JP4001315B2 - 油圧ポンプの容量制御装置 - Google Patents

油圧ポンプの容量制御装置 Download PDF

Info

Publication number
JP4001315B2
JP4001315B2 JP2000305445A JP2000305445A JP4001315B2 JP 4001315 B2 JP4001315 B2 JP 4001315B2 JP 2000305445 A JP2000305445 A JP 2000305445A JP 2000305445 A JP2000305445 A JP 2000305445A JP 4001315 B2 JP4001315 B2 JP 4001315B2
Authority
JP
Japan
Prior art keywords
pressure
valve
pump
oil passage
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000305445A
Other languages
English (en)
Other versions
JP2002106504A (ja
Inventor
宜夫 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2000305445A priority Critical patent/JP4001315B2/ja
Publication of JP2002106504A publication Critical patent/JP2002106504A/ja
Application granted granted Critical
Publication of JP4001315B2 publication Critical patent/JP4001315B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は2以上の油圧アクチュエータを駆動する油圧ポンプの容量を制御する装置に関するするものである。
【0002】
【従来の技術】
グレーダなどの建設機械には、図3に示すように作業機を作動させるための油圧アクチュエータ(油圧シリンダ)1と、ステアリング機構を作動させるための油圧アクチュエータ(油圧シリンダ)2が設けられている。
【0003】
すなわち油圧アクチュエータ1には油圧ポンプ5の吐出圧油がポンプ吐出油路6、圧油供給油路7、制御弁部30を介して供給され、供給された圧油の流量に応じた速度で駆動される。また油圧アクチュエータ2には油圧ポンプ5の吐出圧油がポンプ吐出油路6、圧油供給油路8、制御弁部40を介して供給され、供給された圧油の流量に応じた速度で駆動される。
【0004】
制御弁部30では油圧アクチュータ1に供給されるポンプ吐出圧Pp1と油圧アクチュエータ1の負荷圧PLS1との差圧が制御差圧ΔPLS1となるように油圧アクチュエータ1に供給される流量が制御される。同様に制御弁部40では油圧アクチュータ2に供給されるポンプ吐出圧Pp2と油圧アクチュエータ2の負荷圧PLS2との差圧が制御差圧ΔPLS2となるように油圧アクチュエータ2に供給される流量が制御される。
【0005】
ここでステアリング機構側の制御差圧ΔPLS2は作業機側の制御差圧ΔPLS1よりも小さい値に設定されている。
【0006】
ポンプ吐出圧Pp1は油路11を介してシャトル弁15の一方の入口に入力される。ポンプ吐出圧Pp2は油路13を介してシャトル弁15の他方の入口に入力される。このためシャトル弁15の出口からポンプ吐出圧Pp1、Pp2のうち高圧側のポンプ吐出圧が油路17に出力される。
【0007】
負荷圧PLS1は油路12を介してシャトル弁16の一方の入口に入力される。負荷圧PLS2は油路14を介してシャトル弁16の他方の入口に入力される。このためシャトル弁16の出口から負荷圧PLS1、PLS2のうち高圧側の負荷圧が油路18に出力される。
【0008】
油圧ポンプ5は可変容量型の油圧ポンプである。サーボピストン9に流入される圧油の流量に応じて油圧ポンプ5の斜板5aが駆動されポンプ容量q(cc/rev)が変化する。LS(ロードセンシング)弁10は油路17を介して一方のパイロットポートに加えられるポンプ吐出圧Pp、油路18を介して他方のパイロットポートに加えられる油圧アクチュエータ1、2の負荷圧PLSに応じて圧油の流量を制御し制御された圧油をサーボピストン9に流入させる。
【0009】
LS弁10は油圧ポンプ5の吐出圧Ppと油圧アクチュエータ1、2の負荷圧PLSとの差圧をポンプ制御差圧ΔPLSに保持する制御を行う。この制御はロードセンシング制御といわれる。ポンプ制御差圧ΔPLSはLS弁10に付与されるバネ10aのバネ力に応じて定まる。
【0010】
ここでポンプ制御差圧ΔPLSは作業機側の制御差圧ΔPLS1と同じ差圧に設定されている。
【0011】
差圧Pp−PLSがポンプ制御差圧ΔPLSよりも小さくなったときにはLS弁10は図中左側の弁位置に移動される。このためサーボピストン9からLS弁10を介して圧油がタンク90に流出され、油圧ポンプ5の斜板5aが最大容量qMAX側に移動される。このため油圧ポンプ5から吐出される流量Q(l/min)が増加され油圧ポンプ5の吐出圧Ppoutが大きくなる。この結果差圧Pp−PLSが大きくなりポンプ制御差圧ΔPLSに近づく。逆に差圧Pp−PLSがポンプ制御差圧ΔPLSよりも大きくなったときにはLS弁10は図中右側の弁位置に移動される。このためLS弁10からサーボピストン9に対してポンプ吐出圧油が流入され、油圧ポンプ5の斜板5aが最小容量qMIN側に移動される。このため油圧ポンプ5から吐出される流量Qが減らされ油圧ポンプ5の吐出圧Ppoutが小さくなる。この結果差圧Pp−PLSが小さくなりポンプ制御差圧ΔPLSに近づく。以上のようにしてLS弁10に導かれるポンプ吐出圧Ppと負荷圧PLSとの差圧Pp−PLSがポンプ制御差圧ΔPLSに一致される。
【0012】
差圧Pp−PLSがポンプ制御差圧ΔPLSに一致している場合には、油圧アクチュエータ1、2が要求する流量と油圧ポンプ5が吐出する流量とがマッチングしている。
【0013】
なおロードセンシング制御が用いられる油圧回路についての一般的技術水準を示す文献として、特公平2−49406号公報がある。
【0014】
【発明が解決しようとする課題】
しかしステアリング機構側の制御差圧ΔPLS2と作業機側の制御差圧ΔPLS1が異なるため、制御差圧の低いステアリング機構側の油圧アクチュエータ2の負荷圧PLS2が高圧側のときには、ステアリング機構側の油圧アクチュエータ2の要求流量と油圧ポンプ5の吐出流量とのマッチングがとれないという問題が発生する。
【0015】
ステアリング機構と作業機のうちステアリング機構のみが単独で作動し油圧シリンダ2が駆動している場合を想定する。
【0016】
この場合LS弁10のバネ10a側のパイロットポートに、シャトル弁16、油路18を介して高圧側の負荷圧PLS2が負荷圧PLSとして導かれる。またLS弁10の反対側のパイロットポートに、シャトル弁15、油路17を介して高圧側のポンプ吐出圧Pp2がポンプ吐出圧Ppとして導かれる。
【0017】
ここでステアリング機構側制御差圧ΔPLS2はポンプ制御差圧ΔPLSよりも小さい。このため油圧ポンプ5から油圧アクチュエータ2に対して要求流量の圧油が供給された場合であったとしても、LS弁10に導かれるポンプ吐出圧Ppと負荷圧PLSとの差圧Pp−PLSはポンプ制御差圧ΔPLSよりも小さいままとなる。このため差圧Pp−PLSをポンプ制御差圧ΔPLSに一致させるべく油圧ポンプ5の斜板5aが最大容量qMAX側に移動される。条件次第では油圧ポンプ5の斜板5aは常時最大容量qMAX位置に固定される。
【0018】
ステアリング機構側油圧アクチュエータ2の要求流量以外の流量は、圧油供給油路7を介して作業機側の制御弁部30に供給される。作業機側制御弁部30には、アンロード弁が設けられている。アンロード弁はポンプ吐出圧Pp1と負荷圧PLS1との差圧が設定値を超えると、供給される圧油をタンク90に排出するように動作する。したがって負荷圧PLS1が小さい状態で大きなポンプ吐出圧Pp1が供給されると、差圧が設定値を超え、アンロード弁を介してタンク90に高圧、多量の圧油が排出される。これによってオーバーヒートなどに代表されるようにヒートバランスが悪化するという問題が発生する。また油圧馬力の増大を招きエネルギー効率が悪化するという問題が発生する。このため可変容量型の油圧ポンプ5を使用することが無意味に帰することになる。
【0019】
またステアリング機構と作業機の両方が複合作動している場合も、ステアリング機構側の負荷圧PLS2が高圧側でありこの負荷圧PLS2がLS弁10のバネ10a側のパイロットポートに負荷圧PLSとして導かれているときには、ステアリング機構が単独作動している場合と同様に油圧回路は動作する。このため上述したヒートバランスの悪化等の問題が同様に発生する。
【0020】
なお作業機が単独で作動している場合あるいはステアリング機構と作業機の両方が複合作動している場合であって作業機側の負荷圧PLS1が高圧側である場合には、作業機側の負荷圧PLS1がLS弁10のパイロットポートに負荷圧PLSとして導かれる。
【0021】
