JP4002213B2 - Shape memory alloy material having high shape recoverability and high transformation temperature and method for producing the same - Google Patents

Shape memory alloy material having high shape recoverability and high transformation temperature and method for producing the same Download PDF

Info

Publication number
JP4002213B2
JP4002213B2 JP2003161757A JP2003161757A JP4002213B2 JP 4002213 B2 JP4002213 B2 JP 4002213B2 JP 2003161757 A JP2003161757 A JP 2003161757A JP 2003161757 A JP2003161757 A JP 2003161757A JP 4002213 B2 JP4002213 B2 JP 4002213B2
Authority
JP
Japan
Prior art keywords
shape memory
temperature
shape
alloy material
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003161757A
Other languages
Japanese (ja)
Other versions
JP2004360033A (en
Inventor
真人 浅井
宏 堀川
豊延 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Techno Material Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Techno Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Techno Material Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2003161757A priority Critical patent/JP4002213B2/en
Publication of JP2004360033A publication Critical patent/JP2004360033A/en
Application granted granted Critical
Publication of JP4002213B2 publication Critical patent/JP4002213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マルテンサイト逆変態終了温度(以下Af温度と略す)が100℃以上、且つ温度を駆動源とする形状記憶効果または外力を駆動源とする超弾性における完全に回復する形状回復伸び量が、2%以上の形状記憶合金材およびその製造方法に関するものである。
【0002】
【従来技術】
Ni−Ti系の形状記憶合金は、熱弾性型マルテンサイト変態により形状記憶効果および超弾性を示す。この熱弾性型マルテンサイト変態は、マルテサイト変態開始温度(以下Ms温度と略す)、マルテンサイト変態終了温度(以下Mf温度と略す)、マルテンサイト逆変態開始温度(以下As温度と略す)、そして前記Af温度の4つの変態温度により、形状記憶合金の利用を支配しているが、良好な形状回復性を示し、且つ変態温度が100℃以上のNi−Ti系の形状記憶合金はなく、形状記憶合金の需要拡大の壁となっている。
【0003】
100℃以上の変態温度の実現には、第3元素の添加による方法が提案されていて、(1)Pd元素の添加、(2)Hf元素、Zr元素の添加(例えば特許文献1、2、3、4参照)が知られている。
【0004】
前記(2)の特許文献1では、変態温度に対する合金組成の影響が示されているが、それは鋳塊の変態温度であり、実際に使用される冷間加工材を形状記憶熱処理した材料の変態温度とは異なる。更に、当業者が実施可能な製造法についての開示がない。
【0005】
一方、特許文献2では、Ni−Ti−Hf合金に関する変態温度の変化(例えば図1、図2、図4、図5)、硬さの変化(例えば図3)、引張強度の変化(例えば図6)が述べられている。また、Zr元素を8mol%まで含有した時のNi−Ti−Zr合金の変態温度挙動(例えば図7)が示されている。更に、1回の減面率が15%以下の熱間加工によるNi−Ti−Hf合金の製造方法が開示されている。
【0006】
特許文献3では、冷間加工を容易にするためにBの添加を行い、B元素未添加のNi−Ti−Zr合金は、熱間鍛造プレス中に割れを生じているが、B元素を含有したNi−Ti−Zr−B合金は、熱間鍛造プレスで割れを発生することなく、線径1mmの線材が得られている。
【0007】
特許文献4では、Ni−Ti−Zr合金を軟鋼で被覆することで、その熱間加工性を向上させているが、無被覆の場合には、熱間による据え込み鍛造法では割れを生じてしまうとある。
【0008】
【特許文献1】
特開平3−72046号公報
【特許文献2】
特開平5−43969号公報
【特許文献3】
特開平10−8168号公報
【特許文献4】
特開平10−36952号公報
【非特許文献1】
舟久保煕康編、「形状記憶合金」、初版、産業図書株式会社、1984年6月7日、P.158
【0009】
【発明が解決しようとする課題】
特許文献1〜4で示される前記従来技術では、本発明に係る合金の成分組成と重複する範囲で、Af温度が100℃以上となることが示されている。
しかしながら、形状記憶合金を工業上利用する場合、温度を駆動源とする形状記憶効果と外力を駆動源とする超弾性の両形状回復性が、工業上の利用レベルで得られるのかどうかが重要となるが、特許文献1〜4では、前記形状回復性が、全く判らないという問題がある。特に、具体的な製造条件により合金を作製している特許文献2では、形状回復性の開示が期待されるが、応力とひずみの関係が示されているだけで、形状回復性に関しては明らかでない。
【0010】
ところで、形状記憶効果および超弾性の両形状回復性が成分組成と製造方法の両者、特に製造方法に大きく依存していることはよく知られている。特に良好な形状回復性を得るには、合金がすべり変形をし難いように、すべり変形に対する高い臨界応力を有することが必要である。
【0011】
そこで、本発明は前記形状回復性が欠如している100℃以上のAf温度を有するNi−Ti−Zr合金またはNi−Ti−Zf−Hf合金において、その形状回復性を体現化し、工業上の利用において有用な形状記憶合金材とその製造方法の提供を目的とする。
具体的には、工業上の利用レベルにある2%以上の完全に回復する形状回復伸び量を示す形状記憶効果または超弾性を有し、且つ100℃以上のAf温度を示す高形状回復性および高変態温度を有する形状記憶合金材およびその製造方法である。
【0012】
【課題が解決するための手段】
請求項1記載の発明は、Niを49.5〜50.25mol%、Zrを8〜20mol%含み、残部Tiと不可避不純物とからなる形状記憶合金であって、形状記憶効果または超弾性における完全に回復する形状回復伸び量が2%以上、且つマルテンサイト逆変態終了温度が100℃以上の高形状回復性および高変態温度を有する形状記憶合金材である。
【0013】
請求項2記載の発明は、Niを49.5〜50.25mol%、Zrを8〜20mol%含み、Hfを0.1mol%未満含み、残部Tiと不可避不純物とからなる形状記憶合金であって、形状記憶効果または超弾性における完全に回復する形状回復伸び量が2%以上、且つマルテンサイト逆変態終了温度が100℃以上の高形状回復性および高変態温度を有する形状記憶合金材である。
【0014】
請求項3記載の発明は、Ni−Ti系合金に、熱間加工、冷間加工(中間焼鈍を含む)、形状記憶熱処理を施す形状記憶合金材の製造方法において、前記熱間加工を第1と第2に分けて行い、前記第1の熱間加工を押出し法により880℃〜1030℃の温度で、少なくとも1回以上、累積減面率が40%以上で行い、引き続き第2の熱間加工を600℃〜830℃の温度で行うことを特徴とする請求項1または請求項2記載の高形状回復性および高変態温度を有する形状記憶合金材の製造方法である。
【0015】
請求項4記載の発明は、Ni−Ti系合金に、熱間加工、冷間加工(中間焼鈍を含む)、形状記憶熱処理を施す形状記憶合金材の製造方法において、前記熱間加工を第1と第2に分けて行い、前記第1の熱間加工を押出し法により880℃〜1030℃の温度で、少なくとも1回以上、累積減面率が40%以上で行い、その後、冷却して常温近辺に保持した後、600℃〜830℃に加熱して第2の熱間加工を行うことを特徴とする請求項1または請求項2記載の高形状回復性および高変態温度を有する形状記憶合金材の製造方法である。
【0016】
請求項5記載の発明は、Ni−Ti系合金に、熱間加工、冷間加工(中間焼鈍を含む)、形状記憶処理を施す形状記憶合金材の製造方法において、前記冷間加工(中間焼鈍を含む)が、中間焼鈍と常温状態での加工による減面処理からなり、前記中間焼鈍は、温度と時間の関係が(a)680℃×10分、(b)680℃×180分、(c)820℃×30分、(d)820℃×2分の4条件を、(a)、(b)、(c)、(d)の順に結んでできる温度―時間平面の平行四辺形の範囲内(線上または内側)の温度・保持時間に相当する組み合わせの条件で行われ、前記中間焼鈍後、1回の加工率が7〜15%前記中間焼鈍後、1回の加工率が7〜15%、且つ、中間焼鈍間の累積加工率を20〜40%で減面処理することを特徴とする請求項1または請求項2記載の高形状回復性および高変態温度を有する形状記憶合金材の製造方法である。
【0017】
請求項6記載の発明は、Ni−Ti系合金に、熱間加工、冷間加工(中間焼鈍を含む)、形状記憶処理を施す形状記憶合金材の製造方法において、前記形状記憶処理は仕上げ冷間加工とそれに続く熱処理からなり、前記仕上げ冷間加工を累積減面率で25%以上、1パスあたりの減面率で7%〜15%の範囲で行い、次いで、550℃〜820℃の温度で、5分〜120分間熱処理することを特徴とする請求項1または請求項2記載の高形状回復性および高変態温度を有する形状記憶合金材の製造方法である。
【0018】
【発明の実施の形態】
本発明に係る合金材及びその製造方法について、以下に、その実施の形態を説明する。
先ず、本発明において、完全に回復する形状回復伸び量を2%以上に規定した根拠は、形状記憶合金が変形する場合、形状記憶効果では線形の可逆挙動を示す変形は、伸び量で1%未満であり、超弾性の場合では線形の可逆挙動を示す変形は、伸び量で1〜1.5%(例えば非特許文献1を参照)である。即ち、非線形の可逆挙動である形状記憶効果や超弾性を工業上で利用する場合、前記線形の可逆挙動を示す伸び量より大きい形状回復性が要求されることになる。そこで、工業上の利用レベルとして完全に回復する形状回復伸び量を2%以上とした。
【0019】
次に、100℃以上のAf温度を有し、良好な形状回復性を得て、更に容易に製造するために、Niは49.5〜50.25mol%、Zrは8〜20mol%とした。
Niが49.5mol%未満では、Af温度の上昇には殆ど寄与せず、Niに対するTiの比率をいたずらに増加させることで、加工性を極めて低下させてしまう。50.25mol%を超えての含有は、Zr含有にもかかわらず、Af温度を100℃以上にできず、逆に大きく低下させてしまうために限定したものである。
【0020】
Zrが8mol%未満では、100℃以上のAf温度が安定して得られなくなり、20mol%を超えると、溶解鋳造性や加工性が低下し、健全な合金材が得られなくなるためである。
【0021】
ところで、ZrとHfは原子周期律上、同じ第2族に属しており、Zr原料からHfを完全に分離することは難しく、一般のZr原料中には、1〜2mass%のHfを含んでいる。そのため本発明では、形状記憶合金をHfの少ないZr原料を選別して製造するが、Hfの含有量が0.1mol%以上になるとAf温度の制御が難しくなるために0.1mol%未満が望ましい。
【0022】
本発明に係る製造方法は、前記組成のNi−Ti−Zr合金またはNi−Ti−Zr−Hf合金が、2%以上の完全に回復する形状回復伸び量を有するには、前記合金鋳塊を高温下で十分に加工することが必要であることを見出しなされたものである。
【0023】
この高温下での加工(熱間加工)は、冷間加工および形状回復性に悪影響を与える鋳塊組織を消滅させるために行うが、当該成分組成の合金鋳塊は応力に対する異方性が強いため、その加工法として、特に第1の熱間加工では断面が全方向に拘束される押出し法が適している。
【0024】
本発明において第1の熱間加工を880℃〜1030℃に加熱保持した後に、押出し法により、少なくとも1回以上、累積減面率が40%以上で加工する理由を次に述べる。
880℃未満では、加工に要する力が過大となり加工装置の破損を招く恐れがあると共に十分に鋳塊組織を壊すことができず、良好な加工性と特性を示す材料が得られない。1030℃を超えると、加工は容易になるが表面酸化の影響が極めて大きくなり、次に行う第2の熱間加工時や冷間加工時に材料破断の基点となりやすくなる上、場合によっては一部溶解現象が起こり、本熱間加工時に割れが生じ、加工不能となるからである。
【0025】
累積減面率を40%以上に限定した理由は、40%未満の累積減面率では、十分に鋳塊組織を変化させて加工組織化することができず、次工程以下で割れや形状の制御が不十分となり、良好な特性を持つ材料が作製できないためである。なお、累積減面率が80%を超えてくると加工がし難くなるために、累積加工率は、50%から80%の間が望ましい。
【0026】
なお、拘束面が上下面に限定される鍛造法および緩い拘束下で加工速度の速い圧延法などの加工法では、加工初期に割れを生じて加工不能となる。又、特許文献2に記載の鋳塊の熱間加工法である5〜15%程度の小さい減面率で、加熱と熱間加工を繰り返し行い、鋳塊を薄くしていく方法では、鋳塊厚さを減ずることは可能であるが、鋳塊組織を均質な加工組織化することは難しく、良好な形状回復性が得られない。更に、繰り返し行われる高温の熱処理によって、合金表面に脆い酸化層が厚く形成して、以降の工程での加工割れを誘引する結果となる。
【0027】
前記第1の熱間加工を行った合金材は、次に、第2の熱間加工により細径化または薄板化を進めるが、前記第2の熱間加工は第1の熱間加工に続けても、また一旦合金材を冷却してから再度加熱して行ってもよく、本発明の範囲内においては、その加工性にあまり変化はなく、いずれも良好な特性を持つ合金材を得ることができる。なお、第1、第2の熱間加工を続けて行うと生産性の向上および熱エネルギーの低減がはかれる。
【0028】
第2の熱間加工を600〜830℃に限定する理由は、前記範囲外の低い温度では、変形抵抗が大きくなり、割れの発生や所定の減面率が得られず、生産性の低下を招いてしまう。高い場合には、加工時に合金材内部の温度が上昇し、中心部から割れる芯割れが発生するためである。
前記第2の熱間加工における1回の加工における減面率は、7%以上、望ましくは、10〜30%の減面率がよい。
【0029】
次に、前記第1、第2の熱間加工を施した合金材は、中間焼鈍を含む冷間加工で減面処理することで、所定寸法への加工および良好な形状回復性を有するための組織の均質化が行われる。
前記中間焼鈍は焼鈍温度と時間との関係が、(a)680℃×10分、(b)680℃×180分、(c)820℃×30分、(d)820℃×2分で囲まれた範囲内の条件で焼鈍するのが良い。
【0030】
前記冷間加工における1パスあたりの減面率を7%〜15%としたのは、7%未満では、中心部まで十分に加工されず異方性の大きな材料となって、加工時の破断の原因となり、また良好な形状が得られない。1パスあたりの減面率が15%を超えると割れが発生する。従って、7%から15%の範囲の減面率がよい。中間焼鈍間の累積減面率を20%〜45%に限定する理由は、20%未満では、いたずらに焼鈍回数が増えるばかりで生産性があがらず、コスト上昇の一因ともなり、45%を超えると加工が難しくなり、1パスあたりの減面率が7%未満になり割れが発生してくるからである。
なお、前記冷間加工に鋳塊のAf温度より10〜30℃高い温度に加熱された合金材を用いると累積減面率を高くすることができ、効率のよい加工ができる。
【0031】
前記中間焼鈍は冷間加工による合金材の異方性を少なくし、材料全体を均質な軟質体として提供するものであるが、前記範囲外で焼鈍すると不均質になったり、表面が過剰に酸化されたりすることで、次の冷間加工において、少ない減面率で破断や割れを生じてしまう。
【0032】
前記第2の熱間加工後に、以降の工程において表面欠陥や加工破断の原因となる表面に形成された高温で生成された酸化層(以下、高温酸化層と略す)を表面処理によって除去することが望ましい。通常、酸を用いた酸洗処理で行うが、機械研磨法などを用いてもよい。
しかしながら、前記高温酸化層を完全に除去し、合金地肌を曝すことは、次工程の冷間加工において摩擦係数を増大させて、表面の割れや破断を生じやすくし、冷間加工性を損なうことになるために、最表面に形成された高温酸化層を主として除去するものである。
なお、表面清浄工程は、健全な表面性状を作り出すために、中間焼鈍を含む冷間加工による減面処理中にも適時行うことができる。この場合も、前記高温酸化層の時と同様に表面に形成された脆弱な表面酸化層のみを除去することが望ましい。
【0033】
次に、先に述べた高温下での十分な加工と併せて本発明に係る形状回復性を具現化するのに必要な仕上げ冷間加工と熱処理からなる形状記憶処理について述べる。
【0034】
前記工程を経てきた本発明合金材において、仕上げ冷間加工における累積減面率は少なくとも25%以上、望ましくは30%以上の累積減面率で加工するのがよい。累積減面率が小さい加工では、次の熱処理後にすべり変形に対して充分な抵抗力を得ることができず、外力に対して容易にすべり変形を生じて形状回復性を示さなくなる。
1パスあたりの減面率は7%〜15%の範囲で加工することが望ましい。7%未満では、中心部まで十分な加工が施されず異方性の大きな材料となり、加工時の破断の原因となったり、良好な形状が得られなかったりする。1パスあたりの減面率が15%を超えると割れが発生し易くなる。
【0035】
前記仕上げ冷間加工後に行う熱処理は、550℃〜820℃の温度で、且つ、5分〜120分間の熱処理を行うことで、先の仕上げ冷間加工と相まって完全に回復する形状回復伸び量が2%以上である形状記憶効果および超弾性をもたらすが、熱処理温度が低い場合や熱処理時間が短い場合には、完全な形状記憶効果及び超弾性を示さない。更に、過剰に施された場合には、再結晶が起こり、容易にすべり変形して形状記憶効果および超弾性を示さなくなる。
【0036】
なお、溶解鋳造工程は、従来のNiTi系形状記憶合金と同様に、真空または不活性雰囲気下の黒鉛坩堝中で溶解鋳造することが望ましい。TiとNiの反応によって生じる反応熱によってZr元素が溶解できるようにNi原料、Ti原料、Zr原料の順に黒鉛坩堝中に配置する。
【0037】
【実施例】
以下に本発明を実施例により詳細に説明する。
(実施例1)
Niを49.5mol%、Zrを10.0mol%、Hfを0.07mol%含み、残部Tiと不可避不純物とからなる合金を秤量後、真空溶解鋳造炉内に設置された黒鉛坩堝内で溶解した後、水冷鋳型に鋳込んでφ38×L200mmの鋳塊を作製した。この鋳塊を、表1の本発明製造法のA〜Cに示した製造方法で加工し、累積減面率35%の仕上げ冷間加工を施して厚さ0.6mmの板材又は線径1mmの線材に仕上げた。なお、この工程中に表面清浄を目的とした化学腐食と機械研磨工程を適時行った。
次に、この線材および板材に、表2の形状記憶処理を行い、表2の本発明例1のNo.1〜No.4の合金材を作製した。そしてAf温度、形状記憶効果および超弾性を以下の方法で測定した。
Af温度は、DSCを用いて、温度範囲−50℃〜250℃、昇温速度及び降温速度を10℃/分として測定した。
形状記憶効果及び超弾性の測定は、JIS H7103−2002に基づいて行い、3%の引張伸びを与えた後に抜重したときの形状回復伸び量を測定した。
なお、形状記憶効果は25℃の測定温度で行い、抜重後、試料をAf温度以上に加熱して形状回復伸び量を測定した。超弾性の測定については、Af温度+20℃の恒温槽中で行った。
完全に回復した場合を「○」で記し、完全に回復しなかった場合には、回復しなかった伸び量を示した。
【0038】
(実施例2)
Niを50.25mol%、Zrを14.0mol%、Hfを0.3mol%含み、残部Tiと不可避不純物とからなる合金を用いた以外は、前記実施例1と同様に本発明製造法のA〜Cの製造方法で作製して、表2の本発明例2のNo.5〜No.8の合金材を得て、各特性を測定した。
【0039】
(実施例3)
前記実施例1と同じ合金を用いて、第1の熱間加工の加工条件を変えた本発明製造法のD、Eで作製して、表2の本発明例3のNo.9、No.10の合金材を得て、各特性を測定した。
【0040】
(実施例4)
表2の比較例のNo.11〜No.17は、前記実施例1と同じ合金を用いて、表1の比較製造法f〜lにより厚さ0.6mmの板材又は線径1mmの線材を作製し、表2に示す条件で形状記憶処理を行い、前記実施例1と同じく各特性を測定した。
実施例1、2,3、4の測定結果を表2に記した。
【0041】
【表1】

Figure 0004002213
【0042】
【表2】
Figure 0004002213
【0043】
表2から明らかなように、本発明例1、2、3のNo.1〜No.10は、100℃以上のAf温度を示すと共に、2%以上の完全に回復する形状回復伸び量を有する形状記憶効果および超弾性の両形状回復性を示すことが判る。
図1(a)に、表2の本発明例1のNo.2の形状記憶効果を示す測定結果を示し、図1(b)に、超弾性の測定結果を示す。
【0044】
仕上げ冷間加工の累積減面率が15%と小さい以外は、表2の本発明例1のNo.2と同じく作製した表2の比較例のNo.11では、100℃以上のAf温度は得られたが、完全な形状回復性を得ることはできなかった。
【0045】
第2の熱間加工の加工温度が、850℃と高い表2の比較例のNo.12は、この第2の熱間加工で芯割れが発生してしまい、以降の工程に進めなかった。
【0046】
第1の熱間加工の加工温度が、850℃と低い表2の比較例のNo.13では、鋳塊熱間押出し力が過重となり金型を壊してしまった。
【0047】
表2の比較例のNo.14では、中間の焼鈍温度が低かったために、焼鈍後の冷間加工中に合金材が破断してしまい合金材が作製できなかった
【0048】
中間加工において、1パスごとの減面率が5%と小さい表2の比較例のNo.15では、表面のみが硬化してしまい、加工途中で合金材が蛇行したり、破断したりして合金材を作製できなかった。
【0049】
熱間加工後に、表面の高温酸化層を除去しなかった表2の比較例のNo.16では、冷間加工中に破断を頻発してしまい合金材が作製できなかった。
【0050】
第1の熱間加工に、熱間圧延を用いた表2の比較例のNo.17では、熱間圧延中に側端に割れが発生し、それが圧延毎に成長してしまい、健全な熱間加工材を得られなかった。
【0051】
【発明の効果】
以上に説明したように、本発明に係る形状記憶合金材は、100℃以上のAf温度を示し、且つ2%以上の工業上利用可能なレベルの形状回復伸び量を有し、しかも前記形状記憶合金材は、製造条件を規定することにより容易に製造することができる。従って、工業上顕著な効果を奏する。
【図面の簡単な説明】
【図1】(a)本発明例1のNo.2の形状記憶効果を示す応力−ひずみ曲線
(b)本発明例1のNo.2の超弾性を示す応力−ひずみ曲線[0001]
BACKGROUND OF THE INVENTION
The present invention provides a shape recovery elongation that completely recovers in the shape memory effect or superelasticity that uses external force as the driving force, and the martensite reverse transformation end temperature (hereinafter referred to as Af temperature) is 100 ° C. or higher. However, it relates to a shape memory alloy material of 2% or more and a manufacturing method thereof.
[0002]
[Prior art]
The Ni—Ti-based shape memory alloy exhibits a shape memory effect and superelasticity due to thermoelastic martensitic transformation. The thermoelastic martensitic transformation includes martensite transformation start temperature (hereinafter abbreviated as Ms temperature), martensite transformation end temperature (hereinafter abbreviated as Mf temperature), martensite reverse transformation start temperature (hereinafter abbreviated as As temperature), and The four transformation temperatures of the Af temperature dominate the use of the shape memory alloy, but there is no Ni—Ti shape memory alloy having a good shape recovery property and having a transformation temperature of 100 ° C. or higher. This is a barrier to increasing demand for memory alloys.
[0003]
In order to achieve a transformation temperature of 100 ° C. or higher, a method by adding a third element has been proposed. (1) Addition of Pd element, (2) Addition of Hf element and Zr element (for example, Patent Documents 1 and 2; 3 and 4) are known.
[0004]
In Patent Document 1 of (2) above, the influence of the alloy composition on the transformation temperature is shown. This is the transformation temperature of the ingot, and the transformation of the material obtained by shape memory heat treatment of the cold work material actually used. Different from temperature. Furthermore, there is no disclosure of manufacturing methods that can be performed by those skilled in the art.
[0005]
On the other hand, in Patent Document 2, a change in transformation temperature (for example, FIG. 1, FIG. 2, FIG. 5 and FIG. 5), a change in hardness (for example, FIG. 3), and a change in tensile strength (for example, FIG. 6) is stated. Moreover, the transformation temperature behavior (for example, FIG. 7) of the Ni—Ti—Zr alloy when Zr element is contained up to 8 mol% is shown. Furthermore, a method for producing a Ni—Ti—Hf alloy by hot working with a single area reduction of 15% or less is disclosed.
[0006]
In Patent Document 3, B is added to facilitate cold working, and the Ni-Ti-Zr alloy not added with B element is cracked during hot forging press, but contains B element. In the Ni—Ti—Zr—B alloy, a wire having a wire diameter of 1 mm is obtained without cracking in a hot forging press.
[0007]
In Patent Document 4, the hot workability is improved by coating the Ni—Ti—Zr alloy with mild steel, but in the case of no coating, cracking occurs in the hot upset forging method. There is.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-72046 [Patent Document 2]
JP-A-5-43969 [Patent Document 3]
Japanese Patent Laid-Open No. 10-8168 [Patent Document 4]
JP 10-36952 A [Non-Patent Document 1]
Edited by Funakubo Yasuyasu, “Shape Memory Alloy”, First Edition, Sangyo Tosho Co., Ltd., June 7, 1984, p. 158
[0009]
[Problems to be solved by the invention]
In the prior arts shown in Patent Documents 1 to 4, it is shown that the Af temperature is 100 ° C. or higher in a range overlapping with the component composition of the alloy according to the present invention.
However, when shape memory alloys are used industrially, it is important whether the shape memory effect using temperature as a drive source and the superelastic shape recovery using external force as a drive source can be obtained at an industrial use level. However, Patent Documents 1 to 4 have a problem that the shape recoverability is not known at all. In particular, Patent Document 2 in which an alloy is produced under specific manufacturing conditions is expected to disclose shape recovery, but only the relationship between stress and strain is shown, and shape recovery is not clear. .
[0010]
By the way, it is well known that both the shape memory effect and the superelastic shape recovery are highly dependent on both the component composition and the manufacturing method, particularly on the manufacturing method. In order to obtain a particularly good shape recovery property, it is necessary to have a high critical stress against slip deformation so that the alloy is difficult to slip.
[0011]
Therefore, the present invention embodies the shape recoverability in an Ni-Ti-Zr alloy or Ni-Ti-Zf-Hf alloy having an Af temperature of 100 ° C. or more that lacks the shape recoverability, An object of the present invention is to provide a shape memory alloy material useful in use and a method for producing the same.
Specifically, it has a shape memory effect or superelasticity showing a fully recovering shape recovery elongation amount of 2% or more at an industrial utilization level, and a high shape recovery property showing an Af temperature of 100 ° C. or higher. A shape memory alloy material having a high transformation temperature and a method for producing the same.
[0012]
[Means for solving the problems]
The invention described in claim 1 is a shape memory alloy comprising 49.5 to 50.25 mol% Ni and 8 to 20 mol% Zr, and the balance Ti and inevitable impurities, and is perfect in shape memory effect or superelasticity. A shape memory alloy material having a high shape recovery property and a high transformation temperature with a shape recovery elongation of 2% or more and a martensite reverse transformation end temperature of 100 ° C. or more.
[0013]
The invention according to claim 2 is a shape memory alloy comprising 49.5 to 50.25 mol% Ni, 8 to 20 mol% Zr, less than 0.1 mol% Hf, and the balance Ti and inevitable impurities. A shape memory alloy material having a high shape recovery property and a high transformation temperature having a shape recovery elongation of 2% or more and a martensite reverse transformation finish temperature of 100 ° C. or more.
[0014]
The invention according to claim 3 is a manufacturing method of a shape memory alloy material in which hot working, cold working (including intermediate annealing), and shape memory heat treatment are performed on a Ni—Ti based alloy. And the second hot working is carried out at a temperature of 880 ° C. to 1030 ° C. at least once and the cumulative area reduction is 40% or more by the extrusion method, and then the second hot working. 3. The method for producing a shape memory alloy material having a high shape recovery property and a high transformation temperature according to claim 1, wherein the processing is performed at a temperature of 600 ° C. to 830 ° C.
[0015]
According to a fourth aspect of the present invention, in the manufacturing method of a shape memory alloy material in which hot working, cold working (including intermediate annealing), and shape memory heat treatment are performed on a Ni-Ti alloy, the hot working is the first. And the first hot working is carried out at a temperature of 880 ° C. to 1030 ° C. at least once by an extrusion method at a cumulative area reduction of 40% or more, and then cooled to room temperature. 3. A shape memory alloy having high shape recoverability and high transformation temperature according to claim 1 or 2, wherein the second hot working is performed by heating to 600 ° C to 830 ° C after being held in the vicinity. It is a manufacturing method of material.
[0016]
The invention according to claim 5 is a method of manufacturing a shape memory alloy material in which a Ni—Ti alloy is subjected to hot working, cold working (including intermediate annealing), and shape memory treatment. Includes intermediate annealing and surface-reducing treatment by processing at room temperature, and the intermediate annealing has a relationship between temperature and time of (a) 680 ° C. × 10 minutes, (b) 680 ° C. × 180 minutes, ( c) A parallelogram of the temperature-time plane formed by connecting four conditions of 820 ° C. × 30 minutes and (d) 820 ° C. × 2 in the order of (a), (b), (c), (d) It is carried out under a combination of conditions corresponding to the temperature and holding time within the range (on the line or inside), and after the intermediate annealing, the single processing rate is 7 to 15%. After the intermediate annealing, the single processing rate is 7 to The surface reduction treatment is performed at 15%, and the cumulative processing rate during intermediate annealing is 20 to 40%. Or method for producing a shape memory alloy material having a high shape recovery and high transformation temperature according to claim 2, wherein.
[0017]
The invention according to claim 6 is a manufacturing method of a shape memory alloy material in which a Ni—Ti alloy is subjected to hot working, cold working (including intermediate annealing), and shape memory processing. The finish cold working is performed at a cumulative area reduction rate of 25% or more in a range of 7% to 15% in area reduction per pass, and then at 550 ° C to 820 ° C. The method for producing a shape memory alloy material having a high shape recovery property and a high transformation temperature according to claim 1, wherein the heat treatment is performed at a temperature for 5 minutes to 120 minutes.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the alloy material and the manufacturing method thereof according to the present invention will be described below.
First, in the present invention, the basis for defining the shape recovery elongation amount to be completely recovered to 2% or more is that when the shape memory alloy is deformed, the deformation exhibiting a linear reversible behavior in the shape memory effect is 1% in terms of the elongation amount. The deformation that exhibits a linear reversible behavior in the case of superelasticity is 1 to 1.5% in elongation (see, for example, Non-Patent Document 1). That is, when the shape memory effect and superelasticity, which are non-linear reversible behaviors, are used industrially, a shape recoverability greater than the amount of elongation showing the linear reversible behavior is required. Therefore, the shape recovery elongation that completely recovers as an industrial utilization level is set to 2% or more.
[0019]
Next, in order to have an Af temperature of 100 ° C. or higher, obtain a good shape recoverability, and more easily manufacture, Ni was 49.5 to 50.25 mol%, and Zr was 8 to 20 mol%.
If Ni is less than 49.5 mol%, it hardly contributes to the increase in Af temperature, and the workability is extremely lowered by increasing the ratio of Ti to Ni. The content exceeding 50.25 mol% is limited because the Af temperature cannot be increased to 100 ° C. or higher despite the Zr content.
[0020]
If Zr is less than 8 mol%, an Af temperature of 100 ° C. or higher cannot be stably obtained, and if it exceeds 20 mol%, melt castability and workability deteriorate, and a sound alloy material cannot be obtained.
[0021]
By the way, Zr and Hf belong to the same group 2 in terms of atomic periodicity, and it is difficult to completely separate Hf from the Zr raw material, and the general Zr raw material contains 1-2 mass% of Hf. Yes. Therefore, in the present invention, the shape memory alloy is produced by selecting a Zr raw material having a small amount of Hf. However, if the Hf content is 0.1 mol% or more, it becomes difficult to control the Af temperature. .
[0022]
In the production method according to the present invention, the Ni—Ti—Zr alloy or the Ni—Ti—Zr—Hf alloy having the above composition has the shape recovery elongation of 2% or more, and the alloy ingot is used. It has been found that it is necessary to sufficiently process at a high temperature.
[0023]
This high-temperature processing (hot processing) is performed in order to eliminate the ingot structure that adversely affects cold processing and shape recoverability, but the alloy ingot having the component composition has strong anisotropy against stress. Therefore, an extrusion method in which the cross section is constrained in all directions is suitable as the processing method, particularly in the first hot processing.
[0024]
In the present invention, the reason why the first hot working is heated and held at 880 ° C. to 1030 ° C. and then processed at least once by the extrusion method at a cumulative area reduction of 40% or more will be described below.
If it is less than 880 ° C., the force required for processing becomes excessive, which may cause damage to the processing apparatus, and the ingot structure cannot be sufficiently broken, so that a material exhibiting good workability and characteristics cannot be obtained. If it exceeds 1030 ° C., the processing becomes easy but the influence of surface oxidation becomes extremely large, and it becomes easy to become the starting point of material breakage during the second hot processing or cold processing to be performed next, and in some cases This is because a melting phenomenon occurs, cracks occur during the hot working, and the processing becomes impossible.
[0025]
The reason why the cumulative area reduction rate is limited to 40% or more is that if the accumulated area reduction ratio is less than 40%, the ingot structure cannot be changed sufficiently to form a work structure, and cracks and shapes may not be formed in the following process. This is because the control is insufficient and a material having good characteristics cannot be produced. In addition, since it becomes difficult to process when the cumulative surface reduction rate exceeds 80%, the cumulative processing rate is preferably between 50% and 80%.
[0026]
In addition, in a forging method in which the constraining surfaces are limited to the upper and lower surfaces and a processing method such as a rolling method in which the processing speed is fast under a loose constraint, cracking occurs at the initial stage of processing and the processing becomes impossible. In addition, in the method of thinning the ingot by repeatedly heating and hot working at a small area reduction of about 5 to 15%, which is the hot working method of the ingot described in Patent Document 2, the ingot Although it is possible to reduce the thickness, it is difficult to make the ingot structure into a uniform processed structure, and good shape recoverability cannot be obtained. Furthermore, a repeated high-temperature heat treatment results in the formation of a thick brittle oxide layer on the alloy surface, leading to work cracks in subsequent steps.
[0027]
The alloy material that has been subjected to the first hot working is then reduced in diameter or thinned by the second hot working, but the second hot working is continued from the first hot working. Alternatively, the alloy material may be once cooled and then reheated. Within the scope of the present invention, the workability is not significantly changed, and an alloy material having good characteristics is obtained. Can do. If the first and second hot working are continuously performed, productivity can be improved and thermal energy can be reduced.
[0028]
The reason for limiting the second hot working to 600 to 830 ° C. is that at low temperatures outside the above range, deformation resistance becomes large, cracking and a predetermined area reduction rate cannot be obtained, and productivity is lowered. I will invite you. If it is high, the temperature inside the alloy material rises during processing, and a core crack that breaks from the center portion occurs.
The area reduction rate in one process in the second hot working is preferably 7% or more, and preferably 10 to 30%.
[0029]
Next, the alloy material subjected to the first and second hot working is subjected to surface reduction treatment by cold working including intermediate annealing, thereby having processing to a predetermined dimension and good shape recoverability. The tissue is homogenized.
In the intermediate annealing, the relationship between the annealing temperature and time is (a) 680 ° C. × 10 minutes, (b) 680 ° C. × 180 minutes, (c) 820 ° C. × 30 minutes, (d) 820 ° C. × 2 minutes. It is better to anneal under conditions within the specified range.
[0030]
The reason why the area reduction rate per pass in the cold working is 7% to 15% is that if it is less than 7%, the material is not sufficiently processed to the center and becomes a highly anisotropic material. In addition, a good shape cannot be obtained. Cracks occur when the area reduction per pass exceeds 15%. Therefore, the area reduction rate in the range of 7% to 15% is good. The reason for limiting the cumulative area reduction ratio during the intermediate annealing to 20% to 45% is that if it is less than 20%, the number of annealing increases unnecessarily and the productivity is not increased, contributing to an increase in cost. If it exceeds, the processing becomes difficult, and the area reduction rate per pass becomes less than 7%, and cracking occurs.
If an alloy material heated to a temperature higher by 10 to 30 ° C. than the Af temperature of the ingot is used for the cold working, the cumulative area reduction rate can be increased and efficient machining can be performed.
[0031]
The intermediate annealing reduces the anisotropy of the alloy material due to cold working and provides the entire material as a homogeneous soft body. However, annealing outside the above range may cause inhomogeneity or excessive oxidation of the surface. As a result, in the next cold working, breakage and cracking occur with a small area reduction.
[0032]
After the second hot working, an oxide layer (hereinafter, abbreviated as a high temperature oxide layer) formed at a high temperature formed on the surface that causes surface defects or work breaks in the subsequent steps is removed by surface treatment. Is desirable. Usually, it is performed by pickling using an acid, but a mechanical polishing method or the like may be used.
However, completely removing the high-temperature oxide layer and exposing the alloy background increases the coefficient of friction in the cold working of the next process, easily causes surface cracks and breaks, and impairs cold workability. Therefore, the high-temperature oxide layer formed on the outermost surface is mainly removed.
In addition, in order to produce a healthy surface property, the surface cleaning process can be performed in a timely manner during the surface reduction process by cold working including intermediate annealing. Also in this case, it is desirable to remove only the fragile surface oxide layer formed on the surface as in the case of the high temperature oxide layer.
[0033]
Next, a shape memory process composed of a finish cold working and a heat treatment necessary for realizing the shape recoverability according to the present invention in combination with the sufficient working at a high temperature described above will be described.
[0034]
In the alloy material of the present invention that has undergone the above-described process, it is preferable that the cumulative area reduction in finish cold working is at least 25% or more, preferably 30% or more. In processing with a small cumulative area reduction rate, sufficient resistance to slip deformation cannot be obtained after the next heat treatment, and slip deformation easily occurs with respect to external force, resulting in no shape recovery.
It is desirable that the area reduction rate per pass is in the range of 7% to 15%. If it is less than 7%, sufficient processing is not performed up to the center portion, resulting in a material having large anisotropy, which may cause breakage during processing or a good shape may not be obtained. If the area reduction rate per pass exceeds 15%, cracking is likely to occur.
[0035]
The heat treatment performed after the finish cold working has a shape recovery elongation amount that is completely recovered by performing the heat treatment at a temperature of 550 ° C. to 820 ° C. and for 5 minutes to 120 minutes. A shape memory effect and superelasticity of 2% or more are brought about, but when the heat treatment temperature is low or the heat treatment time is short, the complete shape memory effect and superelasticity are not exhibited. Furthermore, if it is applied excessively, recrystallization will occur and it will slip easily and will not show shape memory effect and superelasticity.
[0036]
In the melt casting process, it is desirable to melt and cast in a graphite crucible in a vacuum or in an inert atmosphere as in the case of conventional NiTi shape memory alloys. The Ni raw material, the Ti raw material, and the Zr raw material are arranged in this order in the graphite crucible so that the Zr element can be dissolved by the reaction heat generated by the reaction between Ti and Ni.
[0037]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
An alloy consisting of 49.5 mol% Ni, 10.0 mol% Zr and 0.07 mol% Hf and the balance Ti and inevitable impurities was weighed and then melted in a graphite crucible installed in a vacuum melting casting furnace. Thereafter, it was cast into a water-cooled mold to produce an ingot of φ38 × L200 mm. This ingot is processed by the manufacturing methods shown in A to C of the manufacturing method of the present invention in Table 1, and finish cold working with a cumulative area reduction rate of 35% is performed to give a plate material having a thickness of 0.6 mm or a wire diameter of 1 mm. Finished with a wire rod. During this process, chemical corrosion and mechanical polishing processes for the purpose of surface cleaning were performed in a timely manner.
Next, the shape memory processing of Table 2 was performed on the wire and the plate material, and No. 1 of Invention Example 1 of Table 2 was obtained. 1-No. 4 alloy material was produced. The Af temperature, shape memory effect and superelasticity were measured by the following methods.
The Af temperature was measured using DSC, with a temperature range of −50 ° C. to 250 ° C., a temperature increase rate and a temperature decrease rate of 10 ° C./min.
The shape memory effect and superelasticity were measured in accordance with JIS H7103-2002, and the amount of shape recovery elongation was measured when it was pulled after giving 3% tensile elongation.
The shape memory effect was performed at a measurement temperature of 25 ° C., and after drawing, the sample was heated to the Af temperature or higher to measure the shape recovery elongation. The superelasticity was measured in a constant temperature bath at Af temperature + 20 ° C.
The case of complete recovery was marked with “◯”, and when the recovery was not complete, the amount of elongation that did not recover was shown.
[0038]
(Example 2)
A of the production method of the present invention is the same as in Example 1 except that an alloy containing Ni of 50.25 mol%, Zr of 14.0 mol%, Hf of 0.3 mol% and the balance of Ti and inevitable impurities is used. To C, and No. 1 of Invention Example 2 in Table 2 was prepared. 5-No. The alloy material of 8 was obtained and each characteristic was measured.
[0039]
(Example 3)
Using the same alloy as in Example 1 above, it was prepared by D and E of the manufacturing method of the present invention in which the processing conditions of the first hot working were changed. 9, no. Ten alloy materials were obtained and each characteristic was measured.
[0040]
(Example 4)
No. of the comparative example of Table 2. 11-No. No. 17 uses the same alloy as in Example 1 above to produce a 0.6 mm-thick plate or a wire with a diameter of 1 mm by the comparative production methods f to 1 in Table 1, and shape memory treatment under the conditions shown in Table 2 Each characteristic was measured in the same manner as in Example 1.
The measurement results of Examples 1, 2, 3, and 4 are shown in Table 2.
[0041]
[Table 1]
Figure 0004002213
[0042]
[Table 2]
Figure 0004002213
[0043]
As is apparent from Table 2, Nos. 1-No. No. 10 shows an Af temperature of 100 ° C. or higher and a shape memory effect having a shape recovery elongation of 2% or more and a shape recovery effect of superelasticity and both shape recovery properties.
In FIG. 1A, No. 1 of Invention Example 1 in Table 2 is shown. The measurement result which shows the shape memory effect of 2 is shown, and the measurement result of superelasticity is shown in FIG.1 (b).
[0044]
No. 1 of Invention Example 1 in Table 2 except that the cumulative area reduction in finish cold working is as small as 15%. No. 2 of the comparative example of Table 2 produced in the same manner as in FIG. In No. 11, an Af temperature of 100 ° C. or higher was obtained, but complete shape recoverability could not be obtained.
[0045]
The processing temperature of the second hot working is as high as 850 ° C. In No. 12, a core crack occurred in the second hot working, and it was not possible to proceed to the subsequent steps.
[0046]
The processing temperature of the first hot working is as low as 850 ° C. In No. 13, the ingot hot extrusion force became excessive and the mold was broken.
[0047]
No. of the comparative example of Table 2. In No. 14, since the intermediate annealing temperature was low, the alloy material broke during cold working after annealing, and the alloy material could not be produced.
In the intermediate machining, the No. of the comparative example in Table 2 is as small as 5% in the area reduction per pass. In No. 15, only the surface was cured, and the alloy material meandered or broke during processing, and the alloy material could not be produced.
[0049]
After the hot working, the high temperature oxide layer on the surface was not removed. In No. 16, breakage occurred frequently during cold working, and an alloy material could not be produced.
[0050]
No. of the comparative example of Table 2 which used hot rolling for the 1st hot processing. In No. 17, cracks occurred at the side edges during hot rolling, which grew every time rolling, and a healthy hot-worked material could not be obtained.
[0051]
【The invention's effect】
As described above, the shape memory alloy material according to the present invention has an Af temperature of 100 ° C. or higher, has a shape recovery elongation amount of 2% or more of an industrially usable level, and also has the shape memory. The alloy material can be easily manufactured by defining manufacturing conditions. Therefore, there is an industrially significant effect.
[Brief description of the drawings]
1 (a) No. 1 of Invention Example 1; Stress-strain curve (b) showing the shape memory effect of No. 2 of Invention Example 1. Stress-strain curve showing superelasticity of 2

Claims (6)

Niを49.5〜50.25mol%、Zrを8〜20mol%含み、残部Tiと不可避不純物とからなる形状記憶合金であって、形状記憶効果または超弾性における完全に回復する形状回復伸び量が2%以上、且つマルテンサイト逆変態終了温度が100℃以上の高形状回復性および高変態温度を有する形状記憶合金材。A shape memory alloy containing 49.5 to 50.25 mol% of Ni and 8 to 20 mol% of Zr, the balance being Ti and inevitable impurities, and having a shape memory elongation or a shape recovery elongation that completely recovers in superelasticity A shape memory alloy material having a high shape recovery property and a high transformation temperature of 2% or more and a martensite reverse transformation end temperature of 100 ° C. or more. Niを49.5〜50.25mol%、Zrを8〜20mol%、Hfを0.1mol%未満含み、残部Tiと不可避不純物とからなる形状記憶合金であって、形状記憶効果または超弾性における完全に回復する形状回復伸び量が2%以上、且つマルテンサイト逆変態終了温度が100℃以上の高形状回復性および高変態温度を有する形状記憶合金材。A shape memory alloy containing 49.5 to 50.25 mol% Ni, 8 to 20 mol% Zr, less than 0.1 mol% Hf, and the balance Ti and inevitable impurities, and has complete shape memory effect or superelasticity A shape memory alloy material having a high shape recovery property and a high transformation temperature having a shape recovery elongation of 2% or more and a martensite reverse transformation end temperature of 100 ° C. or more. Ni−Ti系合金に、熱間加工、冷間加工(中間焼鈍を含む)、形状記憶処理を施す形状記憶合金材の製造方法において、前記熱間加工を第1と第2に分けて行い、前記第1の熱間加工を押出し法により880℃〜1030℃の温度で、少なくとも1回以上、累積減面率が40%以上で行い、引き続き第2の熱間加工を600℃〜830℃の温度で行うことを特徴とする請求項1または請求項2記載の高形状回復性および高変態温度を有する形状記憶合金材の製造方法。In the manufacturing method of a shape memory alloy material in which hot working, cold working (including intermediate annealing), and shape memory processing are performed on a Ni-Ti alloy, the hot working is performed in first and second steps, The first hot working is performed by extrusion at a temperature of 880 ° C. to 1030 ° C. at least once and the cumulative area reduction is 40% or more, and then the second hot working is performed at 600 ° C. to 830 ° C. The method for producing a shape memory alloy material having a high shape recovery property and a high transformation temperature according to claim 1 or 2, wherein the method is performed at a temperature. Ni−Ti系合金に、熱間加工、冷間加工(中間焼鈍を含む)、形状記憶処理を施す形状記憶合金材の製造方法において、前記熱間加工を第1と第2に分けて行い、前記第1の熱間加工を押出し法により880℃〜1030℃の温度で、少なくとも1回以上、累積減面率が40%以上で行い、その後、冷却して常温近辺に保持した後、600℃〜830℃に加熱して第2の熱間加工を行うことを特徴とする請求項1または請求項2記載の高形状回復性および高変態温度を有する形状記憶合金材の製造方法。In the manufacturing method of a shape memory alloy material in which hot working, cold working (including intermediate annealing), and shape memory processing are performed on a Ni-Ti alloy, the hot working is performed in first and second steps, The first hot working is performed at a temperature of 880 ° C. to 1030 ° C. at least once by an extrusion method at a cumulative area reduction of 40% or more, and then cooled and kept at around room temperature, then 600 ° C. The method for producing a shape memory alloy material having high shape recoverability and high transformation temperature according to claim 1 or 2, wherein the second hot working is performed by heating to ~ 830 ° C. Ni−Ti系合金に、熱間加工、冷間加工(中間焼鈍を含む)、形状記憶処理を施す形状記憶合金材の製造方法において、前記冷間加工(中間焼鈍を含む)が、中間焼鈍と常温状態での加工による減面処理からなり、前記中間焼鈍は、温度と時間の関係が(a)680℃×10分、(b)680℃×180分、(c)820℃×30分、(d)820℃×2分の4条件を、(a)、(b)、(c)、(d)の順に結んでできる温度−時間平面の平行四辺形の範囲内(線上または内側)の温度・保持時間に相当する組み合わせの条件で行われ、前記中間焼鈍後、1回の加工率が7〜15%、且つ、中間焼鈍間の累積加工率を20〜40%で減面処理することを特徴とする請求項1または請求項2記載の高形状回復性および高変態温度を有する形状記憶合金材の製造方法。In the manufacturing method of a shape memory alloy material in which hot working, cold working (including intermediate annealing), and shape memory treatment are performed on a Ni-Ti alloy, the cold working (including intermediate annealing) is performed by intermediate annealing. The intermediate annealing includes a surface reduction process by processing at room temperature, and the intermediate annealing has a relationship between temperature and time: (a) 680 ° C. × 10 minutes, (b) 680 ° C. × 180 minutes, (c) 820 ° C. × 30 minutes, (D) Within the range of the parallelogram (on the line or inside) of the temperature-time plane formed by connecting 820 ° C. × 4/2 conditions in the order of (a), (b), (c), (d) Surface reduction treatment is performed under a combination of conditions corresponding to temperature and holding time, and after the intermediate annealing, the processing rate per process is 7 to 15%, and the cumulative processing rate during the intermediate annealing is 20 to 40%. The shape having high shape recovery property and high transformation temperature according to claim 1 or 2, Method of manufacturing a 憶合 alloy material. Ni−Ti系合金に、熱間加工、冷間加工(中間焼鈍を含む)、形状記憶処理を施す形状記憶合金材の製造方法において、前記形状記憶処理は仕上げ冷間加工とそれに続く熱処理からなり、前記仕上げ冷間加工を累積減面率で25%以上、1パスあたりの減面率で7%〜15%の範囲で行い、次いで、550℃〜820℃の温度で、5分〜120分間熱処理することを特徴とする請求項1または請求項2記載の高形状回復性および高変態温度を有する形状記憶合金材の製造方法。In a manufacturing method of a shape memory alloy material in which a Ni-Ti alloy is subjected to hot working, cold working (including intermediate annealing), and shape memory processing, the shape memory processing includes finish cold working and subsequent heat treatment. The finish cold working is performed at a cumulative area reduction rate of 25% or more in a range of 7% to 15% area reduction per pass, and then at a temperature of 550 ° C. to 820 ° C. for 5 minutes to 120 minutes. The method for producing a shape memory alloy material having high shape recovery property and high transformation temperature according to claim 1 or 2, wherein heat treatment is performed.
JP2003161757A 2003-06-06 2003-06-06 Shape memory alloy material having high shape recoverability and high transformation temperature and method for producing the same Expired - Fee Related JP4002213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161757A JP4002213B2 (en) 2003-06-06 2003-06-06 Shape memory alloy material having high shape recoverability and high transformation temperature and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161757A JP4002213B2 (en) 2003-06-06 2003-06-06 Shape memory alloy material having high shape recoverability and high transformation temperature and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004360033A JP2004360033A (en) 2004-12-24
JP4002213B2 true JP4002213B2 (en) 2007-10-31

Family

ID=34054090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161757A Expired - Fee Related JP4002213B2 (en) 2003-06-06 2003-06-06 Shape memory alloy material having high shape recoverability and high transformation temperature and method for producing the same

Country Status (1)

Country Link
JP (1) JP4002213B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058710A (en) * 2012-09-14 2014-04-03 Oita Univ SHAPE MEMORY TREATMENT METHOD OF Ti-Ni SHAPE MEMORY ALLOY

Also Published As

Publication number Publication date
JP2004360033A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
TWI502086B (en) Copper alloy sheet and method for producing same
JP6889418B2 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
JP5298368B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
JP5196083B2 (en) High-strength α + β-type titanium alloy hot-rolled sheet excellent in cold coil handling and manufacturing method thereof
JP2006009140A (en) 6000 series aluminum alloy sheet having excellent hardenability of coating/baking and production method therefor
WO2008015846A1 (en) Aluminum alloy fin material for heat exchanger, process for manufacturing the same, and process for manufacturing heat exchanger through brazing of the fin material
JP4780601B2 (en) Magnesium alloy plate excellent in press formability and manufacturing method thereof
JPS5928548A (en) Superelastic shape-memory ni-ti base alloy and manufacture thereof
TW201247908A (en) Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same
WO2022123812A1 (en) Method for manufacturing austenitic stainless steel strip
JP6094576B2 (en) Method for producing Fe-Al alloy
TW201224171A (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP5592600B2 (en) Bio-based Co-based alloy material for hot die forging and manufacturing method thereof
JP2011202284A (en) Method for producing 6000 series aluminum alloy sheet having excellent paint bake hardenability and production method therefor
JPS6157390B2 (en)
JP2015525287A5 (en) Ultra-flexible and melt-resistant fin material with very high strength
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
JP4357869B2 (en) A method for producing a Cu-Zn alloy having excellent time cracking resistance.
JP2011231359A (en) High strength 6000-series aluminum alloy thick plate, and method for producing the same
JP4780600B2 (en) Magnesium alloy sheet excellent in deep drawability and manufacturing method thereof
JP5088876B2 (en) Titanium alloy plate with high strength and excellent formability and manufacturing method thereof
JP4002213B2 (en) Shape memory alloy material having high shape recoverability and high transformation temperature and method for producing the same
JP5327664B2 (en) Nickel-based intermetallic compound, said intermetallic compound rolled foil, and method for producing said intermetallic compound rolled plate or foil
TWI490343B (en) Austenitic alloy plate and method of making the same
JP2019167584A (en) α + β TYPE TITANIUM ALLOY EXTRUSION SHAPE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070816

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees