JP4016719B2 - 力率改善回路 - Google Patents

力率改善回路 Download PDF

Info

Publication number
JP4016719B2
JP4016719B2 JP2002149431A JP2002149431A JP4016719B2 JP 4016719 B2 JP4016719 B2 JP 4016719B2 JP 2002149431 A JP2002149431 A JP 2002149431A JP 2002149431 A JP2002149431 A JP 2002149431A JP 4016719 B2 JP4016719 B2 JP 4016719B2
Authority
JP
Japan
Prior art keywords
voltage
output
resistor
detection circuit
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002149431A
Other languages
English (en)
Other versions
JP2003348848A (ja
Inventor
浩 臼井
勇二 佐山
征也 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2002149431A priority Critical patent/JP4016719B2/ja
Publication of JP2003348848A publication Critical patent/JP2003348848A/ja
Application granted granted Critical
Publication of JP4016719B2 publication Critical patent/JP4016719B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Rectifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、力率改善回路の保護回路に関するものである。
【0002】
【従来の技術】
従来のこの種の力率改善回路の一例を図4に示す。図4において、交流電源1からの正弦波電圧はフィルタ2を通過して全波整流回路3で全波整流され、全波整流波形がフィルタ4を通過して力率改善回路5に供給される。力率改善回路5は、チョークコイル67の主巻線67a、スイッチング素子68、ダイオード70、出力コンデンサ71からなる昇圧型アクティブフィルタ方式であり、制御系として制御回路6を有している。
【0003】
次に、図4に示す力率改善回路5の動作を説明する。初めに、チョークコイル67の臨界検出用巻線67bの一端がGNDに接続されており、その他端が抵抗66及びDET端子を介してコンパレータ54の+入力端子に入力され、同時に、コンパレータ54の−入力端子に第3の基準電圧53が入力されている。コンパレータ54は、両入力電圧を比較し、コンパレータ54からローレベルのセット信号がフリップフロップ62に出力される。
【0004】
フリップフロップ62がコンパレータ54からのセット信号に応じてセットされると、アンド回路64を介してスイッチング素子68のゲート端子にハイレベルのドライブ信号がQ出力端子から供給されて、スイッチング素子68がオンする。スイッチング素子68がオンすると、交流電源1からチョークコイル67の主巻線67a,スイッチング素子68のドレイン−ソース、電流検出用抵抗69を介してGNDへとスイッチング電流が流れて、チョークコイル67にエネルギが蓄えられる。
【0005】
このとき、スイッチング素子68に流れるスイッチング電流は、スイッチング素子68のソース−GND間に設けられた電流検出用抵抗69により電圧に変換されてコンパレータ56の+入力端子に入力され、コンパレータ56で乗算器55から出力される電流目標値Vmと比較される。
【0006】
スイッチング電流が電流目標値Vmに達すると、コンパレータ56からハイレベルのリセット信号がオア回路61を介してフリップフロップ62に出力される。フリップフロップ62はコンパレータ56からのリセット信号に応じてリセットされ、Q出力端子から出力されていたハイレベルのドライブ信号がローレベルに切り替わり、スイッチング素子68がオフされる。
【0007】
スイッチング素子68がオフすると、チョークコイル67に蓄えられていたエネルギーとフィルタ4から供給される電圧とが合成され、ダイオード70を通して出力コンデンサ71に充電される。この結果、出力コンデンサ71には、フィルタ4から供給された全波整流波形のピーク値より高く昇圧された電圧が出力される。
【0008】
チョークコイル67に蓄えられていたエネルギーの放出が終了すると、チョークコイル67の巻線電圧が反転する。この巻線電圧をチョークコイル67の臨界検出用巻線67bにより検出し、抵抗66及びDET端子を介してコンパレータ54に入力する。コンパレータ54は、DET端子からの電圧と第3の基準電圧53とを比較し、コンパレータ54からローレベルのセット信号がフリップフロップ62に出力される。この結果、コンパレータ54からのセット信号に応じてフリップフロップ62がセットされ、再びハイレベルのドライブ信号がスイッチング素子68のゲート端子に入力されてスイッチング素子68がオンする。すなわち、チョークコイル67のエネルギの放出が終了した時点で、フリップフロップ62を再びセットし、スイッチング素子68をオンさせる。
【0009】
出力コンデンサ71からの出力電圧は、抵抗73,抵抗74,抵抗75によって分圧されてCV端子を介してオペアンプ57に入力され、オペアンプ57により、第1の基準電圧58との差信号が増幅されて出力される誤差信号が乗算器55に供給される。
【0010】
フィルタ4からの全波整流波形は抵抗51,52により分圧され、AC端子を介して乗算器55に入力され、乗算器55により全波整流波形とこの誤差信号が乗算され、乗算出力は、コンパレータ56の−入力端子へ供給される。乗算器55の出力は、全波整流波形(脈流波形)を出力電圧に応じて大小するもので、CS端子を介して検出されるスイッチング電流の電流目標値Vmとなる。
【0011】
以後、このような動作の繰り返しにより力率改善回路5の出力コンデンサ71の出力電圧は一定に保たれる。同時に、交流電源1に流れる電流が交流電源1の電圧に追従した正弦波電流波形となる。
【0012】
また、力率改善回路5は、故障等により出力電圧が過電圧となった場合に、力率改善回路5を停止させるラッチ型出力過電圧検出回路81を有する。ラッチ型出力過電圧検出回路81は、出力電圧を抵抗83と抵抗84とで分圧し、分圧電圧を基準電圧86とコンパレータ85により比較し、過電圧時にはコンパレータ85からラッチ回路87にハイレベルを出力し、ラッチ回路87をセットし、制御回路6のOFF端子に停止信号を送出し、力率改善回路5を停止させる。
【0013】
また、力率改善回路5は、出力電圧を一定にするために、抵抗73,抵抗74,抵抗75からなる出力電圧検出回路72の抵抗75の電圧をオペアンプ57に入力して、フィードバック制御を行っているが、交流電源1に流れる電流を正弦波状とするために、正弦波の周波数に対応して応答を十分に遅くする必要がある。このため、FB端子−CV端子間に比較的大きな位相補償用コンデンサ76を接続している。これにより、正弦波の周波数に対応して応答を十分に遅くすることができるが、応答が遅いために、入力急変、負荷急変等により出力電圧が短い期間に上昇する問題がある。
【0014】
この問題を解決するために、制御回路6にはOVP端子が設けられており、OVP端子は、出力電圧検出回路72の抵抗73と抵抗74との接続点の電圧を入力し、該電圧は、CV端子の電圧より少し高い電圧に設定されている。OVP端子から第2の基準電圧60より大きな電圧が入力されると、コンパレータ59がハイレベルを出力する。コンパレータ59の出力は、オア回路61を介してフリップフロップ62をリセットし、スイッチング素子68をオフさせる。これにより、入力急変や負荷急変により出力電圧が過電圧状態となって上昇している期間のみスイッチング素子68をオフさせ、出力電圧が上昇することを防止している。
【0015】
しかしながら、図4に示す力率改善回路では、比較的大きな位相補償用コンデンサ76を有するため、FB端子の電圧がOVP端子の電圧にも影響を及ぼし、OVP端子の応答速度が少し遅くなり、出力電圧が過渡的に上昇する欠点があった。
【0016】
この欠点を回避するために、図5に示す力率改善回路では、出力電圧検出回路72の他に、抵抗78,抵抗79からなる非ラッチ型出力過電圧検出回路77を追加し、抵抗78と抵抗79との接続点の電圧をOVP端子に入力している。即ち、位相補償用コンデンサ76の影響を全く受けない構成となり、速度応答が可能となる。
【0017】
【発明が解決しようとする課題】
しかしながら、図5に示す力率改善回路では、以下のような問題を有していた。例えば、出力電圧検出回路72の抵抗73が開放(OPEN)となった場合に、図4に示す力率改善回路では、OVP端子もOPENとなって、コンパレータ59が機能しないため、出力電圧が上昇する。このような故障の場合には、ラッチ型出力過電圧検出回路81が作動して、力率改善回路を安全に停止させる。
【0018】
ところが、図5に示す力率改善回路では、抵抗73がOPENとなった場合、抵抗78と抵抗79との分圧電圧がOVP端子に印加されるため、OVP端子の設定電圧で出力電圧が定電圧化される。即ち、CV端子への電圧印加停止により力率改善回路が正常に機能しないにもかかわらず、OVP端子への電圧印加により力率改善回路は、作動しつづける欠点があった。また、この時の出力電圧は、OVP端子の設定電圧であるため、通常の値より大きく、力率改善回路の後段に接続される機器に悪影響を与える欠点がある。
【0019】
本発明の目的は、出力電圧検出回路の動作が不良となった場合には、ラッチ型出力過電圧検出回路を確実に作動させることにより、安全に確実に停止させることができる力率改善回路を提供することにある。
【0020】
【課題を解決するための手段】
前記課題を解決するために、請求項1の発明は、交流電源から供給される交流電圧を整流して得られる全波整流波形をチョークコイルを介して入力し、スイッチング素子によりオンオフし、整流平滑して直流の出力電圧を得る力率改善回路であって、前記出力電圧を一定値に制御するために前記出力電圧を検出して第1の検出電圧を得る出力電圧検出回路と、前記出力電圧が前記一定値よりも大きい所定の過電圧値に達したか否かを検出するために使用する第2の検出電圧を得る非ラッチ型出力過電圧検出回路と、前記出力電圧と前記出力電圧の過電圧状態を検出するための過電圧基準電圧とを比較し、前記出力電圧が前記過電圧基準電圧に達したことを示す出力をラッチするラッチ型出力過電圧検出回路と、前記出力電圧検出回路で得られた第1の検出電圧と前記非ラッチ型出力過電圧検出回路で得られた第2の検出電圧と前記ラッチ型出力過電圧検出回路からのラッチ出力とに基づき前記スイッチング素子をオンオフ制御する制御回路と、前記出力電圧検出回路が不動作となったとき、該不動作に連動して前記非ラッチ型過電圧検出回路を不動作にさせる連動素子とを備えることを特徴とする。
【0021】
請求項2の発明では、前記連動素子は、前記出力電圧検出回路と前記非ラッチ型過電圧検出回路とを接続するダイオードであることを特徴とする。
【0022】
請求項3の発明では、前記出力電圧検出回路は、第1の抵抗と第2の抵抗とが直列に接続されてなり、前記非ラッチ型過電圧検出回路は、第3の抵抗と第4の抵抗とが直列に接続されてなり、前記第1の抵抗と前記第2の抵抗との接続点に前記ダイオードのカソードが接続され、前記第3の抵抗と前記第4の抵抗との接続点に前記ダイオードのアノードが接続されてなることを特徴とする。
【0023】
請求項4の発明では、前記制御回路は、前記出力電圧検出回路で得られた第1の検出電圧と第1の基準電圧との差信号を増幅して誤差信号を出力する誤差信号生成手段と、前記交流電源から供給される交流電圧を整流して得られる全波整流波形と前記誤差信号生成手段からの誤差信号とから該全波整流波形と連動した電流目標値を生成する電流目標値生成手段と、前記スイッチング素子のオン期間に流れるスイッチング電流の値が前記電流目標値生成手段からの電流目標値に達したときに該スイッチング素子をオフする第1のオフ制御手段と、前記非ラッチ型出力過電圧検出回路からの第2の検出電圧が第2の基準電圧に達したときに前記スイッチング素子をオフする第2のオフ制御手段と、前記ラッチ型出力過電圧検出回路からラッチ出力を入力したときに前記スイッチング素子をオフする第3のオフ制御手段とを備えることを特徴とする。
【0024】
【発明の実施の形態】
以下、本発明に係る力率改善回路の実施の形態を図面を参照しながら説明する。図1は本発明の力率改善回路の実施の形態の構成を示す図である。実施の形態の力率改善回路は、図5に示す従来の力率改善回路に、さらにダイオード80をOVP端子−CV端子間に追加したことを特徴とする。
【0025】
図1において、交流電源1からフィルタ2に正弦波電圧が供給されており、フィルタ2を通過した正弦波電圧は全波整流回路3で全波整流されてフィルタ4を通過し、フィルタ4からの全波整流波形が力率改善回路5に供給される。フィルタ2,4は、力率改善回路5から交流電源1側に漏洩するノイズ成分を除去する。また、フィルタ2,4は、省略することも可能である。
【0026】
次に、力率改善回路5の構成について詳細に説明する。力率改善回路5は、チョークコイル67の主巻線67a、スイッチング素子68、ダイオード70、出力コンデンサ71からなる昇圧型アクティブフィルタ方式である。
【0027】
チョークコイル67には、主巻線67aと臨界検出用巻線67bが設けられている。主巻線67aの一端はフィルタ4の一端と抵抗51に接続され、主巻線67aの他端はスイッチング素子68のドレインとダイオード70のアノードに接続されている。また、臨界検出用巻線67bの一端は抵抗66及びDET端子を介してコンパレータ54の+入力端子に接続され、臨界検出用巻線67bの他端はGNDに接続されている。ダイオード70のカソードは出力コンデンサ71の一端、抵抗73の一端、抵抗78の一端、抵抗83の一端に接続されている。
【0028】
抵抗73と抵抗74と抵抗75とは、出力電圧検出回路72を構成し、出力電圧検出回路72は、出力コンデンサ71の出力電圧を一定値に制御するために出力電圧を検出して抵抗75の電圧を第1の検出電圧としてCV端子に出力する。
【0029】
抵抗78と抵抗79aとは、非ラッチ型出力過電圧検出回路77を構成し、非ラッチ型出力過電圧検出回路77は、出力電圧が一定値よりも大きい所定の過電圧値に達したか否かを検出するために使用する第2の検出電圧として抵抗79aの電圧をOVP端子に出力する。
【0030】
また、抵抗74と抵抗75との接続点にダイオード80のカソードが接続され、抵抗78と抵抗79aとの接続点にダイオード80のアノードが接続されている。なお、通常時にダイオード80をオフ状態とするために、抵抗75の電圧が抵抗79aの電圧よりも高くなるように抵抗79aの抵抗値が設定されている。
【0031】
ラッチ型出力過電圧検出回路81は、出力電圧を抵抗83と抵抗84とで分圧し、分圧電圧を基準電圧86とコンパレータ85により比較し、過電圧時にはコンパレータ85からラッチ回路87にハイレベルを出力し、ラッチ回路87をセットし、制御回路6のOFF端子に停止信号を送出し、力率改善回路5を停止させる。
【0032】
次に、力率改善回路5の制御系である制御回路6の構成について説明する。コンパレータ54の+入力端子は、DET端子、抵抗66、臨界検出用巻線67bを介してGNDに接続されている。また、コンパレータ54の−入力端子には第3の基準電圧53が入力されている。コンパレータ54は、両入力電圧を比較し、+入力端子に入力されている臨界検出用巻線67bに生じた電圧が第3の基準電圧53よりも低い場合に、ローレベルのセット信号をフリップフロップ62のセット端子に出力する。
【0033】
フリップフロップ62のセット端子には、コンパレータ54の出力端子が接続され、リセット端子にはオア回路61を介してコンパレータ56の出力端子が接続され、Q出力端子にはアンド回路64を介してスイッチング素子68のゲート端子が接続されている。フリップフロップ62は、ローレベルのセット信号がコンパレータ54から入力された場合に、ハイレベルのドライブ信号をQ出力端子に出力する。ハイレベルのリセット信号がオア回路61を介してコンパレータ56から入力された場合に、Q出力端子にローレベルを出力する。
【0034】
オペアンプ57の−入力端子には出力コンデンサ71の端子間電圧が抵抗73,74,75によって分圧されて入力され、+入力端子には第1の基準電圧58が入力され、オペアンプ57の−入力端子と出力端子との間に位相補償用コンデンサ76が接続されている。オペアンプ57は、抵抗73,74,75及び位相補償用コンデンサ76により増幅ゲインが設定され、出力コンデンサ71の出力電圧に対応する分圧電圧と第1の基準電圧58との差信号を増幅して誤差信号を乗算器55に供給する。
【0035】
乗算器55の一方の入力端子には全波整流回路3からの全波整流波形が抵抗51,52により分圧された電圧が入力され、他方の入力端子にはオペアンプ57からの誤差信号が入力され、乗算器55は、全波整流波形と誤差信号とを乗算し、全波整流波形と連動した電流目標値Vmとしてコンパレータ56の−入力端子へ供給する。
【0036】
コンパレータ56の−入力端子には乗算器55からスイッチング電流の電流目標値Vmが供給され、コンパレータ56の+入力端子にはCS端子を介して電流検出用抵抗69が接続され、スイッチング素子68がオン期間にあるときのドレイン−ソース電流に対応する電圧が電流検出値として入力されている。スイッチング電流が全波整流波形と連動した電流目標値Vmに達すると、コンパレータ56からハイレベルのリセット信号がオア回路61を介してフリップフロップ62に出力される。
【0037】
コンパレータ59の−入力端子には第2の基準電圧60が入力され、コンパレータ59の+入力端子には抵抗78と抵抗79aとの分圧電圧がOVP端子を介して入力され、分圧電圧が第2の基準電圧60に達するとハイレベルのリセット信号がオア回路61を介してフリップフロップ62に出力される。
【0038】
インバータ回路63は、OFF端子を介してラッチ回路87から入力される停止信号を反転してローレベルのドライブ信号をアンド回路64を介してスイッチング素子68のゲート端子に送出し、スイッチング素子68をオフさせる。
【0039】
次に、力率改善回路の動作について説明する。交流電源1が印加されると、交流電源1から供給される正弦波電圧が全波整流回路3で全波整流されて、力率改善回路5に全波整流波形が供給される。
【0040】
(1)起動時の動作
まず、コンパレータ54の+入力端子は、抵抗66、臨界検出用巻線67bを介して接地された状態になっており、同時に、コンパレータ54の−入力端子に第3の基準電圧53が入力されている。コンパレータ54では、両入力電圧が比較され、+入力端子の電圧の方が低電位であるので、コンパレータ54からローレベルのセット信号がフリップフロップ62に出力されている。
【0041】
フリップフロップ62は、コンパレータ54からのセット信号に応じてセットされ、図2に示すタイミングt1のように、Q出力端子からハイレベルのドライブ信号が出力されてアンド回路64を介してスイッチング素子68がオンされる。
【0042】
スイッチング素子68がオンすると、図2に示すタイミングt1のように、スイッチング素子68のドレイン電圧Vdは0V近くに低下する。そして、全波整流回路3から主巻線67a,スイッチング素子68のドレイン−ソース、電流検出用抵抗69を介してGNDへとスイッチング電流が流れ、チョークコイル67にエネルギーが蓄えられる。
【0043】
このとき、スイッチング素子68に流れるスイッチング電流は、図2に示すように、スイッチング素子68のソース−GND間に設けられた電流検出用抵抗69により電圧Vsに変換されてコンパータ56の+入力端子に入力され、コンパータ56で乗算器55から出力される全波整流波形と連動した電流目標値Vmと比較される。
【0044】
(2)電流目標値Vm
CV端子とFB端子との間には比較的大きな位相補償用の例えば0.68μFからなるコンデンサ76が設けられ、出力コンデンサ71からの出力電圧は、抵抗73,74,抵抗75によって分圧されてCV端子を介してオペアンプ57の−入力端子に入力され、出力電圧の分圧値と第1の基準電圧58との差信号を増幅して出力される誤差信号をオペアンプ57から乗算器55に供給される。
【0045】
一方、全波整流回路3からの全波整流波形は抵抗51,52により分圧されて乗算器55に入力される。
【0046】
乗算器55では、オペアンプ57からの誤差信号と全波整流回路3からの全波整流波形を乗算した電圧が生成され、全波整流波形と連動した電流目標値Vmとしてコンパレータ56の−入力端子へ供給される。
【0047】
(3)スイッチング素子のオフ制御
図2に示すタイミングt2のように、スイッチング電流の電流検出値が全波整流波形と連動した電流目標値Vmに達すると、コンパレータ56からオア回路61を介してハイレベルのリセット信号がフリップフロップ62に出力される。フリップフロップ62はコンパレータ56からのリセット信号に応じてリセットされ、Q出力端子から出力されていたハイレベルのドライブ信号がローレベルに切り替わり、スイッチング素子68がオフされる。
【0048】
スイッチング素子68がオフすると、チョークコイル67に蓄えられていたエネルギーとフィルタ4から供給される電圧とが合成され、ダイオード70を通して出力コンデンサ71に充電される。
【0049】
この結果、出力コンデンサ71には、フィルタ4から供給された全波整流波形のピーク値より高く昇圧された電圧が出力される。
【0050】
(4)スイッチング素子のオン制御
次に、チョークコイル67に蓄えられていたエネルギーの放出が終了すると、臨界検出用巻線67bにリンギング電圧が発生し、臨界検出用巻線67bの電圧が反転する。この電圧は第3の基準電圧53とコンパレータ54により比較され、図2に示すタイミングt3において、コンパレータ54からローレベルのセット信号がフリップフロップ62に出力される。
【0051】
この結果、コンパレータ54からのセット信号に応じてフリップフロップ62がセットされ、図2に示すタイミングt3のように、再びハイレベルのドライブ信号がスイッチング素子68のゲート端子に入力されてスイッチング素子68がオンされる。
【0052】
以後、このような動作の繰り返しにより、力率改善回路5の出力コンデンサ71における出力電圧は、一定に保たれる。同時に、交流電源1に流れる電流が交流電源1の電圧に追従した正弦波電流波形となる。
【0053】
(5)出力電圧検出回路72が通常動作しているとき
次に出力電圧検出回路72の通常動作を説明する。この場合には、抵抗75の電圧が抵抗79aの電圧よりも高くなっているので、ダイオード80はオフ状態となる。このため、出力電圧検出回路72と非ラッチ型過電圧検出回路77とが全く切離されるため、OVP端子側が位相補償用コンデンサ76の影響を全く受けなくなる。
【0054】
その結果、コンパレータ59の+入力端子には抵抗78と抵抗79aとの分圧電圧がOVP端子を介して入力されるため、コンパレータ59は、高速に作動して、入力急変、負荷急変においても、図3に示すように、OVP端子の設定電圧であるOVPレベルで出力電圧が定電圧化される。このため、出力過電圧を確実に防止することができる。
【0055】
(6)出力電圧検出回路72の動作が不良となったとき
ここでは、出力電圧検出回路72の動作が不良となった一例として、抵抗73がOPENとなった時の動作を説明する。抵抗73がOPENとなった場合には、抵抗73、抵抗74、抵抗75の経路に電流が流れないため、CV端子の電圧が低下する。これにより、ダイオード80がオンして、電流が抵抗78からダイオード80を介して抵抗75に流れるとともに、電流が抵抗78から抵抗79aにも流れる。このため、OVP端子の抵抗は、抵抗75と抵抗79aとの並列抵抗となり、小さい抵抗値となるため、抵抗73のOPENに対して、OVP端子が機能しなくなる。即ち、過電圧時に、コンパレータ59が機能しないため、出力電圧は過電圧となるが、ラッチ型出力過電圧検出回路81が作動して、力率改善回路5を安全に確実に停止させることができる。
【0056】
【発明の効果】
以上、説明したように本発明によれば、出力電圧検出回路の動作が不良となった場合には、非ラッチ型出力過電圧検出回路の作動を禁止して、ラッチ型出力過電圧検出回路を確実に作動させることにより、力率改善回路を安全に確実に停止させることができる。
【図面の簡単な説明】
【図1】本発明の力率改善回路の実施の形態の構成を示す図である。
【図2】実施の形態の力率改善回路の動作を説明するためのタイミングチャートである。
【図3】力率改善回路の動作を説明するための波形である。
【図4】従来の力率改善回路の一例の構成を示す図である。
【図5】従来の力率改善回路の他の一例の構成を示す図である。
【符号の説明】
1 交流電源
2,4 フィルタ
3 全波整流回路
5 力率改善回路
6 制御回路
54,56,59,85 コンパレータ
55 乗算器
62 フリップフロップ
57 オペアンプ
63 インバータ回路
61 オア回路
64 アンド回路
67 チョークコイル
68 スイッチング素子
70 ダイオード
71 出力コンデンサ
51,52,66,73〜75,78,79,79a,83,84 抵抗
76 位相補償用コンデンサ
80 ダイオード
72 出力電圧検出回路
77 非ラッチ型出力過電圧検出回路
81 ラッチ型出力過電圧検出回路
87 ラッチ回路
69 電流検出用抵抗

Claims (4)

  1. 交流電源から供給される交流電圧を整流して得られる全波整流波形をチョークコイルを介して入力し、スイッチング素子によりオンオフし、整流平滑して直流の出力電圧を得る力率改善回路であって、
    前記出力電圧を一定値に制御するために前記出力電圧を検出して第1の検出電圧を得る出力電圧検出回路と、
    前記出力電圧が前記一定値よりも大きい所定の過電圧値に達したか否かを検出するために使用する第2の検出電圧を得る非ラッチ型出力過電圧検出回路と、
    前記出力電圧と前記出力電圧の過電圧状態を検出するための過電圧基準電圧とを比較し、前記出力電圧が前記過電圧基準電圧に達したことを示す出力をラッチするラッチ型出力過電圧検出回路と、
    前記出力電圧検出回路で得られた第1の検出電圧と前記非ラッチ型出力過電圧検出回路で得られた第2の検出電圧と前記ラッチ型出力過電圧検出回路からのラッチ出力とに基づき前記スイッチング素子をオンオフ制御する制御回路と、
    前記出力電圧検出回路が不動作となったとき、該不動作に連動して前記非ラッチ型過電圧検出回路を不動作にさせる連動素子と、
    を備えることを特徴とする力率改善回路。
  2. 前記連動素子は、前記出力電圧検出回路と前記非ラッチ型過電圧検出回路とを接続するダイオードであることを特徴とする請求項1記載の力率改善回路。
  3. 前記出力電圧検出回路は、第1の抵抗と第2の抵抗とが直列に接続されてなり、前記非ラッチ型過電圧検出回路は、第3の抵抗と第4の抵抗とが直列に接続されてなり、前記第1の抵抗と前記第2の抵抗との接続点に前記ダイオードのカソードが接続され、前記第3の抵抗と前記第4の抵抗との接続点に前記ダイオードのアノードが接続されてなることを特徴とする請求項2記載の力率改善回路。
  4. 前記制御回路は、
    前記出力電圧検出回路で得られた第1の検出電圧と第1の基準電圧との差信号を増幅して誤差信号を出力する誤差信号生成手段と、
    前記交流電源から供給される交流電圧を整流して得られる全波整流波形と前記誤差信号生成手段からの誤差信号とから該全波整流波形と連動した電流目標値を生成する電流目標値生成手段と、
    前記スイッチング素子のオン期間に流れるスイッチング電流の値が前記電流目標値生成手段からの電流目標値に達したときに該スイッチング素子をオフする第1のオフ制御手段と、
    前記非ラッチ型出力過電圧検出回路からの第2の検出電圧が第2の基準電圧に達したときに前記スイッチング素子をオフする第2のオフ制御手段と、
    前記ラッチ型出力過電圧検出回路からラッチ出力を入力したときに前記スイッチング素子をオフする第3のオフ制御手段と、
    を備えることを特徴とする請求項項1乃至請求項3のいずれか1項記載の力率改善回路。
JP2002149431A 2002-05-23 2002-05-23 力率改善回路 Expired - Fee Related JP4016719B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002149431A JP4016719B2 (ja) 2002-05-23 2002-05-23 力率改善回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002149431A JP4016719B2 (ja) 2002-05-23 2002-05-23 力率改善回路

Publications (2)

Publication Number Publication Date
JP2003348848A JP2003348848A (ja) 2003-12-05
JP4016719B2 true JP4016719B2 (ja) 2007-12-05

Family

ID=29767608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002149431A Expired - Fee Related JP4016719B2 (ja) 2002-05-23 2002-05-23 力率改善回路

Country Status (1)

Country Link
JP (1) JP4016719B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3801184B2 (ja) * 2004-05-07 2006-07-26 サンケン電気株式会社 スイッチング電源装置
JP5273158B2 (ja) 2008-11-25 2013-08-28 株式会社村田製作所 Pfcコンバータ
JP5424031B2 (ja) * 2009-08-31 2014-02-26 サンケン電気株式会社 力率改善回路
JP6199503B2 (ja) * 2014-09-29 2017-09-20 シャープ株式会社 電源装置、及びそれを備えた照明器具

Also Published As

Publication number Publication date
JP2003348848A (ja) 2003-12-05

Similar Documents

Publication Publication Date Title
US10879791B2 (en) DC/DC resonant converters and power factor correction using resonant converters, and corresponding control methods
JP3969390B2 (ja) スイッチング電源装置
TWI321272B (en) Power factor correction circuit and controlling method of output voltage thereof
JP5277952B2 (ja) スイッチング電源回路
CN108702085B (zh) Dc/dc谐振转换器和使用谐振转换器的功率因数校正以及对应的控制方法
US20050219871A1 (en) Piecewise on-time modulation apparatus and method for a power factor corrector
JP2006067730A (ja) 力率改善回路
US10291119B2 (en) Control circuit for switching power supply
JP4363067B2 (ja) 力率改善回路
CN108702086B (zh) Dc/dc谐振转换器和使用谐振转换器的功率因数校正以及对应的控制方法
US7688050B2 (en) Switching power supply controller with unidirectional transient gain change
JP2010136493A (ja) 電源装置
US20110037443A1 (en) Parallel connected pfc converter
JP2007037297A (ja) 力率改善回路
JP3307814B2 (ja) 直流電源装置
JP4016719B2 (ja) 力率改善回路
JP2011182494A (ja) スイッチング電源装置およびその制御回路
JP2007295800A (ja) 電源回路
JP3496525B2 (ja) 電源装置
JP3196554B2 (ja) 電流モード型スイッチング安定化電源装置
JPH11332220A (ja) 直流電源回路
JPH07222448A (ja) Ac−dcコンバータ
JP3627573B2 (ja) 電源装置
JP4289000B2 (ja) 力率改善回路
WO2017137342A1 (en) Dc/dc resonant converters and power factor correction using resonant converters, and corresponding control methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees