JP4007911B2 - Curable resin composition - Google Patents

Curable resin composition Download PDF

Info

Publication number
JP4007911B2
JP4007911B2 JP2002524003A JP2002524003A JP4007911B2 JP 4007911 B2 JP4007911 B2 JP 4007911B2 JP 2002524003 A JP2002524003 A JP 2002524003A JP 2002524003 A JP2002524003 A JP 2002524003A JP 4007911 B2 JP4007911 B2 JP 4007911B2
Authority
JP
Japan
Prior art keywords
component
resin composition
curable resin
composite material
curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002524003A
Other languages
Japanese (ja)
Inventor
友裕 頼末
照雄 片寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Application granted granted Critical
Publication of JP4007911B2 publication Critical patent/JP4007911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34928Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲンフリーの難燃性を有する硬化性樹脂組成物、そのフィルム、および硬化性樹脂組成物を硬化して得られる硬化樹脂組成物に関する。更に、本発明は、該硬化性樹脂組成物と基材からなる硬化性複合材料、硬化性複合材料を硬化して得られる硬化複合材料、その硬化複合材料と金属箔からなる積層体および樹脂付き金属箔に関する。
本発明の硬化性樹脂組成物は、硬化後において優れた耐薬品性、誘電特性、耐熱性、難燃性を示し、電気産業、宇宙・航空機産業等の分野において誘電材料、絶縁材料、耐熱材料、構造材料等として用いることができる。特に、片面、両面、多層プリント基板、フレキシブルプリント基板、ビルドアップ基板等として用いることができる。
【0002】
【従来の技術】
近年、通信用、民生用、産業用等の電子機器の分野における実装方法の小型化、高密度化への指向は著しいものがあり、それに伴って材料の面でもより優れた耐熱性、寸法安定性、電気特性が要求されつつある。例えば、プリント配線基板としては、従来、フェノール樹脂やエポキシ樹脂などの熱硬化性樹脂を材料とする銅張り積層板が用いられてきた。これらは各種の性能をバランスよく有するものの、電気特性、特に高周波領域での誘電特性が悪いという欠点を持っている。この問題を解決する新しい材料としてポリフェニレンエーテルが最近注目を浴び、銅張り積層板への応用が試みられている。
例えば、特開昭61−287739号公報には、ポリフェニレンエーテルとトリアリルイソシアヌレートおよび/またはトリアリルシアヌレートを含む樹脂組成物を硬化させて得られる積層板が、特公平7−37567号公報には不飽和カルボン酸または酸無水物との反応により変性されたポリフェニレンエーテルとトリアリルイソシアヌレートおよび/またはトリアリルシアヌレートを含む硬化性樹脂組成物およびそれを用いて得られる積層板が、特開昭64−69628号公報、特開昭64−69629号公報、特開平1−113425号公報、特開平1−113426号公報には三重結合あるいは二重結合を含むポリフェニレンエーテルとトリアリルイソシアヌレートおよび/またはトリアリルシアヌレートを含む硬化性樹脂組成物が開示されている。
【0003】
また、ポリフェニレンエーテルとエポキシを組み合わせた材料として、例えば特公昭64−3223号公報には、ポリフェニレンエーテルとビスフェノールA型エポキシ樹脂やノボラック型エポキシ樹脂等の各種エポキシ樹脂、およびフェノール類やアミン類等の各種硬化剤を含む硬化性樹脂組成物が開示され、特開平2−135216号公報には、不飽和カルボン酸または酸無水物との反応により変性されたポリフェニレンエーテルとポリエポキシ化合物、およびエポキシ用硬化触媒からなる硬化性樹脂組成物が開示され、特開平2−166115号公報には、溶融加工されたポリフェニレンエーテルとポリエポキシ化合物、およびエポキシ用硬化触媒からなる硬化性樹脂組成物が開示されている。
以上の組成物は、銅張り積層板を始めとして各種電子材料に用いられるが、その際、樹脂の難燃性は製品安全面から欠くことのできない特性である。そしてこれまで樹脂の難燃化の方法として、芳香族臭素化物や臭素化エポキシ等の有機ハロゲン化合物が用いられてきた。しかしながら、有機ハロゲン化合物は燃焼時に毒性の強いダイオキシンを発生する可能性があり、昨今その使用が制限されて来ている。
【0004】
そこで、そのような状況に対応すべく、ハロゲンフリーの化合物を用いて、このポリフェニレンエーテル系硬化性樹脂に難燃性を付与しようとする試みがなされて来ている。すなわち、ハロゲンフリーの化合物として、例えば金属水酸化物やリン酸エステル、ポリリン酸アンモニウム等がこれまで提案されてきた。しかしながら、例えば、金属水酸化物を用いると、この樹脂の特徴である耐熱性は維持されるが、十分な難燃性を付与し難い、リン酸エステルを用いると十分な難燃性は付与されるが耐熱性を維持し難い、ポリリン酸アンモニウムを用いると、耐熱性を維持したまま十分な難燃性も付与できるが、硬化体を水に浸漬すると重量減少が起こり実用に供し得ない等、これまでは、ハロゲンフリーとした場合には、ポリフェニレンエーテル樹脂の特徴である耐熱性を維持しながら十分な難燃性を付与するのは困難であった。
【0005】
【発明が解決しようとする課題】
本発明は、上記問題点を解決すべくなされたものであり、その目的とするところは、組成物中にハロゲンを含まない、すなわち、ハロゲンフリーでありながら耐熱性を維持し且つ十分な難燃性をも有する硬化性樹脂組成物を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、第1に、(A)成分としてポリフェニレンエーテル系樹脂、(B)成分としてジアリルフタレート、ジビニルベンゼン、多官能性アクリロイル化合物、多官能性メタクリロイル化合物、多官能性イソシアネート、多官能性マレイミド、不飽和ポリエステル、トリアリルイソシアヌレート、トリアリルシアヌレートからなる多官能性不飽和結合含有化合物及びエポキシ樹脂から選ばれる少なくとも1種以上の架橋剤、(C)成分として重合度3以上のポリリン酸メラミンおよび下記式(1)で示される9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体からなる群から選ばれる1種以上のリン化合物を含有し、該(A)成分および該(B)成分の合計量100重量部に対し、該(A)成分が10〜98重量部、該(B)成分が90〜2重量部、該(C)成分が10〜80重量部の割合で含まれる硬化性樹脂組成物およびそのフィルムを提供する。なお、本発明の硬化性樹脂組成物は、全体としてハロゲンを含んでいない。
【0007】
【化3】

Figure 0004007911
(ここで、R1は、ビニル基、アリル基、メタリル基または1−ブテニル基であり、R2およびR3は、水素原子またはC1〜C6の炭化水素基から独立に選択される
【0008】
ここで、(A)成分であるポリフェニレンエーテル系樹脂が、i)不飽和基を含むポリフェニレンエーテル樹脂、および/またはii)ポリフェニレンエーテル樹脂と不飽和カルボン酸および/または酸無水物との反応生成物であることは、本発明の硬化性樹脂組成物の好ましい態様である。
また、(B)成分である架橋剤が、多官能性不飽和結合含有化合物またはエポキシ樹脂であることは、本発明の硬化性樹脂組成物の好ましい態様である。
第2に、本発明は、上記硬化性樹脂組成物(そのフィルムの場合を含む)を硬化して得られた硬化樹脂組成物を提供する。
第3に、本発明は、上記硬化性樹脂組成物(そのフィルムの場合を含む)と基材からなる硬化性複合材料であって、基材を5〜90重量%の割合で含有することを特徴とする硬化性複合材料を提供する。
第4に、本発明は、上記硬化性複合材料を硬化して得られた硬化複合材料を提供する。
第5に、本発明は、上記硬化複合材料と金属箔からなる積層体を提供する。
第6に、本発明は、金属箔と金属箔の片面に形成された上記硬化性樹脂組成物の膜からなる樹脂付き金属箔を提供する。
【0009】
【発明の実施の形態】
以下、本発明を更に詳しく説明する。
(硬化性樹脂組成物・硬化樹脂組成物)
<ポリフェニレンエーテル樹脂>
本発明で用いられる(A)成分、すなわちポリフェニレンエーテル系樹脂としては、例えば、2,6−ジメチルフェノールの単独重合で得られるポリ(2,6−ジメチル−1,4−フェニレンエーテル)、ポリ(2,6−ジメチル−1,4−フェニレンエーテル)のスチレングラフト共重合体、2,6−ジメチルフェノールと2,3,6−トリメチルフェノールの共重合体、2,6−ジメチルフェノールと2−メチル−6−フェニルフェノールの共重合体、2,6−ジメチルフェノールと多官能フェノール化合物の存在下で重合して得られた多官能ポリフェニレンエーテル樹脂、例えば、特開昭63−301222号公報や特開平1−297428号公報に開示されているような、2,6−ジメチルフェノールを置換アニリンや脂肪族第2アミンの存在下で重合して得られる含窒素ポリフェニレンエーテル樹脂等が挙げられる。
以上述べたポリフェニレンエーテル系樹脂の分子量については、30℃、0.5g/dlのクロロホルム溶液で測定した粘度数ηsp/Cが0.1〜1.0の範囲にあるものが好ましく使用できる。
【0010】
また、本発明でいうポリフェニレンエーテル系樹脂には変性物も含まれ、このような変性物としては、i)不飽和基を含むポリフェニレンエーテル樹脂(特開昭64−69628号公報、特開平1−113425号公報、特開平1−113426号公報参照)、ii)ポリフェニレンエーテル樹脂と不飽和カルボン酸および/または酸無水物との反応生成物、が挙げられる。
本発明においては、(B)成分との相溶性を向上させるために、(A)ポリフェニレンエーテル系樹脂として、上記i)および/またはii)の変性物、例えば、アリル化ポリフェニレンエーテル、無水マレイン酸変性ポリフェニレンエーテル等を使用することが特に好ましい。
本発明において、(A)成分は、(A)成分と(B)成分の合計量100重量部に対し、10〜98重量部、好ましくは10〜80重量部、より好ましくは20〜75重量部の割合で含まれていることが望ましい。(A)成分が10重量部未満の場合は、その硬化体である硬化樹脂組成物の耐衝撃性が低下するという問題を生じ、98重量部を超えた場合は硬化樹脂組成物の耐薬品性が低下するという問題を生じる。
【0011】
<架橋剤>
本発明に用いられる(B)成分、すなわち架橋剤の例としては、ジアリルフタレート、ジビニルベンゼン、多官能性アクリロイル化合物、多官能性メタクリロイル化合物、多官能性イソシアネート、多官能性マレイミド、不飽和ポリエステル、トリアリルイソシアヌレート、トリアリルシアヌレート、ポリブタジエン、スチレン−ブタジエン、スチレン−ブタジエン−スチレン等の多官能性不飽和結合含有化合物を挙げることができ、これらは単独でまたは2種以上混合して用いられる。
また、(B)成分である架橋剤としては、エポキシ樹脂を用いることもでき、エポキシ樹脂としては、一分子中に2個以上のエポキシ基を含有するものであればよく、公知のものを一種のみもしくは二種以上組み合わせて用いられる。またエポキシ樹脂と先に述べた多官能性不飽和結合含有化合物を併せて用いることもできる。
【0012】
このようなエポキシ樹脂の代表的な例としては、フェノール類またはアルコール類とエピクロロヒドリンとの反応によって得られるグリシジルエーテル型エポキシ樹脂、アミン類またはシアヌル酸とエピクロロヒドリンとの反応によって得られるグリシジル型エポキシ樹脂、二重結合の酸化によって得られる内部エポキシ樹脂等が挙げられる[これらの詳細については、例えば新保正樹編、「エポキシ樹脂ハンドブック」(日刊工業新聞社、1987)を参照のこと)]。
これらエポキシ樹脂は硬化剤とともに用いることができ、硬化剤としては、通常エポキシ樹脂の硬化に使用されている化合物、例えば、アミン系としてジシアンジアミド、芳香族アミン等が、フェノール硬化系としてフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA、アニリン変性・メラミン変性・グアニジン変性・ポリアミド変性等の窒素変性フェノール樹脂等が挙げられ、これらは単独でまたは2種以上混合して用いられる。
【0013】
(A)成分および(B)成分に対して硬化剤とともに硬化促進剤を使用することもでき、硬化促進剤としては、通常エポキシ樹脂に使用される硬化促進剤やラジカル開始剤が挙げられ、前者として、例えばイミダゾール化合物が、後者として、例えばパーヘキシン25Bのような通常の過酸化物が挙げられる。
本発明において、(B)成分として、多官能性不飽和結合含有化合物、例えばトリアリルイソシアヌレートおよび/またはトリアリルシアヌレートを用いることにより、誘電特性並びに耐熱性に優れた硬化体を得ることができる。また(B)成分として、エポキシ樹脂、例えばビスフェノールA型エポキシ樹脂を用いることにより、硬化時の成型加工性に優れた硬化性樹脂組成物を得ることができる。
本発明において、(B)成分は、(A)成分と(B)成分の合計量100重量部に対し、90〜2重量部、好ましくは90〜20重量部、より好ましくは80〜25重量部の割合で含まれていることが望ましい。(B)成分が2重量部未満の場合は、硬化樹脂組成物の耐薬品性が低下するという問題を生じ、90重量部を超えた場合は、硬化樹脂組成物の耐衝撃性が低下するという問題を生じる。
【0014】
<リン化合物>
本発明に用いられる(C)成分は、重合度3以上のポリリン酸メラミンおよび下記式(1)で示される反応型置換基を有する9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体からなる群から選ばれる1種以上のリン化合物である。
【化4】
Figure 0004007911
(ここで、R1は、ビニル基、アリル基、メタリル基または1−ブテニル基であり、R2およびR3は、水素原子またはC1〜C6の炭化水素基から独立に選択される)
【0015】
重合度が3以上のポリリン酸メラミンにおける重合度は、31P−NMRにより測定される。31P−NMRの測定で、リン酸基準で0ppm付近にモノマー、−10ppm付近にポリマー末端、−20ppm付近にポリマー内部のピークが現れるが、これらの強度をそれぞれX、Y、Zとした場合、重合度は(X+Y+Z)/(X+Y/2)により規定される。リン酸の単位構造100%がメラミンと結合せず、一部がアンモニア、アミド、エチレンジアミン、メラム、メレム等の他の含窒素化合物もしくはアルミニウム、マグネシウム、カルシウム等の金属で置換されていても、メラミンと結合している部分が過半数を占める場合はポリリン酸メラミンと称する。
本発明においては、重合度が3以上、好ましくは5以上のポリリン酸メラミンを用いないと、硬化樹脂組成物または積層体等を水に浸漬した場合、質量減少が起こる。すなわち、本発明においては、重合度が3以上、好ましくは5以上のポリリン酸メラミンが単独で、または2種以上を混合して用いられる。
ポリリン酸メラミンとして本発明で用いることができるものとしては、例えば商品名としてPMP−100(日産化学社製)、melapur200(登録商標、DSM社製)等を挙げることができ、これらは単独もしくは2種以上混合して用いられる。
【0016】
次に、上記式(1)で示される反応型置換基を有する9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体について具体名を示すと、例えば9,10−ジヒドロ−9−オキサ−10−(アリルホスファ)フェナントレン−10−オキシド、9,10−ジヒドロ−9−オキサ−10−(メタリルホスファ)フェナントレン−10−オキシド、9,10−ジヒドロ−9−オキサ−10−(1−ブテニルホスファ)フェナントレン−10−オキシド、9,10−ジヒドロ−9−オキサ−10−(アリルホスファ)(2,7−ジメチルフェナントレン)−10−オキシド、9,10−ジヒドロ−9−オキサ−10−(アリルホスファ)(1,3,6,8−テトラメチルフェナントレン)−10−オキシド、9,10−ジヒドロ−9−オキサ−10−(アリルホスファ)(6,8−ジ−tert−ブチルフェナントレン)−10−オキシド等を挙げることができ、これらは単独で、もしくは2種以上混合して用いられる。
なおここで、(C)成分として、上記した反応型置換基を有する9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体を単独で用いる場合には、(B)成分として多官能性不飽和結合含有化合物を用いることが好ましい。
【0017】
以上の(C)成分のうち粉体として用いられるものについては、粉体表面は例えばメラミン樹脂、エポキシ樹脂のような熱硬化性樹脂やシランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤、ジルコアルミネートカップリング剤のようなカップリング剤、もしくは疎水性アエロジルのようなアエロジル等でコーティングされていてもよく、また粉体に不飽和ポリエステル樹脂、エポキシ樹脂等のキャリアーを加えペースト状にして用いてもよい。更に、これらの粉体に予め難燃助剤、発泡剤、色調調整剤等として、例えばメラミン、ベンゾグアナミン、アセトグアナミン、エチレンジアミン、メラミンシアヌレート、メラム、メレム、ペンタエリスリトール、ジペンタエリスリトール、タルク、シリカ、炭酸カルシウム、酸化チタン、水酸化アルミニウム、水酸化マグネシウム、低融点ガラス等を添加し、複合粒子としてもよい。
本発明において、(C)成分は、(A)成分および(B)成分の合計量100重量部に対し、10〜80重量部、好ましくは15〜60重量部、より好ましくは20〜50重量部の範囲で含まれていることが望ましい。(C)成分の添加量が10重量部未満の場合は、十分な難燃性が発現せず、80重量部を超えた場合には、硬化性樹脂組成物のワニスとしての粘度が上がりすぎ、ワニスとして基材へ含浸できなくなる等の理由で、複合材料の製造が困難になる。また(C)成分の2種以上を組み合わせる場合、その組み合わせには特に限定はなく、どのような組み合わせを用いてもよい。
【0018】
<その他の成分>
また本発明の硬化性樹脂組成物には、上記(A)〜(C)成分に加え、その用途に応じて所望の性能を付与する目的で、本来の性質を損なわない範囲の量の充填剤や添加剤を配合して用いることができる。
このような充填剤としては、カーボンブラック、シリカ、酸化チタン、チタン酸バリウム、ガラスビーズ、ガラス中空球等を挙げることができる。また、添加剤としては、酸化防止剤、熱安定剤、帯電防止剤、可塑剤、顔料、染料、着色剤等を挙げることができる。さらに、(A)成分および(B)成分以外の熱可塑性樹脂、熱硬化性樹脂、例えばポリスチレン、ABS、SBS、水添SBS等のスチレン系樹脂等の熱可塑性樹脂や熱硬化性樹脂を、1種または2種以上配合することも可能である。
【0019】
<硬化性樹脂組成物・硬化樹脂組成物の製法>
上記の(A)〜(C)成分を混合する方法としては、3成分を溶媒中に均一に溶解または分散させる溶液混合法、あるいは押し出し機等により加熱して行う溶融ブレンド法等が利用できる。溶液混合に用いられる溶媒としては、ベンゼン、トルエン、キシレンなどの芳香族系溶媒、テトラヒドロフランを単独であるいは2種以上を組み合わせて用いられる。
本発明の硬化性樹脂組成物は、あらかじめその用途に応じて所望の形に成形してもよい。成形方法は特に限定されない。通常は、樹脂組成物を上述した溶媒に溶解させ好みの形に成形するキャスト法、または樹脂組成物を加熱溶融し好みの形に成形する加熱溶融法が用いられる。
【0020】
本発明の硬化性樹脂組成物は、フィルム形状として良好に使用することができる。このようなフィルムを製造する方法としては、特に限定されることはないが、例えば(A)〜(C)成分と必要に応じて他の成分を溶融もしくは溶媒中に均一に溶解または分散させ、PETフィルム等に塗布した後乾燥する方法が挙げられる。
本発明の硬化樹脂組成物は、以上に述べた硬化性樹脂組成物を硬化することにより得られるものである。硬化の方法は任意であり、熱、光、電子線等による方法を採用することができる。
加熱により硬化を行う場合その温度は、ラジカル開始剤の種類によっても異なるが、80〜300℃、より好ましくは120〜250℃の範囲で選ばれる。また時間は、1分〜10時間程度、より好ましくは1分〜5時間である。
また、この硬化性樹脂組成物は、後述する硬化複合材料と同様、金属箔および/または金属板と張り合わせて用いることができる。
【0021】
(硬化性複合材料・硬化複合材料)
次に、本発明の硬化性複合材料とその硬化体である硬化複合材料について説明する。
<硬化性複合材料>
本発明の硬化性複合材料は、本発明の硬化性樹脂組成物と基材からなることを特徴とする。
ここで用いられる基材としては、ロービングクロス、クロス、チョップドマット、サーフェシングマットなどの各種ガラス布、アスベスト布、金属繊維布およびその他合成もしくは天然の無機繊維布、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維、ポリベンゾオキサゾール繊維等の液晶繊維から得られる織布または不織布、ポリビニルアルコール繊維、ポリエステル繊維、アクリル繊維などの合成繊維から得られる織布または不織布、綿布、麻布、フェルトなどの天然繊維布、カーボン繊維布、クラフト紙、コットン紙、紙−ガラス混繊紙などの天然セルロース系布、ポリテトラフルオロエチレン多孔質フィルムなどがそれぞれ単独で、あるいは2種以上併せて用いられる。
【0022】
このような基材の硬化性複合材料に占める割合は、硬化性複合材料100重量部を基準として5〜90重量部、より好ましくは10〜86重量部、さらに好ましくは20〜70重量部である。基材の割合が5重量部より少なくなると複合材料の硬化後の寸法安定性や強度が不十分であり、また、基材の割合が90重量部より多くなると複合材料の誘電特性が劣り好ましくない。
本発明の硬化性複合材料には、必要に応じて樹脂と基材の界面における接着性を改善する目的でカップリング剤を用いることができる。このようなカップリング剤としては、シランカップリング剤、チタネートカップリング剤、アルミニウム系カップリング剤、ジルコアルミネートカップリング剤等一般のものが使用できる。
【0023】
<硬化性複合材料の製法>
本発明の硬化性複合材料を製造する方法としては、例えば、本発明の(A)〜(C)成分と必要に応じて上記カップリング剤等の他の成分とを、芳香族系、ケトン系等の溶媒もしくはその混合溶媒中に均一に溶解または分散させ、基材に含浸させた後乾燥する方法が挙げられる。また(A)〜(C)成分を溶融して基材中に含浸してもよい。
含浸は浸漬(ディッピング)、塗布等によって行われる。含浸は必要に応じて複数回繰り返すことも可能であり、またこの際、組成や濃度の異なる複数の溶液を用いて含浸を繰り返し、最終的に希望とする樹脂組成および樹脂量に調整することも可能である。
【0024】
<硬化複合材料>
本発明の硬化複合材料は、このようにして得た硬化性複合材料を加熱等の方法により硬化することによって得られるものである。その製造方法は特に限定されるものではなく、例えば、該硬化性複合材料を複数枚重ね合わせ、加熱加圧下に各層間を接着せしめると同時に熱硬化を行い、所望の厚みの硬化複合材料を得ることができる。また、一度接着硬化させた硬化複合材料と硬化性複合材料を組み合わせて新たな層構成の硬化複合材料を得ることも可能である。
積層成形と硬化は、通常熱プレス等を用い同時に行われるが、両者をそれぞれ単独で行ってもよい。すなわち、あらかじめ積層成形することで得られた未硬化あるいは半硬化の複合材料を、熱処理または別の方法で処理することによって硬化させることができる。
積層成形および硬化を同時に行う場合、その条件としては、温度:80〜300℃、圧力:0.1〜1000kg/cm2、時間:1分〜10時間の範囲、より好ましくは、温度:150〜250℃、圧力:1〜500kg/cm2、時間:1分〜5時間の範囲とすることができる。
【0025】
(積層体)
本発明の積層体とは、本発明の硬化複合材料と金属箔より構成されるものである。ここで用いられる金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられる。その厚みは特に限定されないが、3〜200μm、より好ましくは3〜105μmの範囲である。
本発明の積層体を製造する方法としては、例えば、上で説明した硬化性複合材料と、金属箔および/または金属板を目的に応じた層構成で積層し、加熱加圧下に各層間を接着せしめると同時に熱硬化させる方法を挙げることができる。本発明の積層体においては、硬化性複合材料と金属箔が任意の層構成で積層される。金属箔は表層としても中間層としても用いることができる。上記の他、積層と硬化を複数回繰り返して多層化することも可能である。
金属箔の接着には接着剤を用いることもできる。このような接着剤としては、エポキシ系、アクリル系、フェノール系、シアノアクリレート系等が挙げられるが、特にこれらに限定されない。
上記の積層成形と硬化は、本発明の硬化性複合材料の場合と同様の条件で行うことができる。
【0026】
(樹脂付き金属箔)
また、本発明の硬化性樹脂組成物は、樹脂付き金属箔として使用することもできる。本発明の樹脂付き金属箔とは、金属箔とこの金属箔の片面に形成された本発明の硬化性樹脂組成物とから構成されるものである。ここで用いられる金属箔としては、例えば銅箔、アルミニウム箔等が挙げられる。その厚みは特に限定されないが、3〜200μm、より好ましくは3〜105μmの範囲である。
本発明の樹脂付き銅箔を製造する方法としては特に限定されることはなく、例えば(A)〜(C)成分と必要に応じて他の成分とを、芳香族系、ケトン系等の溶媒もしくはその混合溶媒中に均一に溶解または分散させ、金属箔に塗布した後乾燥する方法が挙げられる。
塗布は必要に応じて複数回繰り返すことも可能であり、またこの際組成や濃度の異なる複数の溶液を用いて塗布を繰り返し、最終的に希望とする樹脂組成および樹脂量に調整することも可能である。
【0027】
【実施例】
次に本発明の実施形態の例を実施例に基づき説明する。以下の実施例および比較例において「部」とは「重量部」を意味する。
[実施例1]
(A)成分として、30℃、0.5g/dlのクロロホルム溶液で測定した粘度数ηsp/Cが0.54のポリ(2,6−ジメチル−1,4−フェニレンエーテル)50部;(B)成分としてトリアリルイソシアヌレート(日本化成社製)46部;ポリスチレン(GPPS、重量平均分子量27万)4部;(C)成分として重合度10のポリリン酸メラミン(melapur200(登録商標)、DSM社製)30部;硬化促進剤としてパーヘキシン25B(日本油脂社製)6部をトルエンに溶解させて硬化性樹脂組成物のワニスを作製し、これに目付107g/m2のガラスクロスを浸漬して含浸を行い、エアーオーブン中で乾燥させ硬化性複合材料を得た。
次に硬化後の厚さが約0.8mmとなるように上記硬化性複合材料を6枚重ね合わせ、その両面に厚さ35μmの銅箔をおいて180℃、40kg/cm2で90分間プレス成形機を用いて成形・硬化させ積層体を得た。
得られた積層体について、UL94規格に基づいて燃焼性試験を行ったところ、V−0となった。また、TMA(セイコー電子製TMA−10型)による、積層体の単位温度当たりの線膨張率の変曲点から求めたガラス転移温度は、180℃であった。更に、25℃、24時間水浸漬後における積層体の重量減少分は0.0%であった。
【0028】
[実施例2]
<無水マレイン酸変性ポリフェニレンエーテルの合成>
特公平7−37567号の参考例3に記載の方法により無水マレイン酸変性ポリフェニレンエーテルの合成を行った。すなわちドラムブレンダーを用い、実施例1のポリフェニレンエーテル100重量部と無水マレイン酸2重量部、変性促進剤としてパーヘキサ25B(日本油脂社製)1重量部を室温でドライブレンドした後、シリンダー温度300℃、スクリュー回転数230rpmの条件で二軸押し出し機により押し出して無水マレイン酸変性ポリフェニレンエーテルを得た。
<積層体の製造・評価>
ポリフェニレンエーテルとして、上記無水マレイン酸変性ポリフェニレンエーテルを用いた他は実施例1と同様に、硬化性複合材料および積層体を作製し、燃焼性の測定を行ったところ、V−0となった。また、実施例1と同様にして、TMAより求めたガラス転移温度は176℃であった。更に、25℃、24時間水浸漬後における積層体の重量減少分は0.0%であった。
【0029】
[実施例3]
<アリル化ポリフェニレンエーテルの合成>
特公平5−8931号の実施例2に記載の方法によりアリル化ポリフェニレンエーテルの合成を行った。すなわち三つ口フラスコ中で、実施例1で用いたポリフェニレンエーテル2gを脱水蒸留したTHF100mlに溶解させ、窒素気流下でn−ブチルリチウム(1.55モル/l、ヘキサン溶液)2.2mlを加え、窒素雰囲気下で1時間加熱環流した。
室温まで冷却した後、アリルブロマイドを0.40g加え、室温のまま30分撹拌した。フラスコの内容物を多量のメタノール中に注いでポリマーを析出させ、濾過、メタノールによる洗浄を3回繰り返し、白色粉末状の生成物を得た。 1H−NMRによりアリルの置換率を求めたところ、4%であった。
【0030】
<積層体の製造・評価>
(A)成分として上記アリル化ポリフェニレンエーテル60部;(B)成分としてトリアリルイソシアヌレート40部;ポリスチレン(GPPS、重量平均分子量27万)4部;(C)成分として重合度10のポリリン酸メラミン(melapur200(登録商標)、DSM社製)30部;硬化促進剤としてパーヘキシン25B(日本油脂社製)6部をトルエンに溶解させて硬化性樹脂組成物のワニスを作製し、実施例1と同様に硬化性複合材料および積層体を作製し、燃焼性試験を行いV−0の結果を得た。また、実施例1と同様にしてTMAから求めたガラス転移温度は175℃であった。更に、25℃、24時間水浸漬後における積層体からの重量減少分は0.0%であった。
【0031】
[実施例4〜5]
硬化性樹脂組成物の組成を表1の通りに変えた以外は、実施例1と同様に硬化性複合材料および積層体を作製し、燃焼性、ガラス転移温度、及び水浸漬後における積層体の重量減少分の測定を行った。
上記実施例1〜5の測定結果を表1に示す。
【表1】
Figure 0004007911
すなわち、実施例1〜5では、(C)成分として重合度が10のポリリン酸メラミンを用いることにより、いずれの組成のポリフェニレンエーテル系樹脂/多官能性不飽和結合含有化合物系においても、耐熱性を維持したままでV−0となった。
【0032】
[実施例6〜10]
硬化性樹脂組成物の組成を表2の通りに変えた以外は、実施例1と同様に硬化性複合材料および積層体を作製し、燃焼性、ガラス転移温度、及び水浸漬後における積層体の重量減少分の測定を行った。これら実施例6〜10の測定結果を表2に示す。
【表2】
Figure 0004007911
すなわち、実施例6〜10では、(C)成分として重合度が10のポリリン酸メラミンを用いることにより、いずれの組成のポリフェニレンエーテル系樹脂/エポキシ樹脂系においても、耐熱性を維持したままでV−0となった。
【0033】
[実施例11及び12]
(C)成分として重合度が3.9のポリリン酸メラミン(PMP−100、日産化学社製)を用いた以外は、実施例1及び2と同様に硬化性複合材料および積層体を作製し、燃焼性、ガラス転移温度、及び水浸漬後における積層体の重量減少分の測定を行った。これら実施例11及び12の測定結果を表3に示す。
【表3】
Figure 0004007911
すなわち、実施例11及び12の結果により、(C)成分として重合度が3.9のポリリン酸メラミンを用いても、ポリフェニレンエーテル系樹脂/多官能性不飽和結合含有化合物系において、耐熱性を維持したままV−0となることが分かる。
【0034】
[実施例13及び14]
硬化性樹脂組成物の組成を表4の通りに変えた以外は、実施例1と同様に硬化性複合材料および積層体を作製し、燃焼性、ガラス転移温度、及び水浸漬後における積層体の重量減少分の測定を行った。これら実施例13及び14の測定結果を表4に示す。
【表4】
Figure 0004007911
すなわち、実施例13及び14は、実施例1と比べて樹脂の組成を大きく変えたが、(C)成分として実施例1と同じ重合度10のポリリン酸メラミンを用いており、結果としては、いずれも耐熱性を維持したままV−0となった。
【0035】
[実施例15]
実施例2と同様に硬化性樹脂組成物のワニスを作製し、これを60℃で3時間乾燥させることにより、トルエンを乾燥して硬化性樹脂組成物を得た。
この硬化性樹脂組成物を窒素気流下、真空プレス中で180℃、90分間加熱して硬化体である硬化樹脂組成物を得た。この硬化体の燃焼性試験結果はV−0であった。また、実施例1と同様にTMAから求めたガラス転移温度は176℃であった。更に、25℃、24時間水浸漬後における硬化樹脂組成物の重量減少分は0.0%であった。
[実施例16]
実施例2と同様に硬化性樹脂組成物のワニスを作製し、これをPETフィルム上に塗布し、60℃で3時間乾燥させることにより、トルエンを乾燥してフィルム状の硬化性樹脂組成物を得た。
この硬化性樹脂組成物のフィルムを窒素気流下、真空プレス中で180℃、90分間加熱して硬化フィルムを得た。この硬化フィルムの燃焼性試験結果はV−0であった。また、実施例1と同様にTMAから求めたガラス転移温度は175℃であった。更に、25℃、24時間水浸漬後における硬化フィルムの重量減少分は0.0%であった。
[実施例17]
実施例2と同様に硬化性樹脂組成物のワニスを作製し、これを厚さ18μmの銅箔の片面に樹脂層の厚さが50μmとなるようにバーコータで塗布し、その後エアーオーブン中で60℃で3時間乾燥させ樹脂付き銅箔を作製した。
【0036】
次に、この樹脂付き銅箔を2枚重ね合わせ、180℃、40kg/cm2で90分間プレス成形機を用いて成形・硬化させた。ここで得られた積層体の燃焼性試験結果はV−0であった。また、実施例1と同様にTMAから求めたガラス転移温度は176℃であった。更に、25℃、24時間水浸漬後における積層体の重量減少分は0.0%であった。
上記実施例15〜17の結果を表5にまとめて示す。
【表5】
Figure 0004007911
すなわち、ガラスクロスの入ってない、硬化樹脂組成物、硬化フィルム及び樹脂付き銅箔の積層体においても、(C)成分として重合度が10のポリリン酸メラミンを用いることにより、耐熱性を維持したままV−0となった。
【0037】
[実施例18]
<9,10−ジヒドロ−9−オキサ−10−(アリルホスファ)フェナントレン−10−オキシド(略称:HCA−アリル)の合成>
環流冷却器付きの500ml三つ口フラスコに9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光社製、商品名:HCA)54.1g、臭化アリル(和光純薬製、特級)35g、メタノール(和光純薬製、特級)300g、トリエチルアミン(和光純薬製、特級)30gを加え、メタノールが穏やかに環流冷却器内を環流する程度まで加熱し、そのまま8時間反応させた。それからフラスコを室温まで冷却し、ロータリーエバポレーターを用いてメタノールを減圧留去した後、残査を減圧蒸留(0.1mmHg、140℃)し、反応型置換基を有する9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体である9,10−ジヒドロ−9−オキサ−10−(アリルホスファ)フェナントレン−10−オキシド(略称:HCA−アリル)約45gを得た。
【0038】
<積層体の製造・評価>
(A)成分として、30℃、0.5g/dlのクロロホルム溶液で測定した粘度数ηsp/Cが0.54のポリ(2,6−ジメチル−1,4−フェニレンエーテル)50部;(B)成分としてトリアリルイソシアヌレート46部;ポリスチレン(GPPS、重量平均分子量27万)4部;(C)成分として上記HCA−アリル30部;硬化促進剤としてパーヘキシン25B(日本油脂社製)6部をトルエンに溶解させて硬化性樹脂組成物のワニスを作製し、実施例1と同様に積層体を作製し、燃焼性試験を行った。積層体の燃焼性試験結果はV−0であった。また、実施例1と同様にTMAから求めたガラス転移温度は170℃であった。更に、25℃、24時間水浸漬後における積層体の重量減少分は0.0%であった。
【0039】
[実施例19〜22]
硬化性樹脂組成物の組成を表6の通りに変えた以外は、実施例18と同様に硬化性複合材料および積層体を作製し、燃焼性、ガラス転移温度、及び水浸漬後における積層体の重量減少分の測定を行った。
上記実施例18〜22の測定結果を表6に示す。
【表6】
Figure 0004007911
すなわち、実施例18〜22においては、(C)成分として、反応型置換基を有する9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体であるHCA−アリルを用いることにより、いずれの組成のポリフェニレンエーテル系樹脂/多官能性不飽和結合含有化合物系においても、耐熱性を維持したままでV−0となった。
【0040】
[実施例23〜25]
硬化性樹脂組成物の組成を表7の通りに変えた以外は、実施例18と同様に硬化性複合材料および積層体を作製し、燃焼性、ガラス転移温度、及び水浸漬後における積層体の重量減少分の測定を行った。これら実施例23〜25の測定結果を表7に示す。
【表7】
Figure 0004007911
すなわち、実施例23〜25においては、(C)成分として、反応型置換基を有する9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体であるHCA−アリルを用いることにより、いずれの組成のポリフェニレンエーテル系樹脂/エポキシ樹脂系においても、耐熱性を維持したままでV−0となった。
【0041】
[実施例26]
実施例19と同様に硬化性樹脂組成物のワニスを作製し、これを60℃で3時間乾燥させることにより、トルエンを乾燥して硬化性樹脂組成物を得た。
この硬化性樹脂組成物を窒素気流下、真空プレス中で180℃、90分間加熱して硬化体である硬化樹脂組成物を得た。この硬化体について燃焼性試験を行ったところ、燃焼性試験結果はV−0であった。また、実施例1と同様にTMAから求めたガラス転移温度は171℃であった。更に、25℃、24時間水浸漬後における硬化樹脂組成物の重量減少分は0.0%であった。
[実施例27]
実施例19と同様に硬化性樹脂組成物のワニスを作製し、これをPETフィルム上に塗布し、60℃で3時間乾燥させることにより、トルエンを乾燥してフィルム状の硬化性樹脂組成物を得た。
この硬化性樹脂組成物のフィルムを窒素気流下、真空プレス中で180℃、90分間加熱して硬化フィルムを得た。この硬化フィルムについて燃焼性試験を行ったところ、燃焼性試験結果はV−0であった。また、実施例1と同様にTMAから求めたガラス転移温度は170℃であった。更に、25℃、24時間水浸漬後における硬化フィルムの重量減少分は0.0%であった。
[実施例28]
実施例19と同様に硬化性樹脂組成物のワニスを作製し、これを厚さ18μmの銅箔の片面に樹脂層の厚さが50μmとなるようにバーコータで塗布し、その後エアーオーブン中で60℃で3時間乾燥させ樹脂付き銅箔を作製した。
【0042】
次に、この樹脂付き銅箔を2枚重ね合わせ、180℃、40kg/cm2で90分間プレス成形機を用いて成形・硬化させた。ここで得られた積層体について燃焼性試験を行った。燃焼性試験結果はV−0であった。また、実施例1と同様にTMAから求めたガラス転移温度は170℃であった。更に、25℃、24時間水浸漬後における積層体の重量減少分は0.0%であった。
上記実施例26〜28の結果を表8にまとめて示す。
【表8】
Figure 0004007911
すなわち、ガラスクロスの入ってない、硬化樹脂組成物、硬化フィルム及び樹脂付き銅箔の積層体においても、(C)成分として、反応型置換基を有する9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体であるHCA−アリルを用いることにより、耐熱性を維持したままでV−0となった。
【0043】
[比較例1〜5]
(C)成分として、重合度10のポリリン酸メラミン(melapur200(登録商標)、DSM社製)の代わりに、同部数の重合度2.6のポリリン酸メラミン(MPP−A、三和ケミカル製)を用いた以外は、実施例1〜5と同様に硬化性複合材料および積層体を作製し、燃焼性試験、ガラス転移温度、及び水浸漬後における積層体の重量減少分の測定を行った。これら比較例1〜5の測定結果を表9にまとめて示す。
【表9】
Figure 0004007911
すなわち、重合度が2.6のポリリン酸メラミンを用いた場合、耐熱性を維持したままでV−0にはなったが、25℃、24時間水浸漬後における積層体の重量減少分が0.2〜0.3%であり、実用に供し得なかった。
【0044】
[比較例6及び7]
(C)成分として、重合度10のポリリン酸メラミン(melapur200(登録商標)、DSM社製)の代わりに、同部数の重合度1.5のポリリン酸メラミン(プラネロンNP、三井化学ファイン社製)を用いた以外は、実施例1及び2と同様に硬化性複合材料および積層体を作製し、燃焼性試験、ガラス転移温度、及び水浸漬後における積層体の重量減少分の測定を行った。これら比較例6及び7の測定結果を表10にまとめて示す。
【表10】
Figure 0004007911
すなわち、重合度が1.5のポリリン酸メラミンを用いても、耐熱性を維持したままでV−0にはなったが、25℃、24時間水浸漬後における積層体の重量減少分が0.4%となり、実用に供し得なかった。
【0045】
[比較例8〜10]
(C)成分として、重合度10のポリリン酸メラミン(melapur200(登録商標)、DSM社製)の代わりに、同部数の重合度2.6のポリリン酸メラミン(MPP−A、三和ケミカル製)を用いた以外は、実施例15〜17と同様に、それぞれ硬化樹脂組成物、硬化フィルム及び樹脂付き銅箔の積層体を作製し、燃焼性試験、ガラス転移温度、及び水浸漬後における積層体の重量減少分の測定を行った。これら比較例8〜10の測定結果を表11にまとめて示す。
【表11】
Figure 0004007911
すなわち、ガラスクロスの入ってない、硬化樹脂組成物、硬化フィルム及び樹脂付き銅箔の積層体においても、重合度が2.6のポリリン酸メラミンでは、耐熱性を維持したままでV−0にはなるが、25℃、24時間水浸漬後における積層体の重量減少分が0.2%となり、実用に供し得なかった。
【0046】
[比較例11〜15]
(C)成分である、重合度10のポリリン酸メラミン(melapur200(登録商標)、DSM社製)または実施例18で合成したHCA−アリルの添加部数を5部に変えた以外は、実施例1〜5と同様に硬化性複合材料および積層体を作製し、燃焼性試験を行ったところ、すべて燃焼した(表12)。なおここで、燃焼とは、V−0に到達しなかったことを意味する。
【表12】
Figure 0004007911
すなわち、(C)成分として重合度が3以上のポリリン酸メラミンまたは反応型置換基を有する9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体を用いても、添加部数が(A)成分および(B)成分の合計量100重量部に対し10部未満の場合には、十分な難燃性が発現しなかった。
【0047】
[比較例16〜17]
(C)成分である、重合度10のポリリン酸メラミン(melapur200(登録商標)、DSM社製)または実施例18で合成したHCA−アリルの添加部数を85部に変えた以外は、実施例2と同様に硬化性複合材料および積層体を作製し、燃焼性試験を行ったところ、いずれも硬化性樹脂組成物のワニス粘度が高すぎて含浸できなかった(表13)。
【表13】
Figure 0004007911
すなわち、(C)成分として重合度が3以上のポリリン酸メラミンまたは反応型置換基を有する9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体を用いても、添加部数が(A)成分および(B)成分の合計量100重量部に対し80部を超えた場合には、硬化性樹脂組成物のワニス粘度が高くなりすぎて、基材に含浸させることができなかった。
【0048】
[比較例18〜20]
(C)成分である、重合度10のポリリン酸メラミン(melapur200(登録商標)、DSM社製)の添加部数を5部に変えた以外は、実施例15〜17と同様に、それぞれ硬化樹脂組成物、硬化フィルム及び樹脂付き銅箔の積層体を作製し、燃焼性試験を行ったところ、硬化樹脂組成物、硬化フィルム及び積層体はいずれも燃焼した(表14)。なおここで、燃焼とは、V−0に到達しなかったことを意味する。
【表14】
Figure 0004007911
すなわち、ガラスクロスの入ってない、硬化樹脂組成物、硬化フィルム及び樹脂付き銅箔の積層体において、重合度が3以上のポリリン酸メラミンを用いても、添加部数が(A)成分および(B)成分の合計量100重量部に対し10部未満の場合には、十分な難燃性が発現しなかった。
【0049】
【発明の効果】
本発明により、ハロゲンフリーでありながら、ポリフェニレンエーテル樹脂の特徴である耐熱性を維持し且つ十分な難燃性(例えばUL94試験でV−0)を有する硬化性樹脂組成物を提供することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a curable resin composition having halogen-free flame retardancy, a film thereof, and a cured resin composition obtained by curing the curable resin composition. Furthermore, the present invention provides a curable composite material comprising the curable resin composition and a substrate, a cured composite material obtained by curing the curable composite material, a laminate comprising the cured composite material and a metal foil, and a resin. It relates to metal foil.
The curable resin composition of the present invention exhibits excellent chemical resistance, dielectric properties, heat resistance, and flame resistance after curing, and is used in the fields of electrical industry, space / aircraft industry, etc. It can be used as a structural material. In particular, it can be used as a single-sided, double-sided, multilayer printed board, flexible printed board, build-up board or the like.
[0002]
[Prior art]
In recent years, there has been a remarkable trend toward downsizing and high-density mounting methods in the field of electronic equipment for communications, consumer use, industrial use, etc., and accordingly, heat resistance and dimensional stability that are superior in terms of materials as well. And electrical characteristics are being demanded. For example, as a printed wiring board, conventionally, a copper-clad laminate made of a thermosetting resin such as a phenol resin or an epoxy resin has been used. Although these have a variety of performances in a well-balanced manner, they have a drawback of poor electrical characteristics, particularly dielectric characteristics in a high frequency region. Recently, polyphenylene ether has attracted attention as a new material for solving this problem, and its application to copper-clad laminates has been attempted.
For example, JP-A-61-287739 discloses a laminate obtained by curing a resin composition containing polyphenylene ether and triallyl isocyanurate and / or triallyl cyanurate, as disclosed in JP-B-7-37567. Is a curable resin composition containing polyphenylene ether modified by reaction with an unsaturated carboxylic acid or acid anhydride and triallyl isocyanurate and / or triallyl cyanurate, and a laminate obtained by using the same Sho 64-69628 Gazette JP-A 64-69629 Gazette JP-A 1-1113425 Gazette JP-A-1-113426 discloses a curable resin composition containing a polyphenylene ether containing a triple bond or a double bond and triallyl isocyanurate and / or triallyl cyanurate.
[0003]
Moreover, as a material combining polyphenylene ether and epoxy, for example, Japanese Patent Publication No. 64-3223 discloses polyphenylene ether and various epoxy resins such as bisphenol A type epoxy resin and novolac type epoxy resin, and phenols and amines. A curable resin composition containing various curing agents is disclosed. JP-A-2-135216 discloses polyphenylene ether and polyepoxy compound modified by reaction with unsaturated carboxylic acid or acid anhydride, and curing for epoxy. A curable resin composition comprising a catalyst is disclosed, and JP-A-2-166115 discloses a curable resin composition comprising a melt-processed polyphenylene ether and a polyepoxy compound, and an epoxy curing catalyst. .
The above composition is used for various electronic materials including a copper-clad laminate, and the flame retardancy of the resin is an indispensable characteristic from the viewpoint of product safety. In the past, organic halogen compounds such as aromatic bromides and brominated epoxies have been used as methods for flame retarding resins. However, organohalogen compounds can generate highly toxic dioxins during combustion, and their use has been limited recently.
[0004]
Therefore, in order to cope with such a situation, attempts have been made to impart flame retardancy to the polyphenylene ether-based curable resin using a halogen-free compound. That is, as a halogen-free compound, for example, metal hydroxides, phosphate esters, ammonium polyphosphates, and the like have been proposed so far. However, for example, when a metal hydroxide is used, the heat resistance characteristic of this resin is maintained, but it is difficult to impart sufficient flame retardancy, and when a phosphate ester is used, sufficient flame retardancy is imparted. However, it is difficult to maintain heat resistance, and if ammonium polyphosphate is used, sufficient flame retardancy can be imparted while maintaining heat resistance, but when the cured product is immersed in water, weight reduction occurs and it cannot be put to practical use. Until now, when halogen-free, it has been difficult to impart sufficient flame retardancy while maintaining the heat resistance characteristic of polyphenylene ether resins.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and the object of the present invention is to contain no halogen in the composition, that is, to maintain sufficient heat resistance while being halogen-free and to have sufficient flame resistance. It is in providing the curable resin composition which also has property.
[0006]
[Means for Solving the Problems]
The present invention, first, (A) As a component Polyphenylene ether resin, (B) As a component, multifunctional consisting of diallyl phthalate, divinylbenzene, polyfunctional acryloyl compound, polyfunctional methacryloyl compound, polyfunctional isocyanate, polyfunctional maleimide, unsaturated polyester, triallyl isocyanurate, triallyl cyanurate At least one selected from a compound containing an unsaturated unsaturated bond and an epoxy resin Cross-linking agent, (C) As component One or more phosphorus compounds selected from the group consisting of melamine polyphosphate having a degree of polymerization of 3 or more and a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative represented by the following formula (1) , Containing (A) component And the (B) component For a total amount of 100 parts by weight of (A) component 10 to 98 parts by weight, (B) component 90 to 2 parts by weight, (C) component Is provided at a ratio of 10 to 80 parts by weight, and a film thereof. In addition, the curable resin composition of this invention does not contain halogen as a whole.
[0007]
[Chemical 3]
Figure 0004007911
(Where R 1 Is a vinyl group, allyl group, methallyl group or 1-butenyl group; 2 And R Three Is a hydrogen atom or C 1 ~ C 6 Independently selected from hydrocarbon groups . )
[0008]
Here, the polyphenylene ether-based resin as component (A) is i) a polyphenylene ether resin containing an unsaturated group, and / or ii) a reaction product of a polyphenylene ether resin and an unsaturated carboxylic acid and / or acid anhydride. It is a preferred embodiment of the curable resin composition of the present invention.
Moreover, it is a preferable aspect of the curable resin composition of this invention that the crosslinking agent which is (B) component is a polyfunctional unsaturated bond containing compound or an epoxy resin.
Secondly, the present invention provides a cured resin composition obtained by curing the curable resin composition (including the case of the film).
3rdly, this invention is a curable composite material which consists of the said curable resin composition (including the case of the film) and a base material, Comprising: A base material is contained in the ratio of 5-90 weight%. A curable composite material is provided.
Fourth, the present invention provides a cured composite material obtained by curing the curable composite material.
5thly, this invention provides the laminated body which consists of the said hardening composite material and metal foil.
6thly, this invention provides the metal foil with resin which consists of a film | membrane of the said curable resin composition formed in the single side | surface of metal foil and metal foil.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
(Curable resin composition / cured resin composition)
<Polyphenylene ether resin>
As the component (A) used in the present invention, that is, a polyphenylene ether resin, for example, poly (2,6-dimethyl-1,4-phenylene ether) obtained by homopolymerization of 2,6-dimethylphenol, poly ( 2,6-dimethyl-1,4-phenylene ether) styrene graft copolymer, 2,6-dimethylphenol and 2,3,6-trimethylphenol copolymer, 2,6-dimethylphenol and 2-methyl A copolymer of -6-phenylphenol, a polyfunctional polyphenylene ether resin obtained by polymerization in the presence of 2,6-dimethylphenol and a polyfunctional phenol compound, such as JP-A 63-301222 and JP-A As disclosed in JP-A No. 1-297428, 2,6-dimethylphenol is substituted with a substituted aniline or an aliphatic secondary compound. Nitrogen-containing polyphenylene ether resin obtained by polymerizing in the presence of emissions and the like.
Regarding the molecular weight of the polyphenylene ether-based resin described above, those having a viscosity number ηsp / C measured in a chloroform solution of 30 ° C. and 0.5 g / dl are preferably used.
[0010]
In addition, the polyphenylene ether resin referred to in the present invention includes modified products. Examples of such modified products include i) polyphenylene ether resins containing an unsaturated group (Japanese Patent Laid-Open Nos. 64-69628 and 1). No. 113425 and JP-A No. 1-113426), and ii) reaction products of polyphenylene ether resins with unsaturated carboxylic acids and / or acid anhydrides.
In the present invention, in order to improve the compatibility with the component (B), the modified product of i) and / or ii) such as allylated polyphenylene ether, maleic anhydride is used as the (A) polyphenylene ether resin. It is particularly preferable to use modified polyphenylene ether or the like.
In this invention, (A) component is 10-98 weight part with respect to 100 weight part of total amounts of (A) component and (B) component, Preferably it is 10-80 weight part, More preferably, it is 20-75 weight part. It is desirable to be included in the ratio. When the component (A) is less than 10 parts by weight, there arises a problem that the impact resistance of the cured resin composition that is a cured product thereof is lowered, and when it exceeds 98 parts by weight, the chemical resistance of the cured resin composition is caused. This causes the problem of lowering.
[0011]
<Crosslinking agent>
Examples of the component (B) used in the present invention, that is, a crosslinking agent include diallyl phthalate, divinylbenzene, polyfunctional acryloyl compound, polyfunctional methacryloyl compound, polyfunctional isocyanate, polyfunctional maleimide, unsaturated polyester, Polyfunctional unsaturated bond-containing compounds such as triallyl isocyanurate, triallyl cyanurate, polybutadiene, styrene-butadiene, and styrene-butadiene-styrene can be mentioned, and these can be used alone or in admixture of two or more. .
Moreover, as a crosslinking agent which is (B) component, an epoxy resin can also be used. As an epoxy resin, what contains two or more epoxy groups in 1 molecule should just be mentioned, and a well-known thing is 1 type. Used alone or in combination of two or more. Moreover, an epoxy resin and the polyfunctional unsaturated bond containing compound mentioned above can also be used together.
[0012]
Typical examples of such epoxy resins include glycidyl ether type epoxy resins obtained by reaction of phenols or alcohols with epichlorohydrin, amines or cyanuric acid and epichlorohydrin. Glycidyl type epoxy resin, internal epoxy resin obtained by oxidation of double bond, etc. [For these details, see, for example, edited by Masaki Shinbo, "Epoxy Resin Handbook" (Nikkan Kogyo Shimbun, 1987) ]].
These epoxy resins can be used together with a curing agent, and as the curing agent, a compound usually used for curing an epoxy resin, for example, dicyandiamide as an amine system, aromatic amine, etc., phenol novolac resin as a phenol curing system, Examples thereof include cresol novolac resins, bisphenol A, nitrogen-modified phenol resins such as aniline-modified, melamine-modified, guanidine-modified, and polyamide-modified, and these are used alone or in combination.
[0013]
A curing accelerator can be used together with the curing agent for the component (A) and the component (B), and examples of the curing accelerator include curing accelerators and radical initiators that are usually used for epoxy resins. As an example, an imidazole compound is used, and as the latter, a normal peroxide such as perhexine 25B is used.
In the present invention, by using a polyfunctional unsaturated bond-containing compound such as triallyl isocyanurate and / or triallyl cyanurate as the component (B), a cured product having excellent dielectric properties and heat resistance can be obtained. it can. Moreover, the curable resin composition excellent in the moldability at the time of hardening can be obtained by using an epoxy resin, for example, a bisphenol A type epoxy resin as (B) component.
In this invention, (B) component is 90-2 weight part with respect to 100 weight part of total amounts of (A) component and (B) component, Preferably it is 90-20 weight part, More preferably, 80-25 weight part It is desirable to be included in the ratio. When the component (B) is less than 2 parts by weight, there is a problem that the chemical resistance of the cured resin composition is lowered, and when it exceeds 90 parts by weight, the impact resistance of the cured resin composition is lowered. Cause problems.
[0014]
<Phosphorus compound>
The component (C) used in the present invention is a melamine polyphosphate having a polymerization degree of 3 or more and 9,10-dihydro-9-oxa-10-phosphaphenanthrene- having a reactive substituent represented by the following formula (1): One or more phosphorus compounds selected from the group consisting of 10-oxide derivatives.
[Formula 4]
Figure 0004007911
(Where R 1 Is a vinyl group, allyl group, methallyl group or 1-butenyl group; 2 And R Three Is a hydrogen atom or C 1 ~ C 6 Independently selected from hydrocarbon groups)
[0015]
The degree of polymerization in melamine polyphosphate having a degree of polymerization of 3 or more is 31 Measured by P-NMR. 31 In the P-NMR measurement, a monomer appears near 0 ppm on the basis of phosphoric acid, a polymer terminal appears near -10 ppm, and a peak inside the polymer appears near -20 ppm. When these intensities are X, Y, and Z, polymerization occurs. The degree is defined by (X + Y + Z) / (X + Y / 2). Even if 100% of the phosphoric acid unit structure is not bonded to melamine and part of it is substituted with other nitrogen-containing compounds such as ammonia, amide, ethylenediamine, melam, melem, or metals such as aluminum, magnesium, calcium, etc., melamine When the majority is bonded to the portion, it is called melamine polyphosphate.
In the present invention, if a melamine polyphosphate having a degree of polymerization of 3 or more, preferably 5 or more is not used, mass loss occurs when the cured resin composition or the laminate is immersed in water. That is, in the present invention, melamine polyphosphate having a degree of polymerization of 3 or more, preferably 5 or more is used alone or in admixture of two or more.
Examples of the melamine polyphosphate that can be used in the present invention include PMP-100 (manufactured by Nissan Chemical Co., Ltd.), melapur200 (registered trademark, manufactured by DSM Co.), and the like. Used in a mixture of more than one species.
[0016]
Next, specific names of the 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative having a reactive substituent represented by the above formula (1) are shown, for example, 9,10-dihydro -9-oxa-10- (allylphospha) phenanthrene-10-oxide, 9,10-dihydro-9-oxa-10- (methallylphospha) phenanthrene-10-oxide, 9,10-dihydro-9-oxa-10- ( 1-butenylphospha) phenanthrene-10-oxide, 9,10-dihydro-9-oxa-10- (allylphospha) (2,7-dimethylphenanthrene) -10-oxide, 9,10-dihydro-9-oxa-10- (Allylphospha) (1,3,6,8-tetramethylphenanthrene) -10-oxide, 9,1 - can be exemplified dihydro-9-oxa-10- (Ariruhosufa) (6,8-di -tert- butyl phenanthrene) 10-oxide, and these may be used alone in or of two or more.
Here, as the component (C), when the 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative having the above reactive substituent is used alone, the component (B) It is preferable to use a polyfunctional unsaturated bond-containing compound.
[0017]
Among the above components (C) used as powder, the powder surface is, for example, a thermosetting resin such as melamine resin or epoxy resin, silane coupling agent, titanate coupling agent, aluminate coupling agent. In addition, it may be coated with a coupling agent such as a zircoaluminate coupling agent or an aerosil such as a hydrophobic aerosil, and a carrier such as an unsaturated polyester resin or an epoxy resin is added to the powder to make a paste. May be used. Further, these powders are preliminarily used as flame retardant aids, foaming agents, color tone adjusting agents, etc., such as melamine, benzoguanamine, acetoguanamine, ethylenediamine, melamine cyanurate, melam, melem, pentaerythritol, dipentaerythritol, talc, silica. Calcium carbonate, titanium oxide, aluminum hydroxide, magnesium hydroxide, low melting point glass, or the like may be added to form composite particles.
In this invention, (C) component is 10-80 weight part with respect to 100 weight part of total amounts of (A) component and (B) component, Preferably it is 15-60 weight part, More preferably, it is 20-50 weight part It is desirable to be included in the range. When the addition amount of the component (C) is less than 10 parts by weight, sufficient flame retardancy is not expressed, and when it exceeds 80 parts by weight, the viscosity of the curable resin composition as a varnish is excessively increased, The production of the composite material becomes difficult because the base material cannot be impregnated as a varnish. Moreover, when combining 2 or more types of (C) component, there is no limitation in the combination, What kind of combination may be used.
[0018]
<Other ingredients>
In addition to the above components (A) to (C), the curable resin composition of the present invention has an amount of filler in an amount that does not impair the original properties for the purpose of imparting desired performance depending on the application. And additives can be blended.
Examples of such fillers include carbon black, silica, titanium oxide, barium titanate, glass beads, and glass hollow spheres. Examples of the additive include an antioxidant, a heat stabilizer, an antistatic agent, a plasticizer, a pigment, a dye, and a colorant. Further, a thermoplastic resin other than the component (A) and the component (B), a thermosetting resin, for example, a thermoplastic resin such as polystyrene, ABS, SBS, hydrogenated SBS or the like, or a thermosetting resin is used. It is also possible to mix seeds or two or more.
[0019]
<Method for producing curable resin composition / cured resin composition>
As a method of mixing the above components (A) to (C), a solution mixing method in which the three components are uniformly dissolved or dispersed in a solvent, a melt blending method in which heating is performed with an extruder, or the like can be used. As the solvent used for the solution mixing, aromatic solvents such as benzene, toluene and xylene, and tetrahydrofuran may be used alone or in combination of two or more.
The curable resin composition of the present invention may be molded into a desired shape in advance according to its use. The molding method is not particularly limited. Usually, a casting method in which the resin composition is dissolved in the above-described solvent and molded into a desired shape, or a heating and melting method in which the resin composition is heated and melted and molded into a desired shape is used.
[0020]
The curable resin composition of the present invention can be used favorably as a film shape. The method for producing such a film is not particularly limited. For example, the components (A) to (C) and other components as necessary are melted or uniformly dissolved or dispersed in a solvent. The method of drying after apply | coating to PET film etc. is mentioned.
The cured resin composition of the present invention is obtained by curing the curable resin composition described above. The curing method is arbitrary, and a method using heat, light, electron beam, or the like can be adopted.
When curing by heating, the temperature varies depending on the type of radical initiator, but is selected in the range of 80 to 300 ° C, more preferably 120 to 250 ° C. The time is about 1 minute to 10 hours, more preferably 1 minute to 5 hours.
In addition, this curable resin composition can be used by being bonded to a metal foil and / or a metal plate in the same manner as the cured composite material described later.
[0021]
(Curable composite material / Curable composite material)
Next, the curable composite material of the present invention and the cured composite material that is a cured product thereof will be described.
<Curable composite material>
The curable composite material of the present invention comprises the curable resin composition of the present invention and a substrate.
The base material used here includes various glass cloths such as roving cloth, cloth, chopped mat, surfacing mat, asbestos cloth, metal fiber cloth and other synthetic or natural inorganic fiber cloth, wholly aromatic polyamide fiber, wholly aromatic Woven or non-woven fabrics obtained from liquid crystal fibers such as aromatic polyester fibers and polybenzoxazole fibers, woven or non-woven fabrics obtained from synthetic fibers such as polyvinyl alcohol fibers, polyester fibers and acrylic fibers, and natural fibers such as cotton, linen and felt Cloth, carbon fiber cloth, kraft paper, cotton paper, natural cellulosic cloth such as paper-glass mixed fiber paper, polytetrafluoroethylene porous film and the like may be used alone or in combination of two or more.
[0022]
The proportion of such a substrate in the curable composite material is 5 to 90 parts by weight, more preferably 10 to 86 parts by weight, and still more preferably 20 to 70 parts by weight based on 100 parts by weight of the curable composite material. . If the proportion of the base material is less than 5 parts by weight, the dimensional stability and strength after curing of the composite material are insufficient, and if the proportion of the base material is more than 90 parts by weight, the dielectric properties of the composite material are inferior. .
In the curable composite material of the present invention, a coupling agent can be used for the purpose of improving the adhesiveness at the interface between the resin and the substrate, if necessary. As such a coupling agent, general ones such as a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, and a zircoaluminate coupling agent can be used.
[0023]
<Method for producing curable composite material>
As a method for producing the curable composite material of the present invention, for example, the components (A) to (C) of the present invention and other components such as the above-mentioned coupling agent, if necessary, are aromatic or ketone-based. For example, a method of uniformly dissolving or dispersing in a solvent such as the above or a mixed solvent thereof, impregnating the base material, and drying. Further, the components (A) to (C) may be melted and impregnated in the base material.
Impregnation is performed by dipping or coating. The impregnation can be repeated multiple times as necessary, and at this time, the impregnation can be repeated using a plurality of solutions having different compositions and concentrations, and finally adjusted to a desired resin composition and resin amount. Is possible.
[0024]
<Curing composite material>
The cured composite material of the present invention is obtained by curing the curable composite material thus obtained by a method such as heating. The production method is not particularly limited. For example, a plurality of the curable composite materials are stacked, and each layer is bonded together under heat and pressure, and at the same time, thermosetting is performed to obtain a cured composite material having a desired thickness. be able to. It is also possible to obtain a cured composite material having a new layer structure by combining a cured composite material once cured with adhesive and a curable composite material.
Lamination molding and curing are usually performed simultaneously using a hot press or the like, but both may be performed independently. In other words, an uncured or semi-cured composite material obtained by previously performing lamination molding can be cured by heat treatment or another method.
When performing lamination molding and curing simultaneously, the conditions are: temperature: 80 to 300 ° C., pressure: 0.1 to 1000 kg / cm. 2 , Time: range of 1 minute to 10 hours, more preferably temperature: 150-250 ° C., pressure: 1-500 kg / cm 2 The time can be in the range of 1 minute to 5 hours.
[0025]
(Laminate)
The laminate of the present invention is composed of the cured composite material of the present invention and a metal foil. Examples of the metal foil used here include a copper foil and an aluminum foil. The thickness is not particularly limited, but is in the range of 3 to 200 μm, more preferably 3 to 105 μm.
As a method for producing the laminate of the present invention, for example, the curable composite material described above and a metal foil and / or a metal plate are laminated in a layer structure according to the purpose, and the respective layers are bonded under heat and pressure. The method of making it harden simultaneously with caking can be mentioned. In the laminated body of this invention, a curable composite material and metal foil are laminated | stacked by arbitrary layer structures. The metal foil can be used as a surface layer or an intermediate layer. In addition to the above, it is possible to make a multilayer by repeating lamination and curing a plurality of times.
An adhesive may be used for bonding the metal foil. Such adhesives include, but are not limited to, epoxy-based, acrylic-based, phenol-based, cyanoacrylate-based, and the like.
The above lamination molding and curing can be performed under the same conditions as in the case of the curable composite material of the present invention.
[0026]
(Metal foil with resin)
Moreover, the curable resin composition of this invention can also be used as metal foil with resin. The metal foil with resin of the present invention is composed of a metal foil and the curable resin composition of the present invention formed on one surface of the metal foil. Examples of the metal foil used here include a copper foil and an aluminum foil. The thickness is not particularly limited, but is in the range of 3 to 200 μm, more preferably 3 to 105 μm.
The method for producing the resin-coated copper foil of the present invention is not particularly limited. For example, the components (A) to (C) and other components as necessary may be used as aromatic or ketone solvents. Or the method of making it melt | dissolve or disperse | distribute uniformly in the mixed solvent, apply | coating to metal foil, and drying is mentioned.
The application can be repeated multiple times as necessary. In this case, the application can be repeated using a plurality of solutions having different compositions and concentrations, and finally the desired resin composition and resin amount can be adjusted. It is.
[0027]
【Example】
Next, examples of embodiments of the present invention will be described based on examples. In the following Examples and Comparative Examples, “parts” means “parts by weight”.
[Example 1]
As component (A), 50 parts of poly (2,6-dimethyl-1,4-phenylene ether) having a viscosity number ηsp / C of 0.54, measured at 30 ° C. in a 0.5 g / dl chloroform solution; ) 46 parts of triallyl isocyanurate (manufactured by Nippon Kasei Co., Ltd.); 4 parts of polystyrene (GPPS, weight average molecular weight 270,000); melamine polyphosphate having a polymerization degree of 10 (melapur 200 (registered trademark), DSM) as component (C) 30 parts; 6 parts of perhexine 25B (manufactured by NOF Corporation) as a curing accelerator was dissolved in toluene to prepare a varnish of a curable resin composition, and a basis weight of 107 g / m 2 The glass cloth was immersed and impregnated, and dried in an air oven to obtain a curable composite material.
Next, 6 sheets of the above-mentioned curable composite material are stacked so that the thickness after curing is about 0.8 mm, and a copper foil having a thickness of 35 μm is placed on both sides thereof, 180 ° C., 40 kg / cm. 2 Was molded and cured for 90 minutes using a press molding machine to obtain a laminate.
About the obtained laminated body, when the combustibility test was done based on UL94 specification, it was set to V-0. Moreover, the glass transition temperature calculated | required from the inflection point of the linear expansion coefficient per unit temperature of a laminated body by TMA (Seiko Denshi TMA-10 type) was 180 degreeC. Further, the weight loss of the laminate after water immersion at 25 ° C. for 24 hours was 0.0%.
[0028]
[Example 2]
<Synthesis of maleic anhydride-modified polyphenylene ether>
Maleic anhydride-modified polyphenylene ether was synthesized by the method described in Reference Example 3 of JP-B-7-37567. That is, using a drum blender, 100 parts by weight of the polyphenylene ether of Example 1, 2 parts by weight of maleic anhydride, and 1 part by weight of Perhexa 25B (manufactured by NOF Corporation) as a modification accelerator were dry blended at room temperature, and the cylinder temperature was 300 ° C. The maleic anhydride-modified polyphenylene ether was obtained by extrusion with a twin screw extruder under the condition of a screw rotational speed of 230 rpm.
<Manufacture and evaluation of laminates>
A curable composite material and a laminate were prepared in the same manner as in Example 1 except that the maleic anhydride-modified polyphenylene ether was used as the polyphenylene ether, and the flammability was measured. Moreover, the glass transition temperature calculated | required from TMA like Example 1 was 176 degreeC. Further, the weight loss of the laminate after water immersion at 25 ° C. for 24 hours was 0.0%.
[0029]
[Example 3]
<Synthesis of allylated polyphenylene ether>
An allylated polyphenylene ether was synthesized by the method described in Example 2 of JP-B-5-8931. That is, in a three-necked flask, 2 g of polyphenylene ether used in Example 1 was dissolved in 100 ml of dehydrated THF, and 2.2 ml of n-butyllithium (1.55 mol / l, hexane solution) was added under a nitrogen stream. The mixture was heated to reflux for 1 hour under a nitrogen atmosphere.
After cooling to room temperature, 0.40 g of allyl bromide was added and stirred at room temperature for 30 minutes. The contents of the flask were poured into a large amount of methanol to precipitate a polymer, and filtration and washing with methanol were repeated three times to obtain a white powdery product. 1 When the substitution rate of allyl was determined by 1 H-NMR, it was 4%.
[0030]
<Manufacture and evaluation of laminates>
60 parts of the above allylated polyphenylene ether as component (A); 40 parts of triallyl isocyanurate as component (B); 4 parts of polystyrene (GPPS, weight average molecular weight 270,000); melamine polyphosphate having a polymerization degree of 10 as component (C) (Melapur 200 (registered trademark), manufactured by DSM) 30 parts; 6 parts of perhexine 25B (manufactured by NOF Corporation) as a curing accelerator was dissolved in toluene to prepare a varnish of a curable resin composition, which was the same as in Example 1. A curable composite material and a laminate were prepared, a flammability test was performed, and a result of V-0 was obtained. Moreover, the glass transition temperature calculated | required from TMA like Example 1 was 175 degreeC. Furthermore, the weight loss from the laminate after immersion in water at 25 ° C. for 24 hours was 0.0%.
[0031]
[Examples 4 to 5]
A curable composite material and a laminate were produced in the same manner as in Example 1 except that the composition of the curable resin composition was changed as shown in Table 1. Combustibility, glass transition temperature, and the laminate after immersion in water The weight loss was measured.
The measurement results of Examples 1 to 5 are shown in Table 1.
[Table 1]
Figure 0004007911
That is, in Examples 1 to 5, by using melamine polyphosphate having a degree of polymerization of 10 as the component (C), the heat resistance of the polyphenylene ether resin / polyfunctional unsaturated bond-containing compound system of any composition is used. V-0 was maintained while maintaining.
[0032]
[Examples 6 to 10]
A curable composite material and a laminate were prepared in the same manner as in Example 1 except that the composition of the curable resin composition was changed as shown in Table 2. Combustibility, glass transition temperature, and the laminate after immersion in water The weight loss was measured. The measurement results of Examples 6 to 10 are shown in Table 2.
[Table 2]
Figure 0004007911
That is, in Examples 6 to 10, by using melamine polyphosphate having a degree of polymerization of 10 as the component (C), it was possible to maintain the heat resistance in any polyphenylene ether resin / epoxy resin system with any composition. -0.
[0033]
[Examples 11 and 12]
(C) A curable composite material and a laminate were produced in the same manner as in Examples 1 and 2, except that melamine polyphosphate having a polymerization degree of 3.9 (PMP-100, manufactured by Nissan Chemical Co., Ltd.) was used as the component. The combustibility, glass transition temperature, and weight loss of the laminate after water immersion were measured. The measurement results of Examples 11 and 12 are shown in Table 3.
[Table 3]
Figure 0004007911
That is, according to the results of Examples 11 and 12, even when melamine polyphosphate having a degree of polymerization of 3.9 is used as the component (C), the heat resistance is improved in the polyphenylene ether resin / polyfunctional unsaturated bond-containing compound system. It can be seen that V-0 is maintained.
[0034]
[Examples 13 and 14]
A curable composite material and a laminate were produced in the same manner as in Example 1 except that the composition of the curable resin composition was changed as shown in Table 4. Combustibility, glass transition temperature, and the laminate after immersion in water The weight loss was measured. The measurement results of Examples 13 and 14 are shown in Table 4.
[Table 4]
Figure 0004007911
That is, in Examples 13 and 14, the composition of the resin was greatly changed compared to Example 1, but melamine polyphosphate having the same degree of polymerization 10 as Example 1 was used as the component (C), and as a result, All became V-0, maintaining heat resistance.
[0035]
[Example 15]
A curable resin composition varnish was prepared in the same manner as in Example 2 and dried at 60 ° C. for 3 hours to dry toluene and obtain a curable resin composition.
This curable resin composition was heated at 180 ° C. for 90 minutes in a vacuum press under a nitrogen stream to obtain a cured resin composition as a cured product. The flammability test result of this cured product was V-0. Moreover, the glass transition temperature calculated | required from TMA similarly to Example 1 was 176 degreeC. Further, the weight loss of the cured resin composition after immersion in water at 25 ° C. for 24 hours was 0.0%.
[Example 16]
A varnish of a curable resin composition was prepared in the same manner as in Example 2, and this was coated on a PET film and dried at 60 ° C. for 3 hours to dry toluene and form a film-like curable resin composition. Obtained.
A film of this curable resin composition was heated in a vacuum press at 180 ° C. for 90 minutes under a nitrogen stream to obtain a cured film. The flammability test result of this cured film was V-0. Moreover, the glass transition temperature calculated | required from TMA similarly to Example 1 was 175 degreeC. Further, the weight loss of the cured film after immersion in water at 25 ° C. for 24 hours was 0.0%.
[Example 17]
A varnish of a curable resin composition was prepared in the same manner as in Example 2, and this was applied to one side of a copper foil having a thickness of 18 μm with a bar coater so that the resin layer had a thickness of 50 μm. The resin-coated copper foil was produced by drying at 3 ° C. for 3 hours.
[0036]
Next, two copper foils with this resin are stacked, 180 ° C., 40 kg / cm 2 For 90 minutes using a press molding machine. The laminated body obtained here had a flammability test result of V-0. Moreover, the glass transition temperature calculated | required from TMA similarly to Example 1 was 176 degreeC. Further, the weight loss of the laminate after water immersion at 25 ° C. for 24 hours was 0.0%.
The results of Examples 15 to 17 are summarized in Table 5.
[Table 5]
Figure 0004007911
That is, even in a laminate of a cured resin composition, a cured film and a resin-coated copper foil that does not contain a glass cloth, heat resistance was maintained by using melamine polyphosphate having a polymerization degree of 10 as the component (C). It became V-0.
[0037]
[Example 18]
<Synthesis of 9,10-dihydro-9-oxa-10- (allylphospha) phenanthrene-10-oxide (abbreviation: HCA-allyl)>
In a 500 ml three-necked flask equipped with a reflux condenser, 54.1 g of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., trade name: HCA), allyl bromide (Wako Pure) 35 g of medicinal product, special grade), 300 g of methanol (manufactured by Wako Pure Chemical, special grade), and 30 g of triethylamine (special grade, manufactured by Wako Pure Chemical Industries) are added and heated to the extent that the methanol gently circulates in the reflux condenser, and left for 8 hours. Reacted. Then, the flask was cooled to room temperature, and methanol was distilled off under reduced pressure using a rotary evaporator. Then, the residue was distilled under reduced pressure (0.1 mmHg, 140 ° C.) to obtain 9,10-dihydro-9- having a reactive substituent. About 45 g of 9,10-dihydro-9-oxa-10- (allylphospha) phenanthrene-10-oxide (abbreviation: HCA-allyl), which is an oxa-10-phosphaphenanthrene-10-oxide derivative, was obtained.
[0038]
<Manufacture and evaluation of laminates>
As component (A), 50 parts of poly (2,6-dimethyl-1,4-phenylene ether) having a viscosity number ηsp / C of 0.54, measured at 30 ° C. in a 0.5 g / dl chloroform solution; ) 46 parts of triallyl isocyanurate as component; 4 parts of polystyrene (GPPS, weight average molecular weight 270,000); 30 parts of HCA-allyl as component (C); 6 parts of perhexine 25B (manufactured by NOF Corporation) as a curing accelerator A varnish of a curable resin composition was prepared by dissolving in toluene, a laminate was prepared in the same manner as in Example 1, and a flammability test was performed. The flammability test result of the laminate was V-0. Moreover, the glass transition temperature calculated | required from TMA similarly to Example 1 was 170 degreeC. Further, the weight loss of the laminate after water immersion at 25 ° C. for 24 hours was 0.0%.
[0039]
[Examples 19 to 22]
A curable composite material and a laminate were produced in the same manner as in Example 18 except that the composition of the curable resin composition was changed as shown in Table 6. Combustibility, glass transition temperature, and the laminate after immersion in water The weight loss was measured.
The measurement results of Examples 18 to 22 are shown in Table 6.
[Table 6]
Figure 0004007911
That is, in Examples 18 to 22, as component (C), HCA-allyl which is a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative having a reactive substituent is used. Thus, in any polyphenylene ether resin / polyfunctional unsaturated bond-containing compound system of any composition, V-0 was maintained while maintaining heat resistance.
[0040]
[Examples 23 to 25]
A curable composite material and a laminate were produced in the same manner as in Example 18 except that the composition of the curable resin composition was changed as shown in Table 7. Combustibility, glass transition temperature, and the laminate after immersion in water The weight loss was measured. Table 7 shows the measurement results of Examples 23 to 25.
[Table 7]
Figure 0004007911
That is, in Examples 23 to 25, HCA-allyl which is a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative having a reactive substituent is used as the component (C). As a result, in any polyphenylene ether resin / epoxy resin system, V-0 was maintained while maintaining heat resistance.
[0041]
[Example 26]
A varnish of a curable resin composition was prepared in the same manner as in Example 19, and this was dried at 60 ° C. for 3 hours to dry toluene and obtain a curable resin composition.
This curable resin composition was heated at 180 ° C. for 90 minutes in a vacuum press under a nitrogen stream to obtain a cured resin composition as a cured product. When a flammability test was performed on this cured product, the flammability test result was V-0. Moreover, the glass transition temperature calculated | required from TMA similarly to Example 1 was 171 degreeC. Further, the weight loss of the cured resin composition after immersion in water at 25 ° C. for 24 hours was 0.0%.
[Example 27]
A varnish of a curable resin composition was prepared in the same manner as in Example 19, and this was coated on a PET film and dried at 60 ° C. for 3 hours to dry toluene and form a film-like curable resin composition. Obtained.
A film of this curable resin composition was heated in a vacuum press at 180 ° C. for 90 minutes under a nitrogen stream to obtain a cured film. When this curable film was subjected to a flammability test, the flammability test result was V-0. Moreover, the glass transition temperature calculated | required from TMA similarly to Example 1 was 170 degreeC. Further, the weight loss of the cured film after immersion in water at 25 ° C. for 24 hours was 0.0%.
[Example 28]
A varnish of a curable resin composition was prepared in the same manner as in Example 19, and this was applied to one side of a copper foil having a thickness of 18 μm with a bar coater so that the resin layer had a thickness of 50 μm. The resin-coated copper foil was produced by drying at 3 ° C. for 3 hours.
[0042]
Next, two copper foils with this resin are stacked, 180 ° C., 40 kg / cm 2 For 90 minutes using a press molding machine. A flammability test was performed on the laminate obtained here. The flammability test result was V-0. Moreover, the glass transition temperature calculated | required from TMA similarly to Example 1 was 170 degreeC. Further, the weight loss of the laminate after water immersion at 25 ° C. for 24 hours was 0.0%.
The results of Examples 26 to 28 are summarized in Table 8.
[Table 8]
Figure 0004007911
That is, 9,10-dihydro-9-oxa-10 having a reactive substituent as the component (C) also in a laminate of a cured resin composition, a cured film, and a copper foil with resin without glass cloth. -By using HCA-allyl which is a phosphaphenanthrene-10-oxide derivative, V-0 was obtained while maintaining heat resistance.
[0043]
[Comparative Examples 1-5]
As component (C), instead of melamine polyphosphate having a polymerization degree of 10 (melapur200 (registered trademark), manufactured by DSM), melamine polyphosphate having a polymerization degree of 2.6 (MPP-A, manufactured by Sanwa Chemical Co., Ltd.) A curable composite material and a laminate were produced in the same manner as in Examples 1 to 5 except that was used, and a flammability test, a glass transition temperature, and a weight reduction of the laminate after immersion in water were measured. Table 9 summarizes the measurement results of Comparative Examples 1 to 5.
[Table 9]
Figure 0004007911
That is, when melamine polyphosphate having a degree of polymerization of 2.6 was used, V-0 was obtained while maintaining heat resistance, but the weight loss of the laminate after water immersion at 25 ° C. for 24 hours was 0. .2 to 0.3%, and could not be put to practical use.
[0044]
[Comparative Examples 6 and 7]
As component (C), instead of melamine polyphosphate having a polymerization degree of 10 (melapur200 (registered trademark), manufactured by DSM), melamine polyphosphate having a polymerization degree of 1.5 (Planeron NP, manufactured by Mitsui Chemicals Fine) A curable composite material and a laminate were produced in the same manner as in Examples 1 and 2 except that was used, and a flammability test, a glass transition temperature, and a weight reduction of the laminate after immersion in water were measured. Table 10 summarizes the measurement results of Comparative Examples 6 and 7.
[Table 10]
Figure 0004007911
That is, even when melamine polyphosphate having a polymerization degree of 1.5 was used, V-0 was maintained while maintaining heat resistance, but the weight loss of the laminate after water immersion at 25 ° C. for 24 hours was 0. .4% and could not be put to practical use.
[0045]
[Comparative Examples 8 to 10]
As component (C), instead of melamine polyphosphate having a polymerization degree of 10 (melapur200 (registered trademark), manufactured by DSM), melamine polyphosphate having a polymerization degree of 2.6 (MPP-A, manufactured by Sanwa Chemical Co., Ltd.) A laminated body of a cured resin composition, a cured film, and a copper foil with a resin was prepared in the same manner as in Examples 15 to 17 except that was used, and the laminated body after flammability test, glass transition temperature, and water immersion The weight loss was measured. The measurement results of these comparative examples 8 to 10 are summarized in Table 11.
[Table 11]
Figure 0004007911
That is, even in a laminate of a cured resin composition, a cured film, and a resin-coated copper foil that does not contain glass cloth, melamine polyphosphate having a polymerization degree of 2.6 maintains V-0 while maintaining heat resistance. However, the weight loss of the laminate after being immersed in water at 25 ° C. for 24 hours was 0.2% and could not be put to practical use.
[0046]
[Comparative Examples 11-15]
Example 1 except that the addition part of the component (C), melamine polyphosphate having a polymerization degree of 10 (melapur 200 (registered trademark), manufactured by DSM) or HCA-allyl synthesized in Example 18 was changed to 5 parts. A curable composite material and a laminate were prepared in the same manner as in -5 and subjected to a flammability test. As a result, all were combusted (Table 12). Here, combustion means that V-0 was not reached.
[Table 12]
Figure 0004007911
That is, even when a melamine polyphosphate having a polymerization degree of 3 or more or a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative having a reactive substituent is used as the component (C), However, when the amount was less than 10 parts with respect to 100 parts by weight of the total amount of the component (A) and the component (B), sufficient flame retardancy was not exhibited.
[0047]
[Comparative Examples 16 to 17]
Example 2 except that the component (C), melamine polyphosphate having a polymerization degree of 10 (melapur200 (registered trademark), manufactured by DSM) or HCA-allyl synthesized in Example 18 was changed to 85 parts. When a curable composite material and a laminate were prepared in the same manner as described above and subjected to a flammability test, the varnish viscosity of the curable resin composition was too high to impregnate (Table 13).
[Table 13]
Figure 0004007911
That is, even when a melamine polyphosphate having a polymerization degree of 3 or more or a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative having a reactive substituent is used as the component (C), When the amount exceeds 80 parts with respect to 100 parts by weight of the total amount of component (A) and component (B), the varnish viscosity of the curable resin composition becomes too high to impregnate the substrate. It was.
[0048]
[Comparative Examples 18-20]
The cured resin composition was the same as in Examples 15 to 17 except that the number of additions of the component (C), melamine polyphosphate having a polymerization degree of 10 (melapur200 (registered trademark), manufactured by DSM) was changed to 5 parts. When the laminated body of the thing, the cured film, and the copper foil with resin was produced and the flammability test was done, the cured resin composition, the cured film, and the laminated body all burned (Table 14). Here, combustion means that V-0 was not reached.
[Table 14]
Figure 0004007911
That is, in a laminate of a cured resin composition, a cured film, and a resin-coated copper foil that does not contain glass cloth, even if melamine polyphosphate having a degree of polymerization of 3 or more is used, the number of added parts is (A) and (B ) When the total amount of the components was less than 10 parts by weight relative to 100 parts by weight, sufficient flame retardancy was not exhibited.
[0049]
【The invention's effect】
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a curable resin composition that is free from halogen but maintains the heat resistance characteristic of polyphenylene ether resin and has sufficient flame retardancy (for example, V-0 in UL94 test). It becomes.

Claims (11)

(A)成分としてポリフェニレンエーテル系樹脂、(B)成分としてジアリルフタレート、ジビニルベンゼン、多官能性アクリロイル化合物、多官能性メタクリロイル化合物、多官能性イソシアネート、多官能性マレイミド、不飽和ポリエステル、トリアリルイソシアヌレート、トリアリルシアヌレートからなる多官能性不飽和結合含有化合物及びエポキシ樹脂から選ばれる少なくとも1種以上の架橋剤、(C)成分として重合度3以上のポリリン酸メラミンおよび下記式(1)で示される9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体からなる群から選ばれる1種以上のリン化合物を含有し、該(A)成分および該(B)成分の合計量100重量部に対し、該(A)成分が10〜98重量部、該(B)成分が90〜2重量部、該(C)成分が10〜80重量部の割合で含まれる、硬化性樹脂組成物。
Figure 0004007911
(ここで、R1は、ビニル基、アリル基、メタリル基または1−ブテニル基であり、R2およびR3は、水素原子またはC1〜C6の炭化水素基から独立に選択される
(A) Polyphenylene ether resin as component (B) Diallyl phthalate, divinylbenzene, polyfunctional acryloyl compound, polyfunctional methacryloyl compound, polyfunctional isocyanate, polyfunctional maleimide, unsaturated polyester, triallyl isocyan as component (B) At least one crosslinking agent selected from a polyfunctional unsaturated bond-containing compound consisting of nurate, triallyl cyanurate and an epoxy resin , (C) melamine polyphosphate having a polymerization degree of 3 or more as a component, and the following formula (1) indicated Ru 9, 10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide one or more phosphorus compounds selected from the group consisting of derivatives, containing, the (a) component and the (B) the total amount 100 parts by weight of the component, the component (a) 10 to 98 parts by weight The component (B) 90-2 parts by weight, the component (C) is contained in a proportion of 10 to 80 parts by weight, the curable resin composition.
Figure 0004007911
(Here, R 1 is a vinyl group, an allyl group, a methallyl group, or a 1-butenyl group, and R 2 and R 3 are independently selected from a hydrogen atom or a C 1 -C 6 hydrocarbon group . )
前記(C)成分のリン化合物が、重合度3以上のポリリン酸メラミンである、請求項1記載の硬化性樹脂組成物。The curable resin composition according to claim 1, wherein the phosphorus compound of component (C) is melamine polyphosphate having a degree of polymerization of 3 or more. 前記(C)成分のリン化合物が、下記式(1)で示される9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体である、請求項1記載の硬化性樹脂組成物。
Figure 0004007911
(ここで、R1は、ビニル基、アリル基、メタリル基または1−ブテニル基であり、R2およびR3は、水素原子またはC1〜C6の炭化水素基から独立に選択される。)
Wherein (C) the phosphorus compound components were Ru 9 represented by the following formula (1), a 10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide derivatives, curable resin according to claim 1, wherein Composition.
Figure 0004007911
(Here, R 1 is a vinyl group, an allyl group, a methallyl group, or a 1-butenyl group, and R 2 and R 3 are independently selected from a hydrogen atom or a C 1 -C 6 hydrocarbon group. )
前記(B)成分架橋剤がエポキシ樹脂である、請求項1または2に記載の硬化性樹脂組成物。The curable resin composition according to claim 1, wherein the component (B) crosslinking agent is an epoxy resin. 前記(A)成分のポリフェニレンエーテル系樹脂が、i)不飽和基を含むポリフェニレンエーテル樹脂、および/またはii)ポリフェニレンエーテル樹脂と不飽和カルボン酸および/または酸無水物との反応生成物である、請求項1〜4のいずれか1項に記載の硬化性樹脂組成物。 The polyphenylene ether resin of the component (A) is a reaction product of i) a polyphenylene ether resin containing an unsaturated group, and / or ii) a polyphenylene ether resin and an unsaturated carboxylic acid and / or acid anhydride. The curable resin composition of any one of Claims 1-4 . フィルム形状を有する請求項1〜5のいずれか1項に記載の硬化性樹脂組成物。The curable resin composition according to any one of claims 1 to 5 , which has a film shape. 請求項1〜6のいずれか1項に記載の硬化性樹脂組成物を硬化して得られた硬化樹脂組成物。The cured resin composition obtained by hardening | curing the curable resin composition of any one of Claims 1-6 . 請求項1〜6のいずれか1項に記載の硬化性樹脂組成物と基材からなる硬化性複合材料であって、基材を5〜90重量%の割合で含有することを特徴とする硬化性複合材料。A curable composite material comprising the curable resin composition according to any one of claims 1 to 6 and a base material, wherein the base material is contained in a proportion of 5 to 90% by weight. Composite material. 請求項記載の硬化性複合材料を硬化して得られた硬化複合材料。A cured composite material obtained by curing the curable composite material according to claim 8 . 請求項記載の硬化複合材料と金属箔からなる積層体。A laminate comprising the cured composite material according to claim 9 and a metal foil. 金属箔と該金属箔の片面に形成された請求項1〜5のいずれか1項に記載の硬化性樹脂組成物の膜からなる樹脂付き金属箔。Metal foil with resin which consists of a film | membrane of the curable resin composition of any one of Claims 1-5 formed in the single side | surface of metal foil and this metal foil.
JP2002524003A 2000-08-30 2000-08-30 Curable resin composition Expired - Lifetime JP4007911B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/005883 WO2002018493A1 (en) 2000-08-30 2000-08-30 Curable resin composition

Publications (1)

Publication Number Publication Date
JP4007911B2 true JP4007911B2 (en) 2007-11-14

Family

ID=11736411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002524003A Expired - Lifetime JP4007911B2 (en) 2000-08-30 2000-08-30 Curable resin composition

Country Status (3)

Country Link
JP (1) JP4007911B2 (en)
CN (1) CN1239615C (en)
WO (1) WO2002018493A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7413791B2 (en) 2003-01-28 2008-08-19 Matsushita Electric Works, Ltd. Poly (phenylene ether) resin composition, prepreg, and laminated sheet
JP3923441B2 (en) 2003-03-25 2007-05-30 三光株式会社 Flame retardant synthetic resin composition
WO2004111121A1 (en) * 2003-06-12 2004-12-23 Fuji Electric Holdings Co., Ltd. Reactive flame retardants and flame-retarded resin products
JP4189003B2 (en) * 2003-10-03 2008-12-03 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Flame retardant thermosetting composition, method and product
US7488766B2 (en) 2005-10-06 2009-02-10 Sabic Innovative Plastics Ip B.V. Polymer composition, method, and article
US7495047B2 (en) 2005-10-06 2009-02-24 At&T Intellectual Property, I, L.P. Poly(arylene ether) composition, method, and article
CN101679720B (en) * 2008-04-09 2013-10-09 住友电气工业株式会社 Flame-retardant tube and heat-shrinkable tube made by using the same
JP5165639B2 (en) * 2009-05-26 2013-03-21 パナソニック株式会社 Polyphenylene ether resin composition, prepreg, metal-clad laminate, and printed wiring board
DE102010035103A1 (en) * 2010-08-23 2012-02-23 Catena Additives Gmbh & Co. Kg Flame retardant compositions containing triazine-intercalated metal phosphates
JP6219112B2 (en) * 2013-09-27 2017-10-25 旭化成株式会社 PPE-containing resin composition
KR101751659B1 (en) * 2013-11-20 2017-06-27 아사히 가세이 가부시키가이샤 Cured product of polyphenylene ether-containing resin composition
DE102014014098A1 (en) 2014-09-30 2016-03-31 Mankiewicz Gebr. & Co. Gmbh & Co. Kg Barrier layer and its use in coating systems on plastic substrates
DE102017215780A1 (en) * 2017-09-07 2019-03-07 Clariant Plastics & Coatings Ltd Synergistic flame retardant combinations for polymer compositions and their use
WO2019084532A1 (en) * 2017-10-27 2019-05-02 Frx Polymers, Inc. Phosphonate based halogen-free compositions for printed circuit board applications
JPWO2020096036A1 (en) * 2018-11-08 2021-10-21 昭和電工マテリアルズ株式会社 Resin composition, prepreg, laminated board, resin film, multi-layer printed wiring board and multi-layer printed wiring board for millimeter-wave radar

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157451A (en) * 1989-11-15 1991-07-05 Asahi Chem Ind Co Ltd Resin composition
JPH03185058A (en) * 1989-12-14 1991-08-13 Asahi Chem Ind Co Ltd Thermoplastic resin composition
JPH04370134A (en) * 1991-06-19 1992-12-22 Asahi Chem Ind Co Ltd Halogen-free flame-retarding resin composition
JP2000248169A (en) * 1999-03-01 2000-09-12 Asahi Chem Ind Co Ltd Flame-retardant, curable resin composition
JP2000290490A (en) * 1999-04-01 2000-10-17 Asahi Chem Ind Co Ltd Flame retardant curable resin composition
JP2000336261A (en) * 1999-03-24 2000-12-05 Asahi Chem Ind Co Ltd Curable resin composition
JP2001181371A (en) * 1999-12-27 2001-07-03 Toshiba Chem Corp Build-up type multilayer printed circuit board, resin composition therefor, and resin film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900768A (en) * 1983-08-23 1990-02-13 General Electric Company Crosslinkable flame retardant composition of polyphenylene ether and elastomers
JPH0726014B2 (en) * 1989-03-08 1995-03-22 旭化成工業株式会社 Flame retardant resin composition
JPH03275761A (en) * 1990-03-26 1991-12-06 Matsushita Electric Works Ltd Polyphenylene oxide resin composition and metal-plated laminate board
JPH04117452A (en) * 1990-09-06 1992-04-17 Mitsubishi Kasei Polytec Co Polyphenylene ether resin composition
DE4130488A1 (en) * 1991-09-13 1993-03-18 Bayer Ag New phosphorus-contg. thermoplastic polymers of vinyl] cpds. used for mouldings with improved flame resistance - prepd. by polymerisation in presence of 9,10-di:hydro-9-oxa-10-phospha-phenanthrene-10-oxide as mol. wt. regulator
JPH07316415A (en) * 1994-05-23 1995-12-05 Sumitomo Bakelite Co Ltd Flame-retardant polyphenylene ether resin composition and production thereof
JPH08176450A (en) * 1994-12-21 1996-07-09 Sumitomo Bakelite Co Ltd Thermoplastic resin composition
JP2000129263A (en) * 1998-10-27 2000-05-09 Rin Kagaku Kogyo Kk Low-smoke-generation flame retardant composition and low-smoke-generation flame-retardant resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157451A (en) * 1989-11-15 1991-07-05 Asahi Chem Ind Co Ltd Resin composition
JPH03185058A (en) * 1989-12-14 1991-08-13 Asahi Chem Ind Co Ltd Thermoplastic resin composition
JPH04370134A (en) * 1991-06-19 1992-12-22 Asahi Chem Ind Co Ltd Halogen-free flame-retarding resin composition
JP2000248169A (en) * 1999-03-01 2000-09-12 Asahi Chem Ind Co Ltd Flame-retardant, curable resin composition
JP2000336261A (en) * 1999-03-24 2000-12-05 Asahi Chem Ind Co Ltd Curable resin composition
JP2000290490A (en) * 1999-04-01 2000-10-17 Asahi Chem Ind Co Ltd Flame retardant curable resin composition
JP2001181371A (en) * 1999-12-27 2001-07-03 Toshiba Chem Corp Build-up type multilayer printed circuit board, resin composition therefor, and resin film

Also Published As

Publication number Publication date
CN1239615C (en) 2006-02-01
WO2002018493A1 (en) 2002-03-07
CN1454240A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP2000336261A (en) Curable resin composition
JP4007911B2 (en) Curable resin composition
JP5264133B2 (en) Epoxy resin composition, prepreg and metal-clad laminate using the epoxy resin composition
WO1999042523A1 (en) Thermosetting polyphenylene ether resin composition, cured resin composition obtained therefrom, and laminated structure
WO2011132408A1 (en) Epoxy resin composition, prepreg, metal-clad laminate, and printed wiring board
JP2006131743A (en) Thermosetting resin composition and prepreg and metal-clad laminate and printed wiring board using the same
JP2004175925A (en) Prepreg and laminate
JP2003128909A (en) Flame-retardant thermosetting resin composition
JP2003231762A (en) Prepreg and laminated sheet
JP2002308948A (en) Curable resin composition
JP2000290490A (en) Flame retardant curable resin composition
JP2002194119A (en) Prepreg and metal foil clad laminated plate
JP2001019844A (en) Curable polyphenylene ether resin composition
JP2002309257A (en) Surface-crosslinked melamine polyphosphate flame retardant
JPH08239567A (en) New curable polyphenylene ether resin composition and composite material and laminated material produced by using the composition
JP5909693B2 (en) High heat resistant epoxy resin composition, prepreg, metal-clad laminate and printed wiring board
JPH0476019A (en) Curable polyphenylene ether/epoxy resin composition
JPH0632875A (en) New curable polyphenylene ether-epoxy resin composition
JP2002129006A (en) Curable resin composition
JP2000290474A (en) Flame resistant hardenable resin composition
JP3221951B2 (en) Manufacturing method of prepreg
JPH04239017A (en) Curable resin composition, and composite material and laminate prepared by using same
JP2000248169A (en) Flame-retardant, curable resin composition
JP2000248168A (en) Flame-retardant and curable resin composition
JP2000273298A (en) Flame-retardant, hardening resin composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4007911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term