JP4022619B2 - Annealing treatment, apparatus and system - Google Patents

Annealing treatment, apparatus and system Download PDF

Info

Publication number
JP4022619B2
JP4022619B2 JP2002381085A JP2002381085A JP4022619B2 JP 4022619 B2 JP4022619 B2 JP 4022619B2 JP 2002381085 A JP2002381085 A JP 2002381085A JP 2002381085 A JP2002381085 A JP 2002381085A JP 4022619 B2 JP4022619 B2 JP 4022619B2
Authority
JP
Japan
Prior art keywords
chamber
annealing
article
stocker
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002381085A
Other languages
Japanese (ja)
Other versions
JP2004211948A (en
Inventor
智 安藤
篤一 山本
光寿 松下
利和 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shinku Co Ltd
Original Assignee
Showa Shinku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shinku Co Ltd filed Critical Showa Shinku Co Ltd
Priority to JP2002381085A priority Critical patent/JP4022619B2/en
Publication of JP2004211948A publication Critical patent/JP2004211948A/en
Application granted granted Critical
Publication of JP4022619B2 publication Critical patent/JP4022619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、真空中で加熱処理を行うアニール装置及びアニール方法に関するものである。
【0002】
【従来の技術】
水晶振動子は一般的に、人工水晶の結晶体を切断し研磨する工程と、研磨した結晶体に電極膜を付して振動子を構成する第1の蒸着工程と、振動子をケースに組み込む工程と、前記電極膜を安定化する為の第1のアニール工程と、振動子の周波数を調整する第2の蒸着工程と、周波数調整を行った電極膜を安定化する為の第2のアニール工程と、振動子を収納したケースを封止する工程とにより製造される。
【0003】
従来の製造方法では、上記アニール工程は、図9に示すバッチ式のアニール装置により行われていた。バッチ式のアニール装置は一般的に縦型であり、真空槽100内部には処理対象物である基板101を収容する複数段の棚102と加熱手段が設けられる。各棚102に複数の振動子を充填した基板101を配置し、図示しない真空ポンプにより真空排気した後、加熱手段を用いて所定時間加熱処理を行い、ガス導入系103によりガスを導入して大気圧に開放し処理を終了していた。
【0004】
【発明が解決しようとする課題】
図9に示すアニール装置は、複数枚の基板を同時に一括処理するバッチ式装置である為、アニール処理の前後工程である蒸着工程やケースへの組み込み工程、ケース封止工程を行う処理装置(基板を1枚ずつ処理する)との間で基板のやり取りするのに時間がかかりシステム全体のスループット向上が難しいという問題があった。
【0005】
上記問題に関して、枚葉式処理部とバッチ式処理部とをインライン化して一貫した連続処理を可能とする処理システムが提案されている。図10は、特開平7−137803号公報に開示される処理システムを用いたアニール装置の概略図である。
【0006】
アニール処理を行う熱処理部110は、基板の受け渡しを行うインターフェイス部111を介して枚葉式処理部112に接続される。熱処理部110は縦型の加熱炉113とボート移載室114で構成され、ボート移載室114には搬送アーム115が設けられている。枚葉式処理を終えた基板101はインターフェイス部111において複数枚の基板101を収容するボート116に多数枚装填される。ボート116に1ロット分(加熱炉113で一度に処理を受けるべき基板101の枚数)が装填されると、インターフェイス部111からボート移載室114へボート116が搬送される。搬送アーム115によりボート移載室114から加熱炉113の中へ第1のボートが挿入され基板101の加熱処理が施される。この間枚葉式処理部112では基板101が1枚ずつ処理を施され、インターフェイス部111に順次多段に収容される。これにより第1のボート116が加熱処理を終了したときには、第2のボート116が1ロット分収容されており、順次アニール処理が施される。
【0007】
同公報に開示される処理システムは、半導体製造装置に関するものである為各装置の構成は異なるが、1枚ずつ行う基板処理と複数枚を一括して行う基板処理を連続して行う点で水晶振動子の製造と同一である。しかし、水晶振動子の製造過程においては、振動子をケースに組み込む工程等大気中で行われる工程もある為、上記のような連続処理システムを応用できない場合もある。
【0008】
この場合、処理対象物である振動子が大気に晒される為周波数変動が生じ、大気に晒される時間も振動子毎に異なる為周波数の変動値も一定ではないという振動子の品質管理上の問題が解消されない。
【0009】
更に、上記公報に開示される処理システムを用いた場合、基板を1枚ずつ処理する装置と複数枚の基板を一括処理する装置との間で一貫した連続処理を行う事が可能となるが、1枚ずつ処理を終了する基板がバッチ式アニール装置に収容できる数だけ溜まってからアニール処理が開始される為、バッチ式アニール処理装置でアニール処理が開始されるまでの間に基板の待ち時間ができ、生産性に大きな影響を与えていた。これは、アニール工程の後工程が1枚ずつ行う基板処理の場合にも同じ様に影響を与え、複数枚の基板が同時にアニール工程を終了する為、アニール工程を終えても次工程に進むまでの間に基板に待ち時間ができるという問題があった。
【0010】
更に、図9に示すアニール装置は、複数枚の基板の加熱及び冷却を常温から同時に一括して行う為、基板の昇温及び降温に時間を要するという問題があった。
【0011】
ここで、基板の昇温及び降温時間を短縮する為に基板の予備加熱手段及び冷却手段を備えた従来のアニール装置について図11を参照に説明する。同図に示すアニール装置は、特開平9−275080号公報に開示されるものであり、アニールチャンバー内に予備加熱ヒーターと冷却手段を設けることを特徴とする。
【0012】
同図に示す装置は、基板投入用チャンバー120と、搬送チャンバー121,123と、アニールチャンバー122と、基板取出し用チャンバー124により構成され、アニールチャンバー122内には予備加熱ヒーター125と、アニール処理手段126と、冷却手段127とを備えるものである。
【0013】
以下動作について説明する。まず、基板投入用チャンバー120内のカセット128に多数の未処理の被処理基板を収容し、搬送チャンバー121を介して基板を1枚ずつアニールチャンバー122内に搬送する。アニールチャンバー122内では基板の予備加熱、アニール処理、冷却を行い、搬送チャンバー123を介して基板取出し用チャンバー124のカセット129に被処理基板を収容する。
【0014】
同公報に記載のアニール装置を用いた場合、アニールチャンバー122内に予備加熱ヒーター125及び冷却手段127を設けることで、基板の昇温及び降温時間を短縮することが可能になり、短いアニール処理時間でも所望の薄膜が得られるようになるが、基板を1枚ずつアニール処理する為、アニール処理時間を長時間必要とする場合には非常に生産性が低くなり、上記装置を用いることは現実的ではないという問題がある。
【0015】
本発明は、複数枚の基板を一定時間収容処理するバッチ式アニール装置の生産性を保ちながらも基板の待ち時間を作らずにアニール処理の前後工程を行う処理装置と接続可能であり、更に基板の昇温及び降温時間を短縮する生産性の高いアニール装置を提供する事を目的とする。
【0016】
【発明の概要】
本発明は上記問題を解決する為、アニール装置に複数段の棚を昇降自在に設け、複数段の棚に順次基板を収容処理することにより、基板の搬出入は1枚ずつ一定間隔で行いながらも、アニール処理は複数枚を平行して行うものである。又、装置を仕込室、アニール室、取出室の3室構成とし、加熱処理を施すアニール室の左右に、昇温時間を短縮する予備加熱機構を備えた仕込室と、降温時間を短縮する急冷機構を備えた取出室設け、基板を1枚ずつ予備加熱及び冷却することにより、基板の昇温及び高温を短時間に行うものである。
【0017】
具体的に、本装置アニール室は、基板の加熱手段と、基板を収容する複数段の棚を設けた基板ストッカーと、基板ストッカーの昇降手段とを具備し、仕込室から搬入されてくる基板を、前記加熱手段を用いて設定温度に加熱された基板ストッカー内へ、前記昇降手段を駆動して1枚ずつ連続的に搬入し、基板ストッカー内で加熱処理後、所定加熱時間に達した基板から前記昇降手段を駆動して1枚ずつ所定間隔をおいて連続的に取出室へ搬出することを特徴とする。
【0018】
又、本装置仕込室は、基板を予備加熱手段によって所定温度迄加熱後、一定間隔でアニール室へ搬送することを特徴とし、本装置取出室は、アニール処理を施された基板を強制冷却手段によって1枚ずつ所定温度迄急冷することを特徴とする。
【0019】
上記アニール装置は、アニール工程の前後工程を行う処理装置に接続してインライン化することも可能である。この場合、本発明アニール装置は、前工程を行う処理装置から1枚ずつ搬送される基板を順次搬入し、所定時間の処理を終了した基板を次工程を行う処理装置に1枚ずつ順次搬出する。このとき接続する処理装置は真空中で処理を行う装置でも大気中で処理を行う装置でも構わない。
【0020】
本発明では、バルブの開閉動作、基板の搬入・搬出、ストッカー移動(昇降)手段、真空排気動作、及び加熱動作はあるタイミングスケジュールで行われるが、それぞれの動作は制御装置(プロセッサ)にプログラムされた内容で、制御装置の指令によりシステム制御される。
【0021】
【実施例の説明】
構成
図1は本発明アニール装置の横断面を示す概略図であり、図2は縦断面を示す概略図である。本装置は、中央に設置されたアニール室2と左右に設置された仕込室1、取出室3を有して構成され、各室は開閉可能なゲートバルブ13,14を有する口17と19で連結されている。
【0022】
基板6は仕込室1から搬入され、アニール室2でアニール処理を施された後、取出室3から搬出される。
【0023】
本実施例では、図8(a)に示すトレー70に複数の振動子を充填したものを基板6として搬送するが、本発明装置の処理対象となる基板6は同図に示すトレー70に限られるものではなく、他の物品でもよい。トレー70には、例えばAlの様な熱容量の小さい材料を用いることで、充填した振動子の昇降温を短時間に行うことが可能となる。
【0024】
仕込室1は基板6の搬入を行う入口16と搬出を行う出口17とを有し、出入口16,17にはゲートバルブ12,13がそれぞれ開閉自在に設置されている。基板6の搬入及び搬出は1枚ずつ一定間隔で繰り返し行われる。基板6は仕込室1の出口17からアニール室2に搬出されるが、常温の基板6をアニール室2へ搬送した場合目的の温度まで基板6を上昇させるのに時間を要してしまう為、仕込室1において基板6の予備加熱を行う。仕込室1には予備加熱機構として、図2に示す複数のハロゲンランプ4と、ハロゲンランプ4の熱を効率よく基板6に伝える為のリフレクター5を設置する。リフレクター5は、基板6と同等かそれ以上の大きさにすることで基板6の温度の均一性を向上させることが可能となる。本実施例では、予備加熱機構としてハロゲンランプ4を用いているが、他の構成を用いてもよい。
【0025】
仕込室1における処理手順について以下に説明する。
【0026】
まず、入口16から基板6を搬入し、図示しない真空ポンプにより仕込室1内部を真空排気する。次に搬入した基板6をハロゲンランプ4の下部に搬送し、ハロゲンランプ4により基板6の予備加熱を行う。予備加熱は一定時間行い、予備加熱を終了した基板6を出口17からアニール室2へ搬出する。次に図示しないリーク弁により仕込室1内部を大気圧に開放し、再び入口16から基板6を搬入して上記作業を繰り返す。基板6の搬出入は、ゲートバルブ12,13の開閉により行われるが、ゲートバルブ12,13は基板搬送直前に開き、直後に閉じるものとする。ゲートバルブ12〜15は開閉可能であって、その開閉のタイミングは制御装置100により制御されている。又基板6を1つの室から他の室へ搬送する手段(不図示)を含み、該搬送手段の動作は制御装置100で制御され、基板の所定の搬送がなされる。
【0027】
アニール室2は基板6の搬出入を行う入口18と出口19とを有し、アニール室2の入口18は仕込室1の出口17に接続される。
【0028】
図2に示すように、アニール室2には基板ストッカー22が昇降自在に設けられ、基板6は基板ストッカー22の各棚に1枚ずつ収容される。本実施例では基板ストッカー22の昇降手段としてエレベータ機構7を取り付ける。エレベータ機構7は、基板ストッカー22の下部領域に設けられ、基板ストッカー22を支える支持板と、支持板の昇降を行う駆動装置により構成される。
【0029】
基板ストッカー22は、図3に示すように基板6が装填される複数の基板収容棚30と、最上段に設けられた補助棚31により構成される。各棚にはシースヒーター32が設けられ、ヒーター32の熱により基板6のアニール処理を行う。最上段に補助棚31を設けるのは、装填された基板6を全て同条件で加熱する為であり、全ての基板6は自身が装填される棚の下部に設けられたヒーター32と、その上段の棚の下部に設けられたヒーター32により効率良くアニール処理が施される。本実施例では、基板6にアニール処理を施す加熱機構としてシースヒーター32を採用しているが、他の加熱機構を用いてアニール処理を施してもよい。基板ストッカー22には各棚に対応した複数の熱電対を設け、熱電対の測定温度を基に各シースヒーター32の加熱コントロールを行う。しかし熱電対を各棚に設けると配線が複雑になる場合等は、ヒーター32を複数のブロックに区分し、ブロック毎に熱電対を設けて各棚の温度制御を行ってもよい。温度制御は、ON-OF制御を用いてもPID制御を用いてもよい。ON-OF制御はONとOFを繰り返すことで所望の温度曲線に近づけるのに対し、PID制御は設定値と制御量の間の偏差に比例して操作量を上下させる比例動作P、偏差の継続時間に応じて操作量を上下させる積分動作I、偏差の変化具合に応じて操作量を上下させる微分動作Dの3つの動作を組み合わせた制御である為、本実施例ではPID制御を用いて精度よくアニール室の温度制御を行うものとする。
【0030】
加熱機構であるヒーターは経時変化によって交換を余儀なくされる事が考えられるが、その場合は図1及び図2に示すようにメンテナンス用扉8を装置前面に設けることにより、メンテナンス時の作業性の向上を図ることが出来る。
【0031】
アニール室2は、加熱機構により全体が高温に晒される為、アニール室外壁を冷却する必要が求められる。又、メンテナンス用扉8、ゲートバルブ13,14等に取付いている図示しないパッキンは、高温に晒されることによる影響が大きい為、特に冷却の必要がある。そこで、本実施例ではアニール室2の壁を2重構造にして、その間に冷却水を流すことで、壁全体を冷却する事を可能としている。
【0032】
次に、アニール室2における処理手順について以下に説明する。
【0033】
アニール室2は常に真空状態にあって、基板ストッカー22に設けたヒーターは常にオンにしておく。又、基板6の搬出入時アニール室2に隣接する仕込室1及び取出室3は常に真空状態にしておく。
【0034】
まず、エレベータ機構7により基板を搬入する収容位置であるストッカーの空いた棚をアニール室2の入口位置に整列し、仕込室1から搬出された基板6の受渡しを行う。基板6は、エレベータ機構7により基板ストッカー22を上下させることで空いている棚に順次収容し、アニール処理を施す。
【0035】
本発明でアニール室2に基板ストッカー22を設けることにより、仕込室1から一定間隔で順次搬入される基板6をアニール室2に一定時間保存処理する事が可能となる。基板のアニール処理時間は、基板収容棚30の数と、基板搬送の間隔により決定される為、棚数と搬送間隔は目的に合わせて調整する。又、装置を効率良く利用する為、基板ストッカー22が常に満たされた状態となるように基板収容棚30の数を設けることが望ましい。例えば基板6が10分間隔で搬送され、所望のアニール処理時間が120分間である場合、基板収容棚30を12段設ければよい。これにより、アニール室2へ10分間隔で搬入された基板6は、120分間のアニール処理を行った後、10分間隔で順次取出室3へ搬出される為、アニール室2の基板ストッカー22は常に満たされた状態となっている。
【0036】
所定時間のアニール処理を施した基板6は、搬入同様エレベータ機構7により基板ストッカー22を上下させることで、出口19から取出室3に搬出する。アニール室2への基板6の搬出入は、出入口18,19位置で行われるが、本発明でエレベータ機構7により基板ストッカー22の複数段の棚を上下させることにより、任意の棚への基板の搬出入が可能となる。
【0037】
取出室3は基板の搬出入を行う入口20と出口21を有し、出入口にはゲートバルブ14,15がそれぞれ開閉自在に設置されている。取出室の入口20はアニール室の出口19に接続され、アニール処理を終了した基板6が取出室3に順次搬入される。基板6の搬出入は仕込室1及びアニール室2同様1枚ずつ一定間隔で繰り返し行われる。
【0038】
アニール室2で高温に加熱された基板6は、一定時間をおいて順次取出室3に搬送される為、取出室3では一定時間内に基板6を冷却する事が求められる。一定時間内の真空中での自然冷却では基板6の温度降下は期待できない為、取出室3では基板6の強制急冷を行う。取出室3には基板6の強制急冷の為に、冷却機構を設ける。冷却機構は、図4に示すように冷却板9と、冷却板の昇降装置11と図1に示すガス導入系10により構成される。
【0039】
冷却板9は例えば銅板のような熱伝導率の高い板に水路40を設け、水路40に冷却水を流したものである。同図において昇降装置11はシリンダーを指し、圧縮空気の導入と放出を行うことで冷却板9の昇降を行う。冷却板9及び昇降装置11は他の構成を用いてもよい。
【0040】
次に、取出室3における強制急冷の手順について以下に説明する。まず、図示しない真空ポンプにより取出室3内部を真空排気した後、アニール室2から取出室3へ基板6の搬送を行う。次に取出室3に搬入した基板6を冷却板9の真上に搬送し、冷却板9を昇降装置11により上昇させ基板6に接触させる。同時にガス導入系10により取出室3に不活性ガスを導入することで基板6の強制冷却を行う。強制冷却は予備加熱同様一定時間行い、1枚目の基板6が取出室に搬入されてから2枚目の基板6が搬入されるまでの間に1枚目の基板6の強制冷却及び取出室3からの基板6の搬出、取出室3の真空排気を全て終了させる。仕込室1同様基板6の搬出入は、ゲートバルブ14,15の開閉により行い、ゲートバルブ14,15の開閉は基板搬送後すぐに行うものとする。
【0041】
図7は基板ストッカー22の基板収容棚30を12段設けた場合の本装置動作説明図である。以下同図を参照に基板を10分間隔で搬送する場合について説明する。
【0042】
まず、仕込室1に1枚目の基板6aを搬入し、予備加熱を行う(a)。10分後基板6aをアニール室2に搬送し、2枚目の基板6bを仕込室1に搬送する(b)。基板6aはアニール室2に搬入されると同時にアニール処理が開始される。更に10分後、2枚目の基板6bをアニール室2に搬入し、3枚目の基板6cを仕込室1に搬入する(c)。同様に10分毎に基板6c〜6lを順次アニール室2へ搬入していく(d)(e)。12枚目の基板6lがアニール室2に搬入されてから10分後、1枚目の基板6aは120分間のアニール処理を終了するので、1枚目の基板6aを取出室3に搬出し、13枚目の基板6mをアニール室2に搬入し、14枚目の基板6nを仕込室1に搬入する(f)。この時13枚目の基板6mは、基板6aを収容していた棚に搬入する。更に10分後2枚目の基板6bが120分間のアニール処理を終了するので、2枚目の基板6bを取出室3に搬出し、14枚目の基板6nをアニール室2に15枚目の基板6oを仕込室1に搬入する(g)。以下は同様の作業を繰り返す。
【0043】
上記説明では1枚目から11枚目までの基板は、アニール室2内の基板ストッカー22が満たされない状態で処理が行われるが、装置動作開始時、アニール室2にダミー基板を11枚装填しておき、アニール室2が常に満たされた状態となるようにしてもよい。アニール室への基板6の出し入れ搬送時バルブ13と14は開放されて、アニール室と仕込室と取出室は連結できるが、このときは仕込室と取出室は真空にされている。バルブ12、13、14、15の開閉、仕込室1、アニール室2及び取出室での基板の搬送、ストッカーの昇降及び真空排気それぞれを動作させるアクチュエータ及び搬送手段(不図示)は、制御装置100の制御の下に所望のタイミングで作動される。即ち、制御装置は所望のタイミングでの作動を行うようプログラムされている。
【0044】
即ち、仕込室1で所定の予備処理時間だけ予備処理された基板6m(物品)を順次アニール室2に搬入し、アニール室2内の複数の物品収容位置を有するストッカー22内に複数の物品6a〜6lを収容し、アニール室2内で所定のアニール時間だけアニールが完了した物品を順次アニール室2から搬出しているが、(a)所定の予備処理時間毎に予備処理された物品をアニール室内のストッカーの空き収容位置に収容すると共に、所定のアニール時間だけアニールされてしまっている物品をストッカー22から取り出してアニール室2外へ搬出してストッカー22に空き収容位置をつくり、そして(b)該工程(a)の後に該所定の予備処理時間だけストッカー22内の物品をアニールし、その後該工程(a)と(b)をくり返している。この所定のアニール時間は所定の予備処理時間より長い。物品のアニール中、アニール室2は真空に維持され、アニール室2への物品の搬入と搬出の前記工程(a)の際、該アニール室の該搬入の口と搬出の口の外側の雰囲気は真空にされている。又、アニールは物品6の搬入・搬出の際も連続的に行われている。
【0045】
上述してきたシステムは、真空中で物品を加熱処理するシステムであって、仕込室1、アニール用加熱室2及び取出室3からなり、仕込室1と加熱室2とは開閉可能な第1のバルブ13を有する第1の開口16、17で連結され、加熱室2と取出室3とは開閉可能な第2のバルブ14を有する第2の開口19、20で連結されているシステムである。そして、仕込室1の物品6を第1のバルブ13開放時に第1の開口16、17から加熱室2に搬入する手段(不図示)、複数の物品収容位置を有する加熱室2内に配置されたストッカー22、ストッカー22の物品収容位置の少なくとも1つを第1の開口16、17に整列させて第1の開口16、17から搬入された物品6を整列された物品収容位置に収容するため、そしてストッカー22の物品収容位置の少なくとも1つを第2の開口19、20に整列させて第2の開口19、20から整列された物品収容位置の物品を搬出するためストッカー22を移動させる手段(図2、7)、加熱室2の物品6を第2のバルブ14の開放時に第2の開口19、20から取出室3に搬出する手段(不図示)、及び搬入する手段、搬出する手段、ストッカー移動手段及び第1と第2のバルブの作動を制御する制御装置100とからなる。この制御装置100は、所定の搬入間隔時間の間隔毎(例えば上述の10分間隔)に第1のバルブ13を開放させ、物品6を仕込室1から第1の開口を介して加熱室2へと搬入するよう第1のバルブ13と搬入手段を制御する第1の制御を行い、第1の開口を介して加熱室2への物品6の搬入時にストッカー22の空き物品収容位置が第1の開口に整列するようストッカー移動手段7を制御する第2の制御を行い、ストッカー22に収容されている複数の物品の少なくとも1つが所定の加熱時間(例えば上述の120分間)だけ加熱完了された時に、加熱完了した物品6の収容位置を第2の開口に整列するようストッカー移動手段7を制御する第3の制御を行い、ストッカー22の加熱完了物品の収容位置が第2の開口に整列された時に、物品を加熱室2から第2の開口を介して取出室3へと搬出してストッカー22に空き物品収容位置をつくるよう第2のバルブ14と搬出手段を制御する第4の制御を行っている。
【0046】
その際、アニール(加熱)完了物品(基板)の載置されているストッカー22の棚位置を第2の開口にストッカー移動手段7を駆動して整列して(第3の制御)、先ずストッカー22からアニール完了物品を取出室3へ取り出して、ストッカー22に空き棚を生じさせた(第4の制御)後、その空き棚に仕込室1からの物品を収容する場合は、第1の開口と第2の開口が同じ水平レベルに構成されていると、前述の第2の制御は行う必要がない。第3の制御後に第1の開口と空き棚は既に整列されているからである。又、本システムでは、物品の加熱室への搬入・搬出の時にもアニール加熱は継続して行われている。その際に、アニール室の真空状態を継続して維持する。第1と第2の開口が開いている間は少なくとも仕込室1と取出室3の雰囲気は真空に保たれているよう、制御装置100は、仕込室1と取出室3の真空排気手段(不図示)を作動している。
【0047】
本発明装置の仕込室1及び取出室3は、アニール工程の前後工程を担当する処理装置に接続しインライン化してもよい。
【0048】
例えば、水晶振動子の製造過程において電極蒸着工程、アニール工程及びケース封止工程を連続処理する場合、蒸着装置50と仕込室1を、取出室3とシーム溶接装置51をそれぞれ接続する。図5はその様子を示す模式図である。以下同図を参照に本装置の接続について説明するが、本装置は連続処理可能な任意の処理装置に接続されるものであり、接続可能な装置は上記装置に限られるものではない。
【0049】
同図において、基板6は、蒸着装置50から仕込室1、仕込室1からアニール室2、アニール室2から取出室3、取出室3からシーム溶接装置51へと1枚ずつ搬送され、各装置及び各部屋からの基板の搬出入は全て同ピッチで行われる。
【0050】
本装置における処理は前記説明の通りであるが、仕込室1への接続装置が真空装置である場合は、仕込室1における真空排気と大気開放の繰り返しは省略し、仕込室1は常に真空排気した状態とする。この場合、両装置間の雰囲気が等しければ必要に応じてゲートバルブ12は省略しても構わない。又、取出室3への接続装置が真空装置である場合は、真空排気は取出室3からの基板搬出前に行う。
【0051】
本装置は、蒸着装置50から1枚ずつ搬出される基板6を順次処理する事が可能となる。又、シーム溶接装置51は、本装置取出室3から1枚ずつ搬出される基板6を順次処理する事が可能となる。つまり、本装置と前後工程を担当する処理装置を接続する事で、基板6の待ち時間を解消し、装置全体の生産性を大きく向上させる事が可能となる。
【0052】
本装置における基板搬送の間隔や、棚の数、1枚の基板に充填する素子の数は、アニール処理の前後の工程を担当する装置のタクトタイムや所望のアニール処理時間等目的に合わせて調整する。
【0053】
次に、本発明アニール装置内の振動子を載置した処理基板と接続装置内の振動子を載置した処理基板が異なる場合について図6を参照に説明する。この場合、移載機60,61を介して両装置を接続し、処理単位を整合させる。
【0054】
蒸着装置50内の処理基板62と本装置の処理基板63が異なる場合、移載機60は、搬入された蒸着装置50の処理基板62上の素子を本装置の処理基板63に充填し直し、本装置の処理基板63を搬出する。この時、本装置各部屋における基板63の搬出入の間隔は移載機60から基板63が搬出される間隔と同間隔で行う。
【0055】
本装置の処理基板63とシーム溶接装置51の処理基板64が異なる場合、移載機61は、本装置の処理基板63上の素子をシーム溶接装置51の処理基板64に充填し直す。移載機61は、シーム溶接装置51のタクトタイムにあわせて処理基板を搬出する。
【0056】
図12〜図16に、前記説明の仕込室1、アニール室2、取出室3を用いて基板の温度変化を測定した結果を示す。図は全て縦軸に温度を表し、横軸に時間を表している。
【0057】
測定は、アニール室内基板ストッカー22に基板収容棚30を12段設け、基板6として図8(b)に示すトレー70にダミーキャリア71と温度測定用熱電対72を搭載し、ダミーキャリア71の温度変化を測定した。又、各棚を310℃に設定して、270℃±27℃の保証温度で基板にアニール処理を行った後、基板を150℃以下に降温して処理を終了させる場合を想定している。
【0058】
図12は、仕込室1に予備加熱機構を設けずに、常温の基板6をアニール室2に搬送した際の基板上昇温度を測定したものである。
【0059】
図12より、常温の基板6をアニール室2に搬送した場合、基板6が保証温度下限の243℃に到達するまでの間に97分を要している。
【0060】
図13は、仕込室1に本発明予備加熱機構を設け、予備加熱を施した基板6をアニール室2に搬送した際の基板上昇温度を測定したものである。予備加熱機構には前記説明のハロゲンランプ4とリフレクター5を用い、その他の測定条件は図12と同一とした。横軸の時間は、アニール室2に仕込室1から基板を搬入した時点を0分としている。
【0061】
図13より、本発明予備加熱機構により、基板の温度は仕込室において250℃まで上昇し、アニール室2に搬入してから57分で保証温度下限の243℃に達していることがわかる。
【0062】
図14は図8(b)に示すトレー70を熱容量の小さいAl製とし、その他の測定条件は図13と同一とした際の基板の温度変化を測定したものである。
【0063】
図14より、図8(b)に示すトレー70をAl製とすることで、アニール室2に搬入してから保証温度下限の243℃に達するまでに要する時間は40分間に短縮されることがわかる。
【0064】
図15はアニール室内基板ストッカー22の基板収容棚30を下段3段、中段6段、上段3段の3ブロックに区分し、各ブロックに設けた熱電対により各棚の温度をPID制御し、その他の条件は図14と同一とした際の基板の温度変化を示したものである。
【0065】
図15より、アニール室2の温度制御を行うことで、アニール室2に搬入してから保証温度下限の243℃に達するまでに要する時間は18分間まで短縮されたことがわかる。
【0066】
これより、本発明予備加熱機構を用いて仕込室1で予備加熱を行い、基板6のトレー70を熱容量の小さい材質とし、更にアニール室2の温度制御を行うことで、常温の基板をアニール室2に搬送する場合に比べ、アニール室2における基板収容時間を79分短縮することが可能となり、基板のアニール処理を短時間に行うことが可能となったことがわかる。
図16はアニール室2で270℃±27℃に加熱された基板6を取出室に搬送し、基板6を強制冷却した際の基板の温度変化を測定したものである。横軸の時間は、アニール室2から取出室3に基板を搬出した時点を0分としている。
【0067】
取出室3には本発明急冷機構を設け、急冷機構には上記説明の冷却板9とガス導入系10用い、不活性ガスとしてHeガスを導入した。
【0068】
同図は、本発明冷却板のみ用いた際の温度変化を(a)に、冷却板9を用い更にHeガスの導入を行った際の温度変化を(b)に示している。
【0069】
(a)より、本発明冷却板9を用いることで、取出室3に搬入してから23分で基板温度を150℃まで低下させることが可能になる。(b)より、冷却板9に加えてHeガスを導入することにより2分10秒で基板を150℃まで低下させることが可能となり、更に降温時間が短縮されることがわかる。
【0070】
図12〜図16より、本発明予備加熱機構、急冷機構を用いることで、アニール工程に要する処理時間を減少させ、装置の生産性を向上させることが可能となったことがわかる。
【0071】
他の実施例の説明、他の用途への転用例の説明
上記実施例では、図5に示す実施形態として本発明装置の仕込室及び取出室に連続処理を行う装置を直接接続する場合を、図6に示す実施形態として仕込室及び取出室に連続処理を行う装置を移載機を介して接続する場合を説明したが、本装置の仕込室にのみ移載機を接続しても、取出室にのみ移載機を接続してもよい。
【0072】
上記実施例では、仕込室及び取出室に収容される基板は1枚であるが基板が複数枚であってもよく、仕込室において基板をより高温に上昇させたい場合や取出室において基板をより低温に冷却したい場合には、予備加熱の為のハロゲンランプ、強制冷却のための冷却板を複数個並列に設けてもよい。
【0073】
【発明の効果】
本発明でアニール室に複数段の棚を昇降自在に設けた事により、任意の棚への基板の搬出入が可能となり、一定間隔で順次搬入される基板をアニール室に一定時間保存し処理する事が可能となる。これにより、アニール室において複数枚の基板を同時に処理しながらも、前後工程を担当する処理装置に直接接続する事が可能となり、生産ラインにおける基板の待ち時間を無くし、装置の生産性を著しく向上することが可能となる。
【0074】
又、仕込室に予備加熱機構、取出室に急冷機構を設け、基板の予備加熱及び急冷を1枚ずつ行う為、短時間で加熱、冷却することが可能となり、アニール装置における基板の昇温及び降温時間を著しく短縮することができ、装置の生産性向上に更に貢献する。
【0075】
更に、アニール室に設けたエレベータ機構により、連続して送られてくる処理対象物を空間に効率より収納でき、装置をコンパクトにする事が可能になるという効果を奏する。
【図面の簡単な説明】
【図1】本発明アニール装置の横断面と制御システムを示す概略図
【図2】本発明アニール装置の縦断面を示す概略図
【図3】基板ストッカーの構成を示す説明図
【図4】冷却板と昇降装置を示す概略図
【図5】本発明アニール装置の接続を示す模式図
【図6】移載機を介した本発明アニール装置の接続を示す模式図
【図7】本発明アニール装置動作説明図
【図8】(a)本発明トレー説明図(b)基板温度測定用ダミーキャリア説明図
【図9】従来のバッチ式アニール装置の概略図
【図10】特開平7−137803号公報に開示される従来の処理システムを用いたアニール装置の概略図
【図11】特開平9−275080号公報に開示される従来のアニール装置の概略図
【図12】常温の基板をアニール室に搬送した際の基板温度実測データ
【図13】本発明予備加熱機構により予備加熱を行った基板をアニール室に搬送した際の基板温度測定データ
【図14】本発明基板のトレーを熱容量の小さいAl製として予備加熱を行った際の基板温度測定データ
【図15】本発明アニール室を温度制御した際の基板温度測定データ
【図16】本発明急冷機構により強制冷却を行った際の基板温度測定データ
【符号の説明】
1 仕込室
2 アニール室
3 取出室
4 ハロゲンランプ
5 リフレクター
6 基板
7 エレベータ機構
8 メンテナンス用扉
9 冷却板
10 ガス導入系
11 昇降装置
12 ゲートバルブ
13 ゲートバルブ
14 ゲートバルブ
15 ゲートバルブ
16 仕込室入口
17 仕込室出口
18 アニール室入口
19 アニール室出口
20 取出室入口
21 取出室出口
22 基板ストッカー
30 基板収容棚
31 補助棚
32 シースヒーター
40 水路
50 蒸着装置
51 シーム溶接装置
60 移載機
61 移載機
62 蒸着装置処理基板
63 本装置処理基板
64 シーム溶接装置処理基板
70 トレー
71 ダミーキャリア
72 熱電対
100 真空槽
101 基板
102 棚
103 ガス導入系
110 熱処理部
111 インターフェイス部
112 枚葉式処理部
113 加熱炉
114 ボート移載室
115 搬送アーム
116 ボート
120 基板投入用チャンバー
121 搬送チャンバー
122 アニールチャンバー
123 搬送チャンバー
124 基板取出し用チャンバー
125 予備加熱ヒーター
126 アニール処理手段
127 冷却手段
128 カセット
129 カセット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an annealing apparatus and an annealing method for performing a heat treatment in a vacuum.
[0002]
[Prior art]
In general, a quartz crystal resonator includes a step of cutting and polishing a crystal of artificial quartz, a first vapor deposition step of forming an oscillator by attaching an electrode film to the polished crystal, and incorporating the resonator into a case. A first annealing step for stabilizing the electrode film, a second vapor deposition step for adjusting the frequency of the vibrator, and a second annealing for stabilizing the electrode film subjected to the frequency adjustment. It is manufactured by a process and a process of sealing a case containing a vibrator.
[0003]
In the conventional manufacturing method, the annealing step is performed by a batch type annealing apparatus shown in FIG. A batch-type annealing apparatus is generally a vertical type, and a plurality of shelves 102 for storing a substrate 101 as a processing target and a heating unit are provided inside the vacuum chamber 100. A substrate 101 filled with a plurality of vibrators is placed on each shelf 102, evacuated by a vacuum pump (not shown), heated by a heating means for a predetermined time, and gas is introduced by a gas introduction system 103 to be large. The process was terminated after opening to atmospheric pressure.
[0004]
[Problems to be solved by the invention]
Since the annealing apparatus shown in FIG. 9 is a batch-type apparatus that simultaneously processes a plurality of substrates simultaneously, a processing apparatus (substrate) that performs a deposition process, a case incorporation process, and a case sealing process that are pre- and post-annealing processes. It takes time to exchange substrates with each other), and it is difficult to improve the throughput of the entire system.
[0005]
Regarding the above problem, a processing system has been proposed that enables in-line processing of a single wafer processing unit and a batch processing unit to enable consistent continuous processing. FIG. 10 is a schematic view of an annealing apparatus using the processing system disclosed in Japanese Patent Laid-Open No. 7-137803.
[0006]
The heat treatment unit 110 that performs the annealing process is connected to the single wafer processing unit 112 via the interface unit 111 that transfers the substrate. The heat treatment unit 110 includes a vertical heating furnace 113 and a boat transfer chamber 114, and the boat transfer chamber 114 is provided with a transfer arm 115. A large number of substrates 101 that have undergone the single wafer processing are loaded into a boat 116 that accommodates a plurality of substrates 101 in the interface unit 111. When one lot (the number of substrates 101 to be processed at once in the heating furnace 113) is loaded into the boat 116, the boat 116 is transferred from the interface unit 111 to the boat transfer chamber 114. The first boat is inserted from the boat transfer chamber 114 into the heating furnace 113 by the transfer arm 115, and the substrate 101 is heated. In the meantime, in the single wafer processing section 112, the substrates 101 are processed one by one, and are sequentially accommodated in the interface section 111 in multiple stages. Thus, when the first boat 116 finishes the heat treatment, the second boat 116 is accommodated for one lot, and the annealing treatment is sequentially performed.
[0007]
Since the processing system disclosed in the publication relates to a semiconductor manufacturing apparatus, the configuration of each apparatus is different, but the crystal processing is performed in that the substrate processing to be performed one by one and the substrate processing to be performed for a plurality of substrates are performed continuously. It is the same as the manufacture of the vibrator. However, in the process of manufacturing a crystal resonator, there are steps that are performed in the atmosphere, such as a step of incorporating the resonator into a case, and thus the above-described continuous processing system may not be applied.
[0008]
In this case, frequency fluctuations occur because the vibrator that is the object to be processed is exposed to the atmosphere, and the fluctuation value of the frequency is not constant because the exposure time varies depending on the vibrator. Is not resolved.
[0009]
Furthermore, when the processing system disclosed in the above publication is used, it is possible to perform consistent continuous processing between an apparatus that processes substrates one by one and an apparatus that collectively processes a plurality of substrates. Since the annealing process is started after the number of substrates that can be processed one by one has been stored in the batch annealing apparatus, the waiting time of the substrate is delayed until the annealing process is started in the batch annealing apparatus. And had a big impact on productivity. This also affects the substrate processing in which the subsequent process of the annealing process is performed one by one, and a plurality of substrates finish the annealing process at the same time. During this period, there was a problem that the substrate could have a waiting time.
[0010]
Furthermore, since the annealing apparatus shown in FIG. 9 heats and cools a plurality of substrates simultaneously from room temperature, there is a problem that it takes time to raise and lower the temperature of the substrate.
[0011]
Here, a conventional annealing apparatus provided with a substrate preheating means and a cooling means in order to shorten the temperature raising and lowering time of the substrate will be described with reference to FIG. The annealing apparatus shown in the figure is disclosed in Japanese Patent Laid-Open No. 9-275080, and is characterized in that a preheating heater and a cooling means are provided in the annealing chamber.
[0012]
The apparatus shown in FIG. 1 includes a substrate loading chamber 120, transfer chambers 121 and 123, an annealing chamber 122, and a substrate removal chamber 124. In the annealing chamber 122, a preheating heater 125 and annealing processing means are provided. 126 and a cooling means 127.
[0013]
The operation will be described below. First, a large number of unprocessed substrates are accommodated in the cassette 128 in the substrate loading chamber 120, and the substrates are transferred into the annealing chamber 122 one by one through the transfer chamber 121. In the annealing chamber 122, the substrate is preheated, annealed, and cooled, and the substrate to be processed is accommodated in the cassette 129 of the substrate extraction chamber 124 via the transfer chamber 123.
[0014]
When the annealing apparatus described in the publication is used, by providing the preheating heater 125 and the cooling means 127 in the annealing chamber 122, it is possible to shorten the temperature rising time and the temperature falling time of the substrate, and the short annealing processing time. However, the desired thin film can be obtained, but since the substrate is annealed one by one, if the annealing time is long, the productivity is very low, and it is practical to use the above equipment There is a problem that is not.
[0015]
The present invention can be connected to a processing apparatus that performs pre- and post-annealing processes without creating a waiting time of a substrate while maintaining the productivity of a batch-type annealing apparatus that accommodates and processes a plurality of substrates for a certain period of time. An object of the present invention is to provide a highly productive annealing apparatus that shortens the temperature rise and fall time.
[0016]
SUMMARY OF THE INVENTION
In order to solve the above problems, the present invention provides a plurality of shelves that can be moved up and down in the annealing apparatus, and sequentially accommodates the substrates in the plurality of shelves, so that the substrates can be loaded and unloaded one by one at regular intervals. In addition, the annealing process is performed in parallel with a plurality of sheets. In addition, the apparatus has a three-chamber configuration, a preparation chamber, an annealing chamber, and a take-out chamber. A take-out chamber provided with a mechanism is provided, and the substrates are heated and cooled in a short time by preheating and cooling the substrates one by one.
[0017]
Specifically, this apparatus annealing chamber comprises a substrate heating means, a substrate stocker provided with a plurality of stages of shelves for accommodating the substrate, and a substrate stocker elevating means. From the substrate that has reached a predetermined heating time after the heating means in the substrate stocker which is heated to a set temperature by using the heating means and is continuously carried one by one, and after the heat treatment in the substrate stocker. The lifting and lowering means is driven to carry out the sheet one by one continuously at a predetermined interval.
[0018]
The apparatus preparation chamber is characterized in that the substrate is heated to a predetermined temperature by a preheating means and then transported to the annealing chamber at regular intervals. The apparatus take-out chamber is a means for forcibly cooling the annealed substrate. The sheet is rapidly cooled to a predetermined temperature one by one.
[0019]
The annealing apparatus can be connected in-line to a processing apparatus that performs pre- and post-annealing processes. In this case, the annealing apparatus of the present invention sequentially carries in the substrates transported one by one from the processing apparatus that performs the previous process, and sequentially transports the substrates that have been processed for a predetermined time one by one to the processing apparatus that performs the next process. . The processing apparatus connected at this time may be an apparatus that performs processing in a vacuum or an apparatus that performs processing in the atmosphere.
[0020]
In the present invention, the valve opening / closing operation, substrate loading / unloading, stocker moving (lifting / lowering) means, vacuum evacuation operation, and heating operation are performed with a certain timing schedule, and each operation is programmed in a control device (processor). The system is controlled by the command of the control device.
[0021]
[Explanation of Examples]
Constitution
FIG. 1 is a schematic view showing a transverse section of the annealing apparatus of the present invention, and FIG. 2 is a schematic view showing a longitudinal section. This apparatus comprises an annealing chamber 2 installed in the center, a preparation chamber 1 and an extraction chamber 3 installed on the left and right, and each chamber has ports 17 and 19 having gate valves 13 and 14 that can be opened and closed. It is connected.
[0022]
The substrate 6 is carried in from the preparation chamber 1, annealed in the annealing chamber 2, and then carried out from the take-out chamber 3.
[0023]
In this embodiment, a tray 70 shown in FIG. 8A filled with a plurality of vibrators is transported as a substrate 6, but the substrate 6 to be processed by the apparatus of the present invention is limited to the tray 70 shown in FIG. Other items may be used. By using a material having a small heat capacity such as Al for the tray 70, it is possible to raise and lower the temperature of the filled vibrator in a short time.
[0024]
The preparation chamber 1 has an inlet 16 for carrying in the substrate 6 and an outlet 17 for carrying out, and gate valves 12 and 13 are respectively installed in the inlets 16 and 17 so as to be opened and closed. Loading and unloading of the substrate 6 are repeatedly performed at regular intervals one by one. The substrate 6 is carried out from the outlet 17 of the preparation chamber 1 to the annealing chamber 2. However, when the normal temperature substrate 6 is transported to the annealing chamber 2, it takes time to raise the substrate 6 to the target temperature. The substrate 6 is preheated in the preparation chamber 1. In the preparation chamber 1, as a preheating mechanism, a plurality of halogen lamps 4 shown in FIG. 2 and a reflector 5 for efficiently transferring the heat of the halogen lamps 4 to the substrate 6 are installed. By making the reflector 5 have a size equal to or larger than that of the substrate 6, the temperature uniformity of the substrate 6 can be improved. In this embodiment, the halogen lamp 4 is used as the preheating mechanism, but other configurations may be used.
[0025]
A processing procedure in the preparation chamber 1 will be described below.
[0026]
First, the substrate 6 is loaded from the inlet 16 and the inside of the preparation chamber 1 is evacuated by a vacuum pump (not shown). Next, the loaded substrate 6 is transported to the lower part of the halogen lamp 4, and the substrate 6 is preheated by the halogen lamp 4. Preheating is performed for a predetermined time, and the substrate 6 for which preheating has been completed is carried out from the outlet 17 to the annealing chamber 2. Next, the inside of the preparation chamber 1 is opened to atmospheric pressure by a leak valve (not shown), the substrate 6 is loaded again from the inlet 16, and the above operation is repeated. The loading / unloading of the substrate 6 is performed by opening and closing the gate valves 12 and 13. The gate valves 12 and 13 are opened immediately before the substrate transfer and are closed immediately after the substrate transfer. The gate valves 12 to 15 can be opened and closed, and the opening and closing timing is controlled by the control device 100. Further, it includes means (not shown) for transporting the substrate 6 from one chamber to another chamber, and the operation of the transport means is controlled by the control device 100 to perform predetermined transport of the substrate.
[0027]
The annealing chamber 2 has an inlet 18 and an outlet 19 for carrying the substrate 6 in and out. The inlet 18 of the annealing chamber 2 is connected to the outlet 17 of the preparation chamber 1.
[0028]
As shown in FIG. 2, a substrate stocker 22 is provided in the annealing chamber 2 so as to be movable up and down, and one substrate 6 is accommodated on each shelf of the substrate stocker 22. In this embodiment, the elevator mechanism 7 is attached as a lifting / lowering means for the substrate stocker 22. The elevator mechanism 7 is provided in a lower region of the substrate stocker 22 and includes a support plate that supports the substrate stocker 22 and a drive device that moves the support plate up and down.
[0029]
As shown in FIG. 3, the substrate stocker 22 includes a plurality of substrate storage shelves 30 on which substrates 6 are loaded and an auxiliary shelf 31 provided at the uppermost stage. Each shelf is provided with a sheath heater 32, and the substrate 6 is annealed by the heat of the heater 32. The reason why the auxiliary shelf 31 is provided in the uppermost stage is to heat all the loaded substrates 6 under the same conditions. All the substrates 6 are provided with a heater 32 provided at the lower part of the shelf in which the substrates 6 are loaded, and the upper stage thereof. The annealing process is efficiently performed by the heater 32 provided at the lower part of the shelf. In the present embodiment, the sheath heater 32 is employed as a heating mechanism for annealing the substrate 6, but the annealing process may be performed using another heating mechanism. The substrate stocker 22 is provided with a plurality of thermocouples corresponding to each shelf, and heating control of each sheath heater 32 is performed based on the measured temperature of the thermocouple. However, when wiring becomes complicated if a thermocouple is provided on each shelf, the heater 32 may be divided into a plurality of blocks, and a thermocouple may be provided for each block to control the temperature of each shelf. For temperature control, ON-OF control or PID control may be used. While ON-OF control approaches ON and OF by repeating ON and OF, the PID control is a proportional action P that raises and lowers the manipulated variable in proportion to the deviation between the set value and the controlled variable. Since this control is a combination of the integral action I that raises and lowers the manipulated variable according to time, and the differential action D that raises and lowers the manipulated quantity according to the change in deviation, this embodiment uses PID control for accuracy. It is assumed that the temperature of the annealing chamber is well controlled.
[0030]
Although it is conceivable that the heater, which is a heating mechanism, must be replaced due to changes over time, in that case, a maintenance door 8 is provided on the front of the apparatus as shown in FIGS. Improvements can be made.
[0031]
Since the annealing chamber 2 is entirely exposed to a high temperature by the heating mechanism, it is necessary to cool the outer wall of the annealing chamber. In addition, the packing (not shown) attached to the maintenance door 8, the gate valves 13, 14 and the like is greatly affected by being exposed to a high temperature, and thus needs to be cooled. Therefore, in the present embodiment, the wall of the annealing chamber 2 is made to have a double structure, and cooling water is allowed to flow between them so that the entire wall can be cooled.
[0032]
Next, a processing procedure in the annealing chamber 2 will be described below.
[0033]
The annealing chamber 2 is always in a vacuum state, and the heater provided in the substrate stocker 22 is always turned on. The loading chamber 1 and the unloading chamber 3 adjacent to the annealing chamber 2 when the substrate 6 is carried in and out are always kept in a vacuum state.
[0034]
First, an empty shelf of a stocker, which is an accommodation position where a substrate is carried in by the elevator mechanism 7, is aligned with the entrance position of the annealing chamber 2, and the substrate 6 carried out from the preparation chamber 1 is delivered. The substrates 6 are sequentially accommodated in empty shelves by moving the substrate stocker 22 up and down by the elevator mechanism 7 and subjected to annealing treatment.
[0035]
By providing the substrate stocker 22 in the annealing chamber 2 according to the present invention, the substrates 6 sequentially loaded from the preparation chamber 1 at regular intervals can be stored in the annealing chamber 2 for a certain period of time. Since the annealing time of the substrate is determined by the number of substrate storage shelves 30 and the interval of substrate transport, the number of shelves and the transport interval are adjusted according to the purpose. In order to use the apparatus efficiently, it is desirable to provide the number of substrate storage shelves 30 so that the substrate stocker 22 is always filled. For example, when the substrates 6 are transported at intervals of 10 minutes and the desired annealing time is 120 minutes, 12 stages of substrate storage shelves 30 may be provided. As a result, the substrate 6 carried into the annealing chamber 2 at intervals of 10 minutes is annealed for 120 minutes and then sequentially carried out to the extraction chamber 3 at intervals of 10 minutes. Always satisfied.
[0036]
The substrate 6 subjected to the annealing treatment for a predetermined time is carried out from the outlet 19 to the take-out chamber 3 by moving the substrate stocker 22 up and down by the elevator mechanism 7 as in the case of carrying in. Although the substrate 6 is carried into and out of the annealing chamber 2 at the entrances 18 and 19, by moving up and down a plurality of shelves of the substrate stocker 22 by the elevator mechanism 7 according to the present invention, the substrate can be placed on any shelf. Loading and unloading is possible.
[0037]
The take-out chamber 3 has an inlet 20 and an outlet 21 for carrying in and out the substrate, and gate valves 14 and 15 are installed at the entrance and exit, respectively, so as to be opened and closed. The inlet 20 of the take-out chamber is connected to the outlet 19 of the annealing chamber, and the substrate 6 that has been annealed is sequentially carried into the take-out chamber 3. The loading and unloading of the substrate 6 is repeatedly performed at regular intervals one by one, like the preparation chamber 1 and the annealing chamber 2.
[0038]
Since the substrate 6 heated to a high temperature in the annealing chamber 2 is sequentially transported to the extraction chamber 3 after a certain period of time, the extraction chamber 3 is required to cool the substrate 6 within a certain period of time. Since the temperature drop of the substrate 6 cannot be expected by natural cooling in a vacuum within a certain time, the substrate 6 is forcedly cooled in the take-out chamber 3. The extraction chamber 3 is provided with a cooling mechanism for forced quenching of the substrate 6. As shown in FIG. 4, the cooling mechanism includes a cooling plate 9, a cooling plate lifting device 11, and a gas introduction system 10 shown in FIG. 1.
[0039]
The cooling plate 9 is a plate in which a water channel 40 is provided on a plate having a high thermal conductivity such as a copper plate, and cooling water is allowed to flow through the water channel 40. In the figure, a lifting device 11 indicates a cylinder, and the cooling plate 9 is lifted and lowered by introducing and discharging compressed air. Other configurations may be used for the cooling plate 9 and the lifting device 11.
[0040]
Next, the procedure for forced quenching in the take-out chamber 3 will be described below. First, after the inside of the extraction chamber 3 is evacuated by a vacuum pump (not shown), the substrate 6 is transferred from the annealing chamber 2 to the extraction chamber 3. Next, the substrate 6 carried into the take-out chamber 3 is transported directly above the cooling plate 9, and the cooling plate 9 is raised by the lifting device 11 and brought into contact with the substrate 6. At the same time, the substrate 6 is forcibly cooled by introducing an inert gas into the extraction chamber 3 by the gas introduction system 10. The forced cooling is performed for a certain period of time as in the preheating, and the forced cooling and extraction chamber of the first substrate 6 is carried out after the first substrate 6 is carried into the take-out chamber until the second substrate 6 is carried in. 3, the unloading of the substrate 6 from 3 and the evacuation of the extraction chamber 3 are all completed. As with the preparation chamber 1, the substrate 6 is carried in and out by opening and closing the gate valves 14 and 15, and the gate valves 14 and 15 are opened and closed immediately after the substrate is transferred.
[0041]
FIG. 7 is an explanatory view of the operation of the apparatus when the substrate storage shelves 30 of the substrate stocker 22 are provided in 12 stages. Hereinafter, the case where the substrate is transported at intervals of 10 minutes will be described with reference to FIG.
[0042]
First, the first substrate 6a is carried into the preparation chamber 1 and preheating is performed (a). After 10 minutes, the substrate 6a is transferred to the annealing chamber 2, and the second substrate 6b is transferred to the preparation chamber 1 (b). The annealing process is started at the same time that the substrate 6a is carried into the annealing chamber 2. After another 10 minutes, the second substrate 6b is carried into the annealing chamber 2, and the third substrate 6c is carried into the preparation chamber 1 (c). Similarly, the substrates 6c to 6l are sequentially carried into the annealing chamber 2 every 10 minutes (d) and (e). Ten minutes after the twelfth substrate 6l is carried into the annealing chamber 2, the first substrate 6a finishes the 120-minute annealing process, so the first substrate 6a is taken out into the take-out chamber 3, The thirteenth substrate 6m is carried into the annealing chamber 2, and the fourteenth substrate 6n is carried into the preparation chamber 1 (f). At this time, the 13th substrate 6m is carried into the shelf in which the substrate 6a was accommodated. Further, 10 minutes later, the second substrate 6b finishes the annealing process for 120 minutes, so the second substrate 6b is taken out to the take-out chamber 3, and the 14th substrate 6n is put into the anneal chamber 2 to the 15th substrate. The substrate 6o is carried into the preparation chamber 1 (g). The same operation is repeated below.
[0043]
In the above description, the first to eleventh substrates are processed in a state where the substrate stocker 22 in the annealing chamber 2 is not filled. However, at the start of the operation of the apparatus, eleven dummy substrates are loaded into the annealing chamber 2. In addition, the annealing chamber 2 may be always filled. When the substrate 6 is put into and out of the annealing chamber, the valves 13 and 14 are opened so that the annealing chamber, the charging chamber, and the extracting chamber can be connected. At this time, the charging chamber and the extracting chamber are evacuated. Actuators and transfer means (not shown) for operating the valves 12, 13, 14, 15, opening / closing of the substrate in the preparation chamber 1, annealing chamber 2, and take-out chamber, raising / lowering of the stocker, and vacuum evacuation are not shown. It is operated at a desired timing under the control of That is, the control device is programmed to operate at a desired timing.
[0044]
That is, the substrate 6m (article) preliminarily processed in the preparation chamber 1 for a predetermined preliminary processing time is sequentially carried into the annealing chamber 2, and a plurality of articles 6a are stored in the stocker 22 having a plurality of article storage positions in the annealing chamber 2. The articles that contain ˜6 l and are annealed for a predetermined annealing time in the annealing chamber 2 are sequentially carried out from the annealing chamber 2. (A) Annealing the pre-processed articles every predetermined pretreatment time An article that has been stored in an empty storage position of the indoor stocker, and has been annealed for a predetermined annealing time, is taken out of the stocker 22 and carried out of the annealing chamber 2 to create an empty storage position in the stocker 22 and (b ) After the step (a), the article in the stocker 22 is annealed for the predetermined pretreatment time, and then the steps (a) and (b) are repeated. The predetermined annealing time is longer than the predetermined pretreatment time. During the annealing of the article, the annealing chamber 2 is maintained in a vacuum, and the atmosphere outside the carry-in port and the carry-out port of the anneal chamber during the step (a) of carrying the article into and out of the anneal chamber 2 is as follows. It is in a vacuum. Also, annealing is continuously performed when the article 6 is carried in and out.
[0045]
The system described above is a system for heat-treating an article in a vacuum, and includes a charging chamber 1, an annealing heating chamber 2, and a take-out chamber 3. The charging chamber 1 and the heating chamber 2 can be opened and closed first. The heating chamber 2 and the extraction chamber 3 are connected by first openings 16 and 17 having a valve 13, and are connected by second openings 19 and 20 having a second valve 14 that can be opened and closed. A means (not shown) for bringing the article 6 in the preparation chamber 1 into the heating chamber 2 from the first openings 16 and 17 when the first valve 13 is opened is disposed in the heating chamber 2 having a plurality of article accommodation positions. The stocker 22 and at least one of the article storage positions of the stocker 22 are aligned with the first openings 16 and 17 so that the articles 6 loaded from the first openings 16 and 17 are stored in the aligned article storage positions. , And means for moving the stocker 22 to align the at least one of the article storage positions of the stocker 22 with the second openings 19, 20 and unload the articles at the aligned article storage positions from the second openings 19, 20. (FIGS. 2 and 7), means (not shown) for unloading the article 6 in the heating chamber 2 from the second openings 19 and 20 to the take-out chamber 3 when the second valve 14 is opened, means for carrying in, means for carrying out , Stocker And a control unit 100 which controls moving means and the first and the actuation of the second valve. This control device 100 opens the first valve 13 at every predetermined carry-in interval time interval (for example, the above-mentioned 10-minute interval), and transfers the article 6 from the preparation chamber 1 to the heating chamber 2 through the first opening. 1st control which controls the 1st valve | bulb 13 and a carrying-in means to carry in is carried out, and the empty article accommodation position of the stocker 22 is 1st when carrying the goods 6 into the heating chamber 2 through the 1st opening. When the second control for controlling the stocker moving means 7 to align with the opening is performed, when at least one of the plurality of articles accommodated in the stocker 22 has been heated for a predetermined heating time (for example, 120 minutes described above). The third control is performed to control the stocker moving means 7 so that the storage position of the heated article 6 is aligned with the second opening, and the storage position of the heated article of the stocker 22 is aligned with the second opening. Sometimes things From the heating chamber 2 and out to the second through openings ejecting chamber 3 is performed a fourth control for controlling the discharge means and the second valve 14 to make room article storage location in the stocker 22.
[0046]
At that time, the shelf position of the stocker 22 on which the annealed (heated) completed article (substrate) is placed is aligned by driving the stocker moving means 7 to the second opening (third control). After the annealed article is taken out from the storage chamber 3 and an empty shelf is generated in the stocker 22 (fourth control), the article from the preparation chamber 1 is accommodated in the empty shelf. If the second openings are configured at the same horizontal level, the second control described above need not be performed. This is because the first opening and the empty shelf are already aligned after the third control. Moreover, in this system, annealing heating is continuously performed even when the article is carried into and out of the heating chamber. At that time, the vacuum state of the annealing chamber is continuously maintained. While the first and second openings are open, the control device 100 evacuates the preparation chamber 1 and the extraction chamber 3 with a vacuum evacuation means (not required) so that at least the atmosphere in the preparation chamber 1 and the extraction chamber 3 is kept in vacuum. (Shown) is operating.
[0047]
The preparation chamber 1 and the take-out chamber 3 of the apparatus of the present invention may be connected to a processing apparatus that is in charge of the pre- and post-annealing processes and inlined.
[0048]
For example, when the electrode vapor deposition process, the annealing process, and the case sealing process are continuously performed in the manufacturing process of the crystal resonator, the vapor deposition apparatus 50 and the preparation chamber 1 are connected to the take-out chamber 3 and the seam welding apparatus 51, respectively. FIG. 5 is a schematic diagram showing the state. Hereinafter, the connection of this apparatus will be described with reference to the same drawing, but this apparatus is connected to an arbitrary processing apparatus capable of continuous processing, and the connectable apparatus is not limited to the above apparatus.
[0049]
In the figure, the substrates 6 are transferred one by one from the vapor deposition apparatus 50 to the preparation chamber 1, from the preparation chamber 1 to the annealing chamber 2, from the annealing chamber 2 to the extraction chamber 3, and from the extraction chamber 3 to the seam welding apparatus 51. In addition, all the substrates are carried in and out of each room at the same pitch.
[0050]
The processing in this apparatus is as described above. However, when the connecting device to the preparation chamber 1 is a vacuum apparatus, repeated evacuation and release to the atmosphere in the preparation chamber 1 are omitted, and the preparation chamber 1 is always evacuated. It will be in the state. In this case, the gate valve 12 may be omitted if necessary if the atmosphere between the two apparatuses is equal. When the connecting device to the take-out chamber 3 is a vacuum device, the vacuum exhaust is performed before the substrate is taken out from the take-out chamber 3.
[0051]
This apparatus can sequentially process the substrates 6 carried out one by one from the vapor deposition apparatus 50. Further, the seam welding apparatus 51 can sequentially process the substrates 6 carried out one by one from the apparatus take-out chamber 3. That is, by connecting the present apparatus and the processing apparatus in charge of the preceding and following processes, it is possible to eliminate the waiting time of the substrate 6 and greatly improve the productivity of the entire apparatus.
[0052]
The substrate transport interval, the number of shelves, and the number of elements to be filled in one substrate in this equipment are adjusted according to the purpose such as the takt time of the equipment in charge of the process before and after annealing and the desired annealing time. To do.
[0053]
Next, a case where the processing substrate on which the vibrator in the annealing apparatus of the present invention is placed and the processing substrate on which the vibrator in the connection device is placed will be described with reference to FIG. In this case, both devices are connected via the transfer machines 60 and 61 to align the processing units.
[0054]
When the processing substrate 62 in the vapor deposition apparatus 50 is different from the processing substrate 63 of this apparatus, the transfer device 60 refills the processing substrate 63 of this apparatus with the elements on the processing substrate 62 of the carried vapor deposition apparatus 50, The processing substrate 63 of this apparatus is carried out. At this time, the interval of loading / unloading of the substrate 63 in each room of the apparatus is the same as the interval of unloading the substrate 63 from the transfer device 60.
[0055]
When the processing substrate 63 of the present apparatus is different from the processing substrate 64 of the seam welding apparatus 51, the transfer device 61 refills the processing substrate 64 of the seam welding apparatus 51 with the elements on the processing substrate 63 of the present apparatus. The transfer machine 61 carries out the processing substrate in accordance with the tact time of the seam welding device 51.
[0056]
12 to 16 show the results of measuring the temperature change of the substrate using the preparation chamber 1, the annealing chamber 2, and the take-out chamber 3 described above. In all the figures, the vertical axis represents temperature and the horizontal axis represents time.
[0057]
In the measurement, 12 stages of substrate storage shelves 30 are provided in the annealing chamber substrate stocker 22, a dummy carrier 71 and a temperature measuring thermocouple 72 are mounted on the tray 70 shown in FIG. 8B as the substrate 6, and the temperature of the dummy carrier 71 is measured. Changes were measured. Further, it is assumed that each shelf is set to 310 ° C., the substrate is annealed at a guaranteed temperature of 270 ° C. ± 27 ° C., and then the substrate is cooled to 150 ° C. or lower to finish the processing.
[0058]
FIG. 12 shows the measured substrate rising temperature when the normal temperature substrate 6 is transported to the annealing chamber 2 without providing the preheating mechanism in the preparation chamber 1.
[0059]
From FIG. 12, when the normal temperature substrate 6 is transported to the annealing chamber 2, it takes 97 minutes for the substrate 6 to reach the guaranteed minimum temperature of 243 ° C.
[0060]
FIG. 13 shows the substrate rising temperature when the preheating mechanism of the present invention is provided in the preparation chamber 1 and the preheated substrate 6 is transported to the annealing chamber 2. The halogen lamp 4 and the reflector 5 described above were used for the preheating mechanism, and other measurement conditions were the same as those in FIG. The time on the horizontal axis is 0 minutes when the substrate is loaded from the preparation chamber 1 into the annealing chamber 2.
[0061]
From FIG. 13, it can be seen that by the preheating mechanism of the present invention, the temperature of the substrate rose to 250 ° C. in the preparation chamber, and reached the guaranteed lower limit of 243 ° C. in 57 minutes after being loaded into the annealing chamber 2.
[0062]
FIG. 14 shows the change in temperature of the substrate when the tray 70 shown in FIG. 8B is made of Al with a small heat capacity and the other measurement conditions are the same as those in FIG.
[0063]
From FIG. 14, when the tray 70 shown in FIG. 8B is made of Al, the time required to reach the guaranteed temperature lower limit of 243 ° C. after being brought into the annealing chamber 2 can be shortened to 40 minutes. Recognize.
[0064]
FIG. 15 shows that the substrate storage shelf 30 of the annealing chamber substrate stocker 22 is divided into three blocks of a lower three stages, a middle six stages, and an upper three stages, and the temperature of each shelf is PID controlled by a thermocouple provided in each block. These conditions show the temperature change of the substrate when the same conditions as in FIG.
[0065]
From FIG. 15, it can be seen that by controlling the temperature of the annealing chamber 2, the time required from reaching the annealing chamber 2 to reaching the guaranteed temperature lower limit of 243 ° C. has been shortened to 18 minutes.
[0066]
As a result, preheating is performed in the preparation chamber 1 using the preheating mechanism of the present invention, the tray 70 of the substrate 6 is made of a material having a small heat capacity, and the temperature of the annealing chamber 2 is controlled, so that the substrate at room temperature is annealed. As compared with the case where the substrate is transported to the substrate 2, the substrate accommodation time in the annealing chamber 2 can be shortened by 79 minutes, and the substrate annealing process can be performed in a short time.
FIG. 16 shows the temperature change of the substrate 6 when the substrate 6 heated to 270 ° C. ± 27 ° C. in the annealing chamber 2 is transferred to the take-out chamber and the substrate 6 is forcibly cooled. The time on the horizontal axis is 0 minutes when the substrate is carried out from the annealing chamber 2 to the extraction chamber 3.
[0067]
The take-out chamber 3 was provided with the quenching mechanism of the present invention, and the quenching mechanism 9 was used with the cooling plate 9 and the gas introduction system 10 described above, and He gas was introduced as an inert gas.
[0068]
This figure shows the temperature change when only the cooling plate of the present invention is used in (a), and the temperature change when He gas is further introduced using the cooling plate 9 is shown in (b).
[0069]
From (a), it becomes possible by using this invention cooling plate 9 to reduce a substrate temperature to 150 degreeC in 23 minutes after carrying in to the taking-out chamber 3. FIG. From (b), it can be seen that by introducing He gas in addition to the cooling plate 9, the substrate can be lowered to 150 ° C. in 2 minutes and 10 seconds, and the temperature lowering time is further shortened.
[0070]
12 to 16, it can be seen that by using the preheating mechanism and the rapid cooling mechanism of the present invention, the processing time required for the annealing process can be reduced and the productivity of the apparatus can be improved.
[0071]
Explanation of other examples, explanation of examples of diversion to other applications
In the above embodiment, the embodiment shown in FIG. 5 shows a case where a device for performing continuous processing is directly connected to the preparation chamber and the take-out chamber of the apparatus of the present invention. The embodiment shown in FIG. Although the case where the apparatus to perform is connected via a transfer machine was demonstrated, you may connect a transfer machine only to the preparation chamber of this apparatus, or you may connect a transfer machine only to an extraction chamber.
[0072]
In the above embodiment, the number of substrates accommodated in the preparation chamber and the extraction chamber is one, but there may be a plurality of substrates. If the substrate is to be raised to a higher temperature in the preparation chamber or the substrate is more removed in the extraction chamber. When it is desired to cool to a low temperature, a plurality of halogen lamps for preheating and cooling plates for forced cooling may be provided in parallel.
[0073]
【The invention's effect】
By providing a plurality of shelves in the annealing chamber so as to be movable up and down in the present invention, it is possible to carry in / out the substrates to / from an arbitrary shelf, and the substrates sequentially carried in at regular intervals are stored and processed in the annealing chamber for a certain period of time. Things will be possible. As a result, it is possible to directly connect to the processing equipment in charge of the front and back processes while processing multiple substrates at the same time in the annealing chamber, eliminating the waiting time of the substrate in the production line and significantly improving the productivity of the equipment. It becomes possible to do.
[0074]
In addition, a preheating mechanism is provided in the preparation chamber and a rapid cooling mechanism is provided in the take-out chamber, so that the substrate is preheated and rapidly cooled one by one, so that heating and cooling can be performed in a short time. The temperature drop time can be significantly shortened, which further contributes to the improvement of device productivity.
[0075]
Further, the elevator mechanism provided in the annealing chamber can efficiently store the processing object continuously sent in the space, and the apparatus can be made compact.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a cross section of an annealing apparatus of the present invention and a control system.
FIG. 2 is a schematic view showing a longitudinal section of the annealing apparatus of the present invention.
FIG. 3 is an explanatory diagram showing a configuration of a substrate stocker.
FIG. 4 is a schematic view showing a cooling plate and a lifting device.
FIG. 5 is a schematic view showing the connection of the annealing apparatus of the present invention.
FIG. 6 is a schematic diagram showing the connection of the annealing apparatus of the present invention via a transfer machine.
FIG. 7 is an explanatory diagram of the operation of the annealing apparatus of the present invention.
8A is an explanatory diagram of a tray of the present invention, and FIG. 8B is an explanatory diagram of a dummy carrier for substrate temperature measurement.
FIG. 9 is a schematic view of a conventional batch annealing apparatus.
FIG. 10 is a schematic view of an annealing apparatus using a conventional processing system disclosed in Japanese Patent Laid-Open No. 7-137803.
FIG. 11 is a schematic diagram of a conventional annealing apparatus disclosed in Japanese Patent Laid-Open No. 9-275080.
FIG. 12 Substrate temperature measurement data when a normal temperature substrate is transported to the annealing chamber
FIG. 13 shows substrate temperature measurement data when a substrate preheated by the preheating mechanism of the present invention is transferred to an annealing chamber.
FIG. 14 shows substrate temperature measurement data when preheating the tray of the substrate of the present invention with a small heat capacity made of Al.
FIG. 15 shows substrate temperature measurement data when controlling the temperature of the annealing chamber of the present invention.
FIG. 16 shows substrate temperature measurement data when forced cooling is performed by the rapid cooling mechanism of the present invention.
[Explanation of symbols]
1 preparation room
2 Annealing chamber
3 Extraction room
4 Halogen lamp
5 reflectors
6 Substrate
7 Elevator mechanism
8 Maintenance door
9 Cooling plate
10 Gas introduction system
11 Lifting device
12 Gate valve
13 Gate valve
14 Gate valve
15 Gate valve
16 Preparation room entrance
17 Preparation room exit
18 Annealing chamber entrance
19 Annealing chamber exit
20 Entrance of the extraction room
21 Unloading room exit
22 Substrate stocker
30 Substrate storage shelf
31 Auxiliary shelf
32 Sheath heater
40 waterways
50 Vapor deposition equipment
51 Seam welding equipment
60 Transfer machine
61 Transfer machine
62 Vapor deposition processing substrate
63 Equipment processing board
64 Seam welding equipment processing board
70 trays
71 dummy carrier
72 Thermocouple
100 vacuum chamber
101 substrate
102 shelves
103 Gas introduction system
110 Heat treatment section
111 Interface section
112 single wafer processing unit
113 Heating furnace
114 Boat transfer room
115 Transfer arm
116 boats
120 Chamber loading chamber
121 Transfer chamber
122 Annealing chamber
123 Transfer chamber
124 Chamber for substrate removal
125 Preheater
126 Annealing means
127 Cooling means
128 cassettes
129 cassette

Claims (27)

真空中で物品に加熱処理を施すアニール装置であって、該アニール装置は、予備加熱手段を備えた仕込室、該物品を複数枚収納して加熱する手段を備えたストッカーを内蔵するアニール室であって、該基板ストッカーを昇降駆動する手段を備えたアニール室、及び冷却手段を備えた取出室とからなる3室構成からなり、該仕込室と該アニール室との間は開閉可能バルブを有する第1の開口で連結され、該アニール室と該取出室との間は開閉可能バルブを有する第2の開口で連結されていることを特徴とするアニール装置。  An annealing apparatus for performing heat treatment on an article in a vacuum, the annealing apparatus being a charging chamber equipped with a preheating means, and an annealing chamber containing a stocker equipped with a means for storing and heating a plurality of articles. The substrate stocker has a three-chamber configuration comprising an annealing chamber provided with a means for raising and lowering the substrate stocker and a take-out chamber provided with a cooling means, and has a valve that can be opened and closed between the charging chamber and the annealing chamber. An annealing apparatus, wherein the annealing apparatus is connected by a first opening, and the annealing chamber and the take-out chamber are connected by a second opening having an openable / closable valve. 前記仕込室は、該物品を該予備加熱手段によって所定温度迄加熱後、一定間隔でアニール室へ搬送する手段を有することを特徴とする請求項1記載のアニール装置。  2. An annealing apparatus according to claim 1, wherein the preparation chamber has means for heating the article to a predetermined temperature by the preheating means and then transporting the article to the annealing chamber at regular intervals. 前記仕込室の予備加熱手段は、ハロゲンランプと、該ハロゲンランプに対して前記物品と相対する位置に設けられたリフレクターにより構成されることを特徴とする請求項2記載のアニール装置。  The annealing apparatus according to claim 2, wherein the preheating means in the preparation chamber includes a halogen lamp and a reflector provided at a position facing the article with respect to the halogen lamp. 該仕込室で予備加熱を施された後一定間隔で搬入されてくる該物品をストッカーの複数の物品収容位置へ、前記昇降手段を駆動して1個ずつ連続的に収容し、該ストッカー内で加熱処理後に所定加熱時間に達した物品から前記昇降手段を駆動して1個ずつ所定間隔をおいて連続的に取出室へ搬出する制御装置を含むことを特徴とする請求項1記載のアニール装置。  The articles that have been preheated in the charging chamber and are carried in at regular intervals are driven to the plurality of article storage positions of the stocker, and the lifting and lowering means are driven to continuously store the articles one by one. 2. An annealing apparatus according to claim 1, further comprising a control device for driving said lifting means from an article that has reached a predetermined heating time after the heat treatment to continuously carry out the lifting means one by one at a predetermined interval to the take-out chamber. . 前記アニール室の物品加熱手段は、該ストッカー内の複数段の棚各々に設けられたヒーター、該ヒーターを加熱コントロールすることによって該物品のアニール処理を行う加熱コントロール手段とを含むことを特徴とする請求項1又は請求項4記載のアニール装置。  The article heating means in the annealing chamber includes a heater provided on each of a plurality of shelves in the stocker, and a heating control means for performing an annealing process on the article by controlling the heating of the heater. The annealing apparatus according to claim 1 or 4. 前記ストッカーの加熱手段は、前記ストッカー内の各棚に対応した熱電対を有し、該加熱コントロール手段は、該熱電対による温度測定結果を元に各棚の物品に対する温度制御を行っていることを特徴とする請求項5記載のアニール装置。  The heating means of the stocker has a thermocouple corresponding to each shelf in the stocker, and the heating control means performs temperature control for the articles on each shelf based on the temperature measurement result by the thermocouple. An annealing apparatus according to claim 5. 前記ストッカーの加熱手段は、前記棚の複数のブロックに各々対応した各熱電対を有し、該加熱コントロール手段は該熱電対による温度測定結果を元に各ブロックに所属する棚の物品に対する温度制御を行うことを特徴とする請求項5又は請求項6に記載のアニール装置。  The heating means of the stocker has each thermocouple corresponding to each of the plurality of blocks of the shelf, and the heating control means controls the temperature of the articles on the shelf belonging to each block based on the temperature measurement result by the thermocouple. The annealing apparatus according to claim 5 or 6, wherein: 前記アニール室のストッカーは、該物品を収容する複数の棚と、該棚の下面に設置された加熱ヒーターと、最上段に設けられた補助棚及び該補助棚下面に設置された加熱ヒーターによって構成されている請求項1又は請求項4記載のアニール装置。  The stocker of the annealing chamber is composed of a plurality of shelves for storing the article, a heater installed on the lower surface of the shelf, an auxiliary shelf provided on the uppermost stage, and a heater installed on the lower surface of the auxiliary shelf. The annealing apparatus according to claim 1 or 4, wherein the annealing apparatus is provided. 前記アニール室の昇降駆動手段は、該ストッカーの下部領域に設けられ、該ストッカーを支える支持板と該支持板を昇降させる駆動装置とからなることを特徴とする請求項8記載のアニール装置。  The annealing apparatus according to claim 8, wherein the raising / lowering driving means of the annealing chamber is provided in a lower region of the stocker, and includes a support plate that supports the stocker and a drive device that moves the support plate up and down. 前記アニール室は、外壁を2重構造にし、その間に冷却水を流すことで外壁全体を冷却する構成としたことを特徴とする請求項1又は請求項4記載のアニール装置。  5. The annealing apparatus according to claim 1, wherein the annealing chamber has a structure in which the outer wall has a double structure, and the entire outer wall is cooled by flowing cooling water therebetween. 前記取出室は、アニール処理された該物品を該冷却手段によって1枚ずつ所定温度迄強制冷却することを特徴とする請求項1記載のアニール装置。  2. The annealing apparatus according to claim 1, wherein the take-out chamber forcibly cools the annealed article one by one to a predetermined temperature by the cooling means. 前記取出室の冷却手段は、内部に冷却水流路を持つ冷却板と、該冷却板の昇降装置と、ガス導入系によって構成されることを特徴とする請求項11記載のアニール装置。  12. The annealing apparatus according to claim 11, wherein the cooling means of the take-out chamber is constituted by a cooling plate having a cooling water flow path therein, a lifting / lowering device for the cooling plate, and a gas introduction system. 前記物品は、熱容量の小さい材質のトレーに複数の製造中間体素子を装填したものであることを特徴とする請求項1乃至請求項12記載のアニール装置。  13. The annealing apparatus according to claim 1, wherein the article is obtained by loading a plurality of production intermediate elements on a tray made of a material having a small heat capacity. 前記第1と第2の開口の開閉バルブの開放時に該仕込室と該取出室を真空に維持する手段を含む請求項1記載のアニール装置。  The annealing apparatus according to claim 1, further comprising means for maintaining the charging chamber and the take-out chamber in a vacuum state when the opening and closing valves of the first and second openings are opened. 前記アニール装置は、該仕込室にアニール工程の前工程を行う処理装置を接続し、該取出室にアニール工程の次工程を行う処理装置を接続して装置全体をインライン化することを特徴とする請求項1乃至請求項14記載のアニール装置。  The annealing apparatus is characterized in that a processing apparatus for performing a pre-annealing process is connected to the charging chamber, and a processing apparatus for performing a next process of the annealing process is connected to the take-out chamber to inline the entire apparatus. The annealing apparatus according to claim 1. 前記仕込室及び取出室への処理装置の接続は、移載機を介して接続することを特徴とする請求項15記載のアニール装置。  The annealing apparatus according to claim 15, wherein the processing apparatus is connected to the preparation chamber and the extraction chamber via a transfer machine. 真空中で物品に加熱処理を施すアニール方法において、
予備加熱手段を備えた仕込室において該物品を所定温度迄予備加熱し、予備加熱した該物品を1枚ずつ所定間隔をおいて連続的にアニール処理室内に搬入し、前記アニール処理室内に該物品を順次収容すると同時に該物品毎のアニール処理を順次開始し、前記処理室内では複数の該物品のアニール処理を同時に行い、一定時間のアニール処理を終了した該物品から1枚ずつ所定間隔をおいて連続的に該アニール処理室内から冷却室内へと搬出し、該冷却室内では該物品を強制冷却することを特徴とするアニール方法。
In the annealing method that heats the article in a vacuum,
The article is preheated to a predetermined temperature in a charging chamber equipped with preheating means, and the preheated articles are successively carried into the annealing chamber one by one at a predetermined interval, and the article is put into the annealing chamber. At the same time, the annealing process for each article is started at the same time, a plurality of articles are annealed simultaneously in the processing chamber, and one article is placed at a predetermined interval from the article that has been subjected to the annealing process for a predetermined time. An annealing method characterized by continuously carrying the product from the annealing chamber into a cooling chamber and forcibly cooling the article in the cooling chamber.
前記物品は水晶振動子を載置した基板であり、該振動子は電極膜が蒸着されているものであり、該アニール処理は前記電極膜を安定化する第1のアニール処理である請求項17記載のアニール方法。  18. The article is a substrate on which a crystal resonator is placed, the resonator is a substrate on which an electrode film is deposited, and the annealing treatment is a first annealing treatment that stabilizes the electrode film. The annealing method described. 前記物品は水晶振動子を載置した基板であり、該振動子は電極膜に対し周波数調整が行われたものであり、該アニール処理は周波数調整を行った電極膜を安定化する第2のアニール処理である請求項17記載のアニール方法。  The article is a substrate on which a crystal resonator is mounted. The resonator is frequency-adjusted with respect to the electrode film. The annealing treatment stabilizes the frequency-adjusted electrode film. The annealing method according to claim 17, which is an annealing treatment. 真空中で物品を加熱処理するシステムであって、仕込室、加熱室及び取出室からなり、該仕込室と該加熱室とは開閉可能な第1のバルブを有する第1の開口で連結され、該加熱室と取出室とは開閉可能な第2のバルブを有する第2の開口で連結されているシステムにおいて、
該仕込室の物品を該第1のバルブ開放時に該第1の開口から該加熱室に搬入する手段、
複数の物品収容位置を有する該加熱室内に配置されたストッカー、
該ストッカーの物品収容位置の少なくとも1つを該第1の開口に整列させて該第1の開口から搬入された物品を該整列された物品収容位置に収容するため、該ストッカーの物品収容位置の少なくとも1つを該第2の開口に整列させて該第2の開口から該整列された物品収容位置の物品を搬出するため該ストッカーを移動させる手段、
該加熱室の物品を該第2のバルブの開放時に該第2の開口から該取出室に搬出する手段、及び
該搬入する手段、該搬出する手段、該ストッカー移動手段及び第1と第2のバルブの作動を制御する制御装置とからなり、
該制御装置は、所定の搬入間隔時間の間隔毎に該第1のバルブを開放させ、該物品を該仕込室から該第1の開口を介して該加熱室へと搬入するよう該第1のバルブと該搬入手段を制御する第1の制御を行い、
該制御装置は、該第1の開口を介して該加熱室への物品の搬入時に該ストッカーの空き物品収容位置が該第1の開口に整列するよう該ストッカー移動手段を制御する第2の制御を行い、
該制御装置は、該ストッカーに収容されている複数の物品の少なくとも1つが所定の加熱時間だけ加熱完了された時に、該加熱完了した物品の収容位置を該第2の開口に整列するよう該ストッカー移動手段を制御する第3の制御を行い、
該制御装置は、該ストッカーの加熱完了物品の収容位置が該第2の開口に整列された時に、該物品を該加熱室から該第2の開口を介して該取出室へと搬出して該ストッカーに空き物品収容位置をつくるよう該第2のバルブと該搬出手段を制御する第4の制御を行っている加熱処理システム。
A system for heat-treating an article in a vacuum, comprising a charging chamber, a heating chamber, and a take-out chamber, wherein the charging chamber and the heating chamber are connected by a first opening having a first valve that can be opened and closed, In the system in which the heating chamber and the extraction chamber are connected by a second opening having a second valve that can be opened and closed,
Means for carrying the article in the charging chamber into the heating chamber from the first opening when the first valve is opened;
A stocker disposed in the heating chamber having a plurality of article storage positions;
In order to align at least one of the article storage positions of the stocker with the first opening and to store articles loaded from the first opening in the aligned article storage position, Means for moving the stocker to align at least one with the second opening and unload the article at the aligned article receiving position from the second opening;
Means for carrying out articles in the heating chamber from the second opening to the take-out chamber when the second valve is opened; means for carrying in; means for carrying out; means for moving the stocker; and first and second means It consists of a control device that controls the operation of the valve,
The control device opens the first valve at intervals of a predetermined carry-in interval time, and loads the article from the preparation chamber into the heating chamber through the first opening. Performing a first control to control the valve and the loading means;
The control device controls the stocker moving means so that an empty article storage position of the stocker is aligned with the first opening when an article is carried into the heating chamber through the first opening. And
The control device is configured to align the storage position of the heated article with the second opening when at least one of the plurality of articles contained in the stocker has been heated for a predetermined heating time. Perform a third control to control the moving means;
When the storage position of the heating completion article of the stocker is aligned with the second opening, the control device carries the article from the heating chamber to the take-out chamber through the second opening. The heat processing system which is performing the 4th control which controls this 2nd valve | bulb and this carrying-out means so that an empty article accommodation position may be made in a stocker.
該加熱室における物品の加熱処理中は真空が維持され、該第1のバルブの開放時に該仕込室は真空に維持され、該第2のバルブ開放時に該取出室は真空に維持され、該加熱処理は該物品の該加熱室への搬入時及び搬出時にも連続して行われている請求項20記載の加熱処理システム。A vacuum is maintained during the heat treatment of the article in the heating chamber, the charging chamber is maintained in vacuum when the first valve is opened, and the take-out chamber is maintained in vacuum when the second valve is opened. 21. The heat treatment system according to claim 20 , wherein the treatment is continuously performed when the article is carried into and out of the heating chamber. 大気圧雰囲気外部から該仕込室内への物品の移送時に該第1のバルブは閉成され、該取出室から大気圧雰囲気外部への物品の移送時に該第2のバルブは閉成され、該物品の該仕込室内への移送後に該仕込室を真空排気し、該物品の該取出室から大気圧雰囲気外部への移送後に該取出室を真空排気している請求項20記載の加熱処理システム。The first valve is closed when the article is transferred from the outside of the atmospheric atmosphere to the charging chamber, and the second valve is closed when the article is transferred from the take-out chamber to the outside of the atmospheric atmosphere. 21. The heat treatment system according to claim 20, wherein the charging chamber is evacuated after the transfer to the charging chamber, and the extraction chamber is evacuated after the article is transferred from the extraction chamber to the outside of the atmospheric pressure atmosphere. 該仕込室内の該物品を予備加熱する手段及び該取出室内の該物品を冷却する手段を有する請求項20記載の加熱処理システム。21. The heat treatment system according to claim 20, further comprising means for preheating the article in the charging chamber and means for cooling the article in the take-out chamber. 該予備加熱に要する時間及び該冷却に要する時間は該所定の搬入間隔時間より短く、そして該所定の加熱時間は該所定毎の搬入間隔時間より長い請求項20記載の加熱処理システム。21. The heat treatment system according to claim 20, wherein a time required for the preliminary heating and a time required for the cooling are shorter than the predetermined loading interval time, and the predetermined heating time is longer than the predetermined loading interval time. 該ストッカーの同一移動位置で、該ストッカーの物品収容位置の一つが該第1の開口と第2の開口の両方に整列する構成を該加熱室は有し、該制御装置は該第3と4の制御を行った後、該第2の制御を省いている請求項20記載の加熱処理システム。The heating chamber has a configuration in which one of the stocker's article receiving positions is aligned with both the first opening and the second opening at the same moving position of the stocker, and the controller is configured to control the third and fourth units. The heat treatment system according to claim 20 , wherein the second control is omitted after performing the control. 該物品は、電極膜を有する水晶振動子である請求項20記載の加熱処理システム。The heat treatment system according to claim 20 , wherein the article is a crystal resonator having an electrode film. 該ストッカーに空き収容位置がある場合に、該空き収容位置にダミー物品が収容される請求項20記載の加熱処理システム。The heat treatment system according to claim 20, wherein when the stocker has an empty storage position, a dummy article is stored in the empty storage position.
JP2002381085A 2002-12-27 2002-12-27 Annealing treatment, apparatus and system Expired - Lifetime JP4022619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002381085A JP4022619B2 (en) 2002-12-27 2002-12-27 Annealing treatment, apparatus and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002381085A JP4022619B2 (en) 2002-12-27 2002-12-27 Annealing treatment, apparatus and system

Publications (2)

Publication Number Publication Date
JP2004211948A JP2004211948A (en) 2004-07-29
JP4022619B2 true JP4022619B2 (en) 2007-12-19

Family

ID=32817124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381085A Expired - Lifetime JP4022619B2 (en) 2002-12-27 2002-12-27 Annealing treatment, apparatus and system

Country Status (1)

Country Link
JP (1) JP4022619B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116516135B (en) * 2023-05-05 2024-03-12 亚捷科技(唐山)股份有限公司 High-efficient isothermal normalizing furnace
CN117464235B (en) * 2023-12-27 2024-03-01 天津伍嘉联创科技发展股份有限公司 Tuning fork welding method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998518A (en) * 1982-11-26 1984-06-06 Seiko Epson Corp Lamp annealing apparatus
JPH0752068B2 (en) * 1991-03-08 1995-06-05 タバイエスペック株式会社 Heating device
JP3261504B2 (en) * 1991-11-28 2002-03-04 株式会社昭和真空 Electrode film forming equipment for crystal units
JP2820861B2 (en) * 1993-06-16 1998-11-05 タバイエスペック株式会社 Article heat treatment equipment
JP3066519B2 (en) * 1993-11-12 2000-07-17 東京エレクトロン株式会社 Processing system and processing method
JPH09275080A (en) * 1996-04-03 1997-10-21 Japan Steel Works Ltd:The Laser anneal processor
JP2000164526A (en) * 1998-11-24 2000-06-16 Japan Steel Works Ltd:The Laser annealing treatment apparatus
JP2000274952A (en) * 1999-03-24 2000-10-06 Koyo Thermo System Kk Heat treatment system
JP2001267264A (en) * 2000-03-22 2001-09-28 Sony Corp Equipment and method for heat treatment
JP2002110576A (en) * 2000-09-28 2002-04-12 Tokyo Electron Ltd Heat treating apparatus and heat treating method

Also Published As

Publication number Publication date
JP2004211948A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP4237939B2 (en) Vacuum processing equipment with improved substrate heating and cooling
US6949143B1 (en) Dual substrate loadlock process equipment
US6497734B1 (en) Apparatus and method for enhanced degassing of semiconductor wafers for increased throughput
KR100854142B1 (en) Load lock apparatus and substrate processing system and processing method
US6964751B2 (en) Method and device for heat treating substrates
JPH01225311A (en) Vapor growth apparatus
KR100848767B1 (en) Method and apparatus for heat processing of substrate
KR20120120052A (en) Loading unit and processing system
JP5024179B2 (en) Operation method of vacuum equipment
TW586176B (en) A heating and cooling device and a vacuum handling device with said heating and cooling device
JP4022619B2 (en) Annealing treatment, apparatus and system
KR102375496B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and substrate processing program
JP3869499B2 (en) Substrate processing method
JP5690475B2 (en) Molding apparatus and method for manufacturing molded product
JP2006190968A (en) Semiconductor device manufacturing apparatus
JPH11204535A (en) Heat treatment method for semiconductor substrate and device therefor
US20200286763A1 (en) Substrate accommodation device
CN111725094A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
KR102151323B1 (en) Substrate processing apparatus, manufacturing method of semiconductor device, and program recorded on recording medium
JP2001004282A (en) Vacuum heater
JPH0756864B2 (en) Epitaxy vapor phase growth equipment
JP2005150363A (en) Method for manufacturing semiconductor device
JPH09181060A (en) Thin-film formation device
JPH0726694U (en) Continuous heat treatment furnace
US20150295124A1 (en) Manufacturing equipment for photovoltaic devices and methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070906

R150 Certificate of patent or registration of utility model

Ref document number: 4022619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term