ここで作業機側制御差圧ΔPLS1はポンプ制御差圧ΔPLSに同じ値に設定されている。このため油圧ポンプ5から油圧アクチュエータ1に対して要求流量の圧油が供給されているときには、LS弁10に導かれるポンプ吐出圧Ppと負荷圧PLSとの差圧Pp−PLSはポンプ制御差圧ΔPLSに一致している。このため油圧アクチュエータ1、2の要求流量と油圧ポンプ5の吐出流量とがマッチングし、不要な流量を供給することによるヒートバランスの悪化等の問題は生じない。
【0022】
ところでステアリング機構側制御差圧ΔPLS2をポンプ制御差圧ΔPLSと同じ値に設定して、ステアリング機構作動時のヒートバランス悪化の問題を解消することが考えられる。確かにステアリング機構が単独で作動しているときには油圧アクチュエータ2の要求流量と油圧ポンプ5の吐出流量とがマッチングするのでヒートバランスの悪化等の問題は生じない。
【0023】
しかし作業機が単独で作動しているときには、ポンプ吐出流量が作業機側の油圧アクチュエータ1の要求流量に達しないまま、LS弁10に導かれるポンプ吐出圧Ppと負荷圧PLSとの差圧Pp−PLSがポンプ制御差圧ΔPLSよりも大きい状態になる。このため差圧Pp−PLSをポンプ制御差圧ΔPLSに一致させるべく油圧ポンプ5の斜板5aが最小容量qMIN側の位置に固定される。このため油圧ポンプ4の吐出流量は小さく作業機側の油圧アクチュエータ1に対して要求流量を供給することができない。これにより作業機の速度が低下し作業効率が低下するという問題が発生する。
【0024】
したがってステアリング機構側制御差圧ΔPLS2をポンプ制御差圧ΔPLSに同じ値に設定するという解決方法はこれを採用することができない。
【0025】
本発明はこうした実状に鑑みてなされたものであり、制御差圧が異なる両油圧アクチュエータに対して油圧ポンプから圧油を供給する場合に、ヒートバランスの悪化やエネルギー効率の低下を招くことなく要求流量に等しい吐出流量を供給できるようにすることを解決課題とするものである。
【0026】
【課題を解決するための手段、作用、効果】
そこで本発明は、
油圧ポンプ(5)と、この油圧ポンプ(5)の吐出圧油が供給されることにより駆動される第1および第2の油圧アクチュエータ(1、2)と、前記第1の油圧アクチュータ(1)に供給される第1のポンプ吐出圧と前記第1の油圧アクチュエータ(1)の第1の負荷圧との差圧が第1の制御差圧となるように前記第1の油圧アクチュエータ(1)に供給される流量を制御する第1の制御弁(31、32)と、前記第2の油圧アクチュータ(2)に供給される第2のポンプ吐出圧と前記第2の油圧アクチュエータ(2)の第2の負荷圧との差圧が前記第1の制御差圧よりも小さい第2の制御差圧となるように前記第2の油圧アクチュエータ(2)に供給される流量を制御する第2の制御弁(42)と、前記第1および第2のポンプ吐出圧のうち高圧側のポンプ吐出圧を導くとともに前記前記第1および第2の負荷圧のうち高圧側の負荷圧を導き、ポンプ吐出圧と負荷圧との差圧がポンプ制御差圧となるように前記油圧ポンプ(5)の容量を制御する容量制御手段(10)とを備えた油圧ポンプの容量制御装置において、
前記第2の負荷圧が高圧側である場合に、前記第2の負荷圧を所定圧だけ減圧して前記第1の制御弁(31、32)に第1の負荷圧として供給する減圧手段(21、21b)を設け、
前記減圧手段(21、21b)から供給された第1の負荷圧によって前記第1の制御弁(31、32)で生成される第1のポンプ圧を、前記容量制御手段(10)に導き、
前記容量制御手段(10)に導かれた第1のポンプ圧と第2の負荷圧との差圧を前記ポンプ制御差圧に一致させるようにしたこと
を特徴とする。
【0027】
第1発明を図1を参照して説明する。
【0028】
第2の制御差圧ΔPLS2(10kg/cm2)は第1の制御差圧ΔPLS1(24kg/cm2)よりも小さい値に設定されているものとする。またポンプ制御差圧ΔPLS(24kg/cm2)は第2の制御差圧ΔPLS2(10kg/cm2)よりも大きい値に設定されているものとする。
【0029】
第2の負荷圧PLS2(70kg/cm2)が高圧側である場合には、減圧弁21で第2の負荷圧PLS2(70kg/cm2)が所定圧(8kg/cm2)だけ減圧され(70kg/cm2−8kg/cm2=62kg/cm2)、これが油路21b、油路12を介して第1の制御弁31、32に第1の負荷圧PLS1(62kg/cm2)として供給される。
【0030】
減圧弁21、油路21b、油路12を介して供給された第1の負荷圧PLS1(62kg/cm2)によって第1の制御弁31、32では、第1のポンプ圧Pp1(94kg/cm2=第1の負荷圧(62kg/cm2)+アンロード弁31の作動圧(32kg/cm2))が生成され、これが油路11、油路17を介して容量制御手段10に導かれる。一方油路14、シャトル弁22、油路18を介して高圧側の第2の負荷圧PLS2(70kg/cm2)が容量制御手段10に導かれる。このため容量制御手段10に導かれた第1のポンプ圧Pp1(94kg/cm2)と第2の負荷圧PLS2(70kg/cm2)との差圧(24kg/cm2=94kg/cm2−70kg/cm2)がポンプ制御差圧ΔPLS(24kg/cm2)に一致する。
【0031】
このように本発明によれば第2の油圧アクチュエータ2が単独で駆動している場合(ステアリング機構が単独で作動している場合)あるいは第2の油圧アクチュエータ2と第1の油圧アクチュエータ1の両方が同時駆動している場合(ステアリング機構と作業機の両方が複合作動している場合)であって第2の油圧アクチュエータ2側の負荷圧PLS2が高圧側である場合には、ポンプ容量制御手段10に導かれるポンプ吐出圧Ppと負荷圧PLSとの差圧Pp−PLSが見かけ上第2の制御差圧ΔPLS2(10kg/cm2)ではなく第1の制御差圧ΔPLS1(24kg/cm2)になる。このため差圧Pp−PLSがポンプ制御差圧ΔPLS(24kg/cm2)に一致し、油圧アクチュエータ1、2の要求流量と油圧ポンプ5の吐出流量とがマッチングする。これにより不要な流量を供給することによるヒートバランスの悪化等が発生することが防止される。
【0032】
なお第1の油圧アクチュエータ1が単独で駆動している場合(作業機が単独で作動している場合)あるいは第2の油圧アクチュエータ2と第1の油圧アクチュエータ1の両方が同時駆動している場合(ステアリング機構と作業機の両方が複合作動している場合)であって第1の油圧アクチュエータ1側の負荷圧PLS1が高圧側である場合には、ポンプ容量制御手段10には第1の油圧アクチュエータ1側のポンプ吐出圧Pp1と負荷圧PLS1が導かれる。第1の油圧アクチュエータ1側の制御差圧ΔPLS1(24kg/cm2)は第2の制御差圧ΔPLS2(10kg/cm2)よりも大きい。このため差圧Pp−PLSがポンプ制御差圧ΔPLS(24kg/cm2)に一致し、油圧アクチュエータ1、2の要求流量と油圧ポンプ5の吐出流量とがマッチングする。したがってヒートバランスの悪化や作業機の速度が低下し作業効率が低下するという問題は発生しない。
【0033】
【発明の実施の形態】
以下図面を参照して本発明に係る油圧ポンプの容量制御装置の実施の形態について説明する。なお本実施形態ではグレーダなどの建設機械に搭載される油圧ポンプの容量制御装置を想定している。
【0034】
図1は実施形態の油圧回路図を示している。図2は図1に示す実施形態の構成を概念的に示した図である。図1と図2の構成、動作は同様であるので以下図1を中心に説明する。なお図1、図2においてメインの油路を実線でパイロット油路を破線で示している。
【0035】
まず図1、図2、図3の対応関係について説明する。
【0036】
図1、図2に示すように実施形態では作業機を作動させるための作業機用油圧シリンダ1と、ステアリング機構を作動させるためのステアリング機構用油圧シリンダ2が設けられている。図1、図2に示すように油圧シリンダ2は油圧シリンダ2L、2Rからなる。図1に示す作業機用制御弁部30は図2に示す作業機用制御弁部30L、30Rに相当する。つまり油圧シリンダ1は作業機用制御弁部30L、30Rに対応して複数(2つ)設けられているものとする。
【0037】
図1、図2に示すステアリング制御部41とプライオリティ弁42は図3に示すステアリング機構用の制御弁部40に対応している。
【0038】
また図1に示す減圧弁21、シャトル弁22、チェック弁23は図2に示す減圧弁部20を構成している。
【0039】
図1に示すように実施形態の油圧回路は、大きくは、容量制御部50と、プライオリティ弁42と、ステアリング制御部41と、作業機用制御弁部30と、減圧弁21とから構成されている。
【0040】
容量制御部50は油圧ポンプ5の容量を制御してポンプ吐出油路6にポンプ吐出圧Ppoutの圧油を吐出する。容量制御部50は、可変容量型油圧ポンプ5と、サーボピストン9と、LS弁10から構成されている。可変容量型油圧ポンプ5はエンジン80によって駆動される。
【0041】
プライオリティ弁42は油圧ポンプ5の吐出圧油を圧油供給油路7、8にそれぞれ分流して出力するか、一方の圧油供給油路に優先的に出力する。
【0042】
ステアリング制御部41は、ハンドルの操作に応じてステアリング機構の作動を制御する。ステアリング制御部41を構成する流量方向制御弁41aは、ハンドル操作に応じてステアリング機構用の左右の油圧シリンダ2L、2Rに供給する圧油の流量および方向を切り換える。
【0043】
作業機用制御弁部30はレバーの操作に応じて作業機の作動を制御する。作業機用制御弁部30はアンロード弁31と圧力補償弁32と流量方向制御弁33から構成されている。作業機用制御弁部30を構成する流量方向制御弁33は、レバー操作に応じて作業機用油圧シリンダ1に供給する圧油の流量および方向を切り換える。
【0044】
以下容量制御部5のLS弁10に入力されるポンプ吐出圧をPp、負荷圧をPLS、容量制御部5のLS弁10で設定されるポンプ制御差圧をΔPLSとする。また油圧ポンプ5の吐出流量をQと定義する。作業機に関連するものには、これらポンプ吐出圧Pp、負荷圧PLS、制御差圧ΔPLS、流量Qに添え字「1」を付けて、ステアリング機構に関連するものには、これらポンプ吐出圧Pp、負荷圧PLS、制御差圧ΔPLS、流量Qに添え字「2」を付けて説明する。圧油供給油路7上のポンプ吐出圧をPp1で表し、圧油供給油路8上のポンプ吐出圧をPp2で表し、ポンプ吐出油路6上におけるポンプ吐出圧Ppoutと区別する。
【0045】
作業機用油圧シリンダ1には油圧ポンプ5の吐出圧油がポンプ吐出油路6、プライオリティ弁42、圧油供給油路7、アンロード弁31、圧力補償弁32、流量方向制御弁33を介して供給され、供給された圧油の流量に応じた速度で駆動される。
【0046】
流量方向制御弁33では作業機油圧シリンダ1に供給されるポンプ吐出圧Pp1と作業機油圧シリンダ1の負荷圧PLS1との差圧が制御差圧ΔPLS1となるように作業機用油圧シリンダ1に供給される流量が操作レバーの操作に応じて制御される。
【0047】
圧力補償弁32は油圧ポンプ5からみて流量方向制御弁33の上流側つまり油圧ポンプ5と流量方向制御弁33との間の圧油供給路7a上に設けられている。
【0048】
圧力補償弁32は、複数の流量方向制御弁33、33(図1に示す流量方向制御弁33は図2に示す各制御弁部30L、30Rに相当する)の上流側の圧油の圧力と下流側の圧油の圧力との間の圧力差を、同一の値にする弁である。油圧回路の一般公式である下記(1)式、
Q1=c・A・√(ΔP1) …(1)
から導かれる通り、差圧ΔP1を一定の制御差圧ΔPLS1となるようにすることで、オペレータによって操作される操作レバーの操作量(流量方向制御弁33のポンプポートからシリンダポートへの開口の面積)に比例した流量Q1が負荷の大きさとは無関係に得られる。制御差圧ΔPLS1はたとえば24kg/cm2に設定される。
【0049】
流量方向制御33に対応する圧力補償弁32は、フローコントロール弁部32aと減圧弁部32bとから成る。フローコントロール弁部32a、減圧弁部32bには油圧ポンプ5から吐出された圧油が圧油供給油路7、アンロード弁31、圧油供給油路7aを介して流入される。圧油供給油路7aは油路11に分岐している。油路11にはポンプ吐出圧Pp1が出力される。減圧弁部32bの出力ポートは油路12に連通している。油路12には作業機用油圧シリンダ1の負荷圧PLS1が出力される。
【0050】
アンロード弁31の入力ポートは圧油供給油路7に連通している。
【0051】
アンロード弁31は、作業機用油圧シリンダ1に供給されるポンプ吐出圧Pp1と、作業機用油圧シリンダ1の負荷圧PLS1との差圧を、アンロード弁31の制御差圧Δ′PLS1に応じた一定値とする。制御差圧Δ′PLS1はバネ31dのバネ力に応じて定まり、たとえば32kg/cm2に設定される。
【0052】
アンロード弁31は3つの弁位置31a、31b、31cを有している。弁位置31cは非アンロード位置であり弁位置31a、31bはアンロード位置である。
【0053】
油路12は油路12bと12cに分岐している。油路12cは絞り12dを介してタンク9に連通している。油路12bはアンロード弁31のバネ31d側のパイロットポートに連通している。アンロード弁31は2つの出力ポートを備えている。アンロード弁31の一方の出力ポートは油路7aに連通するとともに油路31eを介してバネ31dとは反対側のパイロットポートに連通している。アンロード弁31の他の出力ポートは排出油路7bを介してタンク90に連通している。
【0054】
アンロード弁31はポンプ吐出圧Pp1と作業機用油圧シリンダ1の負荷圧PLS1との差圧が制御差圧Δ′PLS1を超えると圧油をタンク90に排出するように動作する。すなわち差圧がバネ31dで定まる制御差圧Δ′PLS1以上になったときにはアンロード弁31はアンロード位置31b、31a側に位置し、圧油供給油路7と排出油路7bとが連通する。このため圧油供給油路7のポンプ吐出圧油はタンク90に排出される。これに対して作業機用油圧シリンダ1の負荷圧PLS1が大きくなり、ポンプ吐出圧Pp1と作業機用油圧シリンダ1の負荷圧PLS1との差圧がバネ31dで定まる制御差圧Δ′PLS1よりも小さくなるとアンロード弁31は非アンロード位置31c側に位置し、圧油供給油路7と排出油路7bとが遮断される。このため圧油供給油路7のポンプ吐出圧油はタンク90に排出されることなく作業機用油圧シリンダ1に供給される。
【0055】
油路11は油路11aに分岐している。油路11aはチェック弁23の出口に接続している。
【0056】
ステアリング機構用油圧シリンダ2には油圧ポンプ5の吐出圧油がポンプ吐出油路6、プライオリティ弁42、圧油供給油路8、流量方向制御弁41aを介して供給され、供給された圧油の流量に応じた速度で駆動される。ステアリング機構用油圧シリンダ2の負荷圧PLS2は油路14に出力される。油路14は油路14aと14bに分岐している。油路14bは減圧弁21のバネ21a側とは反対側のパイロットポートに連通している。油路14はシャトル弁22の一方の入口に接続している。
【0057】
プライオリティ弁42の入力ポートはポンプ吐出油路6に連通している。
【0058】
プライオリティ弁42は、ステアリング機構用油圧シリンダ2に供給されるポンプ吐出圧Pp2と、ステアリング機構用油圧シリンダ2の負荷圧PLS2との差圧を、プライオリティ弁42の制御差圧ΔPLS2に応じた一定値とする。制御差圧ΔPLS2はバネ42dのバネ力に応じて定まり、たとえば10kg/cm2に設定される。つまりステアリング側の制御差圧ΔPLS2は作業機側の制御差圧ΔPLS1よりも小さい値に設定されている。
【0059】
プライオリティ弁42は3つの弁位置42a、42b、42cを有している。弁位置42bは分流位置であり弁位置42aはステアリング機構側優先位置であり弁位置42cは作業機側優先位置である。
【0060】
油路14aはプライオリティ弁42のバネ42d側のパイロットポートに連通している。プライオリティ弁42は2つの出力ポートを備えている。プライオリティ弁42の一方の出力ポートは圧油供給油路8に連通するとともに油路42eを介してバネ42dとは反対側のパイロットポートに連通している。プライオリティ弁42の他の出力ポートは圧油供給油路7に連通している。
【0061】
プライオリティ弁42は、作業機のみが作動している場合、つまりステアリング機構用油圧シリンダ2に供給されるポンプ吐出圧Pp2とステアリング機構用油圧シリンダ2の負荷圧PLS2との差圧が制御差圧ΔPLS2を超えると、圧油を圧油供給油路7側に供給するように動作する。すなわち差圧がバネ42dで定まる制御差圧ΔPLS2よりも大きくなったときにはプライオリティ弁42は作業機側優先位置42c側に位置し、ポンプ吐出油路6と圧油供給油路7とが連通し、ポンプ吐出油路6と圧油供給油路8とが遮断される。このためポンプ吐出油路6のポンプ吐出圧油が作業機用油圧シリンダ1に供給される。
【0062】
これに対してステアリング機構のみが作動している場合、つまりステアリング機構用油圧シリンダ2の負荷圧PLS2が大きくなり、ポンプ吐出圧Pp2とステアリング機構用油圧シリンダ2の負荷圧PLS2との差圧がバネ42dで定まる制御差圧ΔPLS2よりも小さくなると、プライオリティ弁42はステアリング機構側優先位置42a側に位置し、ポンプ吐出油路6と圧油供給油路8とが連通し、ポンプ吐出油路6と圧油供給油路7とが遮断される。このためポンプ吐出油路6のポンプ吐出圧油はステアリング機構用油圧シリンダ2に供給される。
【0063】
ポンプ吐出圧Pp2とステアリング機構用油圧シリンダ2の負荷圧PLS2との差圧がバネ42dで定まる制御差圧ΔPLS2とほぼ等しいときにはプライオリティ弁42は分流位置42b側に位置し、ポンプ吐出油路6と圧油供給油路7、8とが連通する。このためポンプ吐出油路6のポンプ吐出圧油は作業機用油圧シリンダ1、ステアリング機構用油圧シリンダ2にそれぞれ分流されて供給される。
【0064】
油路8は油路8aに分岐している。油路8aは減圧弁21の入力ポートに連通している。
【0065】
油路8は油路13に連通している。油路13はチェック弁23の入口に接続している。チェック弁23は油路13から油路11aに向かう方向のみ圧油の流れを許容する。油路11は油路17に連通している。このためチェック弁23の出口、油路11a、油路11を介して油路17には、ポンプ吐出圧Pp1、Pp2のうち高圧側のポンプ吐出圧が出力される。油路17はLS弁10のバネ10a側とは反対側のパイロットポートに連通している。
【0066】
つぎに減圧弁21について説明する。
減圧弁21の出力ポートは油路21bに連通するとともに油路21cを介してバネ21a側のパイロットポートに連通している。油路21bは油路12に連通している。油路12は油路12aに分岐している。油路12aはシャトル弁22の他方の入口に接続している。シャトル弁22の出口は油路18に接続している。油路18はLS弁10のバネ10a側のパイロットポートに連通している。
【0067】
減圧弁21は、ステアリング機構が単独で作動している場合など作業機側の負荷圧PLS1が低圧である場合に、ステアリング機構側の負荷圧PLS2よりも所定圧Cだけ低い圧力の圧油を油路21bに出力するように動作する。この所定圧Cはバネ21aのバネ力に応じて定まり、たとえば8kg/cm2に設定される。
【0068】
すなわち油路14bを介して減圧弁21に作用する負荷圧PLS2と油路21b、油路21cを介して減圧弁21に作用する負荷圧PLS1との差圧が、バネ21aのバネ力で定まる所定圧C以上になったときには減圧弁21は開くように動作し下流側の負荷圧PLS1を大きくする。逆に油路14bを介して減圧弁21に作用する負荷圧PLS2と油路21b、油路21cを介して減圧弁21に作用する負荷圧PLS1との差圧がバネ21aのバネ力で定まる所定圧Cよりも小さくなったときには減圧弁21は閉じるように動作し下流側の負荷圧PLS1を小さくする。
【0069】
このように作業機側の負荷圧PLS1が低圧である場合には減圧弁21の動作によって、油路21b、油路12a、油路12内の負荷圧PLS1が見かけ上、ステアリング機構側の負荷圧PLS2を所定圧Cだけ減圧した圧力まで上昇される。
【0070】
したがって作業機側の負荷圧PLS1が低圧である場合には、シャトル弁22の一方の入口には油路14を介して負荷圧PLS2が加えられ他方の入口には負荷圧PLS2を所定圧Cだけ減圧した負荷圧PLS1が加えられることになるので、シャトル弁22の出口から油路18へ、高圧側の負荷圧PLS2が出力される。
【0071】
逆に作業機が単独で作動している場合など、作業機側の負荷圧PLS1がステアリング機構側の負荷圧PLS2よりも大きくなった場合には、シャトル弁22の一方の入口には油路14を介して負荷圧PLS2が加えられ他方の入口には負荷圧PLS2よりも高圧の負荷圧PLS1が加えられることになるので、シャトル弁22の出口から油路18へ、高圧側の負荷圧PLS1が出力される。なおこのとき油路21b、21cを介して高圧の負荷圧PLS1が減圧弁21に作用するので減圧弁21は閉じられている。
【0072】
以上のようにシャトル弁22の出口から負荷圧PLS1、PLS2のうち高圧側の負荷圧が油路18に出力される。
【0073】
なお減圧弁21はステアリング機構側の負荷圧PLS2を所定圧だけ減圧した圧力の圧油を出力しているが、ステアリング機構側のポンプ吐出圧Pp2を所定圧だけ減圧した圧力の圧油を出力するように構成してもよい。
【0074】
つぎの容量制御部50の構成について説明する。
【0075】
油圧ポンプ5の斜板5aは、サーボピストン9に流入される圧油の流量に応じて駆動されポンプ容量q(cc/rev)が変化する。LS弁10は油路17を介してバネ10a側に対向する側のパイロットポートに加えられるポンプ吐出圧Pp、油路18を介してバネ10a側のパイロットポートに加えられる負荷圧PLSに応じて圧油の流量を制御し制御された圧油をサーボピストン9に流入させる。
【0076】
LS弁10は油圧ポンプ5の吐出圧Ppと負荷圧PLSとの差圧をポンプ制御差圧ΔPLSに保持するロードセンシング制御を行う。ポンプ制御差圧ΔPLSはLS弁10に付与されるバネ10aのバネ力に応じて定まる。ここでポンプ制御差圧ΔPLSは作業機側の制御差圧ΔPLS1と同じ差圧(24kg/cm2)に設定されている。
【0077】
差圧Pp−PLSがポンプ制御差圧ΔPLSよりも小さくなったときにはLS弁10は図中で中立の弁位置から左側の弁位置に移動される。このためサーボピストン9からLS弁10を介して圧油がタンク90に流出され、油圧ポンプ5の斜板5aが最大容量qMAX側に移動される。このため油圧ポンプ5から吐出される流量Q(l/min)が増加され油圧ポンプ5の吐出圧Ppoutが大きくなる。この結果差圧Pp−PLSが大きくなりポンプ制御差圧ΔPLSに近づく。逆に差圧Pp−PLSがポンプ制御差圧ΔPLSよりも大きくなったときにはLS弁10は図で中立の弁位置から右側の弁位置に移動される。このためLS弁10からサーボピストン9に対してポンプ吐出圧油が流入され、油圧ポンプ5の斜板5aが最小容量qMIN側に移動される。このため油圧ポンプ5から吐出される流量Qが減らされ油圧ポンプ5の吐出圧Ppoutが小さくなる。この結果差圧Pp−PLSが小さくなりポンプ制御差圧ΔPLSに近づく。以上のようにしてLS弁10に導かれるポンプ吐出圧Ppと負荷圧PLSとの差圧Pp−PLSがポンプ制御差圧ΔPLSに一致される。
【0078】
差圧Pp−PLSがポンプ制御差圧ΔPLSに一致している場合には、油圧シリンダ1、2が要求する流量Q1、Q2と油圧ポンプ5が吐出する流量Qとがマッチングしている。
【0079】
つぎに図1の油圧回路の動作について説明する。
【0080】
まず作業機とステアリング機構の両方が作動していない場合を想定する。この場合は負荷圧PLS1、PLS2は共に低圧(0kg/cm2)になっている。したがって油圧ポンプ5の斜板5aは最小容量qMINに位置している。またプライオリティ弁42は分流位置42bまたは作業機側優先位置42cでバランスしている。またアンロード弁31はアンロード位置31b、31cに位置している。
【0081】
したがってポンプ吐出圧Ppout、Pp1、Pp2はそれぞれアンロード弁31の制御差圧Δ′PLS1(32kg/cm2)にほぼ等しい値になっている。
【0082】
1)つぎに、この状態から作業機とステアリング機構のうちステアリング機構が単独で作動した場合を想定する。
【0083】
1−1)まずステアリング機構側油圧シリンダ2の要求流量Q2が油圧ポンプ5の最小容量qMIN時の吐出流量Q(MIN)以下である場合を想定する。
【0084】
ステアリング機構用油圧シリンダ2の負荷圧PLS2が高圧(70kg/cm2)になると、この負荷圧PLS2は油路14、シャトル弁22、油路18を介してLS弁10のバネ10a側のパイロットポートに負荷圧PLSとして加えられる。また負荷圧PLS2は油路14、油路14aを介してプライオリティ弁42のバネ42d側のパイロットポート42dに加えられる。
【0085】
このため油圧ポンプ5、ポンプ吐出油路6、プライオリティ弁42を介して圧油供給油路8には、負荷圧PLS2(70kg/cm2)に対して制御差圧ΔPLS2(10kg/cm2)を加えたポンプ吐出圧Pp2(80kg/cm2)が供給される。
【0086】
このポンプ吐出圧Pp2(80kg/cm2)の圧油は油路8aを介して減圧弁21の入力ポートに供給される。ここで減圧弁21には油路14a、14bを介して負荷圧PLS2(70kg/cm2)が作用している。減圧弁21ではポンプ吐出圧Pp2(80kg/cm2)が減圧され、負荷圧PLS2(70kg/cm2)よりも所定圧C(8kg/cm2)だけ低い圧力(70kg/cm2−8kg/cm2=62kg/cm2)の圧油が下流の油路21bに出力される。この圧油は油路21b、油路12を介して制御弁部30に加えられる。つまり油路12、12bを介してアンロード弁31のバネ31d側のパイロットポートに負荷圧PLS2(70kg/cm2)を所定圧C(8kg/cm2)だけ減圧した負荷圧PLS1(62kg/cm2)が加えられる。また油路12を介して圧力補償弁32の減圧弁部32bに負荷圧PLS2(70kg/cm2)を所定圧C(8kg/cm2)だけ減圧した負荷圧PLS1(62kg/cm2)が作用する。
【0087】
このためアンロード弁31はアンロード位置31a、31b側から非アンロード位置31c側に移動する。これにより圧油供給油路7と排出油路7bとが遮断され、圧油供給油路7のポンプ吐出圧油はタンク90に排出されることなく圧油供給油路7a、圧力補償弁32を介して作業機用油圧シリンダ1に供給される。この結果圧油供給油路7、7aのポンプ吐出圧Pp1は上昇する。ポンプ吐出圧Pp1が負荷圧PLS1(62kg/cm2)に対して制御差圧Δ′PLS1(32kg/cm2)を加えた圧力(94kg/cm2=62kg/cm2+32kg/cm2)まで上昇するとアンロード弁31は非アンロード位置31c側からアンロード位置31b、31a側に移動し圧油をタンク90に排出する。このため作業機側のポンプ吐出圧Pp1は負荷圧PLS1(62kg/cm2)に対して制御差圧Δ′PLS1(32kg/cm2)を加えた圧力(94kg/cm2=62kg/cm2+32kg/cm2)でバランスする。このポンプ吐出圧Pp1(94kg/cm2)は圧油供給油路7a、油路11、11aを介してチェック弁23の出口に作用する。
【0088】
チェック弁23の入口のポンプ吐出圧Pp2(80kg/cm2)と出口のポンプ吐出圧Pp1(94kg/cm2)とでは出口側のポンプ吐出圧Pp1(94kg/cm2)が大きい。したがってこの高圧側のポンプ吐出圧Pp1(94kg/cm2)が油路11a、油路17を介してLS弁10のバネ10a側とは反対側のパイロットポートに加えられる。
【0089】
一方シャトル弁22の一方の入口には油路14を介して負荷圧PLS2(70kg/cm2)が加えられ他方の入口には油路21b、12aを介して負荷圧PLS2(70kg/cm2)を所定圧C(8kg/cm2)だけ減圧した負荷圧PLS1(62kg/cm2)が加えられることになるので、シャトル弁22の出口から油路18へ、高圧側の負荷圧PLS2(70kg/cm2)が出力される。したがってこの高圧側の負荷圧PLS2(70kg/cm2)がLS弁10のバネ10aのパイロットポートに加えられる。
【0090】
以上のようにしてLS弁10に導かれるポンプ吐出圧Pp(94kg/cm2)と負荷圧PLS(70kg/cm2)との差圧Pp−PLS(24kg/cm2=94kg/cm2−70kg/cm2)がポンプ制御差圧ΔPLS(24kg/cm2)に一致される。このとき油圧ポンプ5の斜板5aは最小容量qMINの位置に位置する。このようにして油圧シリンダ2の要求流量と油圧ポンプ5の吐出流量とがマッチングする。
【0091】
1−2)つぎにステアリング機構側油圧シリンダ2の要求流量Q2が油圧ポンプ5の最小容量qMIN時の吐出流量Q(MIN)よりも大きくなった場合を想定する。
【0092】
ステアリング機構用油圧シリンダ2の負荷圧PLS2が高圧(70kg/cm2)になると、この負荷圧PLS2は油路14、油路14aを介してプライオリティ弁42のバネ42d側のパイロットポート42dに加えられる。
【0093】
ここで油圧シリンダ2の要求流量Q2が油圧ポンプ5の最小容量qMIN時の吐出流量Q(MIN)よりも大きいので、プライオリティ弁42に作用するポンプ吐出圧Pp2と負荷圧PLS2(70kg/cm2)との差圧は制御差圧ΔPLS2(10kg/cm2)に達しない。
【0094】
このためプライオリティ弁42は作業機側優先位置42c、分流位置42bからステアリング機構側優先位置42aに移動する。これによりポンプ吐出油路6の全吐出量がプライオリティ弁42を介して圧油供給油路8に流入する。圧油供給油路7にはポンプ吐出圧油が流入しないためLS弁10には高圧側のポンプ吐出圧Pp2、高圧側の負荷圧PLS2が油路17、18を介して導かれる。
【0095】
LS弁10に導かれるポンプ吐出圧Ppと負荷圧PLS(70kg/cm2)との差圧はポンプ制御差圧ΔPLS(24kg/cm2)に達しないので、LS弁10は図中で左側の弁位置に移動される。このためサーボピストン9からLS弁10を介して圧油がタンク90に流出され、油圧ポンプ5の斜板5aが最小容量qMIN側から最大容量qMAX側に移動される。このため油圧ポンプ5から吐出される流量Qが増加され油圧ポンプ5の吐出圧Ppoutが大きくなる。この結果差圧Pp−PLSが大きくなりポンプ制御差圧ΔPLSに近づく。
【0096】
油圧ポンプ5の吐出流量Qが油圧シリンダ2の要求流量Q2になると、油圧ポンプ5、ポンプ吐出油路6、プライオリティ弁42を介して圧油供給油路8には、負荷圧PLS2(70kg/cm2)に対して制御差圧ΔPLS2(10kg/cm2)を加えたポンプ吐出圧Pp2(80kg/cm2)が供給される。このためプライオリティ弁42はステアリング機構側優先位置42aから作業機側優先位置42c、分流位置42bに移動する。これによりポンプ吐出油路6、プライオリティ弁42を介して圧油供給油路7に圧油が流入する。
【0097】
ポンプ吐出圧Pp2(80kg/cm2)の圧油は油路8aを介して減圧弁21の入力ポートに供給される。ここで減圧弁21には油路14a、14bを介して負荷圧PLS2(70kg/cm2)が作用している。減圧弁21ではポンプ吐出圧Pp2(80kg/cm2)が減圧され、負荷圧PLS2(70kg/cm2)よりも所定圧C(8kg/cm2)だけ低い圧力(70kg/cm2−8kg/cm2=62kg/cm2)の圧油が下流の油路21bに出力される。この圧油は油路21b、油路12を介して制御弁部30に加えられる。つまり油路12、12bを介してアンロード弁31のバネ31d側のパイロットポートに負荷圧PLS2(70kg/cm2)を所定圧C(8kg/cm2)だけ減圧した負荷圧PLS1(62kg/cm2)が加えられる。また油路12を介して圧力補償弁32の減圧弁部32bに負荷圧PLS2(70kg/cm2)を所定圧C(8kg/cm2)だけ減圧した負荷圧PLS1(62kg/cm2)が作用する。
【0098】
このためアンロード弁31はアンロード位置31a、31b側から非アンロード位置31c側に移動する。これにより圧油供給油路7と排出油路7bとが遮断され、圧油供給油路7のポンプ吐出圧油はタンク90に排出されることなく圧油供給油路7a、圧力補償弁32を介して作業機用油圧シリンダ1に供給される。この結果圧油供給油路7、7aのポンプ吐出圧Pp1は上昇する。ポンプ吐出圧Pp1が負荷圧PLS1(62kg/cm2)に対して制御差圧Δ′PLS1(32kg/cm2)を加えた圧力(94kg/cm2=62kg/cm2+32kg/cm2)まで上昇するとアンロード弁31は非アンロード位置31c側からアンロード位置31b、31a側に移動し圧油をタンク90に排出する。このため作業機側のポンプ吐出圧Pp1は負荷圧PLS1(62kg/cm2)に対して制御差圧Δ′PLS1(32kg/cm2)を加えた圧力(94kg/cm2=62kg/cm2+32kg/cm2)でバランスする。このポンプ吐出圧Pp1(94kg/cm2)は圧油供給油路7a、油路11、11aを介してチェック弁23の出口に作用する。
【0099】
チェック弁23の入口のポンプ吐出圧Pp2(80kg/cm2)と出口のポンプ吐出圧Pp1(94kg/cm2)とでは出口側のポンプ吐出圧Pp1(94kg/cm2)が大きい。したがってこの高圧側のポンプ吐出圧Pp1(94kg/cm2)が油路11a、油路17を介してLS弁10のバネ10a側とは反対側のパイロットポートに加えられる。
【0100】
一方シャトル弁22の一方の入口には油路14を介して負荷圧PLS2(70kg/cm2)が加えられ他方の入口には油路21b、12aを介して負荷圧PLS2(70kg/cm2)を所定圧C(8kg/cm2)だけ減圧した負荷圧PLS1(62kg/cm2)が加えられることになるので、シャトル弁22の出口から油路18へ、高圧側の負荷圧PLS2(70kg/cm2)が出力される。したがってこの高圧側の負荷圧PLS2(70kg/cm2)がLS弁10のバネ10aのパイロットポートに加えられる。
【0101】
以上のようにしてLS弁10に導かれるポンプ吐出圧Pp(94kg/cm2)と負荷圧PLS(70kg/cm2)との差圧Pp−PLS(24kg/cm2=94kg/cm2−70kg/cm2)がポンプ制御差圧ΔPLS(24kg/cm2)に一致される。このとき油圧ポンプ5の斜板5aは油圧シリンダ2の要求流量Q2とポンプ吐出流量Qがマッチングする位置に位置する。このようにして油圧シリンダ2の要求流量Q2と油圧ポンプ5の吐出流量Qとがマッチングする。
【0102】
2)つぎに、作業機とステアリング機構の両方が複合作動した場合を想定する。
【0103】
2−1)作業機側油圧シリンダ1の要求流量Q1とステアリング機構側油圧シリンダ2の要求流量Q2を合計した要求流量が油圧ポンプ5の最小容量qMIN時の吐出流量Q(MIN)以下である場合を想定する。
【0104】
ステアリング機構側負荷圧PLS2(70kg/cm2)が作業機側負荷圧PLS1以上である場合を想定する。
【0105】
ステアリング機構用油圧シリンダ2の負荷圧PLS2が高圧(70kg/cm2)であるので、この高圧の負荷圧PLS2が油路14、シャトル弁22、油路18を介してLS弁10のバネ10a側のパイロットポートに負荷圧PLSとして加えられる。また負荷圧PLS2は油路14、油路14aを介してプライオリティ弁42のバネ42d側のパイロットポート42dに加えられる。
【0106】
このため油圧ポンプ5、ポンプ吐出油路6、プライオリティ弁42を介して圧油供給油路8には、負荷圧PLS2(70kg/cm2)に対して制御差圧ΔPLS2(10kg/cm2)を加えたポンプ吐出圧Pp2(80kg/cm2)が供給される。
【0107】
このポンプ吐出圧Pp2(80kg/cm2)の圧油は油路8aを介して減圧弁21の入力ポートに供給される。ここで減圧弁21には油路14a、14bを介して負荷圧PLS2(70kg/cm2)が作用している。減圧弁21ではポンプ吐出圧Pp2(80kg/cm2)が減圧され、負荷圧PLS2(70kg/cm2)よりも所定圧C(8kg/cm2)だけ低い圧力(70kg/cm2−8kg/cm2=62kg/cm2)の圧油が下流の油路21bに出力される。この圧油は油路21b、油路12を介して制御弁部30に加えられる。
【0108】
以後1−1)と同様にアンロード弁31は動作し、作業機側のポンプ吐出圧Pp1は負荷圧PLS1(62kg/cm2)に対して制御差圧Δ′PLS1(32kg/cm2)を加えた圧力(94kg/cm2=62kg/cm2+32kg/cm2)でバランスする。
【0109】
また1−1)と同様にLS弁10は動作する。すなわちLS弁10には高圧側のポンプ吐出圧Pp1(94kg/cm2)がポンプ吐出圧Ppとして導かれ、高圧側の負荷圧PLS2(70kg/cm2)が負荷圧PLSとして導かれこれらの差圧Pp−PLS(24kg/cm2=94kg/cm2−70kg/cm2)がポンプ制御差圧ΔPLS(24kg/cm2)に一致される。このとき油圧ポンプ5の斜板5aは最小容量qMINの位置に位置する。
【0110】
これに対して作業機側負荷圧PLS1(100kg/cm2)がステアリング機構側負荷圧PLS2(70kg/cm2)よりも大きくなったときは減圧弁21、アンロード弁31、LS弁10は以下のように動作する。
【0111】
すなわち減圧弁21のバネ21aに対向する側には油路14、14bを介して負荷圧PLS2(70kg/cm2)が作用し、バネ21a側には油路12、21b、21cを介して高圧側の負荷圧PLS1(100kg/cm2)が作用する。このため減圧弁21は閉じられ、下流の油路21b内の圧力は作業機側負荷圧PLS1(100kg/cm2)のままとなる。
【0112】
このためアンロード弁31のバネ31d側のパイロットポートには油路12bを介して負荷圧PLS1(100kg/cm2)が加えられる。
【0113】
ここで油圧シリンダ1、2の合計要求流量Q1+Q2は油圧ポンプ5の最小容量qMIN時の吐出流量Q(MIN)以下であるので、アンロード弁31でポンプ吐出圧Pp1は負荷圧PLS1(100kg/cm2)に制御差圧Δ′PLS1(32kg/cm2)を加えた圧力(132kg/cm2=100kg/cm2+32kg/cm2)まで上昇する。アンロード弁31はアンロード位置31b、31a側に移動し圧油をタンク90に排出する。アンロード弁31ではポンプ吐出流量Q(MIN)から合計要求流量Q1+Q2を減算した圧油がタンク90に排出される。
【0114】
ポンプ吐出圧Pp1(132kg/cm2)は圧油供給油路7a、油路11、11aを介してチェック弁23の出口に作用する。
【0115】
チェック弁23の入口のポンプ吐出圧Pp2(80kg/cm2)と出口のポンプ吐出圧Pp1(132kg/cm2)とでは出口側のポンプ吐出圧Pp1(132kg/cm2)が大きい。したがってこの高圧側のポンプ吐出圧Pp1(132kg/cm2)が油路11a、油路17を介してLS弁10のバネ10a側とは反対側のパイロットポートに加えられる。
【0116】
一方シャトル弁22の一方の入口には油路14を介して負荷圧PLS2(70kg/cm2)が加えられ他方の入口には油路12aを介して負荷圧PLS1(100kg/cm2)が加えられることになるので、シャトル弁22の出口から油路18へ、高圧側の負荷圧PLS1(100kg/cm2)が出力される。したがってこの高圧側の負荷圧PLS1(100kg/cm2)がLS弁10のバネ10aのパイロットポートに加えられる。
【0117】
以上のようにしてLS弁10に導かれるポンプ吐出圧Pp(132kg/cm2)と負荷圧PLS(100kg/cm2)との差圧Pp−PLS(32kg/cm2=132kg/cm2−100kg/cm2)はポンプ制御差圧ΔPLS(24kg/cm2)よりも大きくなる。差圧Pp−PLSがポンプ制御差圧ΔPLSよりも大きくなったときにはLS弁10は図中右側の弁位置に移動される。このためLS弁10からサーボピストン9に対してポンプ吐出圧油が流入され、油圧ポンプ5の斜板5aが最小容量qMIN側に移動される。このため油圧ポンプ5から吐出される流量Qが減らされ油圧ポンプ5の吐出圧Ppoutが小さくなる。この結果差圧Pp−PLSが小さくなりポンプ制御差圧ΔPLSに近づく。以上のようにしてLS弁10に導かれるポンプ吐出圧Ppと負荷圧PLSとの差圧Pp−PLSがポンプ制御差圧ΔPLSに一致される。このとき油圧ポンプ5の斜板5aは最小容量qMINの位置に位置する。このようにして油圧シリンダ1、2の合計要求流量Q1+Q2と油圧ポンプ5の吐出流量Qとがマッチングする。
【0118】
2−2)作業機側油圧シリンダ1の要求流量Q1とステアリング機構側油圧シリンダ2の要求流量Q2を合計した要求流量が油圧ポンプ5の最小容量qMIN時の吐出流量Q(MIN)よりも大きい場合を想定する。
【0119】
ステアリング機構側負荷圧PLS2(70kg/cm2)が作業機側負荷圧PLS1以上である場合を想定する。
【0120】
この場合1−2)と同様にLS弁10、プライオリティ弁42は動作し、油圧ポンプ5の吐出流量Qが油圧シリンダ1、2の合計要求流量Q1+Q2になると、油圧ポンプ5、ポンプ吐出油路6、プライオリティ弁42を介して圧油供給油路8には、負荷圧PLS2(70kg/cm2)に対して制御差圧ΔPLS2(10kg/cm2)を加えたポンプ吐出圧Pp2(80kg/cm2)が供給される。
【0121】
また1−2)と同様に減圧弁21は動作し、負荷圧PLS2(70kg/cm2)よりも所定圧C(8kg/cm2)だけ低い圧力(70kg/cm2−8kg/cm2=62kg/cm2)が負荷圧PLS1として下流の油路21bに出力される。
【0122】
また1−2)と同様にアンロード弁31は動作し、作業機側のポンプ吐出圧Pp1は負荷圧PLS1(62kg/cm2)に対して制御差圧Δ′PLS1(32kg/cm2)を加えた圧力(94kg/cm2=62kg/cm2+32kg/cm2)でバランスする。
【0123】
つぎに1−2)と同様にLS弁10は動作する。すなわちLS弁10には高圧側のポンプ吐出圧Pp1(94kg/cm2)がポンプ吐出圧Ppとして導かれ、高圧側の負荷圧PLS2(70kg/cm2)が負荷圧PLSとして導かれこれらの差圧Pp−PLS(24kg/cm2=94kg/cm2−70kg/cm2)がポンプ制御差圧ΔPLS(24kg/cm2)に一致される。このとき油圧ポンプ5の斜板5aは最小容量qMINの位置に位置する。
【0124】
これに対して作業機側負荷圧PLS1(100kg/cm2)がステアリング機構側負荷圧PLS2(70kg/cm2)よりも大きくなったときは減圧弁21、アンロード弁31、圧力補償弁32、LS弁10は以下のように動作する。
【0125】
すなわち減圧弁21のバネ21aに対向する側には油路14、14bを介して負荷圧PLS2(70kg/cm2)が作用し、バネ21a側には油路12、21b、21cを介して高圧側の負荷圧PLS1(100kg/cm2)が作用する。このため減圧弁21は閉じられ、下流の油路21b内の圧力は作業機側負荷圧PLS1(100kg/cm2)のままとなる。
【0126】
このためアンロード弁31のバネ31d側のパイロットポートには油路12bを介して負荷圧PLS1(100kg/cm2)が加えられる。
【0127】
ここで油圧シリンダ1、2の合計要求流量Q1+Q2は油圧ポンプ5の最小容量qMIN時の吐出流量Q(MIN)よりも大きいので、アンロード弁31に作用するポンプ吐出圧Pp1と負荷圧PLS1(100kg/cm2)との差圧は制御差圧Δ′PLS1(32kg/cm2)よりも小さく、アンロード弁31は非アンロード位置31c側に移動する。
【0128】
LS弁10に導かれるポンプ吐出圧Ppと負荷圧PLS(100kg/cm2)との差圧はポンプ制御差圧ΔPLS(24kg/cm2)に達しないので、LS弁10は図中で左側の弁位置に移動される。このためサーボピストン9からLS弁10を介して圧油がタンク90に流出され、油圧ポンプ5の斜板5aが最小容量qMIN側から最大容量qMAX側に移動される。このため油圧ポンプ5から吐出される流量Qが増加され油圧ポンプ5の吐出圧Ppoutが大きくなる。この結果差圧Pp−PLSが大きくなりポンプ制御差圧ΔPLSに近づく。
【0129】
このため油圧ポンプ5の吐出流量Qが油圧シリンダ1、2の合計要求流量Q1+Q2になり、圧力補償弁32の上流のポンプ吐出圧Pp1が負荷圧PLS1(100kg/cm2)に制御差圧ΔPLS1(24kg/cm2)を加えた圧力(124kg/cm2=100kg/cm2+24kg/cm2)まで上昇する。こうしてLS弁10に導かれる差圧Pp−PLS(124kg/cm2−100kg/cm2)がポンプ制御差圧ΔPLS(24kg/cm2)に一致する。
【0130】
すなわちポンプ吐出圧Pp1(124kg/cm2)は圧油供給油路7a、油路11、11aを介してチェック弁23の出口に作用する。
【0131】
チェック弁23の入口のポンプ吐出圧Pp2(80kg/cm2)と出口のポンプ吐出圧Pp1(124kg/cm2)とでは出口側のポンプ吐出圧Pp1(124kg/cm2)が大きい。したがってこの高圧側のポンプ吐出圧Pp1(124kg/cm2)が油路11a、油路17を介してLS弁10のバネ10a側とは反対側のパイロットポートに加えられる。
【0132】
一方シャトル弁22の一方の入口には油路14を介して負荷圧PLS2(70kg/cm2)が加えられ他方の入口には油路12aを介して負荷圧PLS1(100kg/cm2)が加えられることになるので、シャトル弁22の出口から油路18へ、高圧側の負荷圧PLS1(100kg/cm2)が出力される。したがってこの高圧側の負荷圧PLS1(100kg/cm2)がLS弁10のバネ10aのパイロットポートに加えられる。
【0133】
以上のようにしてLS弁10に導かれるポンプ吐出圧Pp(124kg/cm2)と負荷圧PLS(100kg/cm2)との差圧Pp−PLS(24kg/cm2=124kg/cm2−100kg/cm2)はポンプ制御差圧ΔPLS(24kg/cm2)に一致する。油圧ポンプ5の斜板5aは、油圧シリンダ1、2の合計要求流量Q1+Q2が油圧ポンプ5の吐出流量Qとマッチングする位置に位置する。このようにして油圧シリンダ1、2の合計要求流量Q1+Q2と油圧ポンプ5の吐出流量Qとがマッチングする。
【0134】
なお作業機が単独で作動している場合には、2−1)、2−2)で作業機側負荷圧PLS1が高圧側である場合と同様にして、LS弁10に作業機側ポンプ吐出圧Pp1と作業機側負荷圧PLS1が導かれ、LS弁10でこれら差圧Pp−PLSがポンプ制御差圧ΔPLSに一致するように動作することで、油圧シリンダ1の要求流量Q1と油圧ポンプ5の吐出流量Qとがマッチングする。
【0135】
以上のように本実施形態によれば油圧シリンダ1、2の要求流量と油圧ポンプ5の吐出流量とがマッチングするように動作するので、ヒートバランスの悪化や作業機の速度が低下し作業効率が低下するという問題は発生しない。
【図面の簡単な説明】
【図1】図1は実施形態の構成を示す油圧回路図である。
【図2】図2は図1に対応する油圧回路図である。
【図3】図3は従来の油圧回路図である。
【符号の説明】
1、2 油圧シリンダ
5 油圧ポンプ
10 LS弁
21 減圧弁
21b 油路
31 アンロード弁
32 圧力補償弁

Claims (1)

  1. 油圧ポンプ(5)と、この油圧ポンプ(5)の吐出圧油が供給されることにより駆動される第1および第2の油圧アクチュエータ(1、2)と、前記第1の油圧アクチュータ(1)に供給される第1のポンプ吐出圧と前記第1の油圧アクチュエータ(1)の第1の負荷圧との差圧が第1の制御差圧となるように前記第1の油圧アクチュエータ(1)に供給される流量を制御する第1の制御弁(31、32)と、前記第2の油圧アクチュータ(2)に供給される第2のポンプ吐出圧と前記第2の油圧アクチュエータ(2)の第2の負荷圧との差圧が前記第1の制御差圧よりも小さい第2の制御差圧となるように前記第2の油圧アクチュエータ(2)に供給される流量を制御する第2の制御弁(42)と、前記第1および第2のポンプ吐出圧のうち高圧側のポンプ吐出圧を導くとともに前記前記第1および第2の負荷圧のうち高圧側の負荷圧を導き、ポンプ吐出圧と負荷圧との差圧がポンプ制御差圧となるように前記油圧ポンプ(5)の容量を制御する容量制御手段(10)とを備えた油圧ポンプの容量制御装置において、前記第2の負荷圧が高圧側である場合に、前記第2の負荷圧を所定圧だけ減圧して前記第1の制御弁(31、32)に第1の負荷圧として供給する減圧手段(21、21b)を設け、
    前記減圧手段(21、21b)から供給された第1の負荷圧によって前記第1の制御弁(31、32)で生成される第1のポンプ圧を、前記容量制御手段(10)に導き、
    前記容量制御手段(10)に導かれた第1のポンプ圧と第2の負荷圧との差圧を前記ポンプ制御差圧に一致させるようにしたこと
    を特徴とする油圧ポンプの容量制御装置。
JP2000305445A 2000-10-04 2000-10-04 油圧ポンプの容量制御装置 Expired - Fee Related JP4001315B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000305445A JP4001315B2 (ja) 2000-10-04 2000-10-04 油圧ポンプの容量制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000305445A JP4001315B2 (ja) 2000-10-04 2000-10-04 油圧ポンプの容量制御装置

Publications (2)

Publication Number Publication Date
JP2002106504A JP2002106504A (ja) 2002-04-10
JP4001315B2 true JP4001315B2 (ja) 2007-10-31

Family

ID=18786305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000305445A Expired - Fee Related JP4001315B2 (ja) 2000-10-04 2000-10-04 油圧ポンプの容量制御装置

Country Status (1)

Country Link
JP (1) JP4001315B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4446822B2 (ja) 2004-07-13 2010-04-07 日立建機株式会社 作業車両の油圧駆動装置
JP4822320B2 (ja) * 2005-11-22 2011-11-24 油研工業株式会社 可変容量形双方向回転ポンプおよび該ポンプを用いた油圧回路
DE102010052528B4 (de) * 2010-11-25 2021-09-02 Linde Hydraulics Gmbh & Co. Kg Load-Sensing geregeltes hydrostatisches Antriebssystem
CN109555747B (zh) * 2019-02-01 2023-08-25 杭叉集团股份有限公司 一种叉车液压***及叉车集成阀

Also Published As

Publication number Publication date
JP2002106504A (ja) 2002-04-10

Similar Documents

Publication Publication Date Title
JP5357864B2 (ja) 建設機械の油圧回路
JP5996778B2 (ja) 建設機械の油圧駆動装置
US10526767B2 (en) Construction machine
US8539762B2 (en) Hydraulic control circuit for construction machine
WO2008023516A1 (fr) Système d'entraînement de ventilateur
WO2016185682A1 (ja) 建設機械の油圧駆動システム
WO1993024757A1 (en) Hydraulic driving system
JP4001315B2 (ja) 油圧ポンプの容量制御装置
JP2004197825A (ja) 液圧駆動装置
JP7121642B2 (ja) 流体圧制御装置
JP2010196780A (ja) 建設機械の油圧制御装置
US10871176B2 (en) Fluid pressure control device
JP4703419B2 (ja) 油圧アクチュエータ用制御回路
JP4926627B2 (ja) 電油システム
JP4229872B2 (ja) 油圧制御装置
JP7121641B2 (ja) 流体圧制御装置
JP3798187B2 (ja) 油圧駆動装置
JP3523518B2 (ja) 建設機械の油圧回路
JP4703418B2 (ja) 油圧アクチュエータ用制御回路
JP6510910B2 (ja) 油圧駆動装置
JP5036486B2 (ja) 油圧回路および建設機械用油圧制御装置
JP2001280302A (ja) 油圧制御回路
JP4850575B2 (ja) 油圧アクチュエータ制御装置
JP2021055699A (ja) 流体制御回路、油圧制御回路及び建設機械
JP2843729B2 (ja) 油圧回路構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees