens when the tool and the workpiece are not in contact with each other. And an AC current generating means for supplying an AC current to the excitation coil so as to generate an induced electromotive force in the annular circuit, and detecting the magnitude of the current flowing to the excitation coil. A machine tool contact detecting apparatus characterized by current detecting means is provided,
The current detection means is a contact detection device for a machine tool that detects current through a band-pass filter that passes current having substantially the same frequency as the alternating current generated by the alternating current generation means,
The contact detection device for a machine tool, wherein the frequency of the alternating current supplied by the alternating current generating means exceeds the resonance frequency in the annular circuit in the closed state and is in the vicinity of the resonance frequency. And
A contact set value for determining that the tool has contacted the workpiece is set, and when the detection value of the detection means reaches the contact set value, it is determined that the tool has contacted the workpiece. A contact detection device for machine tools, characterized in that a determination means is provided,
A proximity setting value for determining that the tool has approached the workpiece and a contact setting value for determining that the tool has contacted the workpiece are set, and the detection value of the detection means is When the set value for proximity is reached, it is determined that the tool has approached the workpiece, and the tool has contacted the workpiece when the detection value of the detection means has reached the set value for contact. A contact detection device for machine tools, characterized in that determination means for determining is provided.
[0010]
[Embodiment]
Next, an embodiment of a machine tool contact detection method and apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram of a machine tool contact detection apparatus according to an embodiment of the present invention. 2A and 2B are explanatory diagrams of the ring coil. FIG. 2A is a perspective view of the ring coil, and FIG. 2B is a wiring diagram for the ring coil when the excitation coil and the detection coil are used in common. FIG. 3 is an equivalent circuit of the tool peripheral portion of the machine tool contact detection device when the gap between the tool and the workpiece is illustrated as a switch. FIG. 4 is an equivalent circuit around the tool when the tool contacts the workpiece. FIG. 5 is an equivalent circuit around the tool when the tool is not in contact with the workpiece. FIG. 6 is a graph of detection sensitivity.
[0011]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, T is a tool, W is a workpiece, 1 is a main body of a machine tool, 2 is a main spindle, 3 is a main spindle head that holds the main spindle 2 of the machine tool main body 1, 6 is a counter electrode, and 7 is an annular circuit. Coil, 8 is an excitation coil, 9 is a detection coil, 10 is a transmitter, 11 is a detection circuit as voltage detection means, 12 to 14 are components of the detection circuit 11, 12 is an amplifier, 13 is a comparison circuit , 14 is an alarm circuit, 15 is an NC device, 16 is a motor unit, 17 is a bearing, and F is a band-pass filter.
[0012]
The main shaft 2 is rotatably supported by a bearing 17 on the main shaft head 3 of the machine tool main body 1. The bearing 17 is an insulating bearing such as a pneumatic bearing or a ceramic bearing, and the machine tool body 1 and the main shaft 2 are electrically insulated. The main shaft 2 is rotationally driven by a motor unit 16 that is a driving means. The motor unit 16 is controlled by the NC device 15. The tool T is conductive and is attached to the tip of the main shaft 2, and the tool T and the main shaft 2 are electrically connected. In addition, the tool T can be moved away from the workpiece W by moving the spindle head 3 up and down.
The counter electrode 6 is mechanically held by a part of the spindle head 3 and is electrically insulated from the spindle head 3. The counter electrode 6 is, for example, a ring-shaped conductor, and has an inner diameter slightly larger than the outer diameter of the corresponding portion of the main shaft 2. The outer surface of the main shaft 2 and the inner surface of the counter electrode 6 constitute an air capacitor. And capacitively couple. The counter electrode 6 is held with its center aligned with the axis of the main shaft 2, and the coupling capacity is substantially constant even when the main shaft 2 is stationary or rotating.
[0013]
The counter electrode 6 and the annular circuit coil 7 are connected by a wiring 7a and are electrically connected. Further, the annular circuit coil 7 and the machine tool body 1 are connected by a separate wire 7 b, and the counter electrode 6 is connected to the machine tool body 1 via the annular circuit coil 7. Since the machine tool body 1 and the workpiece W are both conductors, they are electrically connected by mechanical contact.
[0014]
The main shaft 2, the counter electrode 6, the annular circuit coil 7, the machine tool main body 1, the workpiece W and the tool T are closed when the tool T and the workpiece W are in contact with each other. An annular circuit that opens when W is in a non-contact state is formed.
[0015]
Next, an electrical equivalent circuit of the machine tool contact detection device of this embodiment will be described with reference to FIGS.
FIG. 3 is an equivalent circuit of the tool peripheral portion of the machine tool contact detection apparatus of FIG. 1, in which the gap between the tool T and the workpiece W is the switch 20. The capacity of the air capacitor between the main shaft 2 and the counter electrode 6 is C1, and the main shaft 2 and the main shaft head 3 are electrically insulated, but since they are close to each other, the distributed capacities between them are totaled. When the value is C2, the capacity of the mechanical holding portion between the spindle head 3 and the counter electrode 6 is C3, and the inductance of the annular circuit coil 7 is L, the tool of the contact detection device for machine tools in FIG. The peripheral portion can be represented by the circuit of FIG. Note that the capacity when the switch 20 is open (the capacity of the gap when the tool T and the workpiece W are separated) is Cs.
A capacitor C1 and a capacitor C2 are connected in parallel to the switch 20, and a capacitor C3 is connected in series to the capacitor C2. The other end of the capacitor C1 and the other end of the capacitor C3 are joined together and connected, and the annular circuit coil 7 and the switch 20 are sequentially connected in series. Further, it branches from between the capacitors C2 and C3 and is connected to the switch 20.
[0016]
Next, FIG. 4 shows an equivalent circuit when the tool T and the workpiece W are in contact with each other (the switch 20 that is a gap is closed). In FIG. 3, since the switch 20 is closed and both ends of the capacitor C2 are short-circuited, the capacitor C2 becomes invalid. The combined capacitance Cc of the circuit at this time is Cc = C1 + C3.
FIG. 5 shows an equivalent circuit when the tool T and the workpiece W are not in contact with each other (the switch 20 is open). Note that the tool T and the workpiece W are greatly separated from each other, and the capacity Cs is substantially zero and ignored. At this time, the combined capacitance Co by the capacitors C1, C2, and C3 is Co = C1 · C2 / (C1 + C2) + C3.
[0017]
The combined capacitance Co when the switch 20 is open is the same as the combined capacitance Cc when the switch 20 is closed. Since C1> C1 · C2 / (C1 + C2), Cc> Co and C1 ≠ 0. The combined capacity varies depending on the open / close state of the switch 20 that is a gap. This is an arbitrary open / close determination capacitance Ch between the closed-state composite capacitance Cc and the open-state composite capacitance Co, and it becomes possible to determine the open / close state of the gap, thus providing a high degree of design freedom. This is preferable. That is, when the combined capacity is larger than the opening / closing determination capacity Ch, it is determined that the gap is closed. Conversely, when the combined capacity is smaller than the opening / closing determination capacity Ch, the gap is open. to decide. However, C1 < If <C2, Co≈C1 + C3, and the combined capacity when the switch 20 is opened and closed becomes a similar value, which makes it difficult to determine whether the switch is open or closed. That is, there is a condition that the value of the capacitor C1 should not be extremely small compared to the capacitor C2.
[0018]
4 and 5 constitutes an annular circuit (hereinafter referred to as “loop”) in which the annular circuit coil 7 and the combined capacitance (Co or Cc) are connected in series. In general, the impedance Z of the LCR series loop is expressed as Z = R + i (ωL−1 / ωC). Here, R is the total value of the DC resistance of the coil and wiring. ω = 1 / (L ・ C) 1/2 In this case, series resonance is possible, and the absolute value of the impedance of the loop at this time becomes the minimum value (R).
The angular frequency ω of the electromotive force applied to the loop is the resonance angular frequency ω = 1 / (L · C) 1/2 If it is in the vicinity, the impedance of the loop becomes small, so that the current flowing through the loop increases, and the excitation coil 8 and the detection coil 9 can reliably detect the impedance state.
[0019]
The actual selection of the angular frequency ω0 is the angular frequency ωc at which series resonance occurs due to the combined capacitance Cc in the contact state = 1 / (L · Cc) 1/2 A slightly larger angular frequency is set. When the angular frequency is thus constant, the state of detection sensitivity will be described with reference to FIG. As will be described later, since the output voltage of the detection circuit is inversely proportional to the magnitude of the impedance, the vertical axis in FIG. 2 Is shown. As described above, Cc> Co, and as the switch 20 that is the gap is closed from the open state, the absolute value of i / ωC decreases and the impedance decreases, so that the detection sensitivity of the circuit increases. Further, considering the capacitive coupling Cs generated in the switch 20 portion in the equivalent circuit when the tool T and the workpiece W approach each other, Co and Cs in FIG. 5 (opening of the switch 20 as a gap) are as follows. Since it is a parallel connection, Cc> Co + Cs> Co, and when the tool T moves away from the state in the approach / contact direction, the loop detection sensitivity does not change in the middle. Will increase uniformly. This is preferable because a detection value provided with a threshold value on the detection side can use a setting value that monotonously increases, and the circuit becomes simple.
[0020]
Next, loop impedance detection using the excitation coil 8 and the detection coil 9 will be described.
The excitation coil 8 is a ring coil 28 which is a toroidal coil in which a coil winding 27 is applied to a toroidal core 26 as shown in FIG. 2A, and a loop wiring 7a passes therethrough. When an alternating current I1 (t) having an angular frequency ω0 by a constant current circuit is passed through the winding of the excitation coil 8 from the transmitter 10 as an alternating current generating means, the magnetic flux density B1 (t) generated in the core of the excitation coil 8 Is 2πR1 ・ B1 (t) = μ1 ・ N1 ・ I1 (t), and a magnetic flux of Φ1 (t) = B1 (t) ・ S1 = S1 ・ μ1 ・ N1 ・ I1 (t) / 2πR1 is generated in the core To do. Here, N1 is the number of turns of the excitation coil 8, μ1 is the permeability of the core, S1 is the cross-sectional area of the excitation coil 8, and R1 is the radius of the core.
When the current of the excitation coil 8 changes with time, an electromotive force of e1 (t) = − dΦ1 (t) / dt is generated in the annular wiring passing through the excitation coil 8.
The impedance Z of the loop is expressed as Z = R + i (ωL−1 / ωC), and the current I7 flowing through the loop is I7 (t) = e1 (t) / Z.
[0021]
Similarly to the excitation coil 8, the detection coil 9 is a ring coil 28 obtained by applying a coil winding 27 to the toroidal core 26 of FIG. 2A, and the loop wiring 7a passes therethrough.
The magnetic flux density B2 (t) generated in the core of the detection coil 9 around the wire 7a of the loop due to the current I7 (t) flowing in the loop is 2πR2 · B2 (t) = μ2 · I7 (t), and the magnetic flux of the coil Φ2 (t) becomes Φ2 (t) = B2 (t) · S2. Here, R2 is the radius of the toroidal core, μ2 is the magnetic permeability of the core, and S2 is the cross-sectional area of the detection coil 9. Due to the changing magnetic flux Φ2 (t), a voltage V = −N2dΦ2 (t) / dt is generated in the winding of the detection coil 9. Here, N2 is the number of turns of the detection coil 9.
When these are put together and only the magnitude (absolute value) of the signal detected without the phase component is considered as a sine wave,
V = N2 · Φ2 (t) → V (t) = N2 · B2 (t) · S2 → V = N2 · µ2 · S2 · e1 (t) / (Z · 2πR2) → V = N1 · N2 · µ1 · μ2 ・ S1 ・ S2 ・ I1 (t) / (Z ・ 2πR2 ・ 2πR1)
That is, if the current I1 (t) of the excitation coil 8 is constant, the voltage V inversely proportional to the loop impedance Z is generated in the detection coil 9.
[0022]
The voltage V generated in the detection coil 9 is input to the detection circuit 11 via the band pass filter F. That is, the band pass filter F is connected to the input side of the detection circuit 11. The band pass filter F allows a current having a frequency substantially the same as the frequency of the alternating current generated by the transmitter 10 to pass therethrough, while blocking a current having a frequency outside the band including the frequency of the alternating current of the transmitter 10. In the detection circuit 11, the voltage is amplified by the amplifier 12 and compared with the approach voltage (that is, the set value for proximity) and the contact voltage (that is, the set value for contact) set in advance by the comparator 13 as a determination unit. To do. Note that the approach voltage is set lower than the contact voltage. And when the detected voltage is lower than an approach voltage, it determines with having separated. If the detected voltage is equal to or higher than the approach voltage and lower than the contact voltage, it is determined that the vehicle is approaching. Further, when the detected voltage is equal to or higher than the contact voltage, it is determined that the contact is made. Based on the respective size determinations, an approach alarm / contact alarm signal is created by the alarm circuit 14 and sent to the NC device 15 to control the approach speed of the tool T of the machine tool and the machining command. In addition, it is possible to detect a processing abnormality such as breakage of the tool T, or to detect a processing start time. And the non-processing time can be shortened by detecting the processing start time. Furthermore, since the detection circuit such as the detection coil 9 does not operate with respect to the potential change in the entire circuit of the loop due to the external electric noise, the detection method is based only on the change of the current flowing in the loop. Strongly, the certainty of detection of contact between the tool T and the workpiece W is improved. The resonance angular frequency of the loop in the contact state can be selected by changing the inductance L and the capacitances C1 and C3 of the annular circuit coil 7. Therefore, by setting the circuit constant and power supply (transmitter), it is possible to select a frequency that avoids the natural frequency of noise generated in the vicinity from a high frequency range of several tens KHz to several hundred KHz. For example, 150 KHz can be selected. Therefore, it can be made more resistant to external electric noise. And since the band pass filter F is provided, the alternating currents other than the band including the alternating current generated by the transmitter 10 are blocked, and it becomes stronger against the external electric noise.
[0023]
Next, loop impedance detection when the excitation coil and the detection coil are used together will be described.
The ring coil at this time is the same as that of the excitation coil 8, and an angular frequency ω is applied to the winding of the excitation coil 8 from the constant voltage AC transmitter 10 via the resistor Rd as shown in FIG. Supply voltage E1 (t). The detection coil 9 is also used as the excitation coil 8 and is not provided. The detection circuit 11 is connected to both ends of the resistor Rd so that the current I1 (t) flowing through the resistor Rd is detected by voltage. In this way, the resistor Rd and the detection circuit 11 constitute current detection means. The current I1 (t) flowing through the excitation coil 8 is I1 (t) = (E1 (t) −V (t) considering the phase between E1 (t) and the electromotive force V (t) generated by the above equation. ) / Rd. When the loop impedance is minimum, the maximum V (t) is obtained. The impedance at this time is a pure resistance component of R only and does not cause a phase difference due to the impedance of the loop. However, since the excitation / detection coils 8 and 9 are shared, the phases of E1 (t) and V (t) are reversed and a maximum current flows at this time. Since a voltage proportional to I1 (t) appears in the resistor Rd, the detection voltage becomes maximum.
[0024]
The minimum loop impedance is 2. 1/2 When doubling, the phase angle deviates ± 45 degrees from the maximum value. The absolute value of V is 1/2 1/2 However, since the phase of E1 (t) and V (t) is shifted ± 45 degrees from the opposite direction, the absolute value of the current is 1/2 of the maximum value. 1/2 Lower than that. That is, in this method, the change rate of the detection voltage due to the capacitance change becomes smaller than in the case where the coils are separately provided, and the detection sensitivity is lowered. However, since the coil can be shared, it is effective when space is limited, or when there is sufficient detection sensitivity and it is desired to downsize the apparatus.
[0025]
When the excitation coil and the detection coil are used in this way, the voltage V generated in the resistor Rd is the voltage of the amplifier 12 in the detection circuit 11 in the same manner as the detection circuit 11 shown in FIG. Is compared with an approach voltage (that is, a set value for proximity) and a contact voltage (that is, a set value for contact) set in advance by the comparator 13. An approach warning / contact warning signal is created by the warning circuit 14 according to each size determination and sent to the NC device 15 to control the approach speed and machining command of the tool T of the machine tool. It is also possible to provide a band pass filter F between the resistor Rd and the transmitter 10 or between the resistor Rd and the detection circuit 11 (that is, the input side of the detection circuit 11).
[0026]
As mentioned above, although embodiment of this invention was described, it is possible to implement various forms within the range of the meaning of this invention.
For example, (1) Instead of attaching the tool T to the main spindle 2, it is also possible to attach the workpiece W.
(2) The machine tool can be used for various applications such as cutting and polishing.
(3) The resonance frequency of the loop in the contact state can be selected as appropriate. However, 10 KHz to 500 KHz is preferable.
(4) The excitation coil 8 and the detection coil 9 can be selected as appropriate, but are preferably toroidal coils.
(5) The frequency of the transmitter 10 can be selected as appropriate, but is set to a value that causes series resonance in the annular circuit in the contact state.
[0027]
【The invention's effect】
As described above, according to the present invention, the counter electrode is disposed so as to be capacitively coupled to the main shaft, and is connected to the machine tool main body via the ring circuit coil, so that the main shaft, the counter electrode, the ring circuit coil, the machine tool is connected. The machine body, workpiece and tool constitute an annular circuit that closes when the tool and workpiece are in contact and opens when the tool and workpiece are not in contact, so that the annular circuit penetrates An excitation coil and a detection coil are arranged in the circuit, and an alternating current is passed through the excitation coil to generate an induced electromotive force in the annular circuit. Therefore, even in a machine tool having an insulated main shaft, contact between the tool and the workpiece Can be detected. Further, the influence of external noise is small, and the contact between the tool and the workpiece can be reliably detected. It can be detected even when the spindle is rotating or at rest. Further, when a capacity is generated when the workpiece and the tool are approached, the approach between the workpiece and the tool can also be detected. When the detection voltage drops during machining, tool breakage can be detected. Since the resonance angular frequency of the annular circuit in the contact state can be selected, the external electrical noise can be made stronger by avoiding the natural frequency of the external electrical noise. Further, when the excitation coil and the detection coil are used in common, the coil can be shared, so that the number of parts can be reduced and the size can be reduced. Furthermore, when a band-pass filter is provided, it can be made stronger against external electrical noise.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a machine tool contact detection apparatus according to an embodiment of the present invention.
2A and 2B are explanatory diagrams of the ring coil, in which FIG. 2A is a perspective view of the ring coil, and FIG. 2B is a wiring diagram for the ring coil when the excitation coil and the detection coil are used in common.
FIG. 3 is an equivalent circuit of a tool peripheral portion of a machine tool contact detection device when a gap between a tool and a workpiece is illustrated as a switch.
FIG. 4 is an equivalent circuit around the tool when the tool contacts the workpiece.
FIG. 5 is an equivalent circuit around the tool when the tool is not in contact with the workpiece.
FIG. 6 is a graph of detection sensitivity.
FIG. 7 is a schematic view of Conventional Example 1 of a contact detection device for a machine tool.
FIG. 8 is a schematic view of Conventional Example 3 of a contact detection device for machine tools.
[Explanation of symbols]
F Band pass filter
T tool
W Workpiece
1 Machine tool body
2 Spindle
6 Counter electrode
7 Coil for annular circuit
8 Excitation coil
9 Detection coil
10 Transmitter (AC current generating means)
11 Detection circuit (voltage detection means)
13 comparator (determination means)

Claims (8)

工具あるいは被加工物を主軸に取り付け、
この主軸を回転駆動するとともに、前記工具を被加工物に接触させて加工する工作機械における前記工具と被加工物との接触を検出する工作機械用接触検出方法において、
前記主軸を主軸頭に電気的に絶縁して回転可能に支持し、対向電極を前記主軸に容量結合する様に配置するとともに、環状回路用コイルを介して工作機械に接続し、
前記対向電極と主軸間に形成された第1のコンデンサ、前記主軸と主軸頭間に形成された第2のコンデンサ、主軸頭と対向電極間に形成された第3のコンデンサ、環状回路用コイル、工作機械本体および前記主軸の先端に設けられ前記工具と被加工物とが非接触のときオフし、接触するとオンするスイッチで環状回路を構成し、
この環状回路が貫通するように励起コイルおよび検出コイルを配置し、
前記環状回路に誘導起電力を発生すべく前記励起コイルに周辺で発生するノイズの固有周波数の値と避けた周波数の交流電流を流し、
前記工具と被加工物との非接触状態では環状回路の合成容量は前記第1、第2及び第3のコンデンサによる合成容量値とし、前記工具と被加工物との接触状態では前記スイッチが閉じることにより第2のコンデンサを短絡し環状回路の合成容量を第1及び第3のコンデンサによる合成容量値とし、前記工具と被加工物との接触状態での前記合成容量値が前記工具と被加工物との非接触状態での容量値に比して十分に大となるようにし、
前記工具と被加工物が接触した状態での前記第1及び第3のコンデンサおよび環状回路用コイルで構成する前記環状回路の共振周波数の値を前記周辺で発生するノイズの固有周波数の値と避けた前記交流電流の周波数の値に同じにし
前記工具と被加工物とが接近するとき、検出コイルに検出感度が途中で増減することなく、一様に増大する電圧を発生させ、前記工具と被加工物が接触したとき、検出コイルに発生した電圧が予め定めた接触用設定値を急峻に超えるようにしたことを特徴とする工作機械用接触検出方法。
Attach a tool or workpiece to the spindle,
In the contact detection method for a machine tool that detects the contact between the tool and the workpiece in a machine tool that drives the spindle to rotate and processes the tool in contact with the workpiece.
The spindle is electrically insulated from the spindle head and rotatably supported, and the counter electrode is disposed so as to be capacitively coupled to the spindle, and connected to the machine tool via an annular circuit coil,
A first capacitor formed between the counter electrode and the main shaft, a second capacitor formed between the main shaft and the main shaft head, a third capacitor formed between the main shaft head and the counter electrode, an annular circuit coil, A ring circuit is configured with a switch that is provided at the tip of the machine tool main body and the spindle and is turned off when the tool and the workpiece are not in contact with each other, and turned on when contacted ,
Place the excitation coil and the detection coil so that this annular circuit penetrates,
In order to generate an induced electromotive force in the annular circuit, an alternating current having a frequency of the natural frequency of the noise generated in the vicinity of the excitation coil and an avoided frequency is passed,
In the non-contact state between the tool and the workpiece, the combined capacity of the annular circuit is a combined capacitance value by the first, second and third capacitors, and the switch is closed in the contact state between the tool and the workpiece. Thus, the second capacitor is short-circuited, and the combined capacity of the annular circuit is set to the combined capacity value of the first and third capacitors, and the combined capacity value in the contact state between the tool and the workpiece is the tool and the workpiece. To be sufficiently larger than the capacity value in a non-contact state with an object,
The resonance frequency value of the annular circuit formed by the first and third capacitors and the coil for the annular circuit in a state where the tool and the workpiece are in contact with each other and the natural frequency value of noise generated in the periphery are avoided. And the same frequency value as the alternating current ,
When the tool approaches the workpiece, the detection coil generates a voltage that increases uniformly without increasing or decreasing the detection sensitivity in the middle, and when the tool contacts the workpiece, the detection coil generates A contact detection method for machine tools, characterized in that the applied voltage steeply exceeds a predetermined set value for contact.
工具あるいは被加工物を主軸に取り付け、
この主軸を回転駆動するとともに、前記工具を被加工物に接触させて加工する工作機械における前記工具と被加工物との接触を検出する工作機械用接触検出方法において、
前記主軸を主軸頭に電気的に絶縁して回転可能に支持し、対向電極を前記主軸に容量結合する様に配置するとともに、環状回路用コイルを介して工作機械に接続し、
前記対向電極と主軸間に形成された第1のコンデンサ、前記主軸と主軸頭間に形成された第2のコンデンサ、主軸頭と対向電極間に形成された第3のコンデンサ、環状回路用コイル、工作機械本体および前記主軸の先端に設けられ前記工具と被加工物とが非接触のときオフし、接触するとオンするスイッチで環状回路を構成し、
この環状回路が貫通するように励起コイルを配置し、
前記環状回路に誘導起電力を発生すべく前記励起コイルに周辺で発生するノイズの固有周波数の値と避けた周波数の交流電流を流し、
前記工具と被加工物との非接触状態では環状回路の合成容量は前記第1、第2及び第3のコンデンサによる合成容量値とし、前記工具と被加工物との接触状態では前記スイッチが閉じることにより第2のコンデンサを短絡し環状回路の合成容量を第1及び第3のコンデンサによる合成容量値とし、前記工具と被加工物との接触状態での前記合成容量値が前記工具と被加工物との非接触状態での容量値に比して十分に大となるようにし、
前記工具と被加工物が非接触した状態での前記第1及び第3のコンデンサおよび環状回路用コイルで構成する前記環状回路の共振周波数の値を前記周辺で発生するノイズの固有周波数の値と避けた前記交流電流の周波数の値に同じにし
前記工具と被加工物とが接近するとき、励起コイルに検出感度が途中で増減することなく、一様に増大する電圧を発生させ、前記工具と被加工物が接触したとき、検出コイルに発生した電圧が予め定めた接触用設定値を急峻に超えるようにしたことを特徴とする工作機械用接触検出方法。
Attach a tool or workpiece to the spindle,
In the contact detection method for a machine tool that detects the contact between the tool and the workpiece in a machine tool that drives the spindle to rotate and processes the tool in contact with the workpiece.
The spindle is electrically insulated from the spindle head and rotatably supported, and the counter electrode is disposed so as to be capacitively coupled to the spindle, and connected to the machine tool via an annular circuit coil,
A first capacitor formed between the counter electrode and the main shaft, a second capacitor formed between the main shaft and the main shaft head, a third capacitor formed between the main shaft head and the counter electrode, an annular circuit coil, A ring circuit is configured with a switch that is provided at the tip of the machine tool main body and the spindle and is turned off when the tool and the workpiece are not in contact with each other, and turned on when contacted ,
Place the excitation coil so that this circular circuit penetrates,
In order to generate an induced electromotive force in the annular circuit, an alternating current having a frequency of the natural frequency of the noise generated in the vicinity of the excitation coil and an avoided frequency is passed,
In the non-contact state between the tool and the workpiece, the combined capacity of the annular circuit is a combined capacitance value by the first, second and third capacitors, and the switch is closed in the contact state between the tool and the workpiece. Thus, the second capacitor is short-circuited, and the combined capacity of the annular circuit is set to the combined capacity value of the first and third capacitors, and the combined capacity value in the contact state between the tool and the workpiece is the tool and the workpiece. To be sufficiently larger than the capacity value in a non-contact state with an object,
The resonance frequency value of the annular circuit formed by the first and third capacitors and the annular circuit coil in a state where the tool and the workpiece are not in contact with each other is a natural frequency value of noise generated in the periphery. The same frequency value of the alternating current that was avoided ,
When the tool and the workpiece are approaching, the excitation coil generates a voltage that increases uniformly without increasing or decreasing the detection sensitivity in the middle, and when the tool and the workpiece are in contact, generated in the detection coil A contact detection method for machine tools, characterized in that the applied voltage steeply exceeds a predetermined set value for contact.
前記対向電極と主軸間に形成された第1のコンデンサと前記主軸と主軸頭間に形成された第2のコンデンサを並列に接続し、第2のコンデンサに主軸頭と対向電極間に形成された第3のコンデンサを直列に接続し、前記第1のコンデンサの他端と第3のコンデンサの他端に環状回路用コイルを接続することを特徴とする請求項1または請求項2に記載の工作機械用接触検出方法。  A first capacitor formed between the counter electrode and the spindle and a second capacitor formed between the spindle and the spindle head are connected in parallel, and the second capacitor is formed between the spindle head and the counter electrode. 3. A machine tool according to claim 1, wherein a third capacitor is connected in series, and an annular circuit coil is connected to the other end of the first capacitor and the other end of the third capacitor. 4. Contact detection method for machinery. 工具あるいは被加工物を主軸に取り付け、
この主軸を回転駆動するとともに、前記工具を被加工物に接触させて加工する工作機械における前記工具と被加工物との接触を検出する工作機械用接触検出方法において、
前記主軸を主軸頭に電気的に絶縁して回転可能に支持し、対向電極を前記主軸に容量結合する様に配置するとともに、環状回路用コイルを介して工作機械に接続し、
前記対向電極と主軸間に形成された第1のコンデンサ、前記主軸と主軸頭間に形成された第2のコンデンサ、主軸頭と対向電極間に形成された第3のコンデンサ、環状回路用コイル、工作機械本体および前記主軸の先端に設けられ前記工具と被加工物とが非接触のときオフし、接触するとオンするスイッチで環状回路を構成し、
この環状回路が貫通するように励起コイルおよび検出コイルを配置し、
前記環状回路に誘導起電力を発生すべく前記励起コイルに周辺で発生するノイズの固有周波数の値と避けた周波数の交流電流を流し、
前記工具と被加工物との非接触状態では環状回路の合成容量は前記第1、第2及び第3のコンデンサによる合成容量値とし、前記工具と被加工物との接触状態では前記スイッチが閉じることにより第2のコンデンサを短絡し環状回路の合成容量を第1及び第3のコンデンサによる合成容量値とし、前記工具と被加工物との接触状態での前記合成容量値が前記工具と被加工物との非接触状態での容量値に比して十分に大となるようにし、
前記工具と被加工物が接触した状態での前記第1及び第3のコンデンサおよび環状回路用コイルで構成する前記環状回路の共振周波数の値を前記周辺で発生するノイズの固有周波数の値と避けた前記交流電流の周波数の値に同じにし
前記工具と被加工物とが接近するとき、前記検出コイルに検出感度が途中で増減することなく、一様に増大する電圧を発生させ、
前記工具と被加工物が接触したとき前記検出コイルに発生した電圧が予め定めた接触用設定値を急峻に超えるように検出する電圧検出手段が設けられたことを特徴とする工作機械用接触検出装置。
Attach a tool or workpiece to the spindle,
In the contact detection method for a machine tool that detects the contact between the tool and the workpiece in a machine tool that drives the spindle to rotate and processes the tool in contact with the workpiece.
The spindle is electrically insulated from the spindle head and rotatably supported, and the counter electrode is disposed so as to be capacitively coupled to the spindle, and connected to the machine tool via an annular circuit coil,
A first capacitor formed between the counter electrode and the main shaft, a second capacitor formed between the main shaft and the main shaft head, a third capacitor formed between the main shaft head and the counter electrode, an annular circuit coil, A ring circuit is configured with a switch that is provided at the tip of the machine tool main body and the spindle and is turned off when the tool and the workpiece are not in contact with each other, and turned on when contacted ,
Place the excitation coil and the detection coil so that this annular circuit penetrates,
In order to generate an induced electromotive force in the annular circuit, an alternating current having a frequency of the natural frequency of the noise generated in the vicinity of the excitation coil and an avoided frequency is passed,
In the non-contact state between the tool and the workpiece, the combined capacity of the annular circuit is a combined capacitance value by the first, second and third capacitors, and the switch is closed in the contact state between the tool and the workpiece. Thus, the second capacitor is short-circuited, and the combined capacity of the annular circuit is set to the combined capacity value of the first and third capacitors, and the combined capacity value in the contact state between the tool and the workpiece is the tool and the workpiece. To be sufficiently larger than the capacity value in a non-contact state with an object,
The resonance frequency value of the annular circuit formed by the first and third capacitors and the coil for the annular circuit in a state where the tool and the workpiece are in contact with each other and the natural frequency value of noise generated in the periphery are avoided. And the same frequency value as the alternating current ,
When the tool and the work piece approach, the detection sensitivity is not increased or decreased in the middle of the detection coil, and a voltage that increases uniformly is generated.
Contact detection for machine tools, characterized in that voltage detection means is provided for detecting that the voltage generated in the detection coil steeply exceeds a predetermined set value for contact when the tool and workpiece are in contact with each other. apparatus.
前記電圧検出手段は、前記交流電流発生手段の発生する交流電流と略同じ周波数の電流を通過させるバンドパスフィルターを介して、電圧を検出することを特徴とする請求項4に記載の工作機械用接触検出装置。  5. The machine tool according to claim 4, wherein the voltage detection unit detects a voltage through a band-pass filter that allows a current having substantially the same frequency as the AC current generated by the AC current generation unit to pass therethrough. Contact detection device. 工具あるいは被加工物を主軸に取り付け、
この主軸を回転駆動するとともに、前記工具を被加工物に接触させて加工する工作機械における前記工具と被加工物との接触を検出する工作機械用接触検出方法において、
前記主軸を主軸頭に電気的に絶縁して回転可能に支持し、対向電極を前記主軸に容量結合する様に配置するとともに、環状回路用コイルを介して工作機械に接続し、
前記対向電極と主軸間に形成された第1のコンデンサ、前記主軸と主軸頭間に形成された第2のコンデンサ、主軸頭と対向電極間に形成された第3のコンデンサ、環状回路用コイル、工作機械本体および前記主軸の先端に設けられ前記工具と被加工物とが非接触のときオフし、接触するとオンするスイッチで環状回路を構成し、
この環状回路が貫通するように励起コイルを配置し、
前記環状回路に誘導起電力を発生すべく前記励起コイルに周辺で発生するノイズの固有周波数の値と避けた周波数の交流電流を流し、
前記工具と被加工物との非接触状態では環状回路の合成容量は前記第1、第2及び第3のコンデンサによる合成容量値とし、前記工具と被加工物との接触状態では前記スイッチが閉じることにより第2のコンデンサを短絡し環状回路の合成容量を第1及び第3のコンデンサによる合成容量値とし、前記工具と被加工物との接触状態での前記合成容量値が前記工具と被加工物との非接触状態での容量値に比して十分に大となるようにし、
前記工具と被加工物が接触した状態での前記第1及び第3のコンデンサおよび環状回路用コイルで構成する前記環状回路の共振周波数の値を前記周辺で発生するノイズの固有周波数の値と避けた前記交流電流の周波数の急峻に値と同じにし
前記工具と被加工物とが接近するとき、前記検出コイルに検出感度が途中で増減することなく、一様に増大する電圧を発生させ、
前記工具と被加工物が接触したとき前記励起コイルに発生した電圧が予め定めた接触用設定値を急峻に超えるように検出する電圧検出手段が設けられたことを特徴とする工作機械用接触検出装置。
Attach a tool or workpiece to the spindle,
In the contact detection method for a machine tool that detects the contact between the tool and the workpiece in a machine tool that drives the spindle to rotate and processes the tool in contact with the workpiece.
The spindle is electrically insulated from the spindle head and rotatably supported, and the counter electrode is disposed so as to be capacitively coupled to the spindle, and connected to the machine tool via an annular circuit coil,
A first capacitor formed between the counter electrode and the main shaft, a second capacitor formed between the main shaft and the main shaft head, a third capacitor formed between the main shaft head and the counter electrode, an annular circuit coil, A ring circuit is configured with a switch that is provided at the tip of the machine tool main body and the spindle and is turned off when the tool and the workpiece are not in contact with each other, and turned on when contacted ,
Place the excitation coil so that this circular circuit penetrates,
In order to generate an induced electromotive force in the annular circuit, an alternating current having a frequency of the natural frequency of the noise generated in the vicinity of the excitation coil and an avoided frequency is passed,
In the non-contact state between the tool and the workpiece, the combined capacity of the annular circuit is a combined capacitance value by the first, second and third capacitors, and the switch is closed in the contact state between the tool and the workpiece. Thus, the second capacitor is short-circuited, and the combined capacity of the annular circuit is set to the combined capacity value of the first and third capacitors, and the combined capacity value in the contact state between the tool and the workpiece is the tool and the workpiece. To be sufficiently larger than the capacity value in a non-contact state with an object,
The resonance frequency value of the annular circuit formed by the first and third capacitors and the coil for the annular circuit in a state where the tool and the workpiece are in contact with each other and the natural frequency value of noise generated in the periphery are avoided. The frequency of the alternating current is steeply the same as the value ,
When the tool and the work piece approach, the detection sensitivity is not increased or decreased in the middle of the detection coil, and a voltage that increases uniformly is generated.
Contact detection for machine tools, characterized in that voltage detection means is provided for detecting that the voltage generated in the excitation coil abruptly exceeds a predetermined contact set value when the tool and workpiece are in contact with each other. apparatus.
前記電圧検出手段は、前記交流電流発生手段の発生する交流電流と略同じ周波数の電流を通過させるバンドパスフィルターを介して、電流を検出することを特徴とする請求項6に記載の工作機械用接触検出装置。  7. The machine tool according to claim 6, wherein the voltage detection means detects a current through a band-pass filter that passes a current having substantially the same frequency as the alternating current generated by the alternating current generation means. Contact detection device. 前記工具が被加工物に接触したと判定するための接触用設定値が設定され、前記検出手段の検出値が接触用設定値に達した場合に、工具が被加工物に接触したと判定する判定手段が設けられていることを特徴とする請求項4ないし7の何れか1項に記載の工作機械用接触検出装置。  A contact set value for determining that the tool has contacted the workpiece is set, and when the detection value of the detection means reaches the contact set value, it is determined that the tool has contacted the workpiece. The contact detection device for a machine tool according to any one of claims 4 to 7, further comprising a determination unit.
JP2001026472A 2001-02-02 2001-02-02 Contact detection method and apparatus for machine tool Expired - Lifetime JP4025864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001026472A JP4025864B2 (en) 2001-02-02 2001-02-02 Contact detection method and apparatus for machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001026472A JP4025864B2 (en) 2001-02-02 2001-02-02 Contact detection method and apparatus for machine tool

Publications (2)

Publication Number Publication Date
JP2002233933A JP2002233933A (en) 2002-08-20
JP4025864B2 true JP4025864B2 (en) 2007-12-26

Family

ID=18891282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001026472A Expired - Lifetime JP4025864B2 (en) 2001-02-02 2001-02-02 Contact detection method and apparatus for machine tool

Country Status (1)

Country Link
JP (1) JP4025864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170282320A1 (en) * 2014-09-18 2017-10-05 Korea Institute Of Industrial Technology Module for detecting contact between object to be processed and precision tool tip and method for detecting contact using same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4175648B2 (en) 2004-07-20 2008-11-05 国立大学法人広島大学 Processing equipment
JP4714503B2 (en) * 2005-05-13 2011-06-29 国立大学法人広島大学 Processing equipment
JP5583555B2 (en) 2010-11-09 2014-09-03 ビアメカニクス株式会社 Processing equipment
CN105068508B (en) * 2015-08-03 2017-12-22 陕西海力特精密机械有限公司 The detection device and detection method of light workpieces processing are precisely seen for Digit Control Machine Tool
JP2018103307A (en) * 2016-12-26 2018-07-05 川崎重工業株式会社 Machining system and contact detection device
EP3821508B1 (en) * 2018-07-11 2023-09-06 Schleuniger AG Device for identifying contact with an electrical conductor, method for identifying contact with an electrical conductor, insulation-stripping machine comprising a device of this kind
JP6872709B1 (en) * 2020-01-16 2021-05-19 パルステック工業株式会社 Surface polishing jig, characteristic detection device and surface polishing device
KR102645377B1 (en) * 2021-11-17 2024-03-07 현대위아 주식회사 Device for detecting tool collision and preventing breakage in machine tools
IT202200003554A1 (en) * 2022-02-25 2023-08-25 Marposs Spa SYSTEM FOR CHECKING THE INTEGRITY OF A TOOL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170282320A1 (en) * 2014-09-18 2017-10-05 Korea Institute Of Industrial Technology Module for detecting contact between object to be processed and precision tool tip and method for detecting contact using same

Also Published As

Publication number Publication date
JP2002233933A (en) 2002-08-20

Similar Documents

Publication Publication Date Title
JP4025864B2 (en) Contact detection method and apparatus for machine tool
JPH08136366A (en) Torque sensor
JP5150521B2 (en) High frequency oscillation type proximity sensor
US5489888A (en) Sensor system for contactless distance measuring
US20050210986A1 (en) Acoustic sensor for monitoring machining processes in machining tools
US6101866A (en) Main-shaft malfunction-state detector in an air bearing type machine tool
JPH01307602A (en) Induction signal transfer apparatus for contact head
US6140931A (en) Spindle state detector of air bearing machine tool
EP1684938A1 (en) Machine adaptation
JP2022500619A (en) Devices that recognize contact with electrical conductors, methods of recognizing contact with electrical conductors, stripping machines with these types of devices
JP4574893B2 (en) Conductor detection device
JP2001009673A (en) Main shaft state detecting device for air bearing type machine tool
JPS61142056A (en) Cutting tool abnormality detecting means in machine tool
JPH11197997A (en) Contact avoiding control device of air bearing type machine tool
JPS59116003A (en) Touch detector for machine tools
JP4072377B2 (en) Tool state detection device
JP4814421B2 (en) Wear detection device
JP2003025083A (en) Laser material processing device and method of controlling operation thereof
JPH0260963B2 (en)
JP3624005B2 (en) Machining equipment
KR200248563Y1 (en) Automatic matching device
JPH07100735A (en) Sensor for drill and drill condition monitor using the same
JPS6215004A (en) Machine tool diameter detecting device and rotating speed control device for drilling machine and the like
JPH06170682A (en) Machining device
JPS59126904A (en) Detector for displacement of revolving shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4025864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term