JP2007223845A - METHOD OF PRODUCING SiO2-TiO2 BASED GLASS - Google Patents

METHOD OF PRODUCING SiO2-TiO2 BASED GLASS Download PDF

Info

Publication number
JP2007223845A
JP2007223845A JP2006046784A JP2006046784A JP2007223845A JP 2007223845 A JP2007223845 A JP 2007223845A JP 2006046784 A JP2006046784 A JP 2006046784A JP 2006046784 A JP2006046784 A JP 2006046784A JP 2007223845 A JP2007223845 A JP 2007223845A
Authority
JP
Japan
Prior art keywords
tio
sio
glass
powder
based glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006046784A
Other languages
Japanese (ja)
Inventor
Shozo Ariga
昌三 有賀
Yasumi Sasaki
泰実 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2006046784A priority Critical patent/JP2007223845A/en
Publication of JP2007223845A publication Critical patent/JP2007223845A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing SiO<SB>2</SB>-TiO<SB>2</SB>based glass which enables production of SiO<SB>2</SB>-TiO<SB>2</SB>based glass which is less expandable, has neither micro bubbles nor striae, and is suitable as a member for the reflecting optical system. <P>SOLUTION: The method of producing SiO<SB>2</SB>-TiO<SB>2</SB>based glass comprises adding a predetermined percentage of titanium tetrachloride to a SiO<SB>2</SB>powder having a particle size of 1-1,000 μm, subjecting these components to heat treatment in an oxidative atmosphere after mixing or while mixing these components, charging the resulting heat-treated powder into a carbon mold in a reduced pressure furnace, and melting the powder at 10 toll or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はSiO−TiO系ガラスの製造方法に係り、特に原料として粉状のシリカ粉と四塩化チタンを用い、反射光学系用部材として適する脈理や微泡のないSiO−TiO系ガラスの製造方法に関する。 The present invention relates to a method for producing SiO 2 -TiO 2 type glass, especially using a powdered silica powder and titanium tetrachloride as a raw material, SiO 2 -TiO 2 with no striae or microbubbles suitable as a member for reflecting optical system The present invention relates to a method for producing a glass.

従来、半導体デバイス製造分野における光リソグラフィ技術において、半導体ウェーハ面上に微細な回路パターンを転写して集積回路を製造するための露光装置が広く利用されている。   2. Description of the Related Art Conventionally, in an optical lithography technique in the field of semiconductor device manufacturing, an exposure apparatus for manufacturing an integrated circuit by transferring a fine circuit pattern onto a semiconductor wafer surface has been widely used.

集積回路の高集積化および高機能化に伴い、集積回路の微細化が進み、露光装置には深い焦点深度で高解像度の回路パターンをウェーハ面上に結像させることが求められ、露光光源の短波長化が進められている。   As integrated circuits become highly integrated and highly functional, miniaturization of integrated circuits advances, and the exposure apparatus is required to form a high-resolution circuit pattern on the wafer surface with a deep focal depth. Short wavelength is being promoted.

露光光源は、従来のg線(波長436nm)、i線(波長365nm)やKrFエキシマレーザ(波長248nm)から進んでArFエキシマレーザ(波長193nm)が用いられている。   As an exposure light source, an ArF excimer laser (wavelength 193 nm) is used, proceeding from conventional g-line (wavelength 436 nm), i-line (wavelength 365 nm), or KrF excimer laser (wavelength 248 nm).

また、さらに回路パターンの線幅が100nm以下となる次世代の集積回路に対応するため、露光光源としてFレーザ(波長157nm)を用いることが有力視されているが、これも線幅が70nm世代までしかカバーできないと見られている。 Further, in order to cope with a next-generation integrated circuit in which the line width of the circuit pattern is 100 nm or less, it is considered promising to use an F 2 laser (wavelength 157 nm) as an exposure light source, which also has a line width of 70 nm. It is considered that only generations can be covered.

このような流れにあって、露光光源としてEUV光(Extreme Ultra Violet光、極端紫外光)のうち代表的には波長13nmの光を用いたリソグラフィ技術が、50nm以降の複数世代にわたって適用可能と見られ注目されている。   In such a flow, it is considered that lithography technology using typically 13 nm light among EUV light (Extreme Ultra Violet light, extreme ultraviolet light) as an exposure light source can be applied over a plurality of generations after 50 nm. It is attracting attention.

EUVリソグラフィ(以下、ELVLという。)の像形成原理は、投影光学系を用いてマスクパターンを転写する点では、従来のフォトリソグラフィーと同じである。しかし、EUV光のエネルギー領域では、光を透過する材料が無いために、屈折光学系は用いることができず、光学系はすべて反射光学系となる。   The image forming principle of EUV lithography (hereinafter referred to as ELVL) is the same as that of conventional photolithography in that a mask pattern is transferred using a projection optical system. However, in the energy region of EUV light, since there is no material that transmits light, the refractive optical system cannot be used, and all the optical systems are reflective optical systems.

EUVLに用いられる露光装置光学材はフォトマスクやミラーなどであるが、(1)基材、(2)基材上に形成された反射多層膜、(3)反射多層膜上に形成された吸収体層、から基本的に構成される。多層膜は、Mo/Siが交互に層を形成することが検討され、吸収体層には、成膜材料として、TaやCrが検討されている。   The exposure apparatus optical material used for EUVL is a photomask or mirror, but (1) a base material, (2) a reflective multilayer film formed on the base material, and (3) an absorption formed on the reflective multilayer film. It is basically composed of body layers. As for the multilayer film, it is considered that Mo / Si alternately forms layers, and Ta and Cr are studied as film forming materials for the absorber layer.

基材としては、EUV光照射の下においても歪みが生じないよう低熱膨張係数を有する材料が必要とされ、低熱膨張係数を有するガラス等が検討されている。   As the base material, a material having a low thermal expansion coefficient is required so that distortion does not occur even under EUV light irradiation, and glass having a low thermal expansion coefficient is being studied.

この低熱膨張係数を有するガラスには、透明結晶化ガラスや気相合成(CVD:Chemica1 Vapor Deposition)にて製造されるSiO−TiO系ガラス材料等がある。 Examples of the glass having a low thermal expansion coefficient include transparent crystallized glass and SiO 2 —TiO 2 -based glass material manufactured by vapor phase synthesis (CVD: Chemical Vapor Deposition).

これらのガラスは、石英ガラスよりも小さい熱膨張係数を有する超低熱膨張材料として知られ、またSiO−TiO系ガラス材料は、ガラス中のTiO含有量によって熱膨張係数を制御できるために、熱膨張係数が0に近いゼロ膨張ガラスが得られる。 These glasses are known as ultra-low thermal expansion materials having a smaller thermal expansion coefficient than quartz glass, and SiO 2 —TiO 2 based glass materials can control the thermal expansion coefficient by the TiO 2 content in the glass. A zero-expansion glass having a thermal expansion coefficient close to 0 is obtained.

このように、低熱膨張係数を有するガラスはELVL用露光装置の光学材に用いる材料としての可能性がある。   Thus, glass having a low thermal expansion coefficient has a possibility as a material used for an optical material of an exposure apparatus for ELVL.

一般的な透明結晶化ガラスはその製造の過程に於いて、組成比や温度、時間等を調整して粗粒が生じないように結晶の成長を制御しなければならず、歩留低下やコストアップの要因となっている。   In general transparent crystallized glass, the crystal growth must be controlled so that coarse grains do not occur by adjusting the composition ratio, temperature, time, etc. It is a factor of up.

一方、酸素、水素ガスを用い、SiCl等を原料とする気相合成法(CVD)にて多孔体の形成を経て製造されるSiO−TiO系ガラスがある(特許文献1)が、CVD法を用いて製造される材料は、積層によって一方向へ生じる脈理状の欠陥を避けることが困難であり、得られる材料の平均線膨張係数も異方性を持ってしまい、熱的寸法安定性が十分とは言えない。また、多孔体を経る方法では体積変化が大きいため、大型のガラス体を得にくいといった問題があった。 On the other hand, oxygen, with hydrogen gas, there is a SiO 2 -TiO 2 type glass is manufactured through the formation of a porous body by a vapor phase synthesis method using SiCl 4 or the like as a raw material (CVD) (Patent Document 1), Materials manufactured using the CVD method are difficult to avoid striae defects that occur in one direction due to lamination, and the average linear expansion coefficient of the resulting material also has anisotropy, resulting in thermal dimensions. Stability is not enough. Moreover, since the volume change is large in the method of passing through the porous body, there is a problem that it is difficult to obtain a large glass body.

また、酸素、水素ガスを用い、SiCl等を原料として直接SiO−TiO系ガラスを得ることも公知であるが、上記同様の問題があった。 It is also known to directly obtain SiO 2 —TiO 2 -based glass using oxygen or hydrogen gas and SiCl 4 or the like as a raw material, but has the same problem as described above.

さらに、特許文献2には、SiO−TiO系ガラスの製造方法及びSiO−TiO系ガラスが提案されているが、特許文献2の製造方法はSiO原料及びTiO原料はいずれも粉体であるため、形成されるSiO−TiO系ガラス中のTiO成分の均一な分散が十分とは言えず、また、いずれも500μm以下の微粉を用いたり、または加圧溶融をしているため、同ガラス中にも微細な気泡が混入し易いといった課題があった。 Further, Patent Document 2, although the production method and the SiO 2 -TiO 2 type glass of SiO 2 -TiO 2 type glass is proposed method of Patent Document 2 both SiO 2 raw material and TiO 2 raw materials Since it is a powder, it cannot be said that uniform dispersion of the TiO 2 component in the SiO 2 —TiO 2 glass to be formed is sufficient, and in either case, fine powder of 500 μm or less is used, or pressure melting is performed. Therefore, there is a problem that fine bubbles are easily mixed in the glass.

また、MoやW等の金属製容器を用いた場合、溶融炉の構成部材としてカーボン製のものを用いると、浸炭によって、当該金属製容器が脆くなり易い傾向があった。
特表2005−519022号公報 特開2004−315247号公報
In addition, when a metal container such as Mo or W is used, if a carbon-made member is used as a constituent member of the melting furnace, the metal container tends to become brittle due to carburization.
Japanese translation of PCT publication No. 2005-519022 JP 2004-315247 A

本発明は上述した事情を考慮してなされたもので、低膨張で微泡や脈理がなく、反射光学系用部材として好適なSiO−TiO系ガラスを製造できるSiO−TiO系ガラスの製造方法を提供することを目的とする。 The present invention has been made in consideration of the above circumstances, there is no fine bubbles and striae in low expansion, SiO 2 -TiO 2 system capable of producing suitable SiO 2 -TiO 2 type glass as member for reflecting optical system It aims at providing the manufacturing method of glass.

上述した目的を達成するため、本発明に係るSiO−TiOガラスの製造方法は、粒径1〜1000μmのシリカ粉に四塩化チタンを所定の割合で添加し、混合した後、もしくは混合しながら、酸化雰囲気中で熱処理し、この熱処理粉を減圧炉中のカーボン型に投入後、10toll以下で溶融することを特徴とする。 In order to achieve the above-described object, the method for producing SiO 2 —TiO 2 glass according to the present invention adds titanium tetrachloride at a predetermined ratio to silica powder having a particle diameter of 1 to 1000 μm and mixes or after mixing. However, the heat treatment is performed in an oxidizing atmosphere, and the heat-treated powder is charged into a carbon mold in a vacuum furnace and then melted at 10 torr or less.

本発明に係るSiO−TiOガラス系の製造方法によれば、低膨張で微泡や脈理がなく大型の反射光学系用部材として適するSiO−TiO系ガラスを製造できるSiO−TiO系ガラスの製造方法を提供することができる。 According to the manufacturing method of the SiO 2 -TiO 2 glass system according to the present invention, SiO 2 can be produced a SiO 2 -TiO 2 glass is suitable as a large reflective optic member without fine bubbles and striae in low expansion - A method for producing TiO 2 glass can be provided.

本発明に係るSiO−TiO系ガラスの製造方法の一実施形態について添付図面を参照して説明する。 One embodiment of a method for producing a SiO 2 —TiO 2 glass according to the present invention will be described with reference to the accompanying drawings.

本発明に係るSiO−TiO系ガラスの製造方法は、粒径1〜1000μmのシリカ粉(SiO粉)に液体状四塩化チタン(TiCl)を所定の割合で添加し、混合した後、もしくは混合しながら、酸化雰囲気中で熱処理し、この熱処理粉を減圧炉中のカーボン型に投入後、10toll以下で溶融する。 In the method for producing SiO 2 —TiO 2 glass according to the present invention, liquid titanium tetrachloride (TiCl 4 ) is added to silica powder (SiO 2 powder) having a particle diameter of 1 to 1000 μm at a predetermined ratio and mixed. Alternatively, heat treatment is performed in an oxidizing atmosphere while mixing, and the heat-treated powder is put into a carbon mold in a vacuum furnace and then melted at 10 torr or less.

SiO粉は合成原料でも天然原料でもよく、粉体の状態で電気による減圧溶融を行うので、溶融時の酸素と水素の濃度差が原因と思われる脈理はほとんど生じない。 The SiO 2 powder may be a synthetic raw material or a natural raw material, and since it is melted under reduced pressure by electricity in the state of powder, there is almost no striae that may be caused by the difference in concentration between oxygen and hydrogen during melting.

SiO粉は粒径1〜1000μmのものを用い、60〜400μmのものが好ましい。粒径が1μmより小さいと、ガラス中にも微細な気泡が混入し易く、1000μmを超えるとTiOの均一分散性に欠ける。 The SiO 2 powder has a particle diameter of 1 to 1000 μm, preferably 60 to 400 μm. When the particle size is smaller than 1 μm, fine bubbles are easily mixed in the glass, and when it exceeds 1000 μm, the uniform dispersibility of TiO 2 is lacking.

TiClは、液体状で用いることが好ましく、TiClの所定の割合は、SiO粉に対して、TiO換算で5〜10重量%が好ましい。この範囲とすることで、低膨張のSiO−TiO系ガラスをより確実に製造することができる。 TiCl 4 is preferably used in a liquid state, and the predetermined ratio of TiCl 4 is preferably 5 to 10% by weight in terms of TiO 2 with respect to the SiO 2 powder. By setting it as this range, a low-expansion SiO 2 —TiO 2 glass can be more reliably produced.

熱処理温度は200〜300℃が好ましい。これにより、酸化雰囲気で分解し、液体状のTiClがTiOに化学変化し、TiOの極微粒としてSiO粉末の周りに付着し、TiOが均一分散した原料が得られる。 The heat treatment temperature is preferably 200 to 300 ° C. Thus, it decomposed in an oxidizing atmosphere, liquid TiCl 4 is chemically changed to TiO 2, attached around the SiO 2 powder as microscopic particles of TiO 2, raw materials TiO 2 is uniformly dispersed is obtained.

溶融温度は1600〜2000℃が好ましい。この温度範囲、10toll以下の減圧下で溶融することで、気泡が存在せず、TiOが均一分散するSiO−TiO系ガラスが得られる。また、溶融時に酸水素バーナーを使用しないので、製造されたSiO−TiO系ガラスにOH基が実質上含まれず、このガラスの粘性は高く、高温にも強い。 The melting temperature is preferably 1600 to 2000 ° C. By melting under a reduced pressure of this temperature range of 10 torr or less, SiO 2 —TiO 2 glass in which no bubbles exist and TiO 2 is uniformly dispersed is obtained. Further, since no oxyhydrogen burner is used at the time of melting, the produced SiO 2 —TiO 2 glass does not substantially contain OH groups, and the viscosity of this glass is high and it is resistant to high temperatures.

なお、上記方法で製造されたインゴットを板状体に切断するが、板状体の表面を研磨した後に酸水素バーナーで艶出しするのが好ましい。これにより、表面に微細な開放泡等が残っていても、表面は滑らかになる。   In addition, although the ingot manufactured by the said method is cut | disconnected to a plate-shaped object, it is preferable to polish with the oxyhydrogen burner after grind | polishing the surface of a plate-shaped object. Thereby, even if fine open bubbles remain on the surface, the surface becomes smooth.

本実施形態のSiO−TiO系ガラスの製造方法は、原料として粉状のシリカ粉と液体状の四塩化チタンを用い、酸化雰囲気中で熱処理した後、減圧下で溶融するので、結晶の成長を制御し歩留低下やコストアップになる方法とは異なり、安価にSiO−TiO系ガラスを製造でき、また、多孔体を経るため体積変化が大きく大型のガラス体が得られない方法とは異なり、大型のガラス体が得られ、さらに、泡の混入が極めて少なく、脈理がないSiO−TiO系ガラスを製造できる。 The manufacturing method of the SiO 2 —TiO 2 glass of this embodiment uses powdered silica powder and liquid titanium tetrachloride as raw materials, heat-treats in an oxidizing atmosphere, and then melts under reduced pressure. Unlike the method of controlling growth and lowering yield and increasing cost, it is possible to produce SiO 2 —TiO 2 -based glass at low cost, and a large glass body with large volume change due to passing through a porous body cannot be obtained. In contrast, a large glass body can be obtained, and furthermore, SiO 2 —TiO 2 -based glass having very little foam mixing and no striae can be produced.

[実施例]
常温常圧下において天然のSiO粉に液体状のTiClを重量比、TiO換算で95:5の割合で混合し、酸化雰囲気中250℃で加熱しながらTiClをTiO微粉に変化させ、SiO粉の表面にTiOを均一に付着させた後、カーボン型に入れて2toll以下に減圧しながら1780℃で溶融し、SiO−TiO系ガラスインゴットを得た。
[Example]
Under normal temperature and normal pressure, liquid TiCl 4 is mixed with natural SiO 2 powder in a weight ratio of 95: 5 in terms of TiO 2 , and TiCl 4 is changed to TiO 2 fine powder while heating at 250 ° C. in an oxidizing atmosphere. After uniformly attaching TiO 2 to the surface of the SiO 2 powder, it was put in a carbon mold and melted at 1780 ° C. while reducing the pressure to 2 torr or less to obtain a SiO 2 —TiO 2 glass ingot.

冷却後に板状に加工し、板状体の表面を研磨した後に、表面を酸水素バーナーで艶出して、約15cm×15cm×0.625cmの反射光学系用部材としてのEVUL用SiO−TiO系ガラス基板をサンプルとして得た。 After cooling, it is processed into a plate shape, and after polishing the surface of the plate-like body, the surface is polished with an oxyhydrogen burner, and an SiO 2 -TiO 2 for EVUL as a reflective optical system member of about 15 cm × 15 cm × 0.625 cm A 2- system glass substrate was obtained as a sample.

この実施例のサンプルは、0〜100℃での熱膨張係数は1±150ppbであり、目視で確認できる脈理や微泡もなかった。   The sample of this example had a thermal expansion coefficient of 1 ± 150 ppb at 0 to 100 ° C., and there were no striae or fine bubbles that could be visually confirmed.

[比較例]
SiClとTiClガス原料を重量比、TiO換算で95:5の割合で混合し、CVD法により多孔体を作製した後、透明化処理を行い、板状に加工した後、約15cm×15cm×0.625cmの反射光学系用部材としてのEVUL用SiO−TiO系ガラス基板を得た。
[Comparative example]
After mixing SiCl 4 and TiCl 4 gas raw materials at a weight ratio of 95: 5 in terms of TiO 2 and producing a porous body by the CVD method, it is subjected to a transparent treatment and processed into a plate shape, about 15 cm × An EVUL SiO 2 —TiO 2 glass substrate as a 15 cm × 0.625 cm reflective optical system member was obtained.

この比較例のサンプルは、0〜100℃での熱膨張係数は1±150ppbであったが、無視できない微泡が存在していた。   The sample of this comparative example had a thermal expansion coefficient of 1 ± 150 ppb at 0 to 100 ° C., but there were fine bubbles that could not be ignored.

Claims (1)

粒径1〜1000μmのシリカ粉に四塩化チタンを所定の割合で添加し、混合した後、もしくは混合しながら、酸化雰囲気中で熱処理し、この熱処理粉を減圧炉中のカーボン型に投入後、10toll以下で溶融することを特徴とするSiO−TiO系ガラスの製造方法。 After adding titanium tetrachloride in a predetermined ratio to silica powder having a particle size of 1 to 1000 μm and mixing or heat-treating in an oxidizing atmosphere while mixing, the heat-treated powder is put into a carbon mold in a vacuum furnace, A method for producing SiO 2 —TiO 2 glass, characterized by melting at 10 torr or less.
JP2006046784A 2006-02-23 2006-02-23 METHOD OF PRODUCING SiO2-TiO2 BASED GLASS Pending JP2007223845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046784A JP2007223845A (en) 2006-02-23 2006-02-23 METHOD OF PRODUCING SiO2-TiO2 BASED GLASS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046784A JP2007223845A (en) 2006-02-23 2006-02-23 METHOD OF PRODUCING SiO2-TiO2 BASED GLASS

Publications (1)

Publication Number Publication Date
JP2007223845A true JP2007223845A (en) 2007-09-06

Family

ID=38545997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046784A Pending JP2007223845A (en) 2006-02-23 2006-02-23 METHOD OF PRODUCING SiO2-TiO2 BASED GLASS

Country Status (1)

Country Link
JP (1) JP2007223845A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769671A (en) * 1993-09-07 1995-03-14 Shinetsu Quartz Prod Co Ltd Ultraviolet ray absorbing silica glass and production thereof
JPH11278857A (en) * 1998-03-30 1999-10-12 Tosoh Corp Production of silica glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769671A (en) * 1993-09-07 1995-03-14 Shinetsu Quartz Prod Co Ltd Ultraviolet ray absorbing silica glass and production thereof
JPH11278857A (en) * 1998-03-30 1999-10-12 Tosoh Corp Production of silica glass

Similar Documents

Publication Publication Date Title
JP5035516B2 (en) Method for producing titania-doped quartz glass for photomask
EP2003098B1 (en) Nanoimprint molds made from titania-doped quartz glass
JP5510308B2 (en) EUVL optical member base material
TW200938502A (en) Low expansion glass material having low expansivity gradien
TWI471281B (en) Titania-doped quartz glass member and making method
JP5644058B2 (en) Silica glass containing TiO2
JP5365247B2 (en) Silica glass containing TiO2 and optical member for lithography using the same
JP2013056819A (en) Method for making silica-titania glass having ternary doped critical zone
JP5754482B2 (en) Silica glass containing TiO2
EP2250131B1 (en) Tio2-containing silica glass and optical member for euv lithography using the same
TW200909375A (en) Titania-doped quartz glass for nanoimprint molds
WO2009145288A1 (en) Tio2-containing silica glass and optics for lithography which comprise with the glass
KR20100116639A (en) Tio2-containing silica glass and optical member for euv lithography using high energy densities as well as special temperature controlled process for its manufacture
JP2008100891A (en) Titania-silica glass
JP5365248B2 (en) Silica glass containing TiO2 and optical member for EUV lithography
WO2011068064A1 (en) Silica glass containing tio2
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP5578167B2 (en) Method for producing porous quartz glass body and optical member for EUV lithography
WO2004092082A1 (en) METHOD FOR PRODUCING SiO2-TiO2 BASED GLASS, SiO2-TiO2 BASED GLASS AND EXPOSURE SYSTEM
JP2007223845A (en) METHOD OF PRODUCING SiO2-TiO2 BASED GLASS
JP4534957B2 (en) Method for molding silica glass containing TiO2
JP5050458B2 (en) Silica glass and optical member
JP2007055842A (en) METHOD FOR MOLDING SILICA GLASS CONTAINING TiO2
JP5287271B2 (en) Method for molding silica glass containing TiO2 and optical member for EUV lithography molded thereby
JP2011168450A (en) METHOD OF PRODUCING SILICA GLASS BODY CONTAINING TiO2

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A977 Report on retrieval

Effective date: 20100401

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20111108

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321