JP2009007625A - Method for producing high strength copper alloy for electric/electronic component - Google Patents

Method for producing high strength copper alloy for electric/electronic component Download PDF

Info

Publication number
JP2009007625A
JP2009007625A JP2007169852A JP2007169852A JP2009007625A JP 2009007625 A JP2009007625 A JP 2009007625A JP 2007169852 A JP2007169852 A JP 2007169852A JP 2007169852 A JP2007169852 A JP 2007169852A JP 2009007625 A JP2009007625 A JP 2009007625A
Authority
JP
Japan
Prior art keywords
mass
less
rolling
cold rolling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007169852A
Other languages
Japanese (ja)
Other versions
JP5135914B2 (en
Inventor
Noriyuki Nomoto
詞之 野本
Yasuo Takano
保夫 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007169852A priority Critical patent/JP5135914B2/en
Publication of JP2009007625A publication Critical patent/JP2009007625A/en
Application granted granted Critical
Publication of JP5135914B2 publication Critical patent/JP5135914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high strength copper alloy for electric/electronic components by which a dimensional change upon heating can be reduced without impairing its fundamental properties such as strength, electric conductivity and heat resistance. <P>SOLUTION: In the method for producing a high strength copper alloy for electric/electronic components, a copper base alloy containing, by mass, 1.0 to 4.0% Ni and 0.2 to 1.2% Si, and the balance Cu with inevitable impurities is cast, is rolled by hot rolling, is thereafter subjected to cold rolling at a working ratio of ≥15%, is subjected to aging treatment at 300 to 500°C for 30 min to 24 hr, is subsequently subjected to final cold rolling, and is further subjected to stress relieving annealing at 300 to 550°C for 30 s to 3 min, wherein the hardening rate of its hardness after the final cold rolling to its hardness after the aging treatment is controlled to ≤10%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、良好な強度および導電性を有するとともに、加熱時の寸法変化の小さい電気・電子部品用銅合金の製造方法に関する。   The present invention relates to a method for producing a copper alloy for electrical / electronic parts that has good strength and electrical conductivity and has a small dimensional change during heating.

リードフレーム、コネクタ等をはじめとした電気・電子部品用銅合金には高い強度と高い熱伝導率、更には電気・電子部品の製造工程中の加熱により軟化しにくい高い耐熱性が要求される。近年、電気・電子部品の小型化・高集積化が進むに連れ、上記特性への要求はますます厳しくなっており、これらの要求を満たす合金としてCu−Ni−Si系合金(コルソン合金)が開発され、各種添加元素を加えたものが使用されてきた。Cu−Ni−Si系合金に関する特許はこれまで各社から多くの特許が公開されている。強度および電気伝導性を向上させるために成分や製造方法に言及した特許に関しては例えばオリン社の特許第2572042号が代表的である。曲げ加工性やめっき性に言及した特許に関しては例えば日鉱金属の特許第3383615号や特開昭58−123846号、古河電工の特開平10−110228号が挙げられる。ワイヤ・ボンディング性に言及した特許に関しては例えば日鉱金属の特許第2714560号や特公昭62−46071号が挙げられる。プレス性に言及した特許に関しては例えば日鉱金属の特許第3619516号や特開平10−30155号が挙げられる。
特許第2572042号公報 特許第3383615号公報 特開昭58−123846号公報 特開平10−110228号公報 特許第2714560号公報 特公昭62−46071号公報 特許第3619516号公報 特開平10−30155号公報
Copper alloys for electrical and electronic parts such as lead frames and connectors are required to have high strength and high thermal conductivity, as well as high heat resistance that is not easily softened by heating during the manufacturing process of electrical and electronic parts. In recent years, with the progress of miniaturization and high integration of electrical and electronic components, the requirements for the above characteristics have become more severe. As an alloy that satisfies these requirements, Cu-Ni-Si alloy (Corson alloy) is used. It has been developed and used with various additive elements added. Many patents relating to Cu-Ni-Si alloys have been published by various companies so far. For example, patent No. 2572204 from Olin is a typical example of a patent that mentions components and manufacturing methods in order to improve strength and electrical conductivity. Patents referring to bending workability and plating property include, for example, Japanese Patent No. 3383615, Japanese Patent Laid-Open No. 58-123846, and Japanese Patent Laid-Open No. 10-110228 by Furukawa Electric. Patents referring to wire bonding properties include, for example, Nikko Metal Patent No. 2714560 and Japanese Patent Publication No. Sho 62-46071. Patents referring to pressability include, for example, Nikko Mineral Patent No. 3619516 and JP-A-10-30155.
Japanese Patent No. 2572042 Japanese Patent No. 3383615 Japanese Patent Laid-Open No. 58-123846 Japanese Patent Laid-Open No. 10-110228 Japanese Patent No. 2714560 Japanese Examined Patent Publication No. 62-46071 Japanese Patent No. 3619516 Japanese Patent Laid-Open No. 10-30155

リードフレームは銅条をプレスやエッチングすることにより所定の形状を得るが、リードフレームが多ピン狭ピッチ化するに従い、寸法精度への要求も非常に厳しくなっている。プレスでの製造の場合、プレス後に500℃程度のアニールを実施してプレス歪みを除去している。このため、リードフレーム用銅条は高い耐熱性と同時に、加熱での寸法変化が小さいことが強く要求されている。   The lead frame is obtained by pressing or etching a copper strip to obtain a predetermined shape. However, as the lead frame is narrowed by a multi-pin narrow pitch, the requirement for dimensional accuracy has become very strict. In the case of manufacturing by pressing, annealing at about 500 ° C. is performed after pressing to remove press distortion. For this reason, the copper strip for lead frames is strongly required to have a high heat resistance and a small dimensional change upon heating.

上述のようにCu−Ni−Si系合金の2次的特性に関しては多くの特許が見られる。しかし、加熱時の寸法変化に言及した特許は見られない。他の銅合金における加熱での寸法変化に関しては、Cu−Be合金では時効熱処理過程において著しい寸法変化を生じることが知られており、多くの研究論文が見られる。例えば、三木らの「Cu−Be合金の時効にともなう寸法変化(収縮および膨張)におよぼす冷間加工の影響」(銅と銅合金,38(1999),139.)を初めとした一連の研究論文が挙げられる。しかし、Cu−Ni−Si系合金においてはCu−Be合金の時効熱処理時のような顕著な寸法変化が見られないためか文献は見当たらない。リードフレームを製造する際は加熱時の寸法変化を見込んで製造条件が設定され、リードフレーム用銅合金条は寸法変化のばらつきが小さいことが要求される。従って、リードフレーム用銅合金条は製造条件の安定化により加熱時の寸法変化を安定化させるよう努力されてきたが、本質的に寸法変化を小さくする対策は充分とられてきたとはいえない。   As described above, there are many patents regarding secondary characteristics of Cu—Ni—Si based alloys. However, there are no patents referring to dimensional changes during heating. With regard to dimensional changes due to heating in other copper alloys, it is known that Cu-Be alloys cause significant dimensional changes during the aging heat treatment process, and many research papers are found. For example, a series of researches including Miki et al. “Effect of cold working on dimensional change (shrinkage and expansion) with aging of Cu—Be alloy” (copper and copper alloy, 38 (1999), 139.). A paper is mentioned. However, in the Cu—Ni—Si based alloy, there is no literature as to whether a significant dimensional change is observed as in the aging heat treatment of the Cu—Be alloy. When manufacturing a lead frame, manufacturing conditions are set in consideration of a dimensional change during heating, and the lead frame copper alloy strip is required to have a small variation in dimensional change. Accordingly, efforts have been made to stabilize the dimensional change during heating of the copper alloy strip for lead frames by stabilizing the manufacturing conditions, but it cannot be said that a measure for reducing the dimensional change has been taken sufficiently.

そこで、本発明は強度、導電率、耐熱性といった基本特性を損なうことなく、加熱時の寸法変化を小さくすることが可能な製造方法を提供することを目的とした。   Accordingly, an object of the present invention is to provide a manufacturing method capable of reducing a dimensional change during heating without impairing basic characteristics such as strength, conductivity, and heat resistance.

上記目的を達成するためにCu−Ni−Si系合金の時効処理条件や圧延条件が最終製品の加熱時の寸法変化に与える影響について調査した。この結果、最終圧延での硬化率が加熱による寸法変化に大きく影響しており、最終圧延による加工硬化量が多いほどその後の加熱により圧延方向に伸びることがわかった。従って、本来の強度、導電率、耐熱性といった基本特性を損なうことなく、加熱時の寸法変化を小さくするためには、時効処理条件と最終圧延加工率の適正化、および歪み除去焼鈍の適正化が必要であることを見出した。   In order to achieve the above object, the effects of aging treatment conditions and rolling conditions of Cu—Ni—Si based alloys on dimensional changes during heating of the final product were investigated. As a result, it was found that the curing rate in the final rolling greatly affects the dimensional change due to heating, and the greater the amount of work hardening by the final rolling, the longer the heating in the rolling direction. Therefore, in order to reduce the dimensional change during heating without impairing the basic properties such as the original strength, conductivity, and heat resistance, the aging treatment conditions and the final rolling process rate should be optimized, and the strain removal annealing should be optimized. Found that is necessary.

本発明は上記知見を基にして得られたものであり、Niを1.0質量%以上4.0質量%以下、Siを0.2質量%以上1.2質量%以下含有し、若しくはこれらに加えて副成分としてP、Zn、Sn、Mg、Fe、Co、Mn、Zr、Ti、Cr、Agのいずれか1種類以上を総量で2.0質量%未満含有し、残部がCuと不可避不純物からなる銅基合金を鋳造し、熱間圧延等により所望の厚みに圧延後、少なくとも15%以上の加工率で冷間圧延を施し、300℃以上500℃以下の温度において30分以上24時間以下の時効処理を施し、その後最終冷間圧延を行い、更に300℃以上550℃以下の温度で30秒以上3分以下の歪み除去焼鈍を行う銅合金条の製造方法において、時効処理後の硬さに対する最終冷間圧延後の硬さの硬化率を10%以下とすることにより、400℃以上550℃以下の温度における1分以上10分以下の加熱時の圧延方向への伸び率が50ppm以下であることを特徴とする加熱時の寸法変化の小さい電気・電子部品用高強度銅合金の製造方法であり、強度、導電率、耐熱性といった基本特性を損なうことなく、加熱時の寸法変化を小さくすることが可能な製造方法に関する。   The present invention has been obtained on the basis of the above knowledge, and contains 1.0 mass% to 4.0 mass% of Ni, 0.2 mass% to 1.2 mass% of Si, or these In addition to P, Zn, Sn, Mg, Fe, Co, Mn, Zr, Ti, Cr, and Ag as a subsidiary component, the total amount is less than 2.0% by mass, and the balance is inevitable with Cu. After casting a copper-based alloy made of impurities and rolling it to a desired thickness by hot rolling or the like, it is cold-rolled at a processing rate of at least 15% and at a temperature of 300 ° C. to 500 ° C. for 30 minutes to 24 hours In the method for producing a copper alloy strip, which is subjected to the following aging treatment, followed by final cold rolling, and further subjected to strain removal annealing at a temperature of 300 ° C. to 550 ° C. for 30 seconds to 3 minutes, Of hardness after final cold rolling to thickness Dimensional change during heating, characterized in that the elongation in the rolling direction during heating for 1 minute to 10 minutes at a temperature of 400 ° C. to 550 ° C. is 50 ppm or less by making the rate 10% or less The present invention relates to a method for producing a high-strength copper alloy for electrical / electronic parts having a small size and capable of reducing dimensional changes during heating without impairing basic properties such as strength, conductivity, and heat resistance.

本発明は強度、導電率、耐熱性といったCu−Ni−Si系合金の基本特性を損なうことなく、加熱時の寸法変化を小さくすることが可能な製造方法を開発したもので、リードフレームを製造する際のプレス歪み除去アニールの際の寸法変化の問題が解決された点において、その効果は非常に大きい。   The present invention has developed a manufacturing method that can reduce the dimensional change during heating without impairing the basic characteristics of Cu-Ni-Si alloys such as strength, conductivity, and heat resistance. The effect is very large in that the problem of the dimensional change during the press strain removal annealing is solved.

本発明に係る良好な強度および導電性を有するとともに、加熱時の寸法変化の小さい電気・電子部品用銅合金の製造方法について以下詳細に説明する。   A method for producing a copper alloy for electric / electronic parts having good strength and conductivity according to the present invention and having a small dimensional change during heating will be described in detail below.

(1)合金成分
合金成分はNiを1.0質量%以上4.0質量%以下、Siを0.2質量%以上1.2質量%以下とする。本合金では時効処理によってCu中に金属間化合物であるNiSiを析出させて高強度を得るが、Niが1.0質量%未満、若しくはSiが0.2質量%未満では充分な強度を得ることができない。一方、Niが4.0質量%、若しくはSiが1.2質量%を超えると導電率の低下、加工性の悪化が顕著になる。特に中間温度脆性が顕著になり、高温加熱時や熱間加工時の粒界割れが非常に起こり易くなる。また、NiSi等の析出量が多くなり、酸洗時にこれらが表面に残渣となってめっき不良を誘発する。更に、Niが4.0質量%を超えると溶解時に溶湯中に吸収されるHの量が増大し、鋳塊中に固溶水素となって残存する。これらの水素は中間温度脆性の一因となり、冷間圧延後の焼鈍時に膨れ状の欠陥となりやすい。望ましくはNiが1.5質量%以上3.0質量%以下、Siが0.3質量%以上0.7質量%以下とする。NiとSiの混合比は、金属間化合物であるNiSiの組成に近い方が効率よく強度と導電率を向上させることが可能と考えられることから、Ni:Si=4:1とすることが望ましい。
(1) Alloy component The alloy component includes Ni of 1.0 mass% to 4.0 mass% and Si of 0.2 mass% to 1.2 mass%. While obtaining high strength by precipitating Ni 2 Si which is an intermetallic compound in the Cu by aging treatment in this alloy, Ni is less than 1.0 wt%, or Si is a sufficient strength is less than 0.2 wt% Can't get. On the other hand, when Ni exceeds 4.0% by mass or Si exceeds 1.2% by mass, the decrease in conductivity and the deterioration of workability become remarkable. In particular, the intermediate temperature brittleness becomes remarkable and intergranular cracking at the time of high temperature heating or hot working is very likely to occur. In addition, the amount of precipitation of Ni 2 Si and the like increases, and these become residues on the surface during pickling to induce plating defects. Further, when Ni exceeds 4.0% by mass, the amount of H absorbed in the molten metal at the time of melting increases, and remains as solute hydrogen in the ingot. These hydrogens contribute to brittleness at the intermediate temperature and are liable to become blistered defects during annealing after cold rolling. Desirably, Ni is 1.5 mass% or more and 3.0 mass% or less, and Si is 0.3 mass% or more and 0.7 mass% or less. The mixing ratio of Ni and Si should be Ni: Si = 4: 1 because it is considered possible to improve the strength and conductivity more efficiently when the composition is closer to the composition of Ni 2 Si, which is an intermetallic compound. Is desirable.

合金成分は上記成分が基本であるが、更に副成分としてP、Zn、Sn、Mg、Fe、Co、Mn、Zr、Ti、Cr、Agのうちいずれか1種以上の成分を総量で2.0質量%未満含有しても本発明の効果は同様に得られるが、2.0質量%以上では導電率の低下等の特性劣化が大きくなる。   The alloy component is basically the above-mentioned component, but as a subsidiary component, any one or more of P, Zn, Sn, Mg, Fe, Co, Mn, Zr, Ti, Cr, and Ag are added in a total amount of 2. Even if the content is less than 0% by mass, the effects of the present invention can be obtained in the same manner.

Pは溶解時の脱酸剤としての効果とともに、若干の強度向上の効果がある。   P has an effect of slightly improving the strength as well as an effect as a deoxidizer during dissolution.

Znは半田濡れ性を向上させ、半田層との界面に生成するCuとSnの合金層の成長を抑制する作用がある。また、溶解時の脱ガス作用やCuのマイグレーションの抑制作用がある。比較的多量に添加しても特性への悪影響は少ないが、2.0質量%以上の添加では導電率の低下をもたらすとともに、効果も飽和する。   Zn improves solder wettability and has an effect of suppressing growth of an alloy layer of Cu and Sn generated at the interface with the solder layer. In addition, it has a degassing action at the time of dissolution and a Cu migration suppressing action. Even if added in a relatively large amount, there is little adverse effect on the properties, but addition of 2.0% by mass or more brings about a decrease in conductivity and saturation of the effect.

SnはCu中に固溶し、耐熱性とともにばね性、曲げ加工性、耐応力緩和特性を向上させる作用があり、コネクターとして使用する場合には添加することが望ましい。添加量が多くなると、導電率の低下をもたらすとともに、半田層との界面に生成するCuとSnの合金層の成長を助長し、またウィスカーを発生し易くなる。   Sn dissolves in Cu and has the effect of improving heat resistance, spring properties, bending workability, and stress relaxation resistance, and it is desirable to add Sn when used as a connector. Increasing the amount causes a decrease in conductivity, promotes the growth of an alloy layer of Cu and Sn formed at the interface with the solder layer, and tends to generate whiskers.

Mgは導電率をそれほど低下させずに強度、耐熱性とともに耐応力緩和特性を向上させる効果がある。また、Sは中間温度脆性を助長させる元素であるが、MgはSと化合物を生成して粒界のSを固定し、熱間加工性を向上させる効果がある。0.5質量%以上の添加では、酸化物の巻き込み等の鋳造性の低下をもたらす。   Mg has the effect of improving the stress relaxation resistance as well as the strength and heat resistance without significantly reducing the electrical conductivity. Further, S is an element that promotes brittleness at intermediate temperature, but Mg has an effect of generating a compound with S to fix S at the grain boundary and improving hot workability. Addition of 0.5% by mass or more results in deterioration of castability such as oxide entrainment.

Feは高温では主に固溶し、高温熱処理時の再結晶を遅らせ、結晶粒成長を抑制する作用がある。0.1質量%以上の添加では導電率の低下が大きいとともに、効果も飽和する。   Fe mainly dissolves at high temperatures, and has the effect of delaying recrystallization during high-temperature heat treatment and suppressing crystal grain growth. Addition of 0.1% by mass or more greatly reduces the conductivity and saturates the effect.

Coも高温熱処理時の再結晶を遅らせ、結晶粒成長を抑制する作用がある。また、Feに比べ導電率の低下が少ない。   Co also has an action of delaying recrystallization during high-temperature heat treatment and suppressing crystal grain growth. Moreover, there is little decrease in electrical conductivity compared to Fe.

MnもSと化合物を生成して粒界のSを固定し、熱間加工性を向上させる効果があるが、導電率の低下をもたらす。   Mn also produces a compound with S to fix S at the grain boundary and improve the hot workability, but lowers the conductivity.

Zr、Ti、Crは強度と耐熱性を向上させる効果があるが、酸化物の巻き込み等の鋳造性の低下をもたらす。   Zr, Ti, and Cr have the effect of improving strength and heat resistance, but lower castability such as oxide entrainment.

Agは耐熱性を向上させる効果がある。   Ag has the effect of improving heat resistance.

(2)製造方法
通常坩堝式溶解炉やチャネル式溶解炉等の電気炉で所定の成分を溶解後、連続鋳造により厚さ150mm以上250mm以下、幅400mm以上1000mm以下程度の矩形断面鋳塊(ケーク)を鋳造する。ケークを800℃以上950℃以下の温度において30分以上保持後、熱間圧延機により厚さ10mm以上15mm以下まで圧延する。熱間圧延の加熱温度が800℃より低いと、熱間圧延時に粒界に割れを生じる。また、鋳造の冷却過程で析出した粗大な析出物が充分に固溶しない。一方、950℃より高いと再結晶した結晶が粗大化し易く、また酸化膜が厚くなる。従って、熱間圧延の加熱温度は800℃以上950℃以下とする。また、保持時間は30分より短くても析出物が充分に固溶しないため、保持時間は30分以上とする。更に、熱間圧延終了温度は650℃以上とし、毎分300℃以上の冷却速度で水冷することが望ましい。熱間圧延終了温度を高くし、その後の冷却速度を速くすることで、時効処理の際に高い強度を得ることができる。また、鋳塊を厚さ20mm程度の薄板に鋳造しても良く、この場合熱間圧延は不要である。
(2) Manufacturing method After a predetermined component is melted in an electric furnace such as a crucible melting furnace or a channel melting furnace, a rectangular cross-section ingot having a thickness of 150 mm to 250 mm and a width of 400 mm to 1000 mm is obtained by continuous casting (cake) ). The cake is held at a temperature of 800 ° C. or more and 950 ° C. or less for 30 minutes or more, and then rolled to a thickness of 10 mm or more and 15 mm or less by a hot rolling mill. When the heating temperature of hot rolling is lower than 800 ° C., cracks occur at the grain boundaries during hot rolling. Further, coarse precipitates precipitated during the cooling process of casting are not sufficiently dissolved. On the other hand, when the temperature is higher than 950 ° C., the recrystallized crystal is easily coarsened and the oxide film becomes thick. Therefore, the heating temperature of hot rolling is set to 800 ° C. or more and 950 ° C. or less. Further, even if the holding time is shorter than 30 minutes, the precipitate is not sufficiently dissolved, so that the holding time is 30 minutes or more. Furthermore, it is desirable that the hot rolling end temperature is 650 ° C. or higher, and water cooling is performed at a cooling rate of 300 ° C. or more per minute. By increasing the hot rolling end temperature and increasing the subsequent cooling rate, high strength can be obtained during the aging treatment. Further, the ingot may be cast into a thin plate having a thickness of about 20 mm. In this case, hot rolling is not necessary.

熱間圧延後面削により酸化膜を除去する。その後、少なくとも15%以上の加工率で冷間圧延した後、時効処理を施す。時効処理前の冷間圧延加工率が15%未満では析出サイトが不足し、析出速度が遅くなるとともに強度が上がりにくくなる。望ましくは50%以上80%以下である。また、より高い強度が必要な場合には、所定の厚さに冷間圧延後、750℃以上の温度において1分以上5分未満加熱し、その後毎分200℃以上の冷却速度で水冷して溶体化処理を施す。その後、少なくとも15%以上の加工率で冷間圧延した後、時効処理を施す。   The oxide film is removed by chamfering after hot rolling. Then, after cold rolling at a processing rate of at least 15% or more, an aging treatment is performed. If the cold rolling ratio before the aging treatment is less than 15%, the precipitation sites are insufficient, the precipitation rate becomes slow and the strength is hardly increased. Desirably, it is 50% or more and 80% or less. When higher strength is required, after cold rolling to a predetermined thickness, heat at a temperature of 750 ° C or higher for 1 minute or more and less than 5 minutes, and then cool with water at a cooling rate of 200 ° C or more per minute. Apply solution treatment. Then, after cold rolling at a processing rate of at least 15% or more, an aging treatment is performed.

時効処理は350℃以上500℃以下の温度において30分以上24時間以下保持する。時効処理温度が350℃未満では析出速度が遅く、24時間以上加熱しても充分析出しない。時効処理温度が500℃を超えると微細な析出物が得られず充分な時効硬化が得られない。この場合に最終的に高い強度を得ようとすると、時効処理後の圧延での加工率を高くして加工強化により強度を向上させることができるが、加熱した際の圧延方向への伸び率が大きくなる。望ましくは420℃以上480℃以下の温度において1時間以上4時間以下とする。   The aging treatment is maintained for 30 minutes to 24 hours at a temperature of 350 ° C. to 500 ° C. When the aging temperature is less than 350 ° C., the deposition rate is slow, and even when heated for 24 hours or more, it does not precipitate sufficiently. If the aging treatment temperature exceeds 500 ° C., fine precipitates cannot be obtained and sufficient age hardening cannot be obtained. In this case, when trying to finally obtain a high strength, it is possible to increase the processing rate in rolling after aging treatment and improve the strength by processing strengthening, but the elongation rate in the rolling direction when heated is increased. growing. Desirably, it is 1 hour or more and 4 hours or less at the temperature of 420 degreeC or more and 480 degrees C or less.

時効処理後に最終冷間圧延を行うが、時効処理後の硬さに対する最終冷間圧延後の硬さの硬化率は10%以下とする。10%を超えると冷間圧延により付加された加工歪み量が増大し、加熱した際の圧延方向への伸び率が大きくなる。また、時効処理は冷間圧延を挟んで2回以上施しても良いが、この場合は最終時効処理後の硬さに対する最終冷間圧延後の硬さの硬化率を10%以下とする。更に、最終冷間圧延の間に複数回の焼鈍を加えても良いが、この場合各焼鈍後の硬さと時効後の硬さのうち最も低い硬さに対する最終冷間圧延後の硬さの硬化率が10%以下であることを条件とする。   Although the final cold rolling is performed after the aging treatment, the hardening rate of the hardness after the final cold rolling with respect to the hardness after the aging treatment is set to 10% or less. If it exceeds 10%, the amount of work strain added by cold rolling increases, and the elongation in the rolling direction when heated is increased. The aging treatment may be performed twice or more with the cold rolling interposed therebetween. In this case, the hardening rate of the hardness after the final cold rolling relative to the hardness after the final aging treatment is set to 10% or less. Further, multiple annealing may be applied during the final cold rolling, but in this case, the hardness after the final cold rolling for the lowest hardness among the hardness after each annealing and the hardness after aging. The condition is that the rate is 10% or less.

最終冷間圧延後には歪み除去焼鈍を施す。歪み除去焼鈍は300℃以上550℃以下の温度において30秒以上3分以下保持する。温度が300℃未満や保持時間が1分未満では加工歪みが充分除去できず、伸びが不足するとともに加熱した際の圧延方向への伸び率が大きくなる。温度が550℃を超えると導電率や強度の低下が大きくなる。   After final cold rolling, strain relief annealing is performed. The strain removal annealing is held at a temperature of 300 ° C. or more and 550 ° C. or less for 30 seconds or more and 3 minutes or less. If the temperature is less than 300 ° C. or the holding time is less than 1 minute, the processing strain cannot be sufficiently removed, the elongation is insufficient, and the elongation in the rolling direction when heated is increased. When temperature exceeds 550 degreeC, the fall of electrical conductivity and intensity | strength will become large.

まず、表1に示すように成分、熱間圧延条件、溶体化条件、時効前加工率、時効条件を変えて数種の銅合金を作製し各成分の銅合金を高周波溶解炉で溶解後、SUS製鋳型に鋳込んで厚さ20mmの鋳塊を鋳造した。次に各熱間圧延条件で熱間圧延を実施して厚さ8mmに仕上げ、酸化スケールを除去後、冷間圧延を実施した。本発明のNo.4のみ厚さ2.5mmにて溶体化処理を行った後、冷間圧延にて厚さ1mmとした。その後、各時効前加工率にて冷間圧延を実施し、470℃の温度において2時間の時効処理を実施した後、加工率50%で最終圧延し、450℃の温度において1分間の歪み除去焼鈍を実施した。   First, as shown in Table 1, after changing the components, hot rolling conditions, solution conditions, pre-aging processing rate, aging conditions and preparing several types of copper alloys, melting each component copper alloy in a high-frequency melting furnace, An ingot having a thickness of 20 mm was cast by casting in a SUS mold. Next, hot rolling was performed under each hot rolling condition to finish to a thickness of 8 mm, and after removing the oxide scale, cold rolling was performed. No. of the present invention. Only 4 was subjected to a solution treatment at a thickness of 2.5 mm, and then cold-rolled to a thickness of 1 mm. Then, cold rolling is performed at each pre-aging rate, aging treatment is performed for 2 hours at a temperature of 470 ° C., then final rolling is performed at a processing rate of 50%, and strain is removed at a temperature of 450 ° C. for 1 minute. Annealing was performed.

Figure 2009007625
Figure 2009007625

表2にこれらのサンプルの熱間加工性、歪み除去焼鈍後の導電率、引張強さ、めっき性について評価した結果を示す。No.1〜4はいずれも熱間加工性やめっき性は良好で、特性的にも問題は見られなかった。NiとSiの含有量が多いほど高い強度が得られる。一方、No.5はNi、Siの含有量が少なく、充分な強度が得られず、No.6はNi、Siの含有量が多く、熱間圧延時に結晶粒界で割れ、めっき前の酸洗で残渣が大量に発生するといった問題が生じた。No.7〜9は化学組成はNo.2と同一であるが、No.7は熱間圧延の加熱温度が低く、結晶粒界に微小な割れを生じた。加熱温度860℃では結晶粒の内外に析出物はほとんど見られなかったが、770℃では析出物が多く見られた。また、熱間圧延後の断面には未再結晶粒が多く見られた。No.8は熱間圧延の加熱温度が高く、再結晶粒が粗大化した。No.9は時効処理前の加工率が低く、析出が充分に進まず低い導電率と低い強度となった。   Table 2 shows the results of evaluating the hot workability, electrical conductivity after strain-removal annealing, tensile strength, and plating properties of these samples. No. In all of Nos. 1 to 4, the hot workability and plating properties were good, and no problem was found in the characteristics. The higher the Ni and Si contents, the higher the strength. On the other hand, no. No. 5 has a low content of Ni and Si, and sufficient strength cannot be obtained. No. 6 had a large content of Ni and Si, and cracks occurred at the grain boundaries during hot rolling, and a large amount of residue was generated by pickling before plating. No. 7 to 9 have chemical compositions No. No. 2 but no. In No. 7, the heating temperature of the hot rolling was low, and minute cracks were generated at the grain boundaries. At the heating temperature of 860 ° C., almost no precipitates were observed inside and outside the crystal grains, but at 770 ° C., many precipitates were observed. Moreover, many non-recrystallized grains were seen in the cross section after hot rolling. No. In No. 8, the heating temperature of hot rolling was high, and the recrystallized grains became coarse. No. No. 9 had a low processing rate before aging treatment, and the precipitation did not proceed sufficiently, resulting in low conductivity and low strength.

Figure 2009007625
Figure 2009007625

次に、表2の結果に基づき、No.2(実施例1)と同一の製造条件で厚さ1mmまで冷間圧延後、表3に示すように時効条件、最終圧延加工率、歪み除去焼鈍条件を変えて数種のサンプルを作製し、時効後及び最終圧延後のビッカース硬さ、歪み除去焼鈍後の導電率、引張強さを評価した。更に500℃の温度において5分間の加熱を実施し、加熱前後での圧延方向の寸法変化を測定して伸縮率(伸び率)を算出した。この際、サンプルは長さ250mm、幅10mmとし、Ar雰囲気において無張力状態で加熱した。寸法測定の標点間距離は200mmとした。本発明である実施例1および実施例2〜実施例4はいずれも最終圧延での硬化率((最終圧延後の硬さ/時効処理後の硬さ−1)×100)は10%以下であり、加熱伸縮率は50ppm以下である。歪み除去焼鈍後の導電率及び引張強さも良好である。一方、比較例1〜比較例3は時効後の硬さが低く、硬化率はいずれも20%を超えている。この結果、加熱伸縮率は50ppmを大きく超えている。また、比較例4は比較例3と同一の時効条件であるが、最終圧延加工率を高くして加工硬化により強度を上げようとしたものだが、効果率が50%近いために加熱伸縮率は250ppm以上の高い値となった。また、過時効条件であるために耐熱性が低く、歪み除去焼鈍での強度低下が大きい。比較例5は最終圧延まで実施例1と同一の製造工程であり、歪み除去焼鈍条件のみ600℃の温度において1分間の加熱としたが、強度低下が大きい。   Next, based on the results of Table 2, After cold-rolling to a thickness of 1 mm under the same production conditions as 2 (Example 1), as shown in Table 3, changing the aging conditions, the final rolling process rate, the strain-removal annealing conditions, and producing several samples, Vickers hardness after aging and final rolling, electrical conductivity after strain removal annealing, and tensile strength were evaluated. Furthermore, heating was performed at a temperature of 500 ° C. for 5 minutes, and the dimensional change in the rolling direction before and after the heating was measured to calculate the expansion / contraction rate (elongation rate). At this time, the sample had a length of 250 mm and a width of 10 mm, and was heated in a no-tension state in an Ar atmosphere. The distance between gauge points for dimension measurement was 200 mm. In Example 1 and Examples 2 to 4 which are the present invention, the curing rate in final rolling ((hardness after final rolling / hardness after aging treatment-1) × 100) is 10% or less. Yes, the heat expansion / contraction rate is 50 ppm or less. The electrical conductivity and tensile strength after strain removal annealing are also good. On the other hand, Comparative Examples 1 to 3 have a low hardness after aging, and the curing rate exceeds 20%. As a result, the heat expansion / contraction rate greatly exceeds 50 ppm. Comparative Example 4 has the same aging conditions as Comparative Example 3, but the final rolling process rate was increased to increase the strength by work hardening. A high value of 250 ppm or more was obtained. Moreover, since it is an overaging condition, heat resistance is low, and the strength reduction by distortion removal annealing is large. Comparative Example 5 is the same manufacturing process as Example 1 up to the final rolling, and heating was performed for 1 minute at a temperature of 600 ° C. only for the strain-removal annealing conditions, but the strength was greatly reduced.

Figure 2009007625
Figure 2009007625

Claims (3)

Niを1.0質量%以上4.0質量%以下、Siを0.2質量%以上1.2質量%以下含有し、残部がCuと不可避不純物からなる銅基合金を鋳造し、熱間圧延により圧延後、15%以上の加工率で冷間圧延を施し、300℃以上500℃以下の温度において30分以上24時間以下の時効処理を施し、その後最終冷間圧延を行い、更に300℃以上550℃以下の温度で30秒以上3分以下の歪み除去焼鈍を行う銅合金の製造方法において、時効処理後の硬さに対する最終冷間圧延後の硬さの硬化率を10%以下とすることを特徴とする電気・電子部品用高強度銅合金の製造方法。   Cast a copper-based alloy containing Ni from 1.0% by mass to 4.0% by mass, Si from 0.2% by mass to 1.2% by mass, the balance being Cu and inevitable impurities, and hot rolling After rolling, cold rolling is performed at a processing rate of 15% or more, aging treatment is performed for 30 minutes to 24 hours at a temperature of 300 ° C. to 500 ° C., and then final cold rolling is performed, and further 300 ° C. or more is performed. In a copper alloy manufacturing method that performs strain relief annealing at a temperature of 550 ° C. or lower for 30 seconds or longer and 3 minutes or shorter, the hardening rate of the hardness after the final cold rolling relative to the hardness after the aging treatment should be 10% or less. A method for producing a high-strength copper alloy for electric and electronic parts. 請求項1において、前記銅基合金は、Niを1.0質量%以上4.0質量%以下、Siを0.2質量%以上1.2質量%以下含有し、更にP、Zn、Sn、Mg、Fe、Co、Mn、Zr、Ti、Cr、Agのいずれか1種類以上を総量で2.0質量%未満含有し、残部がCuと不可避不純物からなることを特徴とする電気・電子部品用高強度銅合金の製造方法。   In Claim 1, the said copper base alloy contains 1.0 mass% or more and 4.0 mass% or less of Ni, 0.2 mass% or more and 1.2 mass% or less of Si, Furthermore, P, Zn, Sn, An electrical / electronic component characterized by containing at least one of Mg, Fe, Co, Mn, Zr, Ti, Cr, and Ag in a total amount of less than 2.0 mass%, with the balance being Cu and inevitable impurities For producing high-strength copper alloys for industrial use. 前記熱間圧延は、800℃以上950℃以下の温度において30分以上保持後圧延する請求項1または2のいずれかに記載の電気・電子部品用高強度銅合金の製造方法。   The said hot rolling is a manufacturing method of the high strength copper alloy for electrical / electronic components in any one of Claim 1 or 2 which is rolled after hold | maintaining for 30 minutes or more at the temperature of 800 degreeC or more and 950 degrees C or less.
JP2007169852A 2007-06-28 2007-06-28 Manufacturing method of high-strength copper alloys for electrical and electronic parts Active JP5135914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007169852A JP5135914B2 (en) 2007-06-28 2007-06-28 Manufacturing method of high-strength copper alloys for electrical and electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169852A JP5135914B2 (en) 2007-06-28 2007-06-28 Manufacturing method of high-strength copper alloys for electrical and electronic parts

Publications (2)

Publication Number Publication Date
JP2009007625A true JP2009007625A (en) 2009-01-15
JP5135914B2 JP5135914B2 (en) 2013-02-06

Family

ID=40323001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169852A Active JP5135914B2 (en) 2007-06-28 2007-06-28 Manufacturing method of high-strength copper alloys for electrical and electronic parts

Country Status (1)

Country Link
JP (1) JP5135914B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984106A (en) * 2010-11-10 2011-03-09 河南通宇冶材集团有限公司 Low silver-copper alloy board for thin slab continuous casting crystallizer and manufacturing method thereof
JP2012046810A (en) * 2010-08-30 2012-03-08 Dowa Metaltech Kk Copper alloy sheet material and manufacturing method thereof
CN102392204A (en) * 2011-11-01 2012-03-28 兰州飞行控制有限责任公司 Vacuum high temperature annealing method of copper alloy parts with high zinc contents
WO2015022789A1 (en) * 2013-08-13 2015-02-19 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and bending deflection factor
JP5840310B1 (en) * 2014-07-09 2016-01-06 古河電気工業株式会社 Copper alloy sheet, connector, and method for producing copper alloy sheet
CN112376004A (en) * 2020-11-03 2021-02-19 深圳市业展电子有限公司 Treatment process for improving load stability of manganese-copper alloy material
CN114752810A (en) * 2022-03-24 2022-07-15 江苏恒盈电子科技有限公司 High-strength semiconductor lead frame for circuit board and preparation method thereof
KR20230077876A (en) * 2021-11-26 2023-06-02 한국재료연구원 Copper-Nickel-Silicon-Manganese alloy comprising G-Phase and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181759A (en) * 1999-12-17 2001-07-03 Nippon Mining & Metals Co Ltd Copper alloy for electronic material excellent in surface characteristic and producing method therefor
JP2006233314A (en) * 2005-02-28 2006-09-07 Dowa Mining Co Ltd High-strength copper alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181759A (en) * 1999-12-17 2001-07-03 Nippon Mining & Metals Co Ltd Copper alloy for electronic material excellent in surface characteristic and producing method therefor
JP2006233314A (en) * 2005-02-28 2006-09-07 Dowa Mining Co Ltd High-strength copper alloy

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046810A (en) * 2010-08-30 2012-03-08 Dowa Metaltech Kk Copper alloy sheet material and manufacturing method thereof
CN101984106A (en) * 2010-11-10 2011-03-09 河南通宇冶材集团有限公司 Low silver-copper alloy board for thin slab continuous casting crystallizer and manufacturing method thereof
CN102392204A (en) * 2011-11-01 2012-03-28 兰州飞行控制有限责任公司 Vacuum high temperature annealing method of copper alloy parts with high zinc contents
CN105518166A (en) * 2013-08-13 2016-04-20 Jx日矿日石金属株式会社 Copper alloy sheet having excellent conductivity and bending deflection factor
WO2015022789A1 (en) * 2013-08-13 2015-02-19 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and bending deflection factor
US11021774B2 (en) 2013-08-13 2021-06-01 Jx Nippon Mining & Metals Corporation Copper alloy plate having excellent electrical conductivity and bending deflection coefficient
JP5840310B1 (en) * 2014-07-09 2016-01-06 古河電気工業株式会社 Copper alloy sheet, connector, and method for producing copper alloy sheet
WO2016006053A1 (en) * 2014-07-09 2016-01-14 古河電気工業株式会社 Copper alloy sheet material, connector, and method for producing copper alloy sheet material
CN106661673A (en) * 2014-07-09 2017-05-10 古河电气工业株式会社 Copper alloy sheet material, connector, and method for producing copper alloy sheet material
CN112376004A (en) * 2020-11-03 2021-02-19 深圳市业展电子有限公司 Treatment process for improving load stability of manganese-copper alloy material
KR20230077876A (en) * 2021-11-26 2023-06-02 한국재료연구원 Copper-Nickel-Silicon-Manganese alloy comprising G-Phase and manufacturing method thereof
KR102609594B1 (en) 2021-11-26 2023-12-05 한국재료연구원 Copper-Nickel-Silicon-Manganese alloy comprising G-Phase and manufacturing method thereof
CN114752810A (en) * 2022-03-24 2022-07-15 江苏恒盈电子科技有限公司 High-strength semiconductor lead frame for circuit board and preparation method thereof
CN114752810B (en) * 2022-03-24 2023-04-11 江苏恒盈电子科技有限公司 High-strength semiconductor lead frame for circuit board and preparation method thereof

Also Published As

Publication number Publication date
JP5135914B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP4809935B2 (en) Copper alloy sheet having low Young&#39;s modulus and method for producing the same
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
TWI331633B (en)
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
CN102112641B (en) Copper alloy material for electrical/electronic component
JP2008196042A (en) Copper alloy sheet for electrical/electronic component having excellent strength and formability
CN107208191B (en) Copper alloy material and method for producing same
JP5050753B2 (en) Manufacturing method of copper alloy for electrical and electronic parts with excellent plating properties
WO2013018228A1 (en) Copper alloy
KR20110088595A (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
TW201309817A (en) Cu-ni-si alloy and method for manufacturing same
JP2002356726A (en) High-strength titanium-copper alloy, its manufacturing method, and terminal and connector using it
JP2011508081A (en) Copper-nickel-silicon alloy
JP2010007174A (en) Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
KR20130109209A (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP5247021B2 (en) Cu-Ni-Si-based alloy plate / strip with reduced wrinkles in the bent portion and method for producing the same
JP3908987B2 (en) Copper alloy excellent in bendability and manufacturing method thereof
TWI527914B (en) Strength, heat resistance and bending workability of the Fe-P copper alloy plate
JP4166197B2 (en) Cu-Ni-Si-based copper alloy strips with excellent BadWay bending workability
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
KR20140148437A (en) Corson alloy and method for producing same
JP2010285671A (en) High-strength and high-electrical conductivity copper alloy and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R150 Certificate of patent or registration of utility model

Ref document number: 5135914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350