JP4011442B2 - Method for producing positive electrode material for lithium ion battery and lithium ion battery - Google Patents

Method for producing positive electrode material for lithium ion battery and lithium ion battery Download PDF

Info

Publication number
JP4011442B2
JP4011442B2 JP2002255632A JP2002255632A JP4011442B2 JP 4011442 B2 JP4011442 B2 JP 4011442B2 JP 2002255632 A JP2002255632 A JP 2002255632A JP 2002255632 A JP2002255632 A JP 2002255632A JP 4011442 B2 JP4011442 B2 JP 4011442B2
Authority
JP
Japan
Prior art keywords
component
positive electrode
lithium ion
ion battery
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002255632A
Other languages
Japanese (ja)
Other versions
JP2004095385A (en
Inventor
克彦 正木
光正 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2002255632A priority Critical patent/JP4011442B2/en
Publication of JP2004095385A publication Critical patent/JP2004095385A/en
Application granted granted Critical
Publication of JP4011442B2 publication Critical patent/JP4011442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン電池に使用される正極材料の製造方法およびこれにより製造された正極材料を使用したリチウムイオン電池に関するものである。
【0002】
【従来の技術】
近年、携帯電子機器やハイブリッド自動車に用いるための二次電池の研究が進められている。代表的な二次電池としては鉛蓄電池、アルカリ蓄電池、リチウムイオン電池などが知られている。種々の二次電池の中でもリチウムイオン電池を用いたリチウム二次電池は高出力、高エネルギー密度等の利点を有している。
リチウムイオン電池はリチウムイオンを可逆的に脱挿入可能な活物質を有する正極と負極と非水電解質からなる。
【0003】
このリチウムイオン電池の正極材料としては、金属酸化物、金属硫化物、あるいはポリマーなどが用いられ、例えばTiS、MoS、NbSe、V等のリチウム非含有化合物や、LiMO(M=Co、Ni、Mn、Fe等)、LiMn等のようなリチウム複合酸化物等が知られている。
現在、この中でリチウムイオン電池の正極材料には、LiCoOが活物質として一般的に用いられている。LiCoOは高エネルギー密度で高電圧の電池を構成することが可能である。しかし、Coは地球上に偏在し、かつ希少な資源であるためコストが高くつく他、安定供給が難しいという問題がある。このため、Coに代わり資源として豊富に存在し、安価なNiやMnをベースにした正極材料の開発が望まれている。
【0004】
しかし、LiNiOを使用した正極材料は、理論容量が大きく、かつ高放電電位を有するものの、充放電サイクルの進行に伴ってLiNiOの結晶構造が崩壊してしまう。このため、放電容量の低下を引き起こしたり、熱安定性に劣る等の問題がある。
LiMnは、正スピネル型構造を持ち、空間群Fd3mを有している。このLiMnは、対リチウム電極で4V級というLiCoOと同等の高い電位を有する。さらに、LiMnは合成が容易であること、及び高い電池容量を有する事から非常に有望な材料であり、実用化されている。しかし、実際にLiMnを用いて構成された電池では、高温保存時における容量劣化が大きいことや、Mnが電解液に溶解してしまうといった、安定性やサイクル特性が充分でないといった問題が残されている。
【0005】
そこで、オリビン構造を有するFe、Mn、Co、Ni等の遷移金属のリン酸化合物をリチウムイオン電池の正極に用いることが提案されている(特開平9−134724号公報)。また、上述のオリビン構造を有する遷移金属のリン酸化合物のうち、例えばLiFePOをリチウムイオン電池の正極に用いることが提案されている(特開平9−171827号公報)。
【0006】
【発明が解決しようとする課題】
しかしながら、従来のオリビン構造をもつリン酸化合物の合成は固相法を用いており、不活性ガス雰囲気での焼成と粉砕を繰り返す必要があり、複雑な操作が必要であった。
またLiFePOの場合、合成時の焼成温度が低いため、合成時の結晶化度や粒径を制御することが難しい。そのため、得られるLiFePOは小さな結晶子が乱雑に並んだ構造をもっている。従って、粒子内のイオンの拡散性や電子伝導性が悪く、充放電時の分極が大きくなるといった問題があった。
また、充放電によるリチウムイオンの挿入脱離に伴い、活物質の体積変化が起こり、これが繰り返されることで粒子に亀裂が入り、さらに亀裂が進行して粒子が破壊され、微細化される。前記亀裂や微細化により粒子内のイオン拡散性及び粒子間のインピーダンスが増加するため、放電時の分極が大きくなるといった問題がある。
【0007】
本発明は、上記問題点に着目してなされたものであり、粒径が小さく、結晶性が良く、粒径および粒子形状が制御されたことにより、高容量で充放電特性に優れたリチウムイオン電池用の正極材料を容易にかつ安価に製造できる製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明のリチウムイオン電池用正極材料の製造方法は、一般式LiPO(0.8<x<2、0<y<1.5、ただし、AはCo,Ni,Mn,Fe,Cu,Crから選ばれた1種)で表されるリチウムイオン電池用正極材料の製造方法であって、液体にLi(リチウム)成分およびP(リン)成分およびA成分(AはCo,Ni,Mn,Fe,Cu,Crから選ばれた1種)を加え、これを耐圧容器内で加熱し前記Li(リチウム)成分および前記P(リン)成分および前記A成分を溶解させて合成反応を行い、その後降温させて再析出させることにより、前記Li PO を合成することを特徴とする。
【0009】
また、本発明の他のリチウムイオン電池用正極材料の製造方法は、一般式LiPOAはCo,Ni,Mn,Fe,Cu,Crから選ばれた1種、BおよびCはMg,Ca,Zn,Ge,Ti,Sr,Ba,Sc,Y,Al,Ga,In,Si,B,希土類元素から選ばれた互いに異なる1種であり、0.8<x<2、0<y<1.5、0≦z<1.5、0≦w<1.5、zとwは同時には0ではない)で表されるリチウムイオン電池用正極材料の製造方法であって、液体にLi(リチウム)成分およびP(リン)成分およびA成分(AはCo,Ni,Mn,Fe,Cu,Crから選ばれた1種)に加えて、B成分およびC成分としてMg,Ca,Zn,Ge,Ti,Sr,Ba,Sc,Y,Al,Ga,In,Si,B,希土類元素から選ばれた1種または2種の成分を加え、これを耐圧容器内で加熱し前記Li(リチウム)成分および前記P(リン)成分および前記A成分および前記B成分および前記C成分を溶解させて合成反応を行い、その後降温させて再析出させることにより、前記Li PO を合成することを特徴とする。
【0010】
本発明の製造方法を用いた場合、その反応中に溶解−再析出過程を含むため、均一な結晶の合成が可能となり、微粒子の粒径、結晶化度をコントロールすることができる。また、反応初期に生成する副生成物を溶解−再析出過程で溶解することにより、目的とする材料の単一相での合成が容易となる。また、一度溶解した後に析出により粒子化するため、結晶成長の方向をコントロールすることができ、結晶性の方向が揃った粒子を合成することが可能となり、また粒子形状のコントロールも可能となる。
【0011】
固相法の場合、結晶性を上げるためには、加熱温度や加熱時間を大きくする必要があるが、この場合、粒子同士が融着する、あるいは粒子自身が成長することにより粒径が大きくなってしまう。その点、本発明の製造方法によれば、固相法に比べて比較的低温で合成が可能であり、かつ溶解と析出の条件をコントロールすることが可能なため、例えば粒径が0.001〜1μmのリチウムイオン電池用正極材料が得られる。このため、従来に比較して粒子径を小さくすることでリチウムイオン電池用正極材料の表面積を増大させることができ、よって高い充放電速度を有するリチウムイオン電池を提供できる。粒径が0.001μmより小さいと、電荷移動に問題が生じるため好ましくない。また、粒径が1μmより大きいと、得られる粒子の比表面積が小さく、単位重量当たりの充放電容量が低下する、また、充放電の繰り返しにより粒子が破壊されることによる電池容量の低下が生じる点で好ましくない。
【0012】
また、固相法の場合は合成反応に高温が必要であるが、本発明の製造方法を用いた合成反応の場合、固相法に比べて少ないエネルギーで反応を進めることができる。このため、ランニングコスト面でも有利であり、また反応に用いる装置についても劣化が少ない。また、そのため、反応装置が特殊な耐圧性能や耐腐食性能を持つ必要はなくなる。その結果、一般的なステンレス等の材料を反応容器として用いることが可能となる。
【0013】
上記本発明のリチウムイオン電池用正極材料の製造方法においては、合成前の前記液体に、合成時に変性し変性の前後で該液体のpHを変化させる物質、もしくは還元作用を示す物質または酸化作用を示す物質を含むことが望ましい。
【0014】
【発明の実施の形態】
以下、本発明の一実施の形態であるリチウムイオン電池用正極材料の製造方法について説明する。
まず、液体にLi(リチウム)成分、P(リン)成分、A成分(ただし、AはCo,Ni,Mn,Fe、Cu,Crから選ばれた1種)を加えて、出発原料を調整する。Li(リチウム)成分、P(リン)成分、A成分は前記液体に溶解することが好ましいが、この段階では溶解しなくても、加熱により液体の温度が上昇し、反応容器内の圧力が上昇した段階で溶解すればよい。したがって、液体に前記各種成分を加えて調整した段階の出発原料の状態は、溶液状あるいはスラリー状、溶液と固体物質またはゾルまたはゲルとの混合物といった状態となっている。
【0015】
Li(リチウム)成分としてはリチウムの金属塩等が使用でき、A成分としてはAの金属塩等が使用できる。また、P(リン)成分としては、リン酸等が使用できる。さらに、必要により、B成分、C成分として、Mg,Co、Zn,Ge,Ti,Sr,Ba,Sc,Y、Al,Ga,In,Si,B,希土類元素から選ばれる1種または2種の金属の塩、もしくは上記元素を含む化合物等を使用できる。ただし、B成分とC成分とは異なる元素のものを選ぶ必要がある。ここで、希土類元素とは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのことである。
【0016】
前記の各種成分を加える液体としては、例えば水、アルコール類、エーテル類、アセトニトリル、テトラヒドロフラン、ジメチルスルホキシド等の極性有機溶媒、およびこれらを含む混合溶液、または液化ガス等を用いることができ、特に限定はされないが、中でも水を用いることが好ましい。その理由は、水は安価、安全であり、かつ有機溶媒等のように揮発して環境中に有機物質を放出することのないクリーンな物質であり、また、水は臨界点付近で誘電率の大きな変化を示すことから、温度、圧力の操作により容易に各物質に対する溶解度等の溶媒物性をコントロールすることが可能だからである。
【0017】
こうして調整された出発原料を耐圧容器に入れ、所定の温度に加熱し、所定の時間合成反応を行った後、降温する。
この反応条件は、溶媒の種類または合成する物質に応じて適宜選択されるが、溶媒が水の場合、加熱温度は80〜900℃、反応時間は0.5〜24時間が好ましい。この反応を密閉した耐圧容器内で行うと、この時の圧力は、0.1〜100MPaとなる。溶媒が水の場合、さらに好ましくは、加熱温度が80℃〜374℃が好ましく、この時の圧力は、0.1〜22MPaとなる。さらに好ましくは、加熱温度は100〜350℃、反応時間は0.5〜5時間がよく、この時の圧力は0.1〜17MPaとなる。
【0018】
その後、合成された生成物を吸引ろ過等によりろ別、回収し、水洗後乾燥を行なうことにより、一般式LiPO(AはCo,Ni,Mn,Fe、Cu,Crから選ばれた1種、BおよびCはMg,Ca,Zn,Ge,Ti,Sr,Ba,Sc,Y、Al,Ga,In,Si,B,希土類元素から選ばれた互いに異なる1種であり、0.8<x<2、0<y<1.5、0≦z<1.5、0≦w<1.5)で表されるリチウムイオン電池用正極材料が得られる。
【0019】
オリビン構造を持つリン酸化合物を溶液反応で合成しようとする場合、溶液中での金属イオンの安定性から、溶液のpHが問題となる場合がある。この場合、出発原料が液体中で安定な状態となるpHの範囲と、合成反応生成物が液体中で安定な状態となるpHの範囲とが異なる場合があり、合成反応生成物の収率に大きな影響を与える。そこで、本実施の形態の製造方法では、合成する物質に応じて、合成時に変性し、変性の前後で該液体のpHを変化させる物質を出発原料中に加えることが好ましい。
【0020】
また、オリビン構造を持つリン酸化合物を溶液反応で合成しようとする場合、溶液中での金属イオンの安定性が問題となる場合がある。例えば、LiFePOの場合、出発原料中の2価のFeイオンは溶存酸素などの存在により容易に3価に酸化し、希望するLiFePOではなくFePOを生成してしまう。また、出発原料として、容易に入手できるFeの3価の塩ではなく、入手し難い2価の塩を選択しなくてはならない。そこで、合成する物質に応じて、還元作用を示す物質または酸化作用を示す物質を出発原料中に加えることが好ましい。
【0021】
合成時に変性し、変性の前後で該液体のpHを変化させる物質としては、例えば、尿素、ヘキサメチレンテトラミン、アセトアミド、チオ尿素、ウラジル、核酸化合物、アミノ酸化合物等が挙げられる。還元作用を示す物質としては、還元剤として、例えば、アスコルビン酸、アルデヒド類、水素ガス、アンモニア等が挙げられ、また、合成時に変性して還元作用を示す物質として、例えば、蟻酸、シュウ酸、クエン酸、アミン類、アルコール類、ヒドラジン、水素化ホウ素ナトリウム等が挙げられる。また、酸化作用を示す物質としては、酸化剤として、例えば、過酸化水素水、酸素ガス、過酸化物、硝酸、オゾン等が挙げられ、また、変性して酸化作用を示す物質として、過酸化水素水、過酸化物等が挙げられる。
【0022】
出発原料中に、合成時に自身が変性し変性の前後で該液体のpHを変化させる物質を加えると、原料物質と生成物質の安定なpH領域が異なる場合でも対応が可能となる。例えばLiFePOの合成では、出発原料中では鉄の酸化数を2価にすることが望ましく、この場合はpHが低いことが必要とされる。しかし、合成生成物のLiFePOは酸性溶液中では生成物の溶解やLiイオンの溶出が生じるため、合成生成物の回収時には溶液のpHは高い方が好ましい。このため、合成反応中に変性し、反応前後のpHを変化させる物質、例えば尿素を、溶媒が水の場合、出発原料中に添加することにより、溶液の液性を合成反応前は低pH、合成反応後は高pHとすることが可能となる。この尿素(NHCONH)は、水溶液中での加熱により、
NHCONH+HO → 2NH + CO
となり、pH調整剤として機能し、合成反応終了時のpHを高くすることにより合成生成物の再溶解の抑制およびLiの溶媒中への溶出を防ぐことができる。
【0023】
出発原料中に、還元作用を示す物質または酸化作用を示す物質を加えた場合、例えば、還元剤としてアスコルビン酸を加えると、LiFePOの合成の場合、出発原料中のFe2+の酸化を抑制することができる。また、合成時に変性により還元性物質を生成する物質、例えば蟻酸を加えると、合成操作中に同時に還元操作を行なうことが容易に可能となり、例えばLiFePOの合成の場合、問題となるFe2+→Fe3+への酸化反応の抑制が可能となる。また、還元物質は気体であってもよく、例えば反応容器中に水素ガスなどを同時に封入して反応を行うことによりその還元能力を有効に利用することができる。
【0024】
例えばLiFePOの合成を例にとると、原料溶液として、例えば塩化リチウムと塩化鉄(II)とリン酸と尿素を蒸留水に溶かしたものを利用する。そして、この原料水溶液を耐圧容器内に封入し、所定の温度、例えば300℃まで昇温し、8.5MPaの圧力で5時間反応を行なった後、降温する。その後、合成生成物を吸引ろ過によりろ別回収し、水洗後、乾燥を行ない、LiFePOが得られる。
【0025】
このようにして得られた反応生成物は、粒子径が小さく、また結晶度も良いものであり、リチウムイオン電池の正極材料として好適に利用できる。
以上は、回分式の合成方法の場合であるが、連続式で合成することもできる。
【0026】
以下に、連続式で合成する場合を説明する。
図1に連続式合成法に用いた装置図を示す。
出発原料(原料1,原料2)は、シリンジポンプ等の高圧ポンプ1a,1bにより混合部2に圧送される。出発原料としては、反応管3内に圧送可能であれば、溶液状、スラリー状、ゾル状、ゲル状等でもよく、前記回分式合成法の場合と同様に調整される。
一方、蒸留水が高圧ポンプ4により予熱部(ヒーター5)を通り、所定の温度まで昇温された後、予熱水として混合部2に圧送される。混合部2で予熱水が原料水と混合された後、反応管3上部で反応する。この反応は反応管3内での滞在時間内にヒーター6により制御された所定の反応温度で行われる。反応後、冷却部7で急速冷却を行なう。この後、インラインフィルター8で粗大粒子を回収した後、背圧弁9を通り、反応液は液受け10内に回収される。背圧弁9により系内の圧力は所要の圧力に制御される。背圧弁9から排出された反応液をろ過後、水洗することによって、反応生成物が得られる。反応条件は、合成する物質に応じて適宜選択されるが、予熱水の昇温温度は100〜500℃、予熱水が原料水と混合された後の反応温度は80〜370℃、反応管内での滞在時間、つまり反応時間は0.5〜300秒、反応時の圧力は0.1〜25MPaが好ましい。
【0027】
このようにして得られた反応生成物は不純物が少なく、粒子径が小さく、また結晶度も良いものであり、電池材料として非常に好適なものである。従って、リチウムイオン電池の正極活物質として好適に利用できる。
【0028】
例えばLiFePOの合成を例にとると、原料水溶液として、例えば塩化リチウム(LiCl)と塩化鉄(II)(FeCl)とリン酸(HPO)と尿素(NHCONH)を蒸留水に溶かしたものを利用する。この原料水溶液は、シリンジポンプ等のポンプにより混合部に圧送される。一方、予熱水は、ポンプにより予熱部を通り、450℃まで昇温された後、混合部に圧送される。混合部で予熱水が原料水と混合された後、反応管上部で反応する。この時の反応温度は300℃であり、反応管内での滞在時間、つまり反応時間は2秒であり、反応時の圧力は8.5MPaである。反応後、冷却部で急速冷却を行なう。この後、フィルター部で粗大粒子を回収した後、背圧弁を通り、反応液は回収される。背圧弁により系内の圧力は所要の圧力に制御される。背圧弁から排出された反応液をろ過後水洗することによって、LiFePOが得られる。
【0029】
本実施の形態の製造方法を用いた場合、その反応中に溶解−再析出過程を含むため、均一な結晶の合成が可能となり、微粒子の粒径、結晶化度をコントロールすることができる。また、反応初期に生成する副生成物を溶解−再析出過程で溶解することにより、目的とする材料の単一相での合成が容易となる。
また、一度溶解した後に析出により粒子化するため、結晶成長の方向をコントロールすることができ、結晶性の方向が揃った粒子を合成することが可能となり、また粒子形状のコントロールも可能となる。なお、連続式での合成の場合、前述の変性により酸化または還元性を示す物質を予熱水に添加して反応を行うことが可能である。
【0030】
固相法の場合、結晶性を上げるためには、加熱温度や加熱時間を大きくする必要があるが、この場合、粒子同士が融着する、あるいは粒子自身が成長することにより粒径が大きくなってしまう。本実施の形態の製造方法によれば、固相法に比べて比較的低温で合成が可能であり、また溶解と析出の条件をコントロールすることが可能なため、粒径が0.001〜1μmのリチウムイオン電池用正極材料が得られる。このため、従来に比較して粒子径を小さくすることでリチウムイオン電池用正極材料の表面積を増大させることができ、よって高い充放電速度を有するリチウムイオン電池を提供できる。粒径が0.001μmより小さいと、電荷移動に問題が生じるため良くない。また、粒径が1μmより大きいと、得られる粒子の比表面積が小さく、単位重量当たりの充放電容量が低下する、また、充放電の繰り返しにより粒子が破壊されることによる電池容量の低下が生じる。
【0031】
また、固相法の場合は合成反応に高温が必要であるが、本実施の形態の製造方法を用いた合成反応の場合、固相法に比べて少ないエネルギーで反応を進めることができる。このため、ランニングコスト面でも有利であり、また反応に用いる装置についても劣化が少ない。また、そのため、反応装置には特殊な耐圧性能や耐腐食性能が特には必要ではなくなる。このため、一般的なステンレス等の材料を反応容器として用いることが可能となる。
【0032】
また特に、連続的に溶液を流通させながら反応を行なう連続式装置では超高圧ポンプを必要としない点で有利であり、また、大量のリチウムイオン電池用正極材料を効率的に製造することができる。
【0033】
【実施例】
以下、本発明の実施例について説明するが、本発明はこれらの記述により限定されるものではない。また、以下の実施例に記載された出発原料、製造方法、正極、負極、電解質、セパレーター及び電池形状などに限定されるものではない。
【0034】
(実施例1)
塩化リチウム2.12重量部、塩化鉄(II)四水和物9.94重量部、リン酸4.9重量部、尿素9.1重量部を蒸留水73.94重量部に溶解し、原料水溶液とした。
上記原料液を耐圧容器内に封入した後、電気炉内で300℃で5時間加熱を行なった。反応後、電気炉内で降温した後、反応生成物を吸引ろ過でろ別後、水洗、乾燥を行い、本発明の正極活物質LiFePOを得た。
【0035】
図2に反応生成物のエックス線回折パターンを示す。これにより、本発明の電極材料であるLiFePOの生成が確認された。また、得られたLiFePOの粒径は1μmであった。
【0036】
(実施例2)
リン酸第一鉄8水和物2.61重量部とリン酸7.08重量部とを蒸留水490.31重量部に溶解し、これを原料1とした。水酸化リチウム1水和物0.52重量部と尿素7.58重量部とアスコルビン酸0.22重量部とを蒸留水491.68重量部に溶解し、これを原料2とした。この原料1、原料2を図1に示す連続式合成装置を用いて反応を行った。
【0037】
原料1、原料2を高圧ポンプにより反応管内に送液し、予めヒーターにより450℃に加熱された予熱水と混合し、300℃、8.5MPaで反応を行った。反応時間は2秒間とした。反応生成物はインラインフィルターにより捕集され、洗浄、乾燥して回収した。
【0038】
図3に反応生成物のエックス線回折パターンを示す。これにより、反応生成物はLiFePOと同定された。
【0039】
(比較例1)
水酸化リチウム1水和物41.96重量部とシュウ酸鉄2水和物179.89重量部とリン酸二水素アンモニウム115.03重量部とを乳鉢で混合した後、加圧成型後、雰囲気炉内で800℃、窒素雰囲気で24時間焼成し、生成物を得た。
【0040】
図4に反応生成物のエックス線回折パターンを示す。これにより、反応生成物はLiFePOと同定された。
【0041】
(電池充放電試験)
実施例1,2および比較例1で得られた正極活物質を用い、次のようにしてリチウム二次電池を試作した。
該正極活物質、導電助剤、結着剤を重量比80:12:8で混合し、アセトンを加え、充分混練した。前記混練物をシート状に成形した後、ステンレスメッシュ集電体上に圧着後、面積2cmの円盤状に打ち抜き、正極とした。得られた正極を真空乾燥後、乾燥アルゴン雰囲気下で法泉株式会社製、HS標準セルを用いて電池を作製した。負極にはリチウム箔を用い、円形に打ち抜いて用いた。電解液はエチレンカーボネートとジエチルカーボネートを混合した溶媒にLiPFを溶解したものを用いた。セパレーターは多孔質ポリプロピレン膜を用いた。充放電サイクル試験は、カットオフ電圧3−4V、電流密度0.5mA/cmの定電流で室温で行った。
【0042】
充放電試験結果を図5に示す。本発明(実施例1,2)の正極活物質では、125mAhg−1以上の高い初期容量と優れたサイクル特性が得られることがわかった。
【0043】
【発明の効果】
以上、詳細に説明したように、本発明によれば、粒径が小さく、結晶性が良く、粒径および粒子形状が制御されたことにより高容量で充放電特性に優れたリチウムイオン電池用の正極材料を容易にかつ安価に提供することができる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態であるリチウムイオン電池用正極材料の製造に用いる連続式合成法による製造装置の概略構成図である。
【図2】 本発明の実施例1により得られた電極材料のエックス線回折パターンを示す図である。
【図3】 本発明の実施例2により得られた電極材料のエックス線回折パターンを示す図である。
【図4】 比較例1により得られた電極材料のエックス線回折パターンを示す図である。
【図5】 本発明の実施例1,2および比較例1により得られた電極材料を用いて作製したリチウムイオン電池の充放電試験結果を示す図である。
【符号の説明】
1a,1b,4 高圧ポンプ
2 混合部
3 反応管
5,6 ヒーター
7 冷却部
8 インラインフィルター
9 背圧弁
10 液受け
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a positive electrode material used in a lithium ion battery and a lithium ion battery using the positive electrode material produced thereby.
[0002]
[Prior art]
In recent years, research on secondary batteries for use in portable electronic devices and hybrid vehicles has been underway. As typical secondary batteries, lead storage batteries, alkaline storage batteries, lithium ion batteries, and the like are known. Among various secondary batteries, a lithium secondary battery using a lithium ion battery has advantages such as high output and high energy density.
A lithium ion battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte having an active material capable of reversibly inserting and removing lithium ions.
[0003]
As the positive electrode material of the lithium ion battery, metal oxide, metal sulfide, polymer, or the like is used. For example, a lithium-free compound such as TiS 2 , MoS 2 , NbSe 2 , V 2 O 5 , LiMO 2 ( M = Co, Ni, Mn, Fe, etc.), lithium composite oxides such as LiMn 2 O 4 are known.
Currently, LiCoO 2 is generally used as an active material for the positive electrode material of lithium ion batteries. LiCoO 2 can constitute a battery having a high energy density and a high voltage. However, since Co is unevenly distributed on the earth and is a scarce resource, there are problems that the cost is high and stable supply is difficult. For this reason, it is desired to develop positive electrode materials based on inexpensive Ni and Mn, which are abundant as resources instead of Co.
[0004]
However, the positive electrode material using LiNiO 2 has a large theoretical capacity, and although having a high discharge potential, the crystal structure of LiNiO 2 with the progress of charge-discharge cycle breaks down. For this reason, there exist problems, such as causing the fall of discharge capacity and being inferior to thermal stability.
LiMn 2 O 4 has a positive spinel structure and has a space group Fd3m. This LiMn 2 O 4 has a high potential equivalent to LiCoO 2 of 4 V class at the counter lithium electrode. Furthermore, LiMn 2 O 4 is a very promising material because it is easy to synthesize and has a high battery capacity, and has been put to practical use. However, batteries that are actually configured using LiMn 2 O 4 have problems such as large capacity deterioration during high-temperature storage and insufficient stability and cycle characteristics such as Mn being dissolved in the electrolyte. It is left.
[0005]
Thus, it has been proposed to use a phosphate compound of a transition metal such as Fe, Mn, Co, Ni or the like having an olivine structure for the positive electrode of a lithium ion battery (Japanese Patent Laid-Open No. 9-134724). Of the transition metal phosphate compounds having the olivine structure, it has been proposed to use, for example, LiFePO 4 for the positive electrode of a lithium ion battery (Japanese Patent Laid-Open No. 9-171827).
[0006]
[Problems to be solved by the invention]
However, the synthesis of a conventional phosphoric acid compound having an olivine structure uses a solid phase method, and it is necessary to repeat firing and pulverization in an inert gas atmosphere, which requires complicated operations.
In the case of LiFePO 4 , since the firing temperature at the time of synthesis is low, it is difficult to control the crystallinity and the particle size at the time of synthesis. Therefore, the obtained LiFePO 4 has a structure in which small crystallites are randomly arranged. Therefore, there is a problem in that the diffusibility of ions in the particles and the electron conductivity are poor, and the polarization during charge / discharge increases.
In addition, the volume change of the active material occurs along with the insertion / extraction of lithium ions due to charge / discharge, and when this is repeated, the particles are cracked, and further, the cracks progress and the particles are broken and refined. Due to the cracks and miniaturization, the ion diffusivity in the particles and the impedance between the particles increase, which causes a problem of increased polarization during discharge.
[0007]
The present invention has been made by paying attention to the above-mentioned problems, and is a lithium ion having a high capacity and excellent charge / discharge characteristics due to its small particle size, good crystallinity, and controlled particle size and particle shape. It aims at providing the manufacturing method which can manufacture the positive electrode material for batteries easily and cheaply.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing a positive electrode material for a lithium ion battery according to the present invention has a general formula Li x A y PO 4 (0.8 <x <2, 0 <y <1.5, where A is a method for producing a positive electrode material for a lithium ion battery represented by Co, Ni, Mn, Fe, Cu, and Cr), wherein the liquid is a Li (lithium) component and a P (phosphorus) component. And A component (A is one selected from Co, Ni, Mn, Fe, Cu, and Cr), and this is heated in a pressure-resistant container, and the Li (lithium) component, the P (phosphorus) component, and the performed by dissolving the synthetic reaction of component a, by then was cooled again precipitated, characterized by synthesizing the Li x a y PO 4.
[0009]
A method of manufacturing a positive electrode material for other lithium-ion battery of the present invention, one represented by the general formula Li x A y B z C w PO 4 (A chosen Co, Ni, Mn, Fe, Cu, Cr, , B and C is one or different Mg, Ca, Zn, Ge, Ti, Sr, Ba, Sc, Y, Al, Ga, in, Si, B, in another selected from rare earth elements, 0.8 < x <2, 0 <y <1.5, 0 ≦ z <1.5, 0 ≦ w <1.5, and z and w are not 0 at the same time) In addition to a Li (lithium) component, a P (phosphorus) component, and an A component (A is one selected from Co, Ni, Mn, Fe, Cu, and Cr), a B component and a C Mg as components, Ca, Zn, Ge, Ti , Sr, Ba, Sc, Y, Al, Ga, In, S One or two components selected from i, B, and rare earth elements are added and heated in a pressure-resistant vessel, and the Li (lithium) component, the P (phosphorus) component, the A component, the B component, and the perform synthetic reaction by dissolving the component C, by then was cooled again precipitated, characterized by synthesizing the Li x a y B z C w PO 4.
[0010]
When the production method of the present invention is used, a dissolution-reprecipitation process is included in the reaction, so that uniform crystals can be synthesized, and the particle size and crystallinity of the fine particles can be controlled. Further, by dissolving the by-product generated in the initial stage of the reaction in the dissolution-reprecipitation process, the synthesis of the target material in a single phase is facilitated. In addition, since the particles are formed by precipitation after being dissolved, the crystal growth direction can be controlled, particles having the same crystallinity direction can be synthesized, and the particle shape can be controlled.
[0011]
In the case of the solid phase method, it is necessary to increase the heating temperature and the heating time in order to increase the crystallinity, but in this case, the particle size becomes larger due to the fusion of the particles or the growth of the particles themselves. End up. In that respect, according to the production method of the present invention, synthesis is possible at a relatively low temperature as compared with the solid phase method, and conditions for dissolution and precipitation can be controlled. A positive electrode material for a lithium ion battery of ˜1 μm is obtained. For this reason, the surface area of the positive electrode material for a lithium ion battery can be increased by reducing the particle diameter as compared with the prior art, and thus a lithium ion battery having a high charge / discharge rate can be provided. If the particle size is smaller than 0.001 μm, there is a problem in charge transfer, which is not preferable. On the other hand, when the particle size is larger than 1 μm, the specific surface area of the obtained particles is small, the charge / discharge capacity per unit weight is reduced, and the battery capacity is reduced due to the destruction of the particles by repeated charge / discharge. It is not preferable in terms.
[0012]
In the case of the solid phase method, a high temperature is required for the synthesis reaction. However, in the case of the synthesis reaction using the production method of the present invention, the reaction can proceed with less energy than the solid phase method. For this reason, it is advantageous in terms of running cost, and the apparatus used for the reaction is less deteriorated. Therefore, it is not necessary for the reactor to have special pressure resistance performance and corrosion resistance performance. As a result, a general material such as stainless steel can be used as the reaction vessel.
[0013]
In the method for producing a positive electrode material for a lithium ion battery according to the present invention, the liquid before synthesis is modified with a substance that is modified during synthesis and changes the pH of the liquid before and after modification, or a substance that exhibits a reducing action or an oxidizing action. It is desirable to include the indicated substances.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the manufacturing method of the positive electrode material for lithium ion batteries which is one embodiment of this invention is demonstrated.
First, a starting material is prepared by adding a Li (lithium) component, a P (phosphorus) component, and an A component (where A is one selected from Co, Ni, Mn, Fe, Cu, and Cr) to the liquid. . The Li (lithium) component, P (phosphorus) component, and A component are preferably dissolved in the liquid, but even if they do not dissolve at this stage, the temperature of the liquid rises due to heating and the pressure in the reaction vessel rises. It may be dissolved at the stage. Therefore, the state of the starting material at the stage where the various components are added to the liquid is in the form of a solution or a slurry, or a mixture of a solution and a solid substance or a sol or gel.
[0015]
A lithium metal salt or the like can be used as the Li (lithium) component, and a metal salt of A or the like can be used as the A component. Moreover, phosphoric acid etc. can be used as a P (phosphorus) component. Further, as necessary, as the B component and the C component, one or two selected from Mg, Co, Zn, Ge, Ti, Sr, Ba, Sc, Y, Al, Ga, In, Si, B, and rare earth elements A metal salt of the above or a compound containing the above element can be used. However, it is necessary to select different elements from the B component and the C component. Here, the rare earth elements are La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
[0016]
As the liquid for adding the above-mentioned various components, for example, polar organic solvents such as water, alcohols, ethers, acetonitrile, tetrahydrofuran, dimethyl sulfoxide, and mixed solutions containing these, or liquefied gas can be used. Of these, it is preferable to use water. The reason for this is that water is cheap and safe, and is a clean substance that does not volatilize and release organic substances into the environment, such as organic solvents, and water has a dielectric constant near the critical point. This is because it shows a large change, so that it is possible to easily control the physical properties of the solvent such as solubility in each substance by the operation of temperature and pressure.
[0017]
The starting material thus adjusted is put into a pressure vessel, heated to a predetermined temperature, subjected to a synthesis reaction for a predetermined time, and then cooled.
The reaction conditions are appropriately selected according to the type of solvent or the substance to be synthesized. When the solvent is water, the heating temperature is preferably 80 to 900 ° C., and the reaction time is preferably 0.5 to 24 hours. When this reaction is performed in a sealed pressure vessel, the pressure at this time is 0.1 to 100 MPa. When the solvent is water, the heating temperature is more preferably 80 ° C. to 374 ° C., and the pressure at this time is 0.1 to 22 MPa. More preferably, the heating temperature is 100 to 350 ° C., the reaction time is 0.5 to 5 hours, and the pressure at this time is 0.1 to 17 MPa.
[0018]
Then, separated by suction filtration, etc. The synthesized product, recovered, by performing the washing with water after drying, the general formula Li x A y B z C w PO 4 (A is Co, Ni, Mn, Fe, Cu , Cr, B and C are different from each other selected from Mg, Ca, Zn, Ge, Ti, Sr, Ba, Sc, Y, Al, Ga, In, Si, B, and rare earth elements. It is a seed, and a positive electrode material for a lithium ion battery represented by 0.8 <x <2, 0 <y <1.5, 0 ≦ z <1.5, 0 ≦ w <1.5) is obtained.
[0019]
When a phosphate compound having an olivine structure is to be synthesized by a solution reaction, the pH of the solution may be a problem due to the stability of metal ions in the solution. In this case, the pH range in which the starting material is stable in the liquid may be different from the pH range in which the synthesis reaction product is stable in the liquid. It has a big impact. Therefore, in the production method of the present embodiment, it is preferable to add a substance that is denatured at the time of synthesis and changes the pH of the liquid before and after the denaturation, depending on the substance to be synthesized.
[0020]
In addition, when a phosphate compound having an olivine structure is to be synthesized by a solution reaction, the stability of metal ions in the solution may be a problem. For example, in the case of LiFePO 4 , divalent Fe ions in the starting material are easily oxidized to trivalent due to the presence of dissolved oxygen and the like, and FePO 4 is generated instead of the desired LiFePO 4 . In addition, a divalent salt that is difficult to obtain must be selected as a starting material instead of a trivalent salt of Fe that is easily available. Therefore, it is preferable to add a substance showing a reducing action or a substance showing an oxidizing action to the starting material depending on the substance to be synthesized.
[0021]
Examples of substances that are denatured during synthesis and change the pH of the liquid before and after denaturation include urea, hexamethylenetetramine, acetamide, thiourea, uracil, nucleic acid compounds, amino acid compounds, and the like. Examples of the substance that exhibits a reducing action include ascorbic acid, aldehydes, hydrogen gas, ammonia, and the like as a reducing agent, and substances that denature during synthesis and exhibit a reducing action include, for example, formic acid, oxalic acid, Citric acid, amines, alcohols, hydrazine, sodium borohydride and the like can be mentioned. Examples of the substance exhibiting an oxidizing action include, for example, hydrogen peroxide, oxygen gas, peroxide, nitric acid, ozone, and the like as an oxidizing agent. Hydrogen water, a peroxide, etc. are mentioned.
[0022]
When a substance that is denatured during synthesis and changes the pH of the liquid before and after the modification is added to the starting material, it is possible to cope with the case where the raw material substance and the product substance have different stable pH ranges. For example, in the synthesis of LiFePO 4 , it is desirable that the oxidation number of iron is divalent in the starting material, and in this case, a low pH is required. However, since the product LiFePO 4 is dissolved in the acidic solution and Li ions are eluted in the acidic solution, it is preferable that the pH of the solution is higher when the synthetic product is recovered. For this reason, a substance that denatures during the synthesis reaction and changes the pH before and after the reaction, for example, urea, when the solvent is water, is added to the starting material so that the liquidity of the solution is low before the synthesis reaction, After the synthesis reaction, the pH can be increased. This urea (NH 2 CONH 2 ) is heated by heating in an aqueous solution.
NH 2 CONH 2 + H 2 O → 2NH 3 + CO 2
Thus, it functions as a pH adjuster, and by increasing the pH at the end of the synthesis reaction, re-dissolution of the synthesis product and elution of Li into the solvent can be prevented.
[0023]
When a substance showing a reducing action or a substance showing an oxidizing action is added to the starting material, for example, when ascorbic acid is added as a reducing agent, in the synthesis of LiFePO 4 , the oxidation of Fe 2+ in the starting material is suppressed. be able to. Furthermore, substances that produce a reducing substance by denaturing during synthesis, for example, the addition of formic acid, at the same time reducing operation it becomes easily possible to perform during synthetic procedures, for example, in the case of synthesis of LiFePO 4, a problem Fe 2+ → The oxidation reaction to Fe 3+ can be suppressed. Further, the reducing substance may be a gas. For example, the reducing ability can be effectively utilized by carrying out the reaction by simultaneously enclosing hydrogen gas or the like in a reaction vessel.
[0024]
For example, taking the synthesis of LiFePO 4 as an example, a raw material solution in which, for example, lithium chloride, iron (II) chloride, phosphoric acid and urea are dissolved in distilled water is used. And this raw material aqueous solution is enclosed in a pressure-resistant container, and it heats up to predetermined | prescribed temperature, for example, 300 degreeC, and reacts for 5 hours at the pressure of 8.5 MPa, Then, it cools down. Thereafter, the composite product filtered and collected by suction filtration, washed with water, subjected to drying, LiFePO 4 is obtained.
[0025]
The reaction product thus obtained has a small particle size and good crystallinity, and can be suitably used as a positive electrode material for a lithium ion battery.
The above is the case of the batch synthesis method, but the synthesis can also be performed continuously.
[0026]
Below, the case where it synthesize | combines by a continuous type is demonstrated.
FIG. 1 shows an apparatus diagram used in the continuous synthesis method.
The starting materials (raw materials 1 and 2) are pumped to the mixing unit 2 by high-pressure pumps 1a and 1b such as syringe pumps. The starting material may be in the form of a solution, slurry, sol, gel, etc. as long as it can be pumped into the reaction tube 3, and is adjusted in the same manner as in the batch synthesis method.
On the other hand, distilled water passes through the preheating part (heater 5) by the high-pressure pump 4 and is heated to a predetermined temperature, and then is pumped to the mixing part 2 as preheating water. After the preheated water is mixed with the raw water in the mixing unit 2, it reacts in the upper part of the reaction tube 3. This reaction is performed at a predetermined reaction temperature controlled by the heater 6 within the residence time in the reaction tube 3. After the reaction, rapid cooling is performed in the cooling unit 7. Thereafter, after the coarse particles are collected by the in-line filter 8, the reaction solution is collected in the liquid receiver 10 through the back pressure valve 9. The pressure in the system is controlled to a required pressure by the back pressure valve 9. The reaction product discharged from the back pressure valve 9 is filtered and then washed with water to obtain a reaction product. The reaction conditions are appropriately selected according to the substance to be synthesized. The temperature rise temperature of the preheated water is 100 to 500 ° C., the reaction temperature after the preheated water is mixed with the raw water is 80 to 370 ° C. The staying time, i.e., the reaction time is preferably 0.5 to 300 seconds, and the pressure during the reaction is preferably 0.1 to 25 MPa.
[0027]
The reaction product thus obtained has few impurities, a small particle size, and good crystallinity, and is very suitable as a battery material. Therefore, it can be suitably used as a positive electrode active material for lithium ion batteries.
[0028]
For example, taking the synthesis of LiFePO 4 as an example, for example, lithium chloride (LiCl), iron chloride (II) (FeCl 2 ), phosphoric acid (H 3 PO 4 ), and urea (NH 2 CONH 2 ) are distilled as a raw material aqueous solution. Use the one dissolved in water. This raw material aqueous solution is pumped to the mixing section by a pump such as a syringe pump. On the other hand, the preheated water passes through the preheated section by a pump, is heated to 450 ° C., and then pumped to the mixing section. After preheated water is mixed with raw material water in the mixing part, it reacts in the upper part of the reaction tube. The reaction temperature at this time is 300 ° C., the residence time in the reaction tube, that is, the reaction time is 2 seconds, and the pressure during the reaction is 8.5 MPa. After the reaction, rapid cooling is performed in the cooling section. Thereafter, after the coarse particles are collected by the filter unit, the reaction solution is collected through the back pressure valve. The pressure in the system is controlled to a required pressure by the back pressure valve. LiFePO 4 is obtained by filtering and washing the reaction solution discharged from the back pressure valve.
[0029]
When the production method of the present embodiment is used, since the dissolution-reprecipitation process is included in the reaction, uniform crystals can be synthesized, and the particle diameter and crystallinity of the fine particles can be controlled. Further, by dissolving the by-product generated in the initial stage of the reaction in the dissolution-reprecipitation process, the synthesis of the target material in a single phase is facilitated.
In addition, since the particles are formed by precipitation after being dissolved, it is possible to control the direction of crystal growth, to synthesize particles having the same crystallinity direction, and to control the particle shape. In the case of continuous synthesis, it is possible to carry out the reaction by adding a substance that exhibits oxidation or reduction properties to the preheated water due to the aforementioned modification.
[0030]
In the case of the solid phase method, it is necessary to increase the heating temperature and the heating time in order to increase the crystallinity, but in this case, the particle size becomes larger due to the fusion of the particles or the growth of the particles themselves. End up. According to the manufacturing method of the present embodiment, synthesis is possible at a relatively low temperature compared to the solid phase method, and the dissolution and precipitation conditions can be controlled, so that the particle size is 0.001 to 1 μm. The positive electrode material for lithium ion batteries is obtained. For this reason, the surface area of the positive electrode material for a lithium ion battery can be increased by reducing the particle diameter as compared with the prior art, and thus a lithium ion battery having a high charge / discharge rate can be provided. If the particle size is smaller than 0.001 μm, a problem occurs in charge transfer, which is not good. On the other hand, when the particle size is larger than 1 μm, the specific surface area of the obtained particles is small, the charge / discharge capacity per unit weight is reduced, and the battery capacity is reduced due to the destruction of the particles by repeated charge / discharge. .
[0031]
In the case of the solid phase method, a high temperature is required for the synthesis reaction. However, in the case of the synthesis reaction using the manufacturing method of the present embodiment, the reaction can proceed with less energy than the solid phase method. For this reason, it is advantageous in terms of running cost, and the apparatus used for the reaction is less deteriorated. For this reason, special pressure resistance performance and corrosion resistance performance are not particularly required for the reaction apparatus. For this reason, it becomes possible to use general materials, such as stainless steel, as a reaction container.
[0032]
In particular, a continuous apparatus that performs a reaction while continuously circulating a solution is advantageous in that an ultrahigh pressure pump is not required, and a large amount of a positive electrode material for a lithium ion battery can be efficiently produced. .
[0033]
【Example】
Examples of the present invention will be described below, but the present invention is not limited to these descriptions. Moreover, it is not limited to the starting material, the manufacturing method, the positive electrode, the negative electrode, the electrolyte, the separator, and the battery shape described in the following examples.
[0034]
Example 1
2.12 parts by weight of lithium chloride, 9.94 parts by weight of iron (II) chloride tetrahydrate, 4.9 parts by weight of phosphoric acid, and 9.1 parts by weight of urea are dissolved in 73.94 parts by weight of distilled water, An aqueous solution was obtained.
After the raw material solution was sealed in a pressure vessel, heating was performed at 300 ° C. for 5 hours in an electric furnace. After the reaction, the temperature was lowered in an electric furnace, and then the reaction product was filtered by suction filtration, washed with water and dried to obtain the positive electrode active material LiFePO 4 of the present invention.
[0035]
FIG. 2 shows an X-ray diffraction pattern of the reaction product. Thus, generation of LiFePO 4 was confirmed to be the electrode material of the present invention. Moreover, the particle size of the obtained LiFePO 4 was 1 μm.
[0036]
(Example 2)
A raw material 1 was prepared by dissolving 2.61 parts by weight of ferrous phosphate octahydrate and 7.08 parts by weight of phosphoric acid in 490.31 parts by weight of distilled water. Lithium hydroxide monohydrate (0.52 parts by weight), urea (7.58 parts by weight) and ascorbic acid (0.22 parts by weight) were dissolved in distilled water (491.68 parts by weight). The raw material 1 and the raw material 2 were reacted using the continuous synthesizer shown in FIG.
[0037]
Raw material 1 and raw material 2 were fed into a reaction tube by a high-pressure pump, mixed with preheated water previously heated to 450 ° C. by a heater, and reacted at 300 ° C. and 8.5 MPa. The reaction time was 2 seconds. The reaction product was collected by an in-line filter, recovered by washing and drying.
[0038]
FIG. 3 shows an X-ray diffraction pattern of the reaction product. Thereby, the reaction product was identified as LiFePO 4 .
[0039]
(Comparative Example 1)
Lithium hydroxide monohydrate (41.96 parts by weight), iron oxalate dihydrate (179.89 parts by weight) and ammonium dihydrogen phosphate (115.03 parts by weight) were mixed in a mortar, and after pressure molding, the atmosphere The product was obtained by baking in a furnace at 800 ° C. for 24 hours in a nitrogen atmosphere.
[0040]
FIG. 4 shows an X-ray diffraction pattern of the reaction product. Thereby, the reaction product was identified as LiFePO 4 .
[0041]
(Battery charge / discharge test)
Using the positive electrode active materials obtained in Examples 1 and 2 and Comparative Example 1, lithium secondary batteries were prototyped as follows.
The positive electrode active material, the conductive additive, and the binder were mixed at a weight ratio of 80: 12: 8, and acetone was added and kneaded sufficiently. The kneaded product was formed into a sheet shape, and then pressed onto a stainless mesh current collector, and then punched out into a disk shape having an area of 2 cm 2 to form a positive electrode. The obtained positive electrode was vacuum-dried, and then a battery was produced using an HS standard cell manufactured by Hosen Co., Ltd. under a dry argon atmosphere. Lithium foil was used for the negative electrode and punched into a circular shape. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in a solvent obtained by mixing ethylene carbonate and diethyl carbonate was used. The separator used was a porous polypropylene membrane. The charge / discharge cycle test was performed at room temperature with a constant current of a cutoff voltage of 3-4 V and a current density of 0.5 mA / cm 2 .
[0042]
The charge / discharge test results are shown in FIG. It was found that the positive electrode active materials of the present invention (Examples 1 and 2) can obtain a high initial capacity of 125 mAhg −1 or more and excellent cycle characteristics.
[0043]
【The invention's effect】
As described above in detail, according to the present invention, for a lithium ion battery having a small particle size, good crystallinity, and high capacity and excellent charge / discharge characteristics by controlling the particle size and particle shape. The positive electrode material can be provided easily and inexpensively.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a production apparatus using a continuous synthesis method used for producing a positive electrode material for a lithium ion battery according to an embodiment of the present invention.
FIG. 2 is a diagram showing an X-ray diffraction pattern of an electrode material obtained in Example 1 of the present invention.
FIG. 3 is a diagram showing an X-ray diffraction pattern of an electrode material obtained in Example 2 of the present invention.
4 is a diagram showing an X-ray diffraction pattern of an electrode material obtained in Comparative Example 1. FIG.
FIG. 5 is a view showing a charge / discharge test result of a lithium ion battery manufactured using the electrode materials obtained in Examples 1 and 2 and Comparative Example 1 of the present invention.
[Explanation of symbols]
1a, 1b, 4 High pressure pump 2 Mixing section 3 Reaction tube 5, 6 Heater 7 Cooling section 8 In-line filter 9 Back pressure valve 10 Liquid receiver

Claims (6)

一般式LiPO(0.8<x<2、0<y<1.5、ただし、AはCo,Ni,Mn,Fe,Cu,Crから選ばれた1種)で表されるリチウムイオン電池用正極材料の製造方法であって、
液体にLi(リチウム)成分およびP(リン)成分およびA成分(AはCo,Ni,Mn,Fe,Cu,Crから選ばれた1種)を加え、これを耐圧容器内で加熱し前記Li(リチウム)成分および前記P(リン)成分および前記A成分を溶解させて合成反応を行い、その後降温させて再析出させることにより、前記Li PO を合成することを特徴とするリチウムイオン電池用正極材料の製造方法。
It is represented by the general formula Li x A y PO 4 (0.8 <x <2, 0 <y <1.5, where A is one selected from Co, Ni, Mn, Fe, Cu, Cr). A method for producing a positive electrode material for a lithium ion battery,
Li (lithium) component, P (phosphorus) component and A component (A is one selected from Co, Ni, Mn, Fe, Cu, Cr) are added to the liquid, and this is heated in a pressure-resistant vessel, and the Li Lithium component, P (phosphorus) component, and A component are dissolved to perform a synthesis reaction, and then the temperature is lowered and reprecipitated to synthesize Li x A y PO 4. A method for producing a positive electrode material for an ion battery.
一般式LiPOAはCo,Ni,Mn,Fe,Cu,Crから選ばれた1種、BおよびCはMg,Ca,Zn,Ge,Ti,Sr,Ba,Sc,Y,Al,Ga,In,Si,B,希土類元素から選ばれた互いに異なる1種であり、0.8<x<2、0<y<1.5、0≦z<1.5、0≦w<1.5、zとwは同時には0ではない)で表されるリチウムイオン電池用正極材料の製造方法であって、
液体にLi(リチウム)成分およびP(リン)成分およびA成分(AはCo,Ni,Mn,Fe,Cu,Crから選ばれた1種)に加えて、B成分およびC成分としてMg,Ca,Zn,Ge,Ti,Sr,Ba,Sc,Y,Al,Ga,In,Si,B,希土類元素から選ばれた1種または2種の成分を加え、これを耐圧容器内で加熱し前記Li(リチウム)成分および前記P(リン)成分および前記A成分および前記B成分および前記C成分を溶解させて合成反応を行い、その後降温させて再析出させることにより、前記Li PO を合成することを特徴とするリチウムイオン電池用正極材料の製造方法。
Formula Li x A y B z C w PO 4 (A is Co, Ni, Mn, Fe, Cu, 1 kind selected from Cr, B and C are Mg, Ca, Zn, Ge, Ti, Sr, Ba , Sc, Y, Al, Ga, In, Si, B, and rare earth elements, which are different from each other, 0.8 <x <2, 0 <y <1.5, 0 ≦ z <1. 5, 0 ≦ w <1.5, z and w are not 0 at the same time),
In addition to Li (lithium) component and P (phosphorus) component and A component (A is one selected from Co, Ni, Mn, Fe, Cu, Cr) in liquid, Mg, Ca as B component and C component , Zn, Ge, Ti, Sr, Ba, Sc, Y, Al, Ga, In, Si, B, a rare earth element is added, and this is heated in a pressure vessel and The Li x A y B z is obtained by dissolving the Li (lithium) component, the P (phosphorus) component, the A component, the B component, and the C component, performing a synthesis reaction, and then lowering the temperature to cause reprecipitation. A method for producing a positive electrode material for a lithium ion battery, comprising synthesizing C w PO 4 .
合成前の前記液体に、尿素、ヘキサメチレンテトラミン、アセトアミド、チオ尿素、ウラジル、核酸化合物、アミノ酸化合物のいずれかを含有させることを特徴とする請求項1または2に記載のリチウムイオン電池用正極材料の製造方法。3. The positive electrode material for a lithium ion battery according to claim 1, wherein the liquid before synthesis contains any one of urea, hexamethylenetetramine, acetamide, thiourea, uracil, a nucleic acid compound, and an amino acid compound. 4. Manufacturing method. 合成前の前記液体に、アスコルビン酸、アルデヒド類、水素ガス、アンモニア、蟻酸、シュウ酸、クエン酸、アミノ酸、アルコール類、ヒドラジン、水素化ホウ素ナトリウムのいずれかを含有させることを特徴とする請求項1ないし3のいずれか一項に記載のリチウムイオン電池用正極材料の製造方法。The liquid before synthesis contains any one of ascorbic acid, aldehydes, hydrogen gas, ammonia, formic acid, oxalic acid, citric acid, amino acids, alcohols, hydrazine, and sodium borohydride. The manufacturing method of the positive electrode material for lithium ion batteries as described in any one of 1 thru | or 3. 合成前の前記液体に、過酸化水素水、酸素ガス、過酸化物、硝酸、オゾンのいずれかを含有させることを特徴とする請求項1ないし3のいずれか一項に記載のリチウムイオン電池用正極材料の製造方法。4. The lithium ion battery according to claim 1, wherein the liquid before synthesis contains hydrogen peroxide water, oxygen gas, peroxide, nitric acid, or ozone . 5. Manufacturing method of positive electrode material. 請求項1ないし5のいずれか一項に記載のリチウムイオン電池用正極材料の製造方法により製造されたリチウム電池用正極材料が使用されたことを特徴とするリチウムイオン電池。  A lithium ion battery produced by using the positive electrode material for a lithium battery produced by the method for producing a positive electrode material for a lithium ion battery according to any one of claims 1 to 5.
JP2002255632A 2002-08-30 2002-08-30 Method for producing positive electrode material for lithium ion battery and lithium ion battery Expired - Lifetime JP4011442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255632A JP4011442B2 (en) 2002-08-30 2002-08-30 Method for producing positive electrode material for lithium ion battery and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255632A JP4011442B2 (en) 2002-08-30 2002-08-30 Method for producing positive electrode material for lithium ion battery and lithium ion battery

Publications (2)

Publication Number Publication Date
JP2004095385A JP2004095385A (en) 2004-03-25
JP4011442B2 true JP4011442B2 (en) 2007-11-21

Family

ID=32061108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255632A Expired - Lifetime JP4011442B2 (en) 2002-08-30 2002-08-30 Method for producing positive electrode material for lithium ion battery and lithium ion battery

Country Status (1)

Country Link
JP (1) JP4011442B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703985B2 (en) * 2004-08-02 2011-06-15 住友大阪セメント株式会社 Method for producing positive electrode active material for lithium battery
JP2006100149A (en) * 2004-09-30 2006-04-13 Sharp Corp Lithium ion secondary battery
JP4823540B2 (en) * 2005-03-18 2011-11-24 住友大阪セメント株式会社 Manufacturing method of electrode material, electrode material, electrode, and lithium battery
JP4823545B2 (en) * 2005-03-25 2011-11-24 住友大阪セメント株式会社 Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, and lithium battery
CN103303892A (en) 2005-06-29 2013-09-18 尤米科尔公司 Crystalline nanometric lifepo4
JP2007035358A (en) * 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc Positive electrode active substance, its manufacturing method and lithium ion secondary battery
CN100391830C (en) * 2006-06-09 2008-06-04 广州鸿森材料有限公司 Method for preparing lithium vanadium phosphoric acid of anode material of lithium ion battery under high pressure
US20080303004A1 (en) * 2007-06-08 2008-12-11 Conocophillips Company Method for producing lithium transition metal polyanion powders for batteries
FR2932396A1 (en) * 2008-06-11 2009-12-18 Centre Nat Rech Scient Preparing inorganic oxide, used e.g. as pigment, comprises at least partially dissolving inorganic oxide precursor in liquid medium and heating the resulting solution to precipitate oxide, where the solution contains e.g. oxide precursor
JP5396798B2 (en) 2008-09-30 2014-01-22 Tdk株式会社 Active material, positive electrode and lithium ion secondary battery using the same
US8821763B2 (en) 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
JP5381053B2 (en) 2008-12-01 2014-01-08 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
JP5510036B2 (en) * 2009-05-28 2014-06-04 Tdk株式会社 Active material, method for producing active material, and lithium ion secondary battery
KR101748406B1 (en) 2009-08-07 2017-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method for positive electrode active material
JP5820566B2 (en) * 2010-02-17 2015-11-24 株式会社Gsユアサ Method for producing positive electrode material
JP5895848B2 (en) 2010-12-24 2016-03-30 昭栄化学工業株式会社 Method and apparatus for producing double oxide
JP6180070B2 (en) * 2011-03-01 2017-08-16 太平洋セメント株式会社 Method for producing lithium iron phosphate
JP2012204150A (en) * 2011-03-25 2012-10-22 Sumitomo Osaka Cement Co Ltd Method of producing electrode active material and electrode active material, electrode, and battery
US20140113191A1 (en) 2011-03-28 2014-04-24 University Of Hyogo Electrode material for secondary battery, method for producing electrode material for secondary battery, and secondary battery
JP5531247B2 (en) * 2011-06-23 2014-06-25 太平洋セメント株式会社 Method for producing lithium iron phosphate or lithium iron silicate
US9249524B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
US9118077B2 (en) 2011-08-31 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
JP5822197B2 (en) * 2011-12-16 2015-11-24 太平洋セメント株式会社 Method for producing positive electrode active material for lithium ion battery
KR20150084995A (en) 2012-11-12 2015-07-22 미쯔이 죠센 가부시키가이샤 Electrode material and process for manufacturing electrode material
JP5928954B2 (en) * 2012-12-18 2016-06-01 太平洋セメント株式会社 Process for producing olivine-type silicate compounds containing transition metals
JP6255648B2 (en) * 2013-12-25 2018-01-10 月島機械株式会社 Continuous reaction apparatus for inorganic particles and method for continuous reaction crystallization of inorganic particles
JP5929990B2 (en) 2014-09-29 2016-06-08 住友大阪セメント株式会社 Positive electrode material, method for producing positive electrode material, positive electrode and lithium ion battery
JP6917161B2 (en) 2016-03-03 2021-08-11 株式会社半導体エネルギー研究所 Positive electrode active material for lithium-ion secondary batteries, secondary batteries, battery control units and electronic devices
US10680242B2 (en) 2016-05-18 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and lithium ion battery
US20180013151A1 (en) 2016-07-08 2018-01-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, power storage device, electronic device, and method for manufacturing positive electrode active material
CN111848151B (en) * 2020-08-10 2022-10-14 西安航空学院 Magnesium aluminum lithium titanium phosphate LAMTP single-phase ceramic wave-absorbing material and preparation method and application thereof
JPWO2022049443A1 (en) 2020-09-04 2022-03-10
KR20220045917A (en) * 2020-10-06 2022-04-13 주식회사 엘지화학 Preparing method of positive electrode active material for lithium secondary battery and positive electrode active material thereby

Also Published As

Publication number Publication date
JP2004095385A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP4011442B2 (en) Method for producing positive electrode material for lithium ion battery and lithium ion battery
KR101382386B1 (en) Preparation method of lithium-metal composite oxides
JP5472099B2 (en) Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery obtained by the production method, electrode for lithium ion battery, and lithium ion battery
KR100838987B1 (en) Lithium-metal composite oxides and electrochemical device using the same
KR101264459B1 (en) Crystalline nanometric lifepo4
JP2004095386A (en) Manufacturing method of positive electrode material for lithium-ion battery and lithium-ion battery
Marincaş et al. Review on synthesis methods to obtain LiMn 2 O 4-based cathode materials for Li-ion batteries
JP2002110164A (en) Method for manufacturing positive electrode active material and nonaqueous electrolytic battery
JP2002110161A (en) Manufacturing methods of positive pole active material and nonaqueous electrolyte battery
US20110300442A1 (en) Novel nanoscale solution method for synthesizing lithium cathode active materials
JP2002110165A (en) Method for manufacturing positive electrode active material and nonaqueous electrolytic battery
US20170040596A1 (en) Methods for making lithium manganese phosphate and lithium manganese phosphate/carbon composite material
JP2002110162A (en) Positive electrode active material and nonaqueous electrolytic battery
JP2002110163A (en) Method for manufacturing positive electrode active material and nonaqueous electrolytic battery
US20160130145A1 (en) Method for making cathode material of lithium ion battery
KR20090012187A (en) A process for preparing lithium iron phosphorus based composite oxide carbon complex and a process for preparing coprecipitate comprising lithium, iron and phosphorus
JP4066472B2 (en) Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material
JP2001163700A (en) Lithium-based composite metal oxide and method of producing the same
JP5725456B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
CN102867953B (en) Method for producing lithium ion battery cathode material by using hydroxide or hydroxyl oxide
JPH11149926A (en) Lithium manganese oxide fine powder, production lithium manganese fine powder, and lithium ion secondary battery employing positive electrode containing lithium manganese fine powder as active material
JP4724912B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery
JP4651960B2 (en) Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, positive electrode material for lithium battery, and lithium battery
JP4401833B2 (en) Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, electrode for lithium battery, and lithium battery
KR101565300B1 (en) Method for Preparation of Olivine Type Lithium Manganese Phosphate and Product Obtained from the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

R150 Certificate of patent or registration of utility model

Ref document number: 4011442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140914

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term