JP4015887B2 - Method for treating molten exhaust gas - Google Patents

Method for treating molten exhaust gas Download PDF

Info

Publication number
JP4015887B2
JP4015887B2 JP2002183087A JP2002183087A JP4015887B2 JP 4015887 B2 JP4015887 B2 JP 4015887B2 JP 2002183087 A JP2002183087 A JP 2002183087A JP 2002183087 A JP2002183087 A JP 2002183087A JP 4015887 B2 JP4015887 B2 JP 4015887B2
Authority
JP
Japan
Prior art keywords
exhaust gas
melting furnace
incinerator
oxygen
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002183087A
Other languages
Japanese (ja)
Other versions
JP2004028408A (en
Inventor
由章 清水
成能 田頭
庄治 梅園
鉄平 中島
賢蔵 小倉
成生 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2002183087A priority Critical patent/JP4015887B2/en
Publication of JP2004028408A publication Critical patent/JP2004028408A/en
Application granted granted Critical
Publication of JP4015887B2 publication Critical patent/JP4015887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

【0001】
【発明の属する技術分野】
本発明は、溶融排ガスの処理方法に関する技術分野に属するものであり、詳細には、都市ごみ及び/又は産業廃棄物を焼却炉にて焼却した後、その焼却残渣を溶融炉にて溶融処理する際に発生する溶融排ガスの処理方法に関する技術分野に属するものである。
【0002】
【従来の技術】
都市ごみや産業廃棄物などの焼却炉は、燃焼に必要な空気を1次空気と2次空気に分けて吹き込むことが一般的に行われている。これは、1次空気により固体可燃物を部分燃焼・ガス化させた後に、2次空気を吹き込んで完全燃焼させるものである。通常、都市ごみや産業廃棄物などに完全燃焼に必要な空気量は、理論上必要な空気量の約1.8 倍とされており、1次空気に約0.8 、二次空気に残りの約1.0 が投入される。このことから、1次燃焼部分は空気不足の還元ゾーン、2次燃焼部分は空気過剰の酸化ゾーンとなっている。
【0003】
一方、焼却炉から排出される焼却残渣(主灰、飛灰、ならびに、これらの混合物)は、従来埋立処分されてきたが、埋立用地のひっ迫に伴って、有害物質の分解・固定化、ならびに焼却残渣の資源化を目指して溶融処理技術が普及している。
【0004】
この溶融処理技術において溶融炉が用いられる。溶融炉は通常1200℃以上の高温操業が行われるため、溶融炉排ガス(以下、溶融排ガスともいう)には高濃度のサーマルNOX が含まれる。また、通常、焼却残渣は塩素を含有しているため、微量ではあるがダイオキシン類等の有機塩素化合物も含まれる。
【0005】
溶融炉排ガスを処理する方法は、これまでにも種々の方法が提示されており、代表的なものとして、特開平11-248121 号公報、特開2001-311515 号公報に記載されたものなどが知られている。
【0006】
これらの方法の中、特開平11-248121 号公報に記載の方法は、溶融炉排ガスを焼却炉排ガスと混合した後、焼却炉の1次空気として使用するとともに、酸素濃度を高めた空気を2次空気として使用するものである。発明の効果として、発熱量の高いごみにおいても1次燃焼温度が高くなりすぎることがなく、良好な燃焼が可能であること、及び、灰溶融炉排ガス処理の簡略化が挙げられている。しかしながら、この方法においては、発熱量の低いごみにおいては1次燃焼温度が低くなりすぎる可能性があり、また、酸素濃縮設備も必要となり設備コストが増大するという問題がある。
【0007】
特開2001-311515 号公報に記載の方法は、溶融炉排ガスをバグフィルタおよびスクラバにて処理した後、焼却炉排ガスと合流して、脱硝触媒にて処理するものである。効果として、ダイオキシンとランニングコストの低減を挙げている。しかし、この方法においては、溶融炉排ガス分が焼却炉排ガスの増加となり、全排ガス量が増加する。また、これによって排ガスダクトや脱硝触媒の容量が大きくなり、設備コストが増加してしまう。
【0008】
【発明が解決しようとする課題】
本発明はこのような事情に着目してなされたものであって、その目的は、都市ごみ及び/又は産業廃棄物の焼却残渣の溶融排ガスを処理するに際し、発熱量の低いごみ(都市ごみや産業廃棄物)の場合においても焼却炉での1次燃焼温度が低くなりすぎることがなくて良好な燃焼が可能となると共に、全排ガス量(焼却炉および溶融炉の排ガスの総量)の増加を招くことなく、また、酸素濃縮装置や脱硝触媒装置を必要とせずに、溶融排ガス中のNOX およびダイオキシン類等の有機塩素化合物を低濃度とすることができる溶融排ガスの処理方法を提供しようとするものである。つまり、特開平11-248121 号公報に記載の方法の有する問題点を解消し、この公報記載の方法の場合に比較し、発熱量の低いごみ(都市ごみや産業廃棄物)の場合においても1次燃焼温度が低くなりすぎることがなくて良好な燃焼が可能となると共に、溶融炉排ガスと焼却炉排ガスの混合および酸素濃縮設備を必要とせず、この公報記載の方法の場合と同等もしくはそれ以上に排ガス中のNOX およびダイオキシン類等の有機塩素化合物を低濃度とすることができる溶融排ガスの処理方法を提供しようとするものである。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る溶融排ガスの処理方法は、請求項1〜2記載の溶融排ガスの処理方法(第1発明〜第2発明に係る溶融排ガスの処理方法)としており、それは次のような構成としたものである。
【0010】
即ち、請求項1記載の溶融排ガスの処理方法は、都市ごみ及び/又は産業廃棄物を焼却炉にて焼却した後、その焼却残渣を溶融炉にて溶融処理する際に発生する溶融排ガスの処理方法において、前記溶融炉として酸素含有ガスを作動ガスとするプラズマ溶融炉を用い、前記溶融炉に酸素含有ガスを吹き込み、前記溶融炉出口での溶融排ガス中の酸素濃度を12vol.%以上とし、この溶融排ガスを焼却炉の一次燃焼空気として利用することを特徴とする溶融排ガスの処理方法である(第1発明)。
【0011】
【0012】
請求項2記載の溶融排ガスの処理方法は、前記焼却炉が流動床式焼却炉である請求項1記載の溶融排ガスの処理方法である(第2発明)。
【0013】
【発明の実施の形態】
本発明は例えば次のようにして実施する。
都市ごみ及び/又は産業廃棄物を焼却炉にて焼却した後、その焼却残渣を溶融炉にて溶融処理する。このとき、溶融炉に酸素含有ガスを吹き込み、溶融炉出口での溶融排ガス中の酸素濃度を12vol.%以上に調整し、この溶融排ガスを焼却炉の一次燃焼空気として利用する。
【0014】
前記溶融炉としては、酸素含有ガスを作動ガスとするプラズマ溶融炉等を用いる。前記焼却炉としては、流動床式焼却炉等を用いる。
【0015】
このような形態で本発明が実施される。以下、本発明について主にその作用効果を説明する。
【0016】
本発明に係る溶融排ガスの処理方法は、前述の如く、都市ごみ及び/又は産業廃棄物を焼却炉にて焼却した後、焼却残渣を溶融炉にて溶融処理する際に発生する溶融排ガスの処理方法において、溶融炉に酸素含有ガスを吹き込み、溶融炉出口での溶融排ガス中の酸素濃度を12vol.%以上とし、この溶融排ガスを焼却炉の一次燃焼空気として利用するようにしている。
【0017】
このように溶融炉に酸素含有ガスを吹き込み、溶融炉出口での溶融排ガス中の酸素濃度を12vol.%以上とし、この溶融排ガスを焼却炉の一次燃焼空気として利用すると、この溶融排ガスには充分な量(12vol.%以上)の酸素を含んでいるので、発熱量の低いごみ(都市ごみや産業廃棄物)の場合においても1次燃焼温度が低くなりすぎることがなくて良好な燃焼が可能となると共に、溶融排ガス中のNOX は焼却炉の一次燃焼部の還元ゾーンにて還元分解され、ダイオキシン類等の有機塩素化合物は二次燃焼部の酸化ゾーンにて分解され、これにより排ガス中のNOX ならびにダイオキシン類等の有機塩素化合物を低濃度とすることができる。これらの還元ゾーン、酸化ゾーンは、ごみ(都市ごみや産業廃棄物)の燃焼によって必然的に生じるものであり、特別な設備も費用も必要としない。
【0018】
また、本発明に係る溶融排ガスの処理方法は、特開平11-248121 号公報に記載の方法で用いられているような溶融炉排ガスを焼却炉排ガスと混合する方式および酸素濃度を高めた空気を2次空気として使用する方式のいずれも要件として用いるものではないので、溶融炉排ガスと焼却炉排ガスとの混合が不要となり、酸素濃縮設備も不要となる。
【0019】
更には、本発明に係る溶融排ガスの処理方法は、特開2001-311515 号公報記載の方法で用いられているような溶融炉排ガスを焼却炉排ガスと合流して脱硝触媒にて処理する方式を要件として用いるものではないので、全排ガス量(焼却炉および溶融炉の排ガスの総量)の増加を招かず、また、脱硝触媒装置を必要としない。
【0020】
従って、本発明に係る溶融排ガスの処理方法によれば、特開平11-248121 号公報に記載の方法の有する問題点を解消し、この公報記載の方法の場合に比較し、発熱量の低いごみ(都市ごみや産業廃棄物)の場合においても1次燃焼温度が低くなりすぎることがなくて良好な燃焼が可能となると共に、溶融炉排ガスと焼却炉排ガスの混合および酸素濃縮設備を必要とせず、この公報記載の方法の場合と同等もしくはそれ以上に排ガス中のNOX およびダイオキシン類等の有機塩素化合物を低濃度とすることができるようになる。それ故、総合的には、従来技術(特開平11-248121 号公報記載の方法、特開2001-311515 号公報記載の方法)の有する問題点を解消し、発熱量の低いごみ(都市ごみや産業廃棄物)の場合においても焼却炉での1次燃焼温度が低くなりすぎることがなくて良好な燃焼が可能となると共に、全排ガス量(焼却炉および溶融炉の排ガスの総量)の増加を招くことなく、また、酸素濃縮装置や脱硝触媒装置を必要とせずに、排ガス中のNOX およびダイオキシン類等の有機塩素化合物を低濃度とすることができるようになる。
【0021】
ここで、溶融炉出口での溶融排ガスすなわち焼却炉の一次燃焼空気として利用する溶融排ガス中の酸素濃度を12vol.%以上としているのは、12vol.%未満にすると、発熱量の低いごみ(都市ごみや産業廃棄物)の場合において1次燃焼温度が低くなりすぎて良好な燃焼ができ難くなり、また、排ガス中のNOX およびダイオキシン類等の有機塩素化合物を充分に低濃度とすることができなくなるからである。
【0022】
上記溶融排ガス中の酸素濃度は、15vol.%以上とすることが望ましい。そうすると、より確実に、発熱量の低いごみ(都市ごみや産業廃棄物)においても1次燃焼温度が低くなりすぎることがなくて良好な燃焼が可能となると共に、排ガス中のNOX およびダイオキシン類等の有機塩素化合物を低濃度とすることができるようになるからである
【0023】
上記溶融排ガス中の酸素濃度の上限値は設ける必要はなく、特には制限されるものではないが、21vol.%超になると、酸素濃縮装置が必要となる。かかる点からすると、21vol.%以下にすることが望ましい。
【0024】
前記溶融炉としては、酸素含有ガスを作動ガスとするプラズマ溶融炉を用いる(第1発明)。酸素含有ガスを作動ガスとするプラズマ溶融炉を用いた場合、酸素含有ガスをプラズマトーチにて高温として溶融炉に吹き込むことができるので、高い溶融効率を得ることができる。
【0025】
前記焼却炉としては、その種類は特には制限されず、種々のものを用いることができ、例えば、流動床式焼却炉を用いることができる(第2発明)。この他、ストーカ式のもの等を用いることができる。流動床式焼却炉を用いた場合、1次空気流路に可動部がないため、溶融排ガスによる腐食の問題がない。
【0026】
本発明において、溶融炉に吹き込む酸素含有ガスとしては、その種類や酸素濃度は特には制限されず、種々のものを用いることができ、例えば、空気や、空気と他のガスとの混合ガスなどを用いることができる。ただし、コストの面からすると、空気を用いることが望ましい。
【0027】
本発明において、酸素濃度:12vol.%以上の溶融排ガスを焼却炉の一次燃焼空気として利用するが、焼却炉の一次燃焼空気として前記溶融排ガスのみを用いることには限定されず、前記溶融排ガスのみを用いてもよいが、前記溶融排ガスと共に通常の焼却炉用一次燃焼空気を用いることもできる。
【0028】
【実施例】
本発明の実施例および比較例を以下説明する。なお、本発明は本実施例に限定されるものではない。比較例は本発明の実施例に対する比較のための例であり、従来技術の例に限定されるものではない。
【0029】
図1に実施例および比較例に係る溶融排ガスの処理に用いた設備を示す。この設備は、焼却設備(流動床焼却設備)と、それから排出される焼却残渣を被溶融物とする溶融設備(プラズマ溶融設備)とを有するものである。
【0030】
焼却設備は、流動床焼却炉31、これに1次空気を供給する押込ファン32、二次空気ファン33、ならびに、排ガス処理設備である焼却減温塔34、焼却バグフィルタ35、誘引ファン36を有して構成されている。押込ファン32の吸込ダクトは、1次空気ヘッダ37に接続されており、溶融設備のバグフィルタ(後記バグフィルタ14)出口排ガスを吸引すると共に、必要に応じて外気を取り込むこともできる。焼却炉排ガスは、焼却減温塔34にて温度を調整した後に焼却バグフィルタ35で浄化されて大気へ放出される。排ガス中のNOX とダイオキシン類等の有機塩素化合物の測定は焼却バグフィルタ出口38で行った。
【0031】
一方、溶融設備は、溶融炉本体1(プラズマ溶融炉)にトランスファートーチ2またはノントランスファートーチ3を挿入することができ、これらのトーチへ電力を供給する電源装置4、空気を供給するコンプレッサ5、ならびに空気量を制御する調節弁6と空気流量計7が具備されている。流動床焼却炉31から発生する焼却残渣39は、灰供給機によって溶融炉本体1へ供給され溶融され、内部に溶融浴8を形成する。溶融スラグ9は、この溶融浴8からオーバーフローして排出される。また、溶融浴底レベルには、溶融メタルを排出するためのメタル排出孔10と開孔機11が設置されている。なお、上記プラズマ溶融炉1には、その中へ酸素含有ガスを吹き込む手段[コンプレッサ空気とその調節弁(図示していない)]が付いており、また、プラズマ溶融炉出口での溶融排ガス中の酸素濃度を測定する手段12Aが付いている。この酸素濃度測定手段12Aは前記酸素含有ガスを吹き込む手段と制御回路でつながっており、酸素濃度測定手段12Aによる酸素濃度測定結果に基づき前記酸素含有ガスを吹き込む手段での酸素含有ガス吹き込み量を制御することができるようになっている。
【0032】
プラズマ溶融炉1 から発生する排ガス12は、減温塔13にて150 ℃〜240 ℃に温度調整された後、バグフィルタ14に入る。このバグフィルタ14の前段には、消石灰切出装置15が設けられており、任意量の消石灰を添加することができる。バグフィルタ14にて捕集されたダストは、ダストコンテナ16に排出され、ダスト計量器17にて重量測定後に搬出される。バグフィルタ14にてダストを除去された排ガスは、▲1▼(丸付き数字1)そのまま焼却炉の1次空気として用いるラインと、▲2▼(丸付き数字2)湿式スクラバ18にて塩化水素、硫黄酸化物を除去した後、再加熱器21にて温度を上昇した後に脱硝触媒22を経て大気へ放出されるラインとを、切り替えられるようになっている。
【0033】
プラズマ溶融炉排ガス中のNOX およびダイオキシン類等の有機塩素化合物の測定は、バグフィルタ出口19と脱硝触媒出口20で行えるようにした。
【0034】
このような設備を用い、先ず、プラズマ溶融炉排ガスを流動床焼却炉1次空気として利用して処理した場合(前記▲1▼(丸付き数字1)のラインを使用)と、利用せずに処理した場合(前記▲2▼(丸付き数字2)のラインを使用)の2条件について、試験運転を行った。その結果を表1に示す。なお、このときの溶融炉排ガスの酸素濃度は、12.1vol.%であった。
【0035】
焼却+溶融の合計排ガス量は、前者の場合(プラズマ溶融炉排ガスを流動床焼却炉1次空気として使用)において後者の場合(使用せず)の13%減となり、焼却排ガスのNOX およびダイオキシン類等の有機塩素化合物の濃度はほとんど変化がなかった。
【0036】
また、表2に示すように、溶融バグフィルタ出口における排ガスは高い濃度のNOX とダイオキシンを含んでおり、これを単独で処理すると脱硝触媒で用いるアンモニア等により表1に示す通り、高いコストが必要になる他、設備費用も増大する。
【0037】
次に、発熱量の低い都市ごみ(低位発熱量:1100kcal/kg )を流動床焼却炉31にて焼却した後、その焼却残渣39をプラズマ溶融炉1 にて溶融処理した。このとき、プラズマ溶融炉1 内に前記酸素含有ガスの吹き込み手段により酸素含有ガスを吹き込み、プラズマ溶融炉1 の出口での溶融排ガス12中の酸素濃度を種々の値に調整し(パラメータとして変化させ)、この溶融排ガス12をバグフィルタ14を介して前記▲1▼(丸付き数字1)のラインにより流動床焼却炉31へ一次燃焼空気として送り込んだ。そして、排ガス中のNOX とダイオキシン類等の有機塩素化合物の測定を焼却バグフィルタ出口38で行った。なお、流動床焼却炉31の一次燃焼空気としては、前記溶融排ガスと共に通常の焼却炉用一次燃焼空気も用いた。前記酸素濃度は前記酸素濃度測定手段により測定して確認した。上記プラズマ溶融炉1 へ吹き込む酸素含有ガスとしては、コンプレッサからの空気を用いた。
【0038】
この結果を表3に示す。この表3からわかるように、プラズマ溶融炉1 の出口での溶融排ガス12すなわち流動床焼却炉31の一次燃焼空気として用いた溶融排ガス12中の酸素濃度が7vol.%未満の場合には、焼却炉31での1次燃焼温度が低くなりすぎて良好な燃焼が可能でなく、また、焼却バグフィルタ出口38での排ガス中のダイオキシン類等の有機塩素化合物の濃度が高く、それを充分に低濃度とすることができなかった(比較例)。これに対し、溶融排ガス12中の酸素濃度が7vol.%以上の場合には、焼却炉31での1次燃焼温度が低くなりすぎることがなくて良好な燃焼が可能であり、また、焼却バグフィルタ出口38での排ガス中のダイオキシン類の濃度が低く、それを充分に低濃度とすることができた(参考例)。また、NOX 濃度も低かった。さらに、溶融排ガス12中の酸素濃度が7vol.%以上の場合において、それが高くなるに伴って、燃焼がより良好となり、また、焼却バグフィルタ出口38での排ガス中のダイオキシン類等の有機塩素化合物の濃度がさらに低くなった(本発明の実施)。
【0039】
従って、本発明の実施例に係る溶融排ガスの処理方法によれば、発熱量の低い都市ごみの場合においても焼却炉での1次燃焼温度が低くなりすぎることがなくて良好な燃焼が可能となり、また、排ガス中のNOX ならびにダイオキシン類等の有機塩素化合物を充分に低濃度とすることができることが確認された。
【0040】
上記実施例に係る溶融排ガスの処理方法において、溶融排ガス12中のNOX は流動床焼却炉31の一次燃焼部の還元ゾーンにて還元分解され、ダイオキシン類も二次燃焼部の酸化ゾーンで分解される。これらの還元ゾーン、酸化ゾーンはごみの燃焼によって必然的に生じるものであり、特別な費用と設備を必要としない。
【0041】
なお、上記実施例および比較例においては、プラズマ溶融炉1 内への酸素含有ガスの吹き込みを前記酸素含有ガスの吹き込み手段により行ったが、トランスファートーチ2あるいはノントランスファートーチ3により行うこともできる。即ち、酸素含有ガスの吹き込みが行なえる手段であれば、それにより行うことができる。この場合も、上記実施例および比較例の場合と同様の傾向の結果が得られる。なお、プラズマ溶融炉1 内への酸素含有ガスの吹き込みをトランスファートーチ2により行う場合、図1に示す如く、このトランスファートーチ2への酸素含有ガスの吹き込み用の回路のガス流量調節弁に酸素濃度測定手段12Aを制御回路でつなげて、酸素濃度測定手段12Aによる酸素濃度測定結果に基づき前記ガス流量調節弁による酸素含有ガス吹き込み量を制御することができるようにすると、酸素含有ガスの吹き込み量の自動制御が可能となる。このトランスファートーチ2に代えてノントランスファートーチ3により行う場合も、上記トランスファートーチ2により行う場合と同様にすることができ、そうすると酸素含有ガスの吹き込み量の自動制御が可能となる。
【0042】
上記実施例および比較例においては、焼却炉として流動床式焼却炉を用いたが、流動床式焼却炉に代えてストーカ式の焼却炉を用いた場合も上記実施例および比較例の場合と同様の傾向の結果が得られる。
【0043】
上記発熱量の低い都市ごみに代えて発熱量の高い産業廃棄物を用いた場合においても本発明の効果を奏する。
【0044】
【表1】

Figure 0004015887
【0045】
【表2】
Figure 0004015887
【0046】
【表3】
Figure 0004015887
【0047】
【発明の効果】
本発明に係る溶融排ガスの処理方法によれば、発熱量の低いごみ(都市ごみや産業廃棄物)の場合においても焼却炉での1次燃焼温度が低くなりすぎることがなくて良好な燃焼が可能となると共に、全排ガス量(焼却炉および溶融炉の排ガスの総量)の増加を招くことなく、また、溶融炉排ガスと焼却炉排ガスの混合および酸素濃縮装置や脱硝触媒装置を必要とせずに、排ガス中のNOX およびダイオキシン類等の有機塩素化合物を低濃度とすることができるようになる。
【図面の簡単な説明】
【図1】 本発明の実施例および比較例に係る溶融排ガスの処理に用いた設備の概要を示す模式図である。
【符号の説明】
1・・・プラズマ溶融炉、 2・・・トランスファートーチ、 3・・・ノントランスファートーチ、 4・・・プラズマ電源装置、 5・・・空気圧縮機、 6・・・空気調節弁、 7・・・空気流量計、 8・・・スラグ浴、 9・・・溶融スラグ、10・・・メタル排出孔、 11・・・開孔機、 12・・・排ガス、 13・・・減温塔、 14・・・バグフィルタ、 15・・・消石灰切出装置、 16・・・ダストコンテナ、 17・・・ダスト計量器、 18・・・湿式スクラバ、 19・・・バグフィルタ出口排ガス測定器、 20・・・脱硝触媒出口排ガス測定器、 21・・・再加熱器、22・・・脱硝触媒、 31・・・流動床焼却炉、 32・・・押込ファン、33・・・二次空気ファン、 34・・・減温塔、 35・・・焼却バグフィルタ、36・・・誘引ファン、 37・・・1次空気ヘッダ、 38・・・焼却バグフィルタ出口排ガス測定器、 39・・・焼却残渣、 12A・・・溶融排ガスの酸素濃度の測定手段。[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to a technical field related to a method for treating a molten exhaust gas. Specifically, after incineration of municipal waste and / or industrial waste in an incinerator, the incineration residue is melted in the melting furnace. The present invention belongs to a technical field related to a method for treating molten exhaust gas generated at the time.
[0002]
[Prior art]
Incinerators such as municipal waste and industrial waste are generally blown by dividing the air necessary for combustion into primary air and secondary air. In this method, after combusting and gasifying a solid combustible material with primary air, secondary air is blown and completely combusted. Normally, the amount of air required for complete combustion in municipal waste and industrial waste is about 1.8 times the theoretically required amount of air, with about 0.8 for primary air and about 1.0 for the remaining secondary air. It is thrown. For this reason, the primary combustion portion is a reduction zone with insufficient air, and the secondary combustion portion is an oxidation zone with excess air.
[0003]
On the other hand, incineration residues (main ash, fly ash, and mixtures of these, etc. ) discharged from incinerators have been disposed of in landfills in the past, but due to the tightness of landfill sites, decomposition and fixation of hazardous substances, In addition, melting treatment technology has become widespread with the aim of recycling incineration residues.
[0004]
A melting furnace is used in this melting processing technique. Since the melting furnace is normally operated at a high temperature of 1200 ° C. or higher, the melting furnace exhaust gas (hereinafter also referred to as molten exhaust gas) contains high-concentration thermal NO X. Moreover, since incineration residues usually contain chlorine, organochlorine compounds such as dioxins are also included in a small amount.
[0005]
Various methods for treating the melting furnace exhaust gas have been presented so far, and representative examples include those described in JP-A-11-248121 and JP-A-2001-311515. Are known.
[0006]
Among these methods, the method described in Japanese Patent Application Laid-Open No. 11-248121 is a method in which melting furnace exhaust gas is mixed with incinerator exhaust gas and then used as primary air for the incinerator, and air having an increased oxygen concentration is used for 2 It is used as secondary air. As an effect of the invention, the primary combustion temperature does not become excessively high even in waste with a high calorific value, and good combustion is possible, and simplification of ash melting furnace exhaust gas treatment is mentioned. However, in this method, there is a possibility that the primary combustion temperature may become too low in garbage with a low calorific value, and an oxygen concentrating facility is required, resulting in an increase in facility cost.
[0007]
In the method described in JP-A-2001-311515, the melting furnace exhaust gas is treated with a bag filter and a scrubber, and then merged with the incinerator exhaust gas and treated with a denitration catalyst. As effects, dioxins and reduction of running costs are cited. However, in this method, the melting furnace exhaust gas component increases the incinerator exhaust gas component, and the total exhaust gas amount increases. Further, this increases the capacity of the exhaust gas duct and the denitration catalyst, which increases the equipment cost.
[0008]
[Problems to be solved by the invention]
The present invention has been made by paying attention to such circumstances, and its purpose is to treat municipal waste and / or waste generated from incineration residue of industrial waste with low calorific value (such as municipal waste and waste). In the case of industrial waste), the primary combustion temperature in the incinerator is not too low, and good combustion is possible, and the total exhaust gas amount (total amount of exhaust gas from the incinerator and melting furnace) is increased. without incurring, also without the need for oxygen concentrator and a denitration catalyst unit, and to provide a method of processing molten exhaust gas of organic chlorine compounds such as NO X and dioxins in the molten exhaust gas can be low concentration To do. That is, the problem of the method described in Japanese Patent Laid-Open No. 11-248121 is solved, and even in the case of garbage (city waste and industrial waste) having a low calorific value compared to the method described in this publication. The next combustion temperature does not become too low and good combustion is possible, and mixing of the melting furnace exhaust gas and incinerator exhaust gas and oxygen concentration equipment are not required, and it is equal to or higher than the method described in this publication. is intended to provide a method of processing molten exhaust gas of organic chlorine compounds such as NO X and dioxins in the exhaust gas may be low concentrations.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a method for treating a molten exhaust gas according to the present invention is a method for treating a molten exhaust gas according to claims 1 to 2 (a method for treating a molten exhaust gas according to the first to second inventions). It has the following configuration.
[0010]
That is, the method for treating molten exhaust gas according to claim 1 is a treatment of molten exhaust gas generated when municipal waste and / or industrial waste is incinerated in an incinerator and then the incineration residue is melted in the melting furnace. In the method, a plasma melting furnace using an oxygen-containing gas as a working gas is used as the melting furnace, an oxygen-containing gas is blown into the melting furnace, and the oxygen concentration in the molten exhaust gas at the outlet of the melting furnace is 12 vol.% Or more. The molten exhaust gas is used as primary combustion air for an incinerator (first invention).
[0011]
[0012]
The method for treating molten exhaust gas according to claim 2 is the method for treating molten exhaust gas according to claim 1, wherein the incinerator is a fluidized bed incinerator (second invention).
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is implemented, for example, as follows.
After municipal waste and / or industrial waste is incinerated in an incinerator, the incineration residue is melted in a melting furnace. At this time, oxygen-containing gas is blown into the melting furnace, the oxygen concentration in the molten exhaust gas at the outlet of the melting furnace is adjusted to 12 vol.% Or more, and this molten exhaust gas is used as primary combustion air for the incinerator.
[0014]
As the melting furnace, a plasma melting furnace using an oxygen-containing gas as a working gas is used. A fluidized bed incinerator or the like is used as the incinerator.
[0015]
The present invention is implemented in such a form. Hereinafter, the effects of the present invention will be mainly described.
[0016]
As described above, the molten exhaust gas treatment method according to the present invention treats molten exhaust gas generated when municipal waste and / or industrial waste is incinerated in an incinerator and then the incineration residue is melted in the melting furnace. In the method, an oxygen-containing gas is blown into the melting furnace so that the oxygen concentration in the molten exhaust gas at the outlet of the melting furnace is 12 vol.% Or more, and this molten exhaust gas is used as primary combustion air for the incinerator.
[0017]
In this way, when oxygen-containing gas is blown into the melting furnace, the oxygen concentration in the molten exhaust gas at the outlet of the melting furnace is set to 12 vol.% Or more, and this molten exhaust gas is used as the primary combustion air of the incinerator, Since it contains a sufficient amount ( 12 vol.% Or more) of oxygen, even in the case of waste with low calorific value (city waste and industrial waste), the primary combustion temperature will not be too low and good combustion will be achieved. together is possible, NO X in the molten gas is reduced and decomposed in the reduction zone of the primary combustion section of the incinerator, organic chlorine compounds such as dioxins are decomposed in the oxidation zone of the secondary combustion unit, thereby organochlorine compounds such as NO X and dioxins in the exhaust gas can be low density. These reduction zones and oxidation zones are inevitably generated by burning garbage (city waste and industrial waste), and do not require special equipment or cost.
[0018]
In addition, the method for treating a molten exhaust gas according to the present invention includes a method of mixing molten furnace exhaust gas with an incinerator exhaust gas as used in the method described in JP-A-11-248121, and air with increased oxygen concentration. Since none of the methods used as secondary air is used as a requirement, mixing of the melting furnace exhaust gas and the incinerator exhaust gas becomes unnecessary, and oxygen enrichment equipment is also unnecessary.
[0019]
Further, the molten exhaust gas treatment method according to the present invention is a method in which the molten furnace exhaust gas used in the method described in JP 2001-311515 is combined with the incinerator exhaust gas and treated with a denitration catalyst. Since it is not used as a requirement, the total exhaust gas amount (total amount of exhaust gas from the incinerator and melting furnace) is not increased, and a denitration catalyst device is not required.
[0020]
Therefore, according to the molten exhaust gas treatment method according to the present invention, the problems of the method described in JP-A-11-248121 are solved, and the waste generated with a lower calorific value than the method described in this publication. (In the case of municipal waste and industrial waste), the primary combustion temperature does not become too low and good combustion is possible, and mixing of melting furnace exhaust gas and incinerator exhaust gas and oxygen concentration equipment are not required. , it is possible to case and equal to or higher than the NO X and a low concentration of organic chlorine compounds dioxins in the exhaust gas of the process of this publication. Therefore, comprehensively, the problems of the prior art (the method described in Japanese Patent Laid-Open No. 11-248121, the method described in Japanese Patent Laid-Open No. 2001-311515) are solved, and the waste generated with low calorific value (urban waste In the case of industrial waste), the primary combustion temperature in the incinerator is not too low, and good combustion is possible, and the total exhaust gas amount (total amount of exhaust gas from the incinerator and melting furnace) is increased. without incurring, also without the need for oxygen concentrator and a denitration catalyst unit, comprising an organic chlorine compounds such as NO X and dioxins in the exhaust gas to be able to lower concentration.
[0021]
Here, what the oxygen concentration in the molten exhaust gas used as the primary combustion air in the melting exhaust gases i.e. incinerator in the melt furnace exit and 12 vol.% Or more, when less than 12 vol.%, Less heating value waste too primary combustion temperature in the case of (municipal solid waste and industrial waste) is low hardly possible to ensure favorable combustion also a sufficiently low concentration of organic chlorine compounds such as NO X and dioxins in the exhaust gas Because it becomes impossible.
[0022]
The oxygen concentration in the molten exhaust gas is desirably 15 vol.% Or more. As a result, the primary combustion temperature does not become too low even in garbage with low calorific value (urban waste and industrial waste), and good combustion is possible and NO X and dioxins in the exhaust gas. This is because it becomes possible to make the organic chlorine compound such as low concentration .
[0023]
The upper limit value of the oxygen concentration in the molten exhaust gas need not be set and is not particularly limited, but if it exceeds 21 vol.%, An oxygen concentrator is required. From this point, it is desirable to make it 21 vol.% Or less.
[0024]
As the melting furnace, a plasma melting furnace using an oxygen-containing gas as a working gas is used (first invention). When a plasma melting furnace using an oxygen-containing gas as a working gas is used, the oxygen-containing gas can be blown into the melting furnace at a high temperature with a plasma torch, so that high melting efficiency can be obtained.
[0025]
The type of the incinerator is not particularly limited, and various types can be used. For example, a fluidized bed incinerator can be used (second invention). In addition, a stoker-type thing etc. can be used. When a fluidized bed incinerator is used, there is no problem of corrosion due to molten exhaust gas because there are no moving parts in the primary air flow path.
[0026]
In the present invention, the oxygen-containing gas blown into the melting furnace is not particularly limited in its type and oxygen concentration, and various gases can be used, for example, air or a mixed gas of air and other gases. Can be used. However, in terms of cost, it is desirable to use air.
[0027]
In the present invention, molten exhaust gas having an oxygen concentration of 12 vol.% Or more is used as primary combustion air for an incinerator, but is not limited to using only the molten exhaust gas as primary combustion air for an incinerator. Ordinary primary combustion air for an incinerator can be used together with the molten exhaust gas.
[0028]
【Example】
Examples of the present invention and comparative examples will be described below. In addition, this invention is not limited to a present Example. The comparative example is an example for comparison with the embodiment of the present invention, and is not limited to the example of the prior art.
[0029]
FIG. 1 shows the equipment used for the treatment of the molten exhaust gas according to Examples and Comparative Examples. This facility has an incineration facility (fluidized bed incineration facility) and a melting facility (plasma melting facility) that uses the incineration residue discharged therefrom as a material to be melted.
[0030]
The incinerator includes a fluidized bed incinerator 31, an intrusion fan 32 that supplies primary air to the incinerator 32, a secondary air fan 33, an incineration temperature reducing tower 34 that is an exhaust gas treatment facility, an incineration bag filter 35, and an induction fan 36. It is configured. The suction duct of the push-in fan 32 is connected to the primary air header 37, and can suck out the exhaust gas from the outlet of the bag filter (bag filter 14 described later) of the melting facility, and can also take in outside air as required. The incinerator exhaust gas is adjusted in temperature by the incineration cooling tower 34 and then purified by the incineration bag filter 35 and released to the atmosphere. Measurements of NO X and dichlorinated organic chlorine compounds in the exhaust gas were performed at the incineration bag filter outlet 38.
[0031]
On the other hand, in the melting facility, a transfer torch 2 or a non-transfer torch 3 can be inserted into a melting furnace main body 1 (plasma melting furnace), a power supply device 4 for supplying power to these torches, a compressor 5 for supplying air, In addition, a control valve 6 and an air flow meter 7 for controlling the amount of air are provided. The incineration residue 39 generated from the fluidized bed incinerator 31 is supplied to the melting furnace main body 1 by an ash feeder and melted to form a molten bath 8 therein. The molten slag 9 overflows from the molten bath 8 and is discharged. Further, a metal discharge hole 10 and a hole opening machine 11 for discharging the molten metal are installed at the bottom of the molten bath. The plasma melting furnace 1 is provided with means [compressor air and its control valve (not shown)] for injecting oxygen-containing gas into the plasma melting furnace 1, and in the molten exhaust gas at the outlet of the plasma melting furnace. A means 12A for measuring the oxygen concentration is provided. The oxygen concentration measuring means 12A is connected to the means for injecting the oxygen-containing gas by a control circuit, and controls the amount of oxygen-containing gas blown by the means for injecting the oxygen-containing gas based on the oxygen concentration measurement result by the oxygen concentration measuring means 12A. Can be done.
[0032]
The exhaust gas 12 generated from the plasma melting furnace 1 is temperature-adjusted to 150 ° C. to 240 ° C. in the temperature reducing tower 13 and then enters the bag filter 14. A slaked lime cutting device 15 is provided in the front stage of the bag filter 14, and an arbitrary amount of slaked lime can be added. The dust collected by the bag filter 14 is discharged to the dust container 16 and is carried out after the weight measurement by the dust meter 17. The exhaust gas from which the dust has been removed by the bag filter 14 is as follows: (1) (circled number 1) as it is used as the primary air of the incinerator and (2) (circled number 2) wet scrubber 18 After the sulfur oxide is removed, the temperature is raised by the reheater 21, and then the line that is released to the atmosphere via the denitration catalyst 22 can be switched.
[0033]
Measurement of organic chlorine compounds of the NO X and dioxins plasma melting furnace in the exhaust gas were to allow a bag filter outlet 19 and the denitration catalyst outlet 20.
[0034]
Using such equipment, first, when the plasma melting furnace exhaust gas is treated as the primary air in a fluidized bed incinerator (using the line {circle around (1)} above), without using it. The test operation was performed for two conditions when the treatment was performed (using the line {circle around (2)} (circled numeral 2)) . The results are shown in Table 1. At this time, the oxygen concentration of the melting furnace exhaust gas was 12.1 vol.%.
[0035]
The total amount of exhaust gas of the incineration + melt in the case of the latter in the former case (using a plasma melting furnace exhaust gas as a fluidized bed incinerator primary air) becomes 13% reduction (without), NO X and dioxin incineration exhaust gas There was almost no change in the concentration of organochlorine compounds such as sucrose.
[0036]
Further, as shown in Table 2, as shown in Table 1 by ammonia gas includes a NO X and dioxin high concentrations, for use in denitration catalyst is treated so alone in the melting bag filter outlet, the high cost In addition to being required, the equipment costs also increase.
[0037]
Next, municipal waste with a low calorific value (low calorific value: 1100 kcal / kg) was incinerated in the fluidized bed incinerator 31, and the incineration residue 39 was melted in the plasma melting furnace 1. At this time, the oxygen-containing gas is blown into the plasma melting furnace 1 by the oxygen-containing gas blowing means, and the oxygen concentration in the molten exhaust gas 12 at the outlet of the plasma melting furnace 1 is adjusted to various values (changed as a parameter). The molten exhaust gas 12 was sent as primary combustion air to the fluidized bed incinerator 31 through the bag filter 14 through the line {circle around (1)} (circled number 1) . Then, NO x and organic chlorine compounds such as dioxins in the exhaust gas were measured at the incineration bag filter outlet 38. In addition, as the primary combustion air of the fluidized bed incinerator 31, normal incinerator primary combustion air was also used together with the molten exhaust gas. The oxygen concentration was confirmed by measuring with the oxygen concentration measuring means. As the oxygen-containing gas blown into the plasma melting furnace 1, air from a compressor was used.
[0038]
The results are shown in Table 3. As can be seen from Table 3, when the oxygen concentration in the molten exhaust gas 12 at the outlet of the plasma melting furnace 1, that is, the molten exhaust gas 12 used as the primary combustion air of the fluidized bed incinerator 31, is less than 7 vol. The primary combustion temperature in the furnace 31 becomes too low to allow good combustion, and the concentration of organic chlorine compounds such as dioxins in the exhaust gas at the incineration bag filter outlet 38 is high, which is sufficiently low. Concentration could not be achieved (comparative example). On the other hand, when the oxygen concentration in the molten exhaust gas 12 is 7 vol.% Or more, the primary combustion temperature in the incinerator 31 is not too low, and good combustion is possible, and an incineration bug is possible. The concentration of dioxins in the exhaust gas at the filter outlet 38 was low, and it was possible to make it sufficiently low ( reference example ). The NO X concentration was also low. Further, when the oxygen concentration in the molten exhaust gas 12 is 7 vol.% Or more, the combustion becomes better as the oxygen concentration becomes higher, and organic chlorine such as dioxins in the exhaust gas at the incineration bag filter outlet 38. The concentration of the compound was further reduced ( Example of the present invention).
[0039]
Therefore, according to the molten exhaust gas treatment method according to the embodiment of the present invention, even in the case of municipal waste with a low calorific value, the primary combustion temperature in the incinerator does not become too low and good combustion is possible. In addition, it was confirmed that NO X and dichlorinated organic chlorine compounds in the exhaust gas can be made sufficiently low in concentration.
[0040]
In the molten exhaust gas treatment method according to the above embodiment, NO x in the molten exhaust gas 12 is reduced and decomposed in the reduction zone of the primary combustion section of the fluidized bed incinerator 31, and dioxins are also decomposed in the oxidation zone of the secondary combustion section. Is done. These reduction zones and oxidation zones are inevitably generated by the combustion of waste, and do not require special costs and equipment.
[0041]
In the above examples and comparative examples, the oxygen-containing gas is blown into the plasma melting furnace 1 by the oxygen-containing gas blowing means, but it can also be carried out by the transfer torch 2 or the non-transfer torch 3. In other words, any means that can blow in the oxygen-containing gas can be used. In this case as well, the result of the same tendency as in the case of the above examples and comparative examples is obtained. When the oxygen-containing gas is blown into the plasma melting furnace 1 by the transfer torch 2, as shown in FIG. 1, the oxygen concentration is supplied to the gas flow rate control valve of the circuit for blowing the oxygen-containing gas into the transfer torch 2. When the measuring means 12A is connected by a control circuit so that the oxygen-containing gas blowing amount by the gas flow rate control valve can be controlled based on the oxygen concentration measurement result by the oxygen concentration measuring means 12A, the oxygen-containing gas blowing amount can be controlled. Automatic control is possible. The case of using the non-transfer torch 3 instead of the transfer torch 2 can be the same as the case of using the transfer torch 2, so that the oxygen-containing gas blowing amount can be automatically controlled.
[0042]
In the above examples and comparative examples, fluidized bed incinerators were used as incinerators. However, in the case of using stoker type incinerators instead of fluidized bed incinerators, the same as in the above examples and comparative examples. The result of the trend is obtained.
[0043]
The effect of the present invention can be obtained even when industrial waste having a high calorific value is used instead of the municipal waste having a low calorific value.
[0044]
[Table 1]
Figure 0004015887
[0045]
[Table 2]
Figure 0004015887
[0046]
[Table 3]
Figure 0004015887
[0047]
【The invention's effect】
According to the method for treating molten exhaust gas according to the present invention, even in the case of waste with low calorific value (city waste or industrial waste), the primary combustion temperature in the incinerator does not become too low and good combustion is achieved. It is possible to increase the total amount of exhaust gas (total amount of exhaust gas from incinerators and melting furnaces), without mixing melting furnace exhaust gas and incinerator exhaust gas, and without requiring an oxygen concentrator or denitration catalyst device. , consisting of organic chlorine compounds such as NO X and dioxins in the exhaust gas to be able to lower concentration.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an outline of equipment used for treatment of molten exhaust gas according to examples and comparative examples of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Plasma melting furnace, 2 ... Transfer torch, 3 ... Non-transfer torch, 4 ... Plasma power supply device, 5 ... Air compressor, 6 ... Air control valve, 7 ... -Air flow meter, 8 ... Slag bath, 9 ... Molten slag, 10 ... Metal discharge hole, 11 ... Opening machine, 12 ... Exhaust gas, 13 ... Temperature reducing tower, 14 ... Bug filter, 15 ... Slaked lime cutting device, 16 ... Dust container, 17 ... Dust meter, 18 ... Wet scrubber, 19 ... Bug filter outlet exhaust gas measuring device, .. Denitration catalyst outlet exhaust gas measuring device, 21 ... Reheater, 22 ... Denitration catalyst, 31 ... Fluidized bed incinerator, 32 ... Push-in fan, 33 ... Secondary air fan, 34 ... Temperature reduction tower, 35 ... Incineration bug filter, 3 ... induced draft fan, 37 ... primary air header, 38 ... incineration bag filter outlet exhaust gas measuring instrument, 39 ... incineration residues, 12A ... measuring means of the oxygen concentration in the molten gas.

Claims (2)

都市ごみ及び/又は産業廃棄物を焼却炉にて焼却した後、その焼却残渣を溶融炉にて溶融処理する際に発生する溶融排ガスの処理方法において、前記溶融炉として酸素含有ガスを作動ガスとするプラズマ溶融炉を用い、前記溶融炉に酸素含有ガスを吹き込み、前記溶融炉出口での溶融排ガス中の酸素濃度を12vol.%以上とし、この溶融排ガスを焼却炉の一次燃焼空気として利用することを特徴とする溶融排ガスの処理方法。In a method for treating molten exhaust gas generated when municipal waste and / or industrial waste is incinerated in an incinerator and then the incineration residue is melted in the melting furnace, an oxygen-containing gas is used as the working gas as the melting furnace. A plasma melting furnace is used, oxygen-containing gas is blown into the melting furnace, the oxygen concentration in the molten exhaust gas at the outlet of the melting furnace is set to 12 vol.% Or more, and this molten exhaust gas is used as primary combustion air for an incinerator A method for treating molten exhaust gas, characterized in that: 前記焼却炉が流動床式焼却炉である請求項1記載の溶融排ガスの処理方法。  The method for treating molten exhaust gas according to claim 1, wherein the incinerator is a fluidized bed incinerator.
JP2002183087A 2002-06-24 2002-06-24 Method for treating molten exhaust gas Expired - Fee Related JP4015887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002183087A JP4015887B2 (en) 2002-06-24 2002-06-24 Method for treating molten exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002183087A JP4015887B2 (en) 2002-06-24 2002-06-24 Method for treating molten exhaust gas

Publications (2)

Publication Number Publication Date
JP2004028408A JP2004028408A (en) 2004-01-29
JP4015887B2 true JP4015887B2 (en) 2007-11-28

Family

ID=31179404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002183087A Expired - Fee Related JP4015887B2 (en) 2002-06-24 2002-06-24 Method for treating molten exhaust gas

Country Status (1)

Country Link
JP (1) JP4015887B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708126A (en) * 2018-12-28 2019-05-03 衢州巨化锦纶有限责任公司 Salty organic waste liquid processing unit and its method in a kind of caprolactam production process

Also Published As

Publication number Publication date
JP2004028408A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP2006266537A (en) Waste treatment facility for treating refuse and sludge together
JPH08312938A (en) Fusion-treatment of incinerated fly ash
JP4015887B2 (en) Method for treating molten exhaust gas
JP2007127355A (en) Rubbish incinerating/melting method and device therefor
KR100300106B1 (en) Incinerator Melting System
JP3896062B2 (en) Method of injecting combustible dust into a waste melting furnace
JPH11179130A (en) Method and apparatus for treating waste gas from electric furnace for steelmaking
KR100500110B1 (en) Dust collector for electric furnace
JP2003334511A (en) Fly ash stabilizing apparatus
JP3688944B2 (en) Oxygen burner for incineration fly ash melting treatment
JP2005195228A (en) Waste material melting treatment system
JP2001300470A (en) Process and device for treating fly ash in waste melt treatment equipment
JP3575785B2 (en) Method and apparatus for treating fall ash in secondary combustion chamber
WO2021131089A1 (en) Exhaust gas treatment device for electric furnace
JP2793451B2 (en) How to reduce dioxins in waste incinerators
JP2004077037A (en) Melting treatment method for incineration residue and its device
JP3862940B2 (en) Fly ash treatment method
JP4056189B2 (en) Exhaust gas treatment method and exhaust gas treatment device
JPH09229324A (en) Waste treatment device and operation method for the device
JP3858250B2 (en) Method for melting waste pyrolysis residue or incineration residue containing combustible solid carbon
JP3962178B2 (en) Hazardous material processing method and apparatus
KR100551619B1 (en) ash treatment method by molten slag and system thereof
KR200360956Y1 (en) ash treatment system by molten slag
JP2004181323A (en) Operation method for ash treatment system and ash treatment system
JP3692279B2 (en) Exhaust gas treatment method and system for ash melting furnace

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4015887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees