JP4016903B2 - Method for purifying metallic gallium - Google Patents

Method for purifying metallic gallium Download PDF

Info

Publication number
JP4016903B2
JP4016903B2 JP2003203670A JP2003203670A JP4016903B2 JP 4016903 B2 JP4016903 B2 JP 4016903B2 JP 2003203670 A JP2003203670 A JP 2003203670A JP 2003203670 A JP2003203670 A JP 2003203670A JP 4016903 B2 JP4016903 B2 JP 4016903B2
Authority
JP
Japan
Prior art keywords
metal gallium
molten metal
seed crystal
gallium
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003203670A
Other languages
Japanese (ja)
Other versions
JP2005047726A (en
Inventor
和延 山川
統治 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003203670A priority Critical patent/JP4016903B2/en
Publication of JP2005047726A publication Critical patent/JP2005047726A/en
Application granted granted Critical
Publication of JP4016903B2 publication Critical patent/JP4016903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属ガリウムの精製方法に関する。詳しくは種子結晶の存在下に溶融金属ガリウムを冷却し、結晶化させて金属ガリウムを精製する方法の改良に関する。
【0002】
【従来の技術】
金属ガリウムの精製方法として、分別結晶法、電解精製法、ゾーンメルト法および単結晶引上げ法などが知られている。設備が簡単で、容易に低コストで精製できることから溶融金属ガリウムを結晶化させて行う分別結晶法が採用されることが多い。
【0003】
溶融金属ガリウムは冷却しても過冷却状態になり、結晶核を存在させない限り、容易に結晶化せず、粒子状または粉体状の種子結晶を溶融金属ガリウム上に存在させて結晶化が行われる。
例えば、冷却された純水を溶融金属ガリウム上に滴下して発生させた結晶を種子結晶として溶融金属ガリウム上に存在させ、表面を気体によって冷却して結晶化を行う方法が知られている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開昭62−270494号公報
【0005】
粒子状または粉体状の種子結晶を存在させて結晶化させる分別結晶法による精製においては、急速に冷却すると結晶化速度が早くなり過ぎて精製効果が低下する。従って、ゆっくり冷却して結晶化させる必要があるが、その間に種子結晶が溶解してしまい、結晶化しなくなることが多い。そのため頻繁に監視して、種子結晶が溶解している場合には、種子結晶を追加してやる必要がある。
【0006】
【発明が解決しようとする課題】
本発明の目的は、種子結晶を存在させて結晶化させる分別結晶法によって金属ガリウムを精製する際に、手間をかけずに確実に結晶化させる方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は金属ガリウムの分別結晶法による精製方法において、容易で確実に結晶化させる方法について鋭意検討した結果、種子結晶体の先端を溶融金属ガリウムに没した状態で溶融金属ガリウムを冷却し、結晶化させることによって、確実に結晶化させることができることを見出し、本発明に至った。
すなわち本発明は、種子結晶を存在させて結晶化させる分別結晶法による金属ガリウムの精製方法において、種子結晶体を先端が開口しているプラスチック容器に入れ、該種子結晶体入りのプラスチック容器を先端の開口部の種子結晶体が溶融金属ガリウムに没するように、開口部を下にしてプラスチック製支持具に保持し、該支持具を溶融金属ガリウム上に配置し、溶融金属ガリウムを冷却して結晶化させることを特徴とする金属ガリウムの精製方法を提供するにある。
【0008】
【発明の実施の形態】
本発明を図1及び図2に基づいて詳細に説明するが、本発明はこれらに限定されるものではない。
図1は本発明の方法を示す模式図である。図2は種子結晶を入れた先端が開口したプラスチック容器およびその支持具の断面図である。
ビーカー1内に溶融金属ガリウム2が入れられており、種子結晶体4を入れたプラスチック容器3が支持具5に保持されて溶融金属ガリウムの表面に配置されている。容器先端の開口部の種子結晶は溶融金属ガリウムに没した状態にある。
溶融金属ガリウムがゆっくり冷却され、略融点温度に保持され、種子結晶のところから結晶化が起こる。
【0009】
種子結晶体の形状は特に限定されるものではないが、作製のし易さ、保持のし易さから細長い円錐形状または角錐形状のものが用いられる。中でも円錐形状のものが好ましく用いられる。
以下、円錐形状のものについて説明するが、他の形状のものも同様である。
【0010】
円錐形状の種子結晶体は、先端が開口している円錐形状のプラスチック容器に粒状または粉末状の高純度金属ガリウムを入れ、加温して溶解後、粒状または粉末状の種子を添加し、冷却して結晶化させ作製する。従って、種子結晶体はプラスチック容器と相似形状をしている。
円錐形状のプラスチック容器は、最大径が約6〜10mmφ、長さが約20〜30mm、厚みが約0.5〜0.8mmのものが用いられるが、これに限定されるものではない。
開口部の直径は約0.8〜2mmφ、好ましくは約1.0〜1.5mmφとするのが良い。約2mmφ以上にすると溶解した金属ガリウムが零れ出すので好ましくない。
このような容器はプラスチックシートから容易に作製可能であり、プラスチックとしてはポリオレフィン、中でもポリエチレン、ポリプロピレンが用いられるが、これに限定されるものではない。
【0011】
上記のようにして作製した細長い円錐形状の種子結晶体の先端はプラスチック容器の先端の開口部から一部はみ出た状態になっている。種子結晶体はそのままプラスチック容器に入ったまま使用する。
【0012】
支持具は中空の台状をしており、直径が約25〜35mmφで高さが約10〜20mmである。中央部に上記円錐形状のプラスチック容器を、先端の開口部を下方に差し込む孔が設けられている。中央部の孔径は、支持具の下端からプラスチック容器の先端が約1〜2mm出る程度にしておく。このことによって、種子結晶体が入ったプラスチック容器を支持具で保持して、溶融金属ガリウム上に配置した時に、種子結晶体の先端が溶融金属ガリウムに没した状態になる。
この支持具は、上記プラスチック容器と同様にポリオレフィン等から作製される。なお、支持具は上記の形状に限定されるものではなく、多角筒、半球状等でも良い。
【0013】
精製しようとする金属ガリウムを融点(29.8℃)より約5〜10℃高い温度に加熱して金属ガリウムを溶融させ、溶融金属ガリウムに固形状物がないことを確認する。溶融金属ガリウムを容器に入れ、表面の皮膜を取り除く。なお、容器としては、通常、テフロン(登録商標)製ビーカー等のプラスチック製のものが用いられるが、これに限定されるものではない。
【0014】
次に、略融点温度に温度調節されたところに溶融金属ガリウムを入れた容器を置き、溶融金属ガリウム上に、上記の支持具に保持された種子結晶体を配置する。種子結晶の先端は溶融するが、結晶と連続した状態で保持されている。溶融金属ガリウムの温度が融点より数度高い程度では種子結晶の大半は溶融せず、この状態が維持される。温度調節手段は特に限定されるものではなく、通常、室温雰囲気下で設定温度を略融点温度にした加温板上に溶融金属ガリウム入り容器を載せて行われる。設定温度は室温にもよるが、約27〜29℃である。
【0015】
溶融金属ガリウムの温度が徐々に低下し、加温板の温度が略上記温度になると種子結晶のところから結晶化が起こる。この状態で保持して結晶化を進める。上記温度より高いと結晶化し難く、低いと結晶化速度が速くなって不純物を巻き込み、精製効率が低下する。
約50〜80%結晶化させた後、精製された結晶を取出す。この結晶について上記と同じ溶融・結晶化操作を繰り返すことによって、純度を向上させる。
【0016】
従来の粒状または粉状の種子結晶を使用する方法では、ゆっくり冷却している間に種子結晶が溶解してしまい、結晶化しなくなることが多く、頻繁に監視して、種子結晶を追加してやる必要があったが、本発明の方法では、種子結晶を載せる溶融金属ガリウムの温度が多少高くても、確実に結晶化させることができる。
【0017】
【実施例】
以下、実施例を挙げて本発明について説明するが、本発明は以下の実施例のみに限定されるものではない。
【0018】
実施例1
図2に示す円錐形状(厚さ:0.6mm、最大径:8mm、長さ:25mm、先端部の開口径:1mm、ポリプロピレン製)のプラスチック容器に純度シックスナイン(6N)の高純度ガリウム約0.8〜1.2gを入れ、円錐形状の大きい径側から種付けし室温雰囲気下で結晶化させ、円錐形状の種子結晶体を準備した。
次に、約40℃に加熱して溶融した純度スリーナイン(3N)の金属ガリウム約5kgを2リットルのテフロン(登録商標)製ビーカーに入れ、固形状物がないことを確認し、表面の皮膜を除去した。そして、このフラスコを室温雰囲気下、表面温度を28.9℃に設定した加温板上に置いた。
【0019】
先に準備した種子結晶体入りのプラスチック容器を先端を下にして図2に示す中空の台状の支持具(厚み:0.6mm、最大外径:35mm、ポリプロピレン製)の中央に保持し、これを上記フラスコ内の溶融金属ガリウム上に配置し、プラスチック容器の先端の開口部の種子結晶体が溶融金属ガリウムに没した状態にした。この時、加温板の表面温度は38.9℃であった。
このまま放置し、1時間30分後に確認したところ、種子結晶体のところから金属ガリウムの結晶化が起こっていることを確認した。この時、加温板の表面温度は28.9℃であった。約60%結晶化させた後、結晶を取出したところ、約3kgの結晶が得られた。
【0020】
得られた結晶を再溶解し、上記と同様にして結晶化した。更に同様の操作をし(合計5回の結晶化)、得られた結晶をグロー放電マススペクトル分析計で分析した結果、純度6Nの金属ガリウムであることを確認した。
【0021】
実施例2
37個のビーカーを用いて、同時に実施例1と同様にして結晶化を行った。1時間30分後に確認したところ、全てのフラスコにおいて、種子結晶体のところから金属ガリウムの結晶化が起こっていることを確認した。
なお、この処置に要した時間は、種子結晶の設置に7分、結晶化の確認に3分の合計10分であった。
【0022】
比較例1
30個のビーカーを用いて、円錐形状の種子結晶体の代わりに、従来法の粒状種子(約2.0〜3.0mmφ)を1個づつ置いて結晶化を行った。30分毎に結晶の有無を確認し、粒状種子および結晶化の有無の確認を行った。粒状種子が溶解して消失している場合は粒状種子を追加した。
結果を表1に示す。
【0023】
【表1】

Figure 0004016903
実施例2では、種子結晶体を載せた後、放置し、1時間30分後に確認した時点で全部のビーカーで結晶化が起こっていた。一方、比較例1では、種子結晶が溶融してしまい、追加する必要があり、全部のビーカーについて結晶化させるのに時間と手間を要した。
【0024】
【発明の効果】
本発明の方法によって、頻繁に監視して、種子結晶を追加してやる等の手間をかけることなく、確実に結晶化させて金属ガリウムを精製することができる。
【図面の簡単な説明】
【図1】本発明の方法を示す模式図である。
【図2】種子結晶体を入れた先端が開口しているプラスチック容器およびその支持具の断面図である。
【符号の説明】
1:ビーカー
2:溶融金属ガリウム
3:プラスチック容器
4:種子結晶体
5:支持具
6:析出金属ガリウム
7:容器先端の開口部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying metallic gallium. Specifically, the present invention relates to an improvement in a method for purifying metal gallium by cooling and crystallizing molten metal gallium in the presence of seed crystals.
[0002]
[Prior art]
As a method for purifying metal gallium, a fractional crystallization method, an electrolytic purification method, a zone melt method, a single crystal pulling method, and the like are known. Since the equipment is simple and can be easily purified at low cost, a fractional crystallization method in which molten metal gallium is crystallized is often employed.
[0003]
Molten metal gallium is supercooled even when cooled, and does not crystallize easily unless crystal nuclei are present, and crystallization is performed with particulate or powdery seed crystals present on molten metal gallium. Is called.
For example, a method is known in which a crystal generated by dropping cooled pure water onto molten metal gallium is present on the molten metal gallium as a seed crystal, and the surface is cooled by gas to perform crystallization ( For example, see Patent Document 1.)
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 62-270494
In the purification by the fractional crystallization method in which the seed crystals in the form of particles or powders are present, if the cooling is performed rapidly, the crystallization speed becomes too fast and the purification effect decreases. Therefore, although it is necessary to cool and crystallize slowly, a seed crystal melt | dissolves in the meantime, and it does not crystallize in many cases. Therefore, it is necessary to monitor frequently and add seed crystals when the seed crystals are dissolved.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for surely crystallizing metal gallium without any trouble when purifying metal gallium by a fractional crystallization method in which a seed crystal is present.
[0007]
[Means for Solving the Problems]
As a result of earnestly examining the method of crystallizing easily and reliably in the purification method by fractional crystallization of metal gallium, the present inventors cooled the molten metal gallium with the tip of the seed crystal submerged in the molten metal gallium, The inventors have found that crystallization can be ensured by crystallization, and the present invention has been achieved.
That is, the present invention relates to a method for purifying metal gallium by a fractional crystallization method in which a seed crystal is present to crystallize , and the seed crystal is placed in a plastic container having an open end, and the plastic container containing the seed crystal is inserted in the tip So that the seed crystal of the opening is immersed in the molten metal gallium, the opening is held down on a plastic support, the support is placed on the molten metal gallium, and the molten metal gallium is cooled. An object of the present invention is to provide a method for purifying metallic gallium, which is characterized by crystallizing.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail with reference to FIGS. 1 and 2, but the present invention is not limited thereto.
FIG. 1 is a schematic diagram showing the method of the present invention. FIG. 2 is a cross-sectional view of a plastic container having a tip opened with seed crystals and its support.
Molten metal gallium 2 is placed in a beaker 1, and a plastic container 3 containing a seed crystal 4 is held by a support 5 and disposed on the surface of the molten metal gallium. The seed crystal at the opening at the tip of the container is immersed in molten metal gallium.
The molten metal gallium is slowly cooled and held at a substantially melting temperature, and crystallization occurs from the seed crystals.
[0009]
The shape of the seed crystal is not particularly limited, but an elongated cone shape or a pyramid shape is used for ease of production and ease of holding. Of these, a conical shape is preferably used.
The conical shape will be described below, but the same applies to other shapes.
[0010]
Cone-shaped seed crystals are obtained by placing granular or powdered high-purity metal gallium in a cone-shaped plastic container with an open end, heating and melting, adding granular or powdered seeds, and cooling And crystallized to produce. Therefore, the seed crystal has a similar shape to the plastic container.
A conical plastic container having a maximum diameter of about 6 to 10 mmφ, a length of about 20 to 30 mm, and a thickness of about 0.5 to 0.8 mm is used, but is not limited thereto.
The diameter of the opening is about 0.8 to 2 mmφ, preferably about 1.0 to 1.5 mmφ. If it is about 2 mmφ or more, the dissolved metal gallium starts to spill out, which is not preferable.
Such a container can be easily produced from a plastic sheet, and as the plastic, polyolefin, especially polyethylene or polypropylene, is used, but is not limited thereto.
[0011]
The tip of the elongate cone-shaped seed crystal produced as described above is partially protruding from the opening at the tip of the plastic container. The seed crystal is used as it is in a plastic container.
[0012]
The support has a hollow trapezoidal shape, and has a diameter of about 25 to 35 mmφ and a height of about 10 to 20 mm. A hole is provided in the center for inserting the conical plastic container and the opening at the tip downward. The hole diameter at the center is set so that the tip of the plastic container protrudes about 1 to 2 mm from the lower end of the support. Thus, when the plastic container containing the seed crystal is held by the support and placed on the molten metal gallium, the tip of the seed crystal is immersed in the molten metal gallium.
This support is made of polyolefin or the like, similar to the plastic container. In addition, a support tool is not limited to said shape, A polygonal cylinder, a hemisphere, etc. may be sufficient.
[0013]
The metal gallium to be purified is heated to a temperature about 5 to 10 ° C. higher than the melting point (29.8 ° C.) to melt the metal gallium, and it is confirmed that the molten metal gallium has no solid matter. Molten metal gallium is placed in a container and the surface film is removed. In addition, as a container, although plastic things, such as a Teflon (trademark) beaker, are normally used, it is not limited to this.
[0014]
Next, a container containing molten metal gallium is placed where the temperature has been adjusted to a substantially melting point temperature, and the seed crystal held on the support is placed on the molten metal gallium. The tip of the seed crystal melts but is held in a continuous state with the crystal. When the temperature of the molten metal gallium is several degrees higher than the melting point, most of the seed crystals are not melted and this state is maintained. The temperature adjusting means is not particularly limited, and is usually carried out by placing a container containing molten metal gallium on a heating plate having a set temperature of approximately the melting point in a room temperature atmosphere. The set temperature is about 27 to 29 ° C., although it depends on the room temperature.
[0015]
When the temperature of the molten metal gallium gradually decreases and the temperature of the heating plate reaches approximately the above temperature, crystallization occurs from the seed crystal. Holding in this state, crystallization proceeds. If the temperature is higher than the above temperature, it is difficult to crystallize, and if it is lower, the crystallization speed is increased and impurities are involved, resulting in a reduction in purification efficiency.
After about 50-80% crystallization, the purified crystals are removed. Purity is improved by repeating the same melting and crystallization operation as described above for this crystal.
[0016]
In the conventional method using a granular or powdery seed crystal, the seed crystal dissolves during slow cooling and often does not crystallize, and it is necessary to monitor the seed frequently and add a seed crystal. However, in the method of the present invention, even if the temperature of the molten metal gallium on which the seed crystal is placed is somewhat high, it can be surely crystallized.
[0017]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited only to a following example.
[0018]
Example 1
A plastic container having a conical shape (thickness: 0.6 mm, maximum diameter: 8 mm, length: 25 mm, tip opening diameter: 1 mm, made of polypropylene) shown in FIG. .8 to 1.2 g was added, seeded from the larger diameter side of the cone shape, and crystallized in a room temperature atmosphere to prepare a cone-shaped seed crystal.
Next, about 5 kg of pure gallium gallium of 3N (3N) melted by heating to about 40 ° C. is put in a 2 liter Teflon (registered trademark) beaker and confirmed that there is no solid material. Removed. And this flask was set | placed on the heating plate which set surface temperature to 28.9 degreeC by room temperature atmosphere.
[0019]
The plastic container containing the seed crystal prepared previously is held at the center of the hollow trapezoidal support (thickness: 0.6 mm, maximum outer diameter: 35 mm, made of polypropylene) shown in FIG. This was placed on the molten metal gallium in the flask, and the seed crystal at the opening at the tip of the plastic container was immersed in the molten metal gallium. At this time, the surface temperature of the heating plate was 38.9 ° C.
When it was allowed to stand as it was and confirmed after 1 hour and 30 minutes, it was confirmed that gallium metal crystallization occurred from the seed crystal. At this time, the surface temperature of the heating plate was 28.9 ° C. After about 60% crystallization, the crystals were taken out, and about 3 kg of crystals were obtained.
[0020]
The obtained crystals were redissolved and crystallized in the same manner as described above. Further, the same operation was performed (total 5 times of crystallization), and the obtained crystal was analyzed by a glow discharge mass spectrum analyzer. As a result, it was confirmed that the metal was gallium having a purity of 6N.
[0021]
Example 2
Crystallization was performed in the same manner as in Example 1 using 37 beakers. As a result of confirmation after 1 hour and 30 minutes, it was confirmed that crystallization of metal gallium occurred from the seed crystal in all the flasks.
The time required for this treatment was 10 minutes in total, 7 minutes for setting the seed crystals and 3 minutes for confirming the crystallization.
[0022]
Comparative Example 1
Using 30 beakers, instead of the cone-shaped seed crystals, crystallization was performed by placing conventional granular seeds (about 2.0 to 3.0 mmφ) one by one. The presence or absence of crystals was confirmed every 30 minutes, and the presence or absence of granular seeds and crystallization was confirmed. When the granular seed has dissolved and disappeared, the granular seed was added.
The results are shown in Table 1.
[0023]
[Table 1]
Figure 0004016903
In Example 2, crystallization occurred in all the beakers at the time when the seed crystal was placed and then allowed to stand and confirmed after 1 hour 30 minutes. On the other hand, in Comparative Example 1, the seed crystals were melted and needed to be added, and it took time and labor to crystallize all the beakers.
[0024]
【The invention's effect】
According to the method of the present invention, metal gallium can be purified by being surely crystallized without taking the trouble of frequently monitoring and adding seed crystals.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the method of the present invention.
FIG. 2 is a cross-sectional view of a plastic container in which a tip crystal body is put and an opening at its tip and its support.
[Explanation of symbols]
1: Beaker 2: Molten metal gallium 3: Plastic container 4: Seed crystal 5: Support 6: Precipitated metal gallium 7: Opening of container tip

Claims (1)

種子結晶を存在させて結晶化させる分別結晶法による金属ガリウムの精製方法において、種子結晶体を先端が開口しているプラスチック容器に入れ、該種子結晶体入りのプラスチック容器を先端の開口部の種子結晶体が溶融金属ガリウムに没するように、開口部を下にしてプラスチック製支持具に保持し、該支持具を溶融金属ガリウム上に配置し、溶融金属ガリウムを冷却して結晶化させることを特徴とする金属ガリウムの精製方法。 In a method for purifying metal gallium by a fractional crystallization method in which a seed crystal is present and crystallized , the seed crystal is placed in a plastic container having an opening at the tip, and the plastic container containing the seed crystal is used as a seed at the opening at the tip. Holding the plastic support with the opening facing down so that the crystal body is immersed in the molten metal gallium, placing the support on the molten metal gallium, cooling the molten metal gallium, and crystallizing. A method for purifying metallic gallium.
JP2003203670A 2003-07-30 2003-07-30 Method for purifying metallic gallium Expired - Fee Related JP4016903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203670A JP4016903B2 (en) 2003-07-30 2003-07-30 Method for purifying metallic gallium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203670A JP4016903B2 (en) 2003-07-30 2003-07-30 Method for purifying metallic gallium

Publications (2)

Publication Number Publication Date
JP2005047726A JP2005047726A (en) 2005-02-24
JP4016903B2 true JP4016903B2 (en) 2007-12-05

Family

ID=34262941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203670A Expired - Fee Related JP4016903B2 (en) 2003-07-30 2003-07-30 Method for purifying metallic gallium

Country Status (1)

Country Link
JP (1) JP4016903B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652209B2 (en) * 2010-03-31 2015-01-14 新日鐵住金株式会社 Gas gate valve for high temperature furnace
CN111206285A (en) * 2020-01-15 2020-05-29 广西大学 Standard crystal seed preparation device for producing high-purity gallium and use method thereof

Also Published As

Publication number Publication date
JP2005047726A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
KR100318112B1 (en) Manufacturing method of aluminum alloy single crystal sputtering target
JP4115432B2 (en) Metal purification method
JP2007145663A (en) Method for producing high purity polycrystalline silicon
JP4016903B2 (en) Method for purifying metallic gallium
JP2008163420A (en) Metal refining method and apparatus, refined metal, cast product, metal product, and electrolytic capacitor
CN102489693A (en) Method for preparing aluminum alloy cast ingot with thinned crystalline grains
JP5134817B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JPH107491A (en) High-purity single crystal copper and its production and production unit therefor
WO2012050410A1 (en) Method of purification of silicon
JP2007119297A (en) Method for production of high-melting point single crystal material
JP2004043972A (en) Method for refining aluminum or aluminum alloy
JP5594958B2 (en) Substance purification method and substance purification equipment
JP2008081394A (en) Metallic silicon and process for producing the same
JP2714684B2 (en) Purification method of metallic gallium
JP2003293051A (en) METHOD FOR MANUFACTURING Ti ALLOY CONTAINING LOW MELTING POINT METAL AND REFRACTORY METAL
KR101544088B1 (en) METHOD FOR SEPARATING PURE SILICONS IN Al-Si ALLOYS USING CENTRIFUGAL SEPARATION, AN ALLOY REFINING METHOD, AND A PURE FOAM PRODUCED USING THE SAME
JP3719452B2 (en) Method for producing single crystal copper
JP2007045640A (en) Forming method of semiconductor bulk crystal
JP3331490B2 (en) Aluminum purification method
JP2007045640A5 (en)
JPH0154417B2 (en)
JP2020050544A (en) Seed crystal for iron gallium alloy single crystal growth
JP7403101B2 (en) Crucible for growing gallium oxide crystals
JPH10182132A (en) Refining of silicon and refining apparatus therefor
JPH08217436A (en) Solidification and purification of metal silicon, device therefor, and mold used for the device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees