JP3980390B2 - Optical deflection element, optical deflection device, optical deflection apparatus, and image display apparatus - Google Patents

Optical deflection element, optical deflection device, optical deflection apparatus, and image display apparatus Download PDF

Info

Publication number
JP3980390B2
JP3980390B2 JP2002086538A JP2002086538A JP3980390B2 JP 3980390 B2 JP3980390 B2 JP 3980390B2 JP 2002086538 A JP2002086538 A JP 2002086538A JP 2002086538 A JP2002086538 A JP 2002086538A JP 3980390 B2 JP3980390 B2 JP 3980390B2
Authority
JP
Japan
Prior art keywords
light
optical
liquid crystal
deflection
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002086538A
Other languages
Japanese (ja)
Other versions
JP2003279926A (en
Inventor
浩之 杉本
ゆみ 松木
正典 小林
一也 宮垣
康之 滝口
才明 鴇田
幾雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002086538A priority Critical patent/JP3980390B2/en
Publication of JP2003279926A publication Critical patent/JP2003279926A/en
Application granted granted Critical
Publication of JP3980390B2 publication Critical patent/JP3980390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Projection Apparatus (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light deflection element which can remove influence of noise light. <P>SOLUTION: In the case that incident light is made incident obliquely from an element normal direction, polarized components vertical to a incident light polarization direction are mixed, and part of polarized components become the noise light without being deflected to a predetermined position. When the deflection direction by the light deflection element is switched by changing an application electric field, the noise light is generated resulting from scattered light caused by the movement of a liquid crystal molecule. The noise light components are reduced by arranging a noise light removing means comprising a polarizing filter 7 at an light emission side of liquid crystal 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電気信号によって光の方向を変える光偏向素子、光偏向デバイス、光偏向装置及びこれらの光偏向素子又は光偏向デバイスを利用した画像表示装置に関する。
【0002】
【定義】
本明細書において、「光偏向素子」とは、外部からの電気信号により光の光路を偏向、即ち、入射光に対して出射光を平行にシフトさせるか、或る角度を持って回転させるか、或いは、その両者を組合せて光路を切換えることが可能な光学素子を意味する。この説明において、平行シフトによる光偏向に対してそのシフトの大きさを「シフト量」と呼び、回転による光偏向に対してその回転量を「回転角」と呼ぶものとする。「光偏向デバイス」とは、このような光偏向素子を含み、光の光路を偏向させるデバイスを意味する。
【0003】
また、「ピクセルシフト素子」とは、少なくとも画像情報に従って光を制御可能な複数の画素を二次元的に配列した画像表示素子と、画像表示素子を照明する光源と、画像表示素子に表示した画像パターンを観察するための光学部材と、画像フィールドを時間的に分割した複数のサブフィールド毎に画像表示素子と光学部材の間の光路を偏向する光偏向手段とを有し、光偏向手段によりサブフィールド毎の光路の偏向に応じて表示位置がずれている状態の画像パターンを表示させることで、画像表示素子の見掛け上の画素数を増倍して表示する画像表示装置における光偏向手段を意味する。従って、基本的には、上記定義による光偏向素子や光偏向デバイスを光偏向手段として応用することが可能といえる。
【0004】
【従来の技術】
光偏向素子なる光学素子として、従来より、KHPO(KDP),NHPO(ADP),LiNbO,LiTaO,GaAs,CdTeなど第1次電気光学効果(ポッケルス効果)の大きな材料や、KTN,SrTiO,CS,ニトロベンゼン等の第2次電気光学効果の大きな材料を用いた電気光学デバイスや、ガラス、シリカ、TeOなどの材料を用いた音響光学デバイスが知られている(例えば、青木昌治編;「オプトエレクトロニックデバイス」、昭晃堂)。これらは、一般的に、十分大きな光偏向量を得るためには光路長を長く取る必要があり、また、材料が高価であるため用途が制限されている。
【0005】
一方で、液晶材料を用いた光偏向素子なる光学素子も各種提案されており、その数例を挙げると、以下に示すような提案例がある。
【0006】
例えば、特開平6−18940号公報によれば、光空間スイッチの光の損失を低減することを目的に、人工複屈折板からなる光ビームシフタが提案されている。内容的には、2枚のくさび形の透明基板を互いに逆向きに配置し、これらの透明基板間に液晶層を挟んだ光ビームシフタ及びマトリクス形偏向制御素子の後面に光ビームシフタを接続した光ビームシフタが提案され、併せて、2枚のくさび形の透明基板を互いに逆向きに配置し、これらの透明基板間にマトリクス駆動が可能で、入射光ビームを半セルシフトする液晶層を挟んだ光ビームシフタを半セルずらして多段接続した光ビームシフタが提案されている。
【0007】
また、特開平9−133904号公報によれば、大きな偏向を得ることが可能で、偏向効率が高く、しかも、偏向角と偏向距離とを任意に設定することができる光偏向スイッチが提案されている。具体的には、2枚の透明基板を所定の間隔で対向配置させ、対向させた面に垂直配向処理を施し、透明基板間にスメクチックA相の強誘電性液晶を封入し、前記透明基板に対して垂直配向させ、スメクチック層と平行に交流電界を印加できるように電極対を配置し、電極対に交流電界を印加する駆動装置を備えた液晶素子である。即ち、スメクチックA相の強誘電性液晶による電傾効果を用い、液晶分子の傾斜による複屈折によって、液晶層に入射する偏光の屈折角と変位する方向を変化できるようにしたものである。
【0008】
前者の特開平6−18940号公報例においては、液晶材料にネマチック液晶を用いているため、応答速度をサブmsにまで速めることは困難であり、高速なスイッチングが必要な用途には用いることはできない。
【0009】
また、後者の特開平9−133904号公報例においては、スメクチックA相の強誘電液晶を用いているが、スメクチックA相は自発分極を持たないため、高速動作は望めない。
【0010】
次に、ピクセルシフト素子に関して従来提案されている技術を数例挙げて説明する。
【0011】
例えば、特許第2939826号公報に示されるように、表示素子に表示された画像を投写光学系によりスクリーン上に拡大投影する投影表示装置において、前記表示素子から前記スクリーンに至る光路の途中に透過光の偏光方向を旋回できる光学素子を少なくとも1個以上と複屈折効果を有する透明素子を少なくとも1個以上を有してなる投影画像をシフトする手段と、前記表示素子の開口率を実効的に低減させ、表示素子の各画素の投影領域が前記スクリーン上で離散的に投影される手段と、を備えた投影表示装置がある。
【0012】
同公報例においては、偏光方向を旋回できる光学素子(旋光素子と呼ぶ)を少なくとも1個以上と複屈折効果を有する透明素子(複屈折素子と呼ぶ)を少なくとも1個以上を有してなる投影画像シフト手段(ピクセルシフト手段)によりピクセルシフトを行っている。
【0013】
しかし、問題点として、旋光素子と複屈折素子とを組合せて使用するため、光量損失が大きいこと、光の波長によりピクセルシフト量が変動し解像度が低下しやすいこと、旋光素子と複屈折素子との光学特性のミスマッチから本来画像が形成されないピクセルシフト外の位置に漏れ光によるゴースト等の光学ノイズが発生しやすいこと、素子化のためのコストが大きいことが挙げられる。特に、複屈折素子に前述したようなKHPO(KDP),NHPO(ADP),LiNbO,LiTaO,GaAs,CdTeなど第1次電気光学効果(ポッケルス効果)の大きな材料を使用した場合、顕著である。
【0014】
また、特開平5−313116号公報に示される投影機においては、制御回路により、画像蓄積回路に蓄積した本来表示すべき画像を市松状に画素選択回路へサンプリングして順次空間光変調器に表示し、投影させ、さらに、制御回路により、この表示に対応させてパネル揺動機構を制御して空間光変調器の隣接画素ピッチ距離を整数分の一ずつ移動させることで、本来表示すべき画像を時間的な合成により再現するようにしている。これにより、空間光変調器の画素の整数倍の分解能で画像を表示可能にするとともに、画素の粗い空間光変調器と簡単な光学系を用いて安価に投影機を構成可能としている。
【0015】
ところが、同公報例においては、画像表示用素子自体を画素ピッチよりも小さい距離だけ高速に揺動させるピクセルシフト方式が記載されており、この方式では、光学系は固定されているので諸収差の発生が少ないが、画像表示素子自体を正確かつ高速に平行移動させる必要があるため、可動部の精度や耐久性が要求され、振動や音が問題となる。
【0016】
さらに、特開平6−324320号公報によれば、LCD等の画像表示装置の画素数を増加させることなく、表示画像の解像度を、見掛け上、向上させるため、縦方向及び横方向に配列された複数個の画素の各々が、表示画素パターンに応じて発光することにより、画像が表示される画像表示装置と、観測者又はスクリーンとの間に、光路をフィールド毎に変更する光学部材を配し、また、フィールド毎に、前記光路の変更に応じて表示位置がずれている状態の表示画素パターンを画像表示装置に表示させるようにしている。ここに、屈折率が異なる部位が、画像情報のフィールド毎に、交互に、画像表示装置と観測者又はスクリーンとの間の光路中に現れるようにすることで、光路の変更が行われるものである。
【0017】
同公報例においては、光路を変更する手段として、電気光学素子と複屈折材料の組合せ機構、レンズシフト機構、バリアングルプリズム、回転ミラー、回転ガラス等が記述されており、上記旋光素子と複屈折素子を組合せてなる方式の他に、ボイスコイル、圧電素子等によりレンズ、反射板、複屈折板等の光学素子を変位(平行移動、傾斜)させ光路を切り替える方式が提案されているが、この方式においては、光学素子を駆動するために構成が複雑となりコストが高くなる。
【0018】
また、特開平10−133135 号公報によれば、回転機械要素を不要化でき、全体の小型化、高精度・高分解能化を実現でき、しかも、外部からの振動の影響を受け難い光ビーム偏向装置が提案されている。具体的には、光ビームの進行路上に配置される透光性の圧電素子と、この圧電素子の表面に設けられた透明の電極と、圧電素子の光ビーム入射面Aと光ビーム出射面Bとの間の光路長を変化させて光ビームの光軸を偏向させるために電極を介して圧電素子に電圧を印加する電圧印加手段とを備えている。
【0019】
同公報例では、透光性の圧電素子を透明の電極で挟み、電圧を印加することで厚みを変化させて光路をシフトさせる方式が提案されているが、比較的大きな透明圧電素子を必要とし、装置コストがアップする等、前述の特開平6−324320号公報の場合と同様の問題点がある。
【0020】
【発明が解決しようとする課題】
上述した従来技術の課題を解決するため、本出願人は先に特願2002−12479(平成14年1月22日出願、本出願時において未公開)において、透明な一対の基板と、この基板間に充填されたホメオトロピック配向をなすキラルスメクチックC相よりなる液晶と、この液晶に電界を作用させる一組以上の電界印加手段と、を備える光偏向素子及びこの光偏向素子を用いた画像表示装置を提案している。
【0021】
本出願人による改良された上記提案例のような液晶を用いる光偏向素子においても、まだ、以下のような不具合がある。
【0022】
▲1▼ 例えば、入射光が素子法線方向から傾斜して入射する場合など、出射光の偏光状態が複屈折によって入射光の偏光状態と異なる場合がある。即ち、入射光の偏光方向と垂直な偏光成分が混在するようになる。この偏光成分の一部は所定の位置に偏向されずにノイズ光となる。
【0023】
▲2▼ 光偏向素子による偏向方向を、印加電界を変化させることにより切換える際に、液晶分子の運動による散乱光が発生し、これがノイズ光となる。特に、画像表示装置等にあっては、フレーム切換時に顕著に発生し、画像が劣化してしまう。
【0024】
画像表示装置等への利用を考えた場合には、▲1▼の不具合を抑制する必要上、斜め入射光成分を光偏向素子に入射させる前後で大幅にカットせざるを得ないが、これでは、照明光の広角成分まで有効に利用することができず、光利用効率が低下してしまう。
【0025】
また、偏向方向を4方向に設定するために、例えば第一、第二の光偏向素子を直列に配置した光偏向デバイスにおいても、第一の光偏向素子からの出射光のこれらのノイズ成分を除去せずに偏光方向切換手段及び後段の第二の光偏向素子に入射させた場合、そのノイズ成分は偏光方向切換手段によって偏光方向が切換えられ、後段の第二の光偏向素子で光偏向を受けず直進してしまうため、本来の光偏向位置とは異なる位置に受光されることになる。
【0026】
本発明は、これらのノイズ光の影響を除去することができる光偏向素子及び光偏向デバイス並びにこれらを用いた光偏向装置及び画像表示装置を提供することを目的とする。
【0027】
【課題を解決するための手段】
請求項1記載の発明の光偏向素子は、透明な一対の基板と、これらの基板間に充填されたホメオトロピック配向をなすキラルスメクチックC相よりなる液晶と、この液晶に対し前記一対の基板の板面方向に電界を作用させ液晶層を透過する光の光路を偏向する一組以上の電界印加手段と、前記基板の少なくとも一方の表面には配向膜を備えた光偏向素子である。そして、前記液晶の光出射側に配設された偏光フィルタよりなるノイズ光除去手段を備えることに特徴がある。
【0028】
従って、偏光フィルタよりなるノイズ光除去手段を液晶の光出射側に備えることにより、ノイズ光成分を低減させることができる。このため、画像表示装置或いは撮像装置に利用する際には、ノイズ光によって画像が劣化してしまうような不具合を解消することが可能となる。具体的には、斜め入射光成分を光偏向素子に入射させる前後で大幅にカットさせる必要がなくなり、照明光の広角成分まで有効に利用することができるため、光利用効率を向上させることができる。フレーム切換時に顕著に発生するノイズ光に関しても、画像劣化を低減させることができる。さらには、光スイッチに利用する上でも、SN比を向上させ、エラー発生を低減させることができる上に、光検出系の精度を緩めることができ、光スイッチの使用温度範囲を広めることが可能となる。
【0029】
請求項2記載の発明は、請求項1記載の光偏向素子において、前記液晶の分子長軸方向を平均化した方向として定まる光学軸の方向を、前記電界印加手段による電界の印加により所定方向に向けた状態で、一方の基板面から他方の基板面に向かって前記光学軸を投影して得られる投影光学軸方向が、前記偏光フィルタの透過光軸方向と一致している。
【0030】
従って、請求項1記載の発明を実現する上で、液晶の分子長軸方向を平均化した方向として定まる光学軸の方向を、電界印加手段による電界の印加により所定方向に向けた状態で、一方の基板面から他方の基板面に向かって光学軸を投影して得られる投影光学軸方向に透過光軸を一致させた偏光フィルタを光出射側に設置することで、ノイズ光の除去を良好かつ有効に行える。また、偏光フィルタはフィルム状のものを用いることができるため、従来構成の光偏向素子に比較して大型化することなく、目的とする機能を発揮させることができる。
【0031】
請求項3記載の発明は、請求項1記載の光偏向素子において、前記一対の基板が、対向する一方の基板表面に対し他方の基板表面が傾斜した領域を有し、前記液晶の電界印加による回転軸が、前記偏光フィルタの透過光軸方向と45°の角をなすよう配置されている。
【0032】
従って、対向する一方の基板表面に対し他方の基板表面が傾斜した領域を有する一対の基板と、これらの基板間に設けられるキラルスメクチックC液晶と、この液晶に電界を作用させる一組以上の電界印加手段と、を備える光偏向素子においても、偏光フィルタを備えることにより、前述したような原因に伴うノイズ光を、有効に除去することができる。この際、偏光フィルタの透過光軸方向を液晶の電界印加による回転軸と45°の角をなすように設定することで、電界印加により得られる出射光の光量を一致させることができる。
【0033】
請求項4記載の発明の光偏向デバイスは、透明な一対の基板と、これらの基板間に充填されたホメオトロピック配向をなすキラルスメクチックC相よりなる液晶と、この液晶に電界を作用させる一組以上の電界印加手段と、を各々備える第一及び第二の光偏向素子と、光入射側から順に直列に配列されたこれらの第一及び第二の光偏向素子間に設置されて、前記第一の光偏向素子からの出射光の偏光方向を前記第二の光偏向素子の偏向方向に揃える偏光方向切換手段と、この偏光方向切換手段と前記第二の光偏向素子との間に配置された偏光フィルタよりなるノイズ光除去手段と、を備える。
【0034】
従って、偏向方向を4方向に設定するために光偏向素子を直列に配置した光偏向デバイスにおいても、効果的なノイズ光除去を行える。また、第一の光偏向素子と偏光方向切換手段との間に偏光フィルタを配置した場合と比べ、偏光方向切換手段と第二の光偏向素子との間に配置した場合は、偏光方向切換手段で発生したノイズ光も同時に除去できるため、よりノイズ光の除去効果が高いものとなる。特に、入射光の波長が多重化されている場合、偏光方向切換手段における偏光方向切換性能に波長依存性がある場合が多いので、さらに効果が大きい。もっとも、複数(二つ以上)の光偏向素子を直列に配置し、各光偏向素子間に偏光方向切換手段が対応して配置される光偏向デバイスにおいては、偏光方向切換手段と光偏向素子との間に偏光フィルタを配置させることで同様の効果を得ることができる。
【0035】
請求項5記載の発明の光偏向装置は、請求項1,2又は3記載の光偏向素子又は請求項4記載の光偏向デバイスによる光偏向手段と、この光偏向手段の光出射側に設けられて、当該光偏向手段において所定領域外を進行するノイズ光を遮蔽する開口部材と、を備える。
【0036】
従って、光偏向手段による偏向方向を、印加電界を変化させることにより切換える際に、液晶分子の運動による散乱光が発生し、このような原因によるノイズ光は、いわゆる散乱成分が主であり液晶部を輝点として球状に発せられるものであるが、光偏向素子の後段(光出射側)に、光偏向素子において所定領域外を通過するノイズ光を遮蔽する開口部材を設けることで、良好にノイズ光除去が行える。
【0037】
請求項6記載の発明の画像表示装置は、画像情報に従って光を制御可能な複数の画素を二次元的に配列した画像表示素子と、この画像表示素子を照明する光源と、前記画像表示素子に表示した画像パターンを観察するための光学部材と、画像フィールドを時間的に分割した複数のサブフィールド毎に前記画像表示素子と前記光学部材の間の光路を偏向する請求項1,2又は3記載の光偏向素子又は請求項4記載の光偏向デバイスによる光偏向手段と、を備える。
【0038】
従って、請求項1,2又は3記載の光偏向素子又は請求項4記載の光偏向デバイスによる光偏向手段を備えることにより、入射光の偏光方向と垂直な偏光成分が混在することに起因して、偏光成分の一部は所定の位置に偏向されずに発生するノイズ光を有効に除去することができ、よって、入射光の偏光方向と垂直な偏光成分が混在するために発生するコントラスト低下を防ぐことができ、良好な画像を得ることができ、高精細表示が可能な画像表示装置を提供することができる。
【0039】
請求項7記載の発明の画像表示装置は、画像情報に従って光を制御可能な複数の画素を二次元的に配列した画像表示素子と、この画像表示素子を照明する光源と、前記画像表示素子に表示した画像パターンを観察するための光学部材と、画像フィールドを時間的に分割した複数のサブフィールド毎に前記画像表示素子と前記光学部材の間の光路を偏向する光偏向手段と、この光偏向手段の光出射側に設けられて、当該光偏向手段において発生するノイズ光を除去するための開口部材と、を備える。
【0040】
従って、光偏向手段による偏向方向を、印加電界を変化させることにより切換える際に、液晶分子の運動による散乱光が発生することに起因するノイズ光は光偏向手段の光出射側に設けられて、当該光偏向手段において発生するノイズ光を除去するための開口部材によって有効に除去することができ、よって、液晶スイッチング時に発生する散乱光を低減することができるため、これによるコントラスト低下を防ぐことができ、良好な画像が得られる画像表示装置を提供することができる。
【0041】
【発明の実施の形態】
本発明の第一の実施の形態を図1ないし図6に基づいて説明する。
図1は、本実施の形態の光偏向素子1の原理的構成例を示す断面図である。この光偏向素子1においては、まず、一対の透明な基板2,3が対向配置させて設けられている。そして、少なくとも一方、ここでは基板2側内面には配向膜4が形成されており、この配向膜4と他方の基板3との間にはキラルスメクチックC相よりなる強誘電液晶なる液晶5が充填されている。
【0042】
このような一対の基板2,3及び液晶5を有する構造体に対して、目的とする光偏向方向に対応させて電極6a,6bによる一対の電極対6が配置され、電源21に接続されている。電極対6は電界印加手段として機能するもので、光路と重ならない位置で当該光偏向素子1の液晶回転軸に対して略垂直方向に電界ベクトルが向くように設置されている。電極6a,6bは、基板2,3と一体化させて設けても、分離させて設けても良い。また、液晶5の膜厚を規定するためのスペーサを電極に兼用することも可能である。
【0043】
光進行方向の液晶の後段(光出射側)には、ノイズ光除去手段として機能する偏光フィルタ7が基板3に密着させて設置されている。この偏光フィルタ7の動作については後述する。
【0044】
入射光は、電極対6より形成される電界の方向によって偏向を受け、第1の出射光若しくは第2の出射光の何れかの光路をとる。
【0045】
ここで、液晶5に関して説明する。「スメクチック液晶」は、液晶分子の長軸方向を層状に配列してなる液晶分子である。このような液晶に関し、上述の層の法線方向(層法線方向)と液晶分子の長軸方向とが一致している液晶を「スメクチックA相」、法線方向と一致していない液晶を「キラルスメクチックC相」と呼んでいる。キラルスメクチックC相よりなる強誘電液晶5は、一般的に外部電界が働かない状態において各層毎に液晶分子方向が螺旋的に回転しているいわゆる螺旋構造をとり、キラルスメクチックC相反強誘電液晶は各層毎に液晶分子が対向する方向を向く。これらのキラルスメクチックC相よりなる液晶は、不斉炭素を分子構造に有し、これによって自発分極しているため、この自発分極Psと外部電界Eにより定まる方向に液晶分子が再配列することで光学特性が制御される。
【0046】
なお、本実施の形態等では、液晶5として強誘電液晶を例に採り光偏向素子1の説明を行うが、反強誘電液晶の場合にも同様に使用することができる。
【0047】
キラルスメクチックC相よりなる強誘電液晶の構造は、主鎖、スペーサ、骨格、結合部、キラル部などよりなる。主鎖構造としてはポリアクリレート、ポリメタクリレート、ポリシロキサン、ポリオキシエチレンなどが利用可能である。スペーサは分子回転を担う骨格、結合部、キラル部を主鎖と結合させるためのものであり、適当な長さのメチレン鎖等が選ばれる。また、カイラル部とビフェニル構造など剛直な骨格とを結合する結合部には−COO−結合等が選ばれる。
【0048】
本実施の形態の光偏向素子1においては、キラルスメクチックC相よりなる強誘電液晶5は配向膜4により基板2,3面に垂直に分子螺旋回転の回転軸が向いており、いわゆるホメオトロピック配向をなす。このようなホメオトロピック配向のための配向法としては、従来より行われている方法を適用することができる。即ち、▲1▼ずり応力法、▲2▼磁場配向法、▲3▼温度勾配法、▲4▼SiO斜法蒸着法、▲5▼光配向法等が挙げられる(例えば、竹添、福田「強誘電性液晶の構造と物性」コロナ社、p235 参照)。
【0049】
本実施の形態の光偏向素子1の特徴の1つは、ITO膜等による透明電極パターンを素子内に形成する必要がないため、これによる光損失がない点と、素子の光が透過する部分の層構成が簡単で製造コストが抑制できる点にある。ただし、透明電極パターンを素子内に形成することでも十分機能させることは可能である。また、キラルスメクチックC相はネマチック液晶に比較して極めて高速な応答性を有しており、サブmsでのスイッチングが可能である点も特徴である。また、電界方向に対して液晶分子方向が一義的に決定され、或る電界強度以上でダイレクタの方向が固定されるため、電界強度に比例したダイレクタ角度をとる電傾効果を利用したスメクチックA相よりなる液晶に比べ、ダイレクタ方向の制御が容易であり扱いやすい。
【0050】
また、ホメオロトピック配向をなすキラルスメクチックC相よりなる液晶5は、ホモジニアス配向(液晶分子が基板面に平行に配向している状態)をとる場合に比べて、液晶分子の動作が基板2,3からの規制力を受けにくく、外部電界方向の調整で光偏向方向の制御が行いやすく、必要電界が低いという利点を有する。また、液晶分子がホモジニアス配向している場合、電界方向だけでなく基板面に液晶分子が強く依存するため、光偏向素子の設置についてより位置精度が求められることになる。逆に、本実施の形態のようなホメオロトピック配向の場合は、光偏向に対して光偏向素子1のセッティング余裕度が増す。これらの特徴を活かす上で、厳密に螺旋軸を基板2,3面に垂直に向ける必要はなく、或る程度傾いていても差し支えない。例えば、螺旋構造をなす側面の一部が基板2,3に垂直であって螺旋軸そのものは基板法線方向から傾いている状態であっても、液晶分子が基板2,3からの規制力を受けずに2つの方向を向くことが可能であればよい。
【0051】
次に、本実施の形態の光偏向素子1の動作原理について図2及び図3を参照して説明する。図2(a)は、図1に示した構成に関して液晶配向を模式的に示したものである。ただし、図1では電界が上下方向に印加されるように描いているが、図2(a)では便宜上紙面表裏方向に印加されるように描いており、電界は紙面表裏方向に発生するものとする。また、電界方向は目的とする光の偏向方向に対応して電源21により切換えられる。図2(a)における電極6a,6bは、上述したように基板2,3と一体化してもまた分離して設けてもよい。
【0052】
また、当該光偏向素子1に対する入射光は直線偏光であり、その偏光方向は図2(a)中上下の矢印に示す通り上下方向であって(以後、同様に偏光方向については上下或いは左右の矢印で入射光に重ねて示す)、その偏光方向に電界方向が直交するように電極6a,6bは対向配置される。また、液晶5の膜厚を規定するためのスペーサを電極に兼用することも可能である。何れの場合においても、電極6a,6bからの漏洩電界が当該光偏向素子1周辺の機器に悪影響を及ぼさないように電磁シールドを設けるのが好ましい。液晶分子8は印加される電界方向によって前述の通り螺旋的に配向方向を採ることが可能であり、図にはその採り得る配向状態をコーン状に示している。
【0053】
図2(a)においてXYZ直交座標系を図示する通りにとったときの液晶5内のXZ断面を図3に示す。図3に示す通り、液晶分子8は、十分大きな電界であれば、その電界方向によって第1の配向状態又は第2の配向状態の何れかの状態(図3(b)参照)をとって分布する。θは液晶回転軸からの液晶分子8のチルト角であり、以後、単に「チルト角」と呼ぶ。液晶5の自発分極Psが正でありY軸正方向(紙面上向き)に電界Eがかかっているものとすると、液晶分子8は液晶回転軸が略基板垂直方向であるため図3(b)に示す第1の配向状態の方向と一致する。
【0054】
液晶5の長軸方向の屈折率をne、短軸方向の屈折率をnoとすると、入射光として、偏光方向をY軸方向に持つ直線偏光を選びX軸正方向に入射光が進むとき、光は液晶5内で常光として屈折率noを受け直進し、図3(a)中のa方向に進む。即ち、光偏向は受けない。
【0055】
一方、偏光方向がZ軸方向である直線偏光が入射するとき、入射方向の屈折率は液晶分子8の方向及び屈折率no,neの両者から求められる。より詳しくは、屈折率no,neを主軸に持つ屈折率楕円体において楕円体中心を通過する光の方向との関係から求められるが、ここでは詳細は省略する。光は屈折率no,ne及び液晶分子8の方向(チルト角θ)に対応した偏向を受け、図3(a)中のa(第1の配向状態の場合)に示す方向にシフトする。
【0056】
いま、液晶5の厚み(ギャップ)をdとするときシフト量Sは以下の式で表される(例えば、「結晶光学」応用物理学会、光学懇話会編、p198参照)。
【0057】
S=[(1/no)2−(1/ne)2]sin(2θ・d)
÷[2((1/ne)2sin2θ+(1/no)2cos2θ)] ……(1)
また、電界方向を反転させた時、液晶分子8は図3においてX軸を中心とした線対称の配置(第2の配向状態)を取り、偏光方向がZ軸方向である直線偏光の進行方向は図3(a)中のb′に示す通りとなる。
【0058】
従って、この直線偏光に対して液晶5に作用させる電界方向を制御することで、bとb′との2位置、即ち、2S分の光偏向が可能となる。
【0059】
液晶5の材料の代表的物性値(no=1.6,ne=1.8)に対して得られる光偏向量について光偏向量Sを計算した結果を図4に示す。θ=45°付近が最も光偏向量が大きい。仮に、液晶分子8のチルト角θが22.5°のとき、2S=5(μm)の偏向量を得るためには、ここに示される通り、液晶の厚みを32μm厚に設定すれば良い。また、ホメオトロピック配向強誘電液晶において、約700V/cmの電界に対して0.1msの応答速度が報告されており(Ozaki他、J.J.Appl.Physics、Vol.30、No.9B、pp2366-2368(1991)参照)、サブmsオーダの十分高速な応答速度が得られる。
【0060】
また、キラルスメクチックC相よりなる液晶においては、チルト角θは温度Tにより変化し、相転移点をTcとすると、θ∝(T−Tc)βなる関係がある。βは材料により異なるが0.5程度の値をとる。この特性を利用した温度制御で光偏向量を制御することも可能である。
【0061】
例えば、仮にチルト角θとして上記の22.5°を設定し、これに対応する温度をTθ=22.5°とすれば、T>Tθ=22.5°ではθ<22.5°であり、T<Tθ=22.5°ではθ>22.5°であるため、温度によりチルト角θを制御でき、これによって光偏向量を制御できることとなる。また、位置制御に関しては、電界による微調を同様に行うことができ、温度、電界或いはその両者の組合せにより適切な光偏向を達成できる。
【0062】
以上は、電界強度がEs以上で螺旋構造が解けてチルト角θが光学軸の傾斜角に等しい場合について説明したが、電界強度がEs以下の場合には、上記θを液晶分子方向を平均化した光学軸の傾斜角として扱えば良い。
【0063】
入射光が素子法線方向から傾斜して入射する場合、出射光の偏光状態が複屈折によって入射光の偏光状態と異なる場合がある。即ち、入射光の偏光方向と垂直な偏光成分が混在するようになる。この偏光成分は(1)式に示す所定の偏向を受けずにノイズ光となる。
【0064】
図5はこの偏光成分を計算により求めたものである。計算に用いた諸条件を図6により説明する。図6において、光偏向素子1はクロスニコル配置された偏光子9,10に挟まれ配置される。照明光は波長550nmの無偏光であって、基板法線方向から所定の角度傾いた状態で入射される。この傾きは、基板法線方向をX軸、液晶分子の傾き方向をZ軸、X軸、Z軸に垂直な方向をY軸にとった場合、X軸からの傾き角(極角)をθ、Z軸から反時計回り方向を正方向にした方位角をφとして表現する。照明光は偏光子9により直線偏光化され光偏向素子1に入射する(この直線偏光化された成分を“入射光”と呼ぶ)。また、偏光子9(又は10)は理想的に、全ての波長範囲においてZ(Y)方向の偏光成分のみ透過し、Y(Z)方向成分は全て吸収するものとする。液晶は波長550nmにおいてno(常光屈折率)=1.48、ne(異常光屈折率)=1.58とし、チルト角は22.5°、ギャップ50μmに設定している。
【0065】
図5に示す通り、方位角(Azimuth Angle)によって、入射光に対する出射光におけるノイズ光比率(Transmittance)は大きく変化し、極角(Pola Angle)が大きいほどこの比率が高くなる。
【0066】
このノイズ光成分を効果的に除去するためには、図1に示す通り、液晶の後段(光出射側)に所定方向の偏光成分のみ透過させる(この方向を“透過光軸”と呼ぶ)偏光フィルタ7を配置すれば良い。この場合、所定方向とは、投影光学軸方向である。図2(b)には基板3(図示せず)から基板2に投影された液晶分子の方向(Cダイレクタ)8bを示す。各液晶分子が均一な方向に配向している場合、投影光学軸方向はCダイレクタ方向と一致する。
【0067】
偏光フィルタとは、入射光に対して或る定められた方向の直線偏光成分のみを透過し、これと垂直な成分を反射、又は吸収する光学素子である。本実施の形態においては、偏光フィルタ7としては、市販されているものを適用することが可能で、例えば、金属薄膜偏光子、ダイクロイック偏光子、カルサイト等の複屈折材料を用いた各種プリズムなどを適用できる。特に、比較的安価で可視光域に効率の優れるダイクロイック偏光子を好適に用いることができる。
【0068】
本発明の第二の実施の形態を図7に基づいて説明する。前述した実施の形態の場合と同一又は相当する部分は同一符号を用いて示し、説明も省略する(以降の各実施の形態でも順次同様とする)。
【0069】
図7は、偏向方向が互いに所定角90°傾いた方向に設置された図2(a)に示す2つの光偏向素子1A(第一の光偏向素子),1B(第二の光偏向素子)がこの順に直列に配列され、これらの光偏向素子1A,1B間に、第一の光偏向素子1Aからの出射光の偏光方向を第二の光偏向素子1Bの偏向方向に揃える偏光方向切換手段22を備え、かつ、偏光方向切換手段22と第二の光偏向素子1Bとの間に、偏光フィルタ7aを配置した光偏向デバイス11である。
【0070】
このような光偏向デバイス11によれば、光偏向素子1Aにおいて上下方向(Z軸方向)に2位置光シフトが行われ、光偏向素子1Bにおいて光偏向素子1Aのシフト方向から90°方向に2位置の光シフトが行われるため、デバイス全体としては合計4位置に光をシフトさせることが可能となる。
【0071】
この光偏向デバイス11に入射する光は、図7に示す通り、Z軸方向に偏光方向を有しており、光進行方向に対して前段側の光偏向素子1Aにおいて上下方向(Z軸方向)に偏向を受けた後、偏光方向切換手段22によって偏光方向を90°回転させて後段の偏光フィルタ7a、光偏向素子1Bに入射する。光偏向素子1Aでは前述の通り、斜め方向から入射する光の一部がノイズ光成分となり出射するが、このノイズ光成分は偏光方向切換手段22において、通常光と同様に偏光面を所定角度(90°)切換えて進行することになるため、第二の光偏向素子1Bにそのまま入射させるとこのノイズ光成分は何ら偏向を受けることなく直進してしまい、ノイズが解消されることはない。また、仮に第二の光偏向素子1Bの後段に偏光フィルタを設けても、この成分については除去することはできない。従って、このノイズ光成分を効果的に除去するためには、第一の光偏向素子1Aと第二の光偏向素子1Bの間に偏光フィルタ7aを設けるのがよい。さらに好ましくは、偏光方向切換手段22によりやはりノイズ光が発生するので、この成分をも除去することが可能な、偏光方向切換手段22と第二の光偏向素子1Bとの間に偏光フィルタ7aを配置するのが好適である。また、図では第二の光偏向素子1Bからの出射光に対してノイズ光を除去するための偏光フィルタ7bも設けており、第一の実施の形態で述べた効果を偏光フィルタ7bにより得ることができる。
【0072】
ここに示す実施の形態においては、光偏向素子1A,1Bにおける偏向方向の相対角度が90°の場合を示したが、これ以外の角度に設定することも可能であり、その場合の偏光フィルタ7aの透過光軸は第二の光偏向素子1Bへ入射させる偏光方向に一致させる。
【0073】
偏光方向切換手段22としては、ファラデー回転素子やツイスト構造を有する液晶素子などを用いることができ、偏光方向回転角φ1は前記φ2と略一致するよう設定される。特に、ツイスト構造を有する液晶素子は、波長による偏光方向回転角のバラツキを比較的小さく設定可能であるため、多波長よりなる光を扱う場合に好適である。
【0074】
ツイスト構造を有する液晶素子としては、いわゆる低分子ツイストネマティック液晶を、前記φのツイスト角が得られるように互いに配向処理を施した一対の透明基板中に充填した構造をなす素子や、或いは高分子によりツイスト構造を形成した液晶素子等が用いられる。高分子によりツイスト構造を形成した液晶素子においては一対の透明基板を用いることなく、例えば、ベースフィルム上に直接液晶を構成することができるため、厚みを抑えることが可能となり、省スペース化の観点から好ましい。
【0075】
また、偏光方向切換手段22として、雲母、水晶等の複屈折性材料により形成される1/2波長板を使用することも可能である。これらの材料は温度による特性変動が比較的少なく、温度変化の大きい環境での使用時に特に有用である。
【0076】
ここでは、4方向にシフトさせるための実施の形態を述べたが、複数(二つ以上)の光偏向素子1A,1B,…,1Nを直列に配置し、各光偏向素子1A,1B,…,1N間に偏光方向切換手段22が対応して配置される光偏向デバイスにおいては、図8に示すように、偏光方向切換手段22とその後段の光偏向素子1との間に各々偏光フィルタ7を配置させることで同様の効果を得ることができる。
【0077】
本発明の第三の実施の形態を図9ないし図11に基づいて説明する。
図9は、本実施の形態の光偏向素子1の原理的構成例を示す断面図である。一対の透明基板2′,3と、透明基板2′,3間に設けられるキラルスメクチックC液晶よりなる液晶層5と、該キラルスメクチックC液晶に電界を付与するための液晶層5側の基板表面に設けられた一対の透明電極(図示せず)とを有する。光の入射する側の透明基板2′の液晶層側基板表面は、他方の基板表面に対して所定角度ψ傾斜した構造をとるように鋸歯状に表面加工されている。液晶層5はホモジニアス配向された状態で存在し、鋸歯状構造の稜線と略平行に液晶分子長軸が配向する状態31(第一の配向状態と呼ぶ)と略垂直に配向する状態32(第二の配向状態と呼ぶ)をとる。
【0078】
鋸歯状構造を形成する方法としては、ガラス基板に対してエッチングしたり、原盤を熱加圧転写したり、透明プラスチック材料を射出成形等したりする方法が従来から工業化されており、これらの手法を利用することが可能である。
【0079】
光進行方向の液晶の後段には、ノイズ除去手段として機能する偏光フィルタ7が基板3と密着し設置されている。この偏光フィルタ7の動作については前述の通りである。
【0080】
入射光は液晶分子の状態31,32によって、常光或いは異常光として振る舞い、各々の屈折率に応じた屈折を受ける。図では常光屈折率が基板屈折率と同等で入射光は直進し(図中直線矢印)、異常光屈折率がそれより大きく上方向に屈折する(同破線矢印)場合について示している。
【0081】
液晶の配向状態31,32が互いに垂直な関係(チルト角として45°)であれば、何れかの配向状態と平行に入射偏光方向を設定することでノイズ光の発生は極めて小さく抑えられるが、実際には45°以下のものを使用することが多い。この場合、入射偏光方向と液晶分子とのズレ角に応じたノイズ光が発生する。
【0082】
図10はこの場合の、入射光に対して出射するノイズ光の比率(Transmittance)を示すもので、図中に示すズレ角(2°〜10°)の増加に伴ってノイズ光比率が増加することを示している。ここでの計算は簡単のため平行平板間にne−no(=Δn)=0.2、厚み2μmの液晶を充填した場合の系を計算している。鋸歯状構造の基板2',3間に充填した場合も基本的には同様の傾向を示すと考えてよい。
【0083】
このノイズ光成分を効果的に除去するためには、図9に示す通り、液晶の後段に所定方向の偏光成分のみ透過させる偏光フィルタ7を配置すれば良い。この場合、所定方向とは、前記液晶配向状態31,32に対する回転軸と45°をなす角が好適であり、この方向に入射光偏光方向を一致させることで、ノイズ光の効果的な除去のみならず、出射光の両者(図9中の実線と破線で示される)の光量を一致させることができる。図11はこの配置を示すものである。図11中、矢印Dは偏光フィルタ透過光軸方向及び入射光偏光方向を示している。
【0084】
偏光フィルタ7としては市販されているものを適用することが可能で、例えば、金属薄膜偏光子、ダイクロイック偏光子、カルサイト等の複屈折材料を用いた各種プリズムなどを適用できる。特に、比較的安価で可視光域に効率の優れるダイクロイック偏光子が好適に用いることができる。
【0085】
本発明の第四の実施の形態を図12に基づいて説明する。
図12では、透明な一対の基板と、これらの基板間に充填された液晶と、この液晶に電界を作用させる一組以上の電界印加手段と、液晶の後段(光出射側)に偏光フィルタを設けてなる前述したような光偏向素子1、レーザ光源13、フォトダイオードよりなり光偏向の各々の光に対応した位置に設けられる受光器14a,14b及び光偏向素子1の後段(光出射側)に配置されて、光偏向素子1において散乱し所定領域外を進行するノイズ光を遮蔽する所定の大きさの開口部15aと非透過部15bとを有する開口部材15とよりなる光学系である。光偏向素子1と開口部材15とにより光偏向装置16が構成されている。ここでいう所定領域とは、光偏向による各々の光が進行し受光器14a,14bに有効に取込まれるべき光線の含む範囲のことである。
【0086】
従来例の課題の欄で前述した▲2▼によるノイズ光は、いわゆる散乱光であり液晶部を輝点として半球状に発せられるものである。入射光の進行方向から除去手段として、光偏向素子1の後段(光出射側)に、光偏向素子1において所定領域外を通過するノイズ光を遮蔽する開口部材15を設けることで、良好なノイズ光除去が行える。開口部15aを囲む非透過部15bは光吸収する材質で形成し反射を生じないようにするのが好ましい。
【0087】
本発明の第五の実施の形態を図13に基づいて説明する。
本実施の形態は、画像表示装置80への適用例を示す。図13において、81はLEDランプを2次元アレイ状に配列した光源であり、この光源81からスクリーン86に向けて発せられる光の進行方向には拡散板82、コンデンサレンズ83、画像表示素子としての透過型液晶パネル84、画像パターンを観察するための光学部材としての投射レンズ85が順に配設されている。87は光源81に対する光源ドライブ部、88は透過型液晶パネル84に対するドライブ部である。
【0088】
ここに、透過型液晶パネル84と投射レンズ85との間の光路上にはピクセルシフト素子として機能する光偏向手段89が介在されており、ドライブ部90に接続されている。このような光偏向手段89として、第一の実施の形態示した光偏向素子1或いは第二の実施の形態で示した光偏向デバイス11が用いられる。
【0089】
光源ドライブ部87で制御されて光源81から放出された照明光は、拡散板82により均一化された照明光となり、コンデンサレンズ83により液晶ドライブ部88で照明光源と同期して制御されて透過型液晶パネル84をクリティカル照明する。この透過型液晶パネル84で空間光変調された照明光は、画像光として光偏向手段89に入射し、この光偏向手段89によって画像光が画素の配列方向に任意の距離だけシフトされる。この光は投射レンズ85で拡大されスクリーン86上に投射される。
【0090】
ここに、光偏向手段89により画像フィールドを時間的に分割した複数のサブフィールド毎の光路の偏向に応じて表示位置がずれている状態の画像パターンを表示させることで、透過型液晶パネル84の見掛け上の画素数を増倍して表示する。このように光偏向手段89によるシフト量は透過型液晶パネル84の画素の配列方向に対して2倍の画像増倍を行うことから、画素ピッチの1/2に設定される。シフト量に応じて透過型液晶パネル84を駆動する画像信号をシフト量分だけ補正することで、見掛け上高精細な画像を表示することができる。この際、光偏向手段89として、前述した各実施の形態のような光偏向素子1或いは光偏向デバイス11を用いているので、光の利用効率を向上させ、光源81の負荷を増加することなく観察者により明るく高品質の画像を提供できる。
【0091】
本発明の第六の実施の形態を図14に基づいて説明する。
本実施の形態は、図13に示した画像表示装置80において、光偏向手段89の後段(光出射側)に、光偏向手段89において発生するノイズ光を除去するための所定の大きさの開口部91aと非透過部91bとを有する開口部材91が追加されている。この開口部材91は投射レンズ85の前後、又は、投射レンズ85が多群のレンズにより構成される場合は、それらのレンズ間においてもよい。何れの場合でも、光偏向手段89の液晶スイッチングに伴い発生する散乱光を遮蔽し、スクリーン86で結像するための光を遮らない位置に配置するようにする。
【0092】
【実施例】
[実施例1]
2枚の透明基板(厚さ1.1mm)を用意し、基板の片面に各々配向剤JALS2021−R2(JRS製)を約600Åの厚さに塗布した後、燒結した。透明ガラス基板を配向剤塗布面が内側になるよう向かい合わせ、ギャップ50μmを光透過領域外に配したスペーサで確保した状態で、基板両端を接着してセルを形成した。その際、セル内には幅1mmのAl線を2本平行に2mmの間隔で配置した。基板を90℃に加熱した状態で2枚の基板間に、室温でキラルスメクチックC相をとる液晶(チッソ製CS1029)を毛管法で注入し、徐冷後接着剤で封止した。その後、ダイクロイック偏光フィルタ7を透過軸が光偏向方向と一致する方向に合わせて基板と密着し、光偏向素子1を作製した。
【0093】
配向状態を偏光顕微鏡でコノスコープ観察したところ、光学軸が基板に垂直なホメオトロピック配向をなしていることが確認できた。また、前記Al線間に200Vの電圧を印加したところ、光学軸が電界方向と垂直に傾くことを確認した。
【0094】
この光偏向素子1を、図15(a)に示す通り、偏光子9、2000Line/inchのパターンを有するCrマスク17、の後段に配置させ、CCDカメラ19を設けた。偏光子9、ダイクロイック偏光フィルタ7の透過光軸は同じ方向にセットし、Crマスク17のライン方向もこれと平行にした。また、光偏向素子1による偏向方向はこれらと垂直な方向に設定した。CCDカメラ19は約2500倍の倍率で、Crマスク17に焦点を合わせた状態で、高圧水銀ランプ18からの照明光に対して光学系を透過した光を受光した。
【0095】
光偏向素子1がない場合に比べて光偏向素子1を挿入することで、マスク像から得られるCTF(Contrast Transfer Function)は95%であり、光偏向素子1を挿入してもほとんど画像の劣化がないことを確認した。
【0096】
[比較例1]
図15(b)に示すようにダイクロイック偏光フィルタ7を外した状態で実施例1と同様の実験をしたところ、光偏向素子1がない場合に比べて光偏向素子1を挿入することで、マスク像から得られるCTFは85%以下に低下した。
【0097】
上記実施例1と合わせて考察すると、ダイクロイック偏光フィルタ7を設けない場合は、設ける場合に比べて画像品質が低下することが確認された。
【0098】
[実施例2]
各々透明電極(ITO)付の平滑透明基板(厚さ1.1mm)及び表面傾斜角1°の鋸歯構造を片側表面に有するの鋸歯構造基板を一対用意した。基板の片面に各々配向剤AL3046(JRS製)を約800Åの厚さに塗布し燒結し、その後、鋸歯稜線方向にラビング処理を行った。このような透明ガラス基板を、ギャップ2〜3μmとなるように光透過領域外にスペーサを配した状態で、配向剤塗布面を内側に向かい合わせて接着しセルを形成した。基板を90℃に加熱した状態で2枚の基板間に、室温でキラルスメクチックC相をとる液晶AL5002(クラリアント製)を毛管法で注入し、徐冷後接着剤で封止した。その後、ダイクロイック偏光フィルタ7を、液晶の回転軸が、これと45°をなす角度になるよう設定し基板と密着して、光偏向素子1を作製した。
【0099】
配向状態を偏光顕微鏡で観察したところ、光学軸が鋸歯構造稜線に平行なホモジニアス配向をなしていることを確認し、また、ITO電極間に20Vの電圧を印加したところ、光学軸が鋸歯構造稜線と平行な方向から約80°傾くことを確認した。
【0100】
この光偏向素子1を、図15(a)に示す通り、偏光子9、2000Line/inchのパターンを有するCrマスク17、の後段に配置させ、CCDカメラ19を設けた。偏光子9、ダイクロイック偏光フィルタ7の透過光軸は同じ方向にセットし、Crマスク17のライン方向もこれと平行にした。また、光偏向素子1による偏向方向はこれらと垂直な方向に設定した。CCDカメラ19は約2500倍の倍率で、Crマスク17に焦点を合わせた状態で、高圧水銀ランプ18からの照明光に対して光学系を透過した光を受光した。
【0101】
光偏向素子1を挿入することで、マスク像から得られるCTFは95%であり、光偏向素子1を挿入してもほとんど画像の劣化がないことを確認した。また、光偏向素子1の初期状態に比べて電圧を印加し、液晶配向状態を変化させても透過光量はほとんど変化せず、光偏向のスイッチングによる光量変化がないことを確認した。
【0102】
[比較例2]
図15(b)に示すようにダイクロイック偏光フィルタ7を外した状態で実施例1と同様の実験をしたところ、光偏向素子1がない場合に比べて光偏向素子1を挿入することで、マスク像から得られるCTFは85%であり、ダイクロイック偏光フィルタ7がない場合には、ある場合に比べて画像品質が低下することが確認された。
【0103】
[比較例3]
実施例2における光偏向素子1の設置角度を、光偏向素子1内の鋸歯構造稜線がダイクロイック偏光フィルタ7の透過光軸方向と一致するように配置して、実施例2と同様の操作を行ったところ、ノイズ光の除去効果は同等にあったものの、液晶配向状態を変化させた時の透過光量変化が大きく、光偏向のスイッチングによる光量変化が発生することを確認した。
【0104】
[実施例3]
実施例1で得た光偏向素子1を、図12に示した光学系内に配置し、電界印加方向を反転させることで液晶をスイッチングさせた。開口部材15がある場合は、スイッチング時に受光器14a,14b以外の部分に漏れる光は発生しなかったが、開口部材15を外すと漏れ光が発生することを確認した。この漏れ光は光偏向装置16内でフレア光の原因となるため、開口部材15を設けることで、フレア光を低減させることが可能であることを確認した。
【0105】
請求項1記載の発明の光偏向素子によれば、透明な一対の基板と、これらの基板間に充填されたホメオトロピック配向をなすキラルスメクチックC相よりなる液晶と、この液晶に対し前記一対の基板の板面方向に電界を作用させ液晶層を透過する光の光路を偏向する一組以上の電界印加手段と、前記基板の少なくとも一方の表面には配向膜を備えた光偏向素子である。そして、前記液晶の光出射側に配設された偏光フィルタよりなるノイズ光除去手段を備えることに特徴がある。よって、ノイズ光成分を低減させることができる。このため、画像表示装置或いは撮像装置に利用する際には、ノイズ光によって画像が劣化してしまうような不具合を解消することが可能となる。さらには、光スイッチに利用する上でも、SN比を向上させ、エラー発生を低減させることができる上に、光検出系の精度を緩めることができ、光スイッチの使用温度範囲を広めることができる。
【0106】
請求項2記載の発明によれば、請求項1記載の発明を実現する上で、液晶の分子長軸方向を平均化した方向として定まる光学軸の方向を、電界印加手段による電界の印加により所定方向に向けた状態で、一方の基板面から他方の基板面に向かって光学軸を投影して得られる投影光学軸方向に透過光軸を一致させた偏光フィルタを光出射側に設置したので、ノイズ光の除去を良好かつ有効に行わせることができ、また、偏光フィルタはフィルム状のものを用いることができるため、従来構成の光偏向素子に比較して大型化することなく、目的とする機能を発揮させることができる。
【0107】
請求項3記載の発明によれば、請求項1記載の光偏向素子において、対向する一方の基板表面に対し他方の基板表面が傾斜した領域を有する一対の基板と、これらの基板間に設けられる液晶と、この液晶に電界を作用させる一組以上の電界印加手段と、を備える光偏向素子においても、偏光フィルタを備えることにより、前述したような原因に伴うノイズ光を、有効に除去することができ、この際、偏光フィルタの透過光軸方向を液晶の電界印加による回転軸と45°の角をなすように設定することで、電界印加により得られる出射光の光量を一致させることができる。
【0108】
請求項4記載の発明の光偏向デバイスによれば、透明な一対の基板と、これらの基板間に充填されたホメオトロピック配向をなすキラルスメクチックC相よりなる液晶と、この液晶に電界を作用させる一組以上の電界印加手段と、を各々備える第一及び第二の光偏向素子と、光入射側から順に直列に配列されたこれらの第一及び第二の光偏向素子間に設置されて、前記第一の光偏向素子からの出射光の偏光方向を前記第二の光偏向素子の偏向方向に揃える偏光方向切換手段と、この偏光方向切換手段と前記第二の光偏向素子との間に配置された偏光フィルタよりなるノイズ光除去手段と、を備えるので、偏向方向を4方向に設定するために光偏向素子を直列に配置した光偏向デバイスにおいても、効果的なノイズ光除去を行わせることができ、かつ、第一の光偏向素子と偏光方向切換手段との間に偏光フィルタを配置した場合と比べ、偏光方向切換手段と第二の光偏向素子との間に配置しているので、偏光方向切換手段で発生したノイズ光も同時に除去できるため、よりノイズ光の除去効果を高めることができ、特に、入射光の波長が多重化されている場合には、偏光方向切換手段における偏光方向切換性能に波長依存性がある場合が多いので、さらに効果が大きいものとすることができる。
【0109】
請求項5記載の発明の光偏向装置によれば、請求項1,2又は3記載の光偏向素子又は請求項4記載の光偏向デバイスによる光偏向手段と、この光偏向手段の光出射側に設けられて、当該光偏向手段において所定領域外を進行するノイズ光を遮蔽する開口部材と、を備えるので、光偏向手段による偏向方向を、印加電界を変化させることにより切換える際に、液晶分子の運動による散乱光が発生し、このような原因によるノイズ光は、いわゆる散乱成分が主であり液晶部を輝点として球状に発せられるものであるが、光偏向素子の後段(光出射側)に設けられて、光偏向素子において所定領域外を通過するノイズ光を遮蔽する開口部材により、良好にノイズ光を除去することができる。
【0110】
請求項6記載の発明の画像表示装置によれば、請求項1,2又は3記載の光偏向素子又は請求項4記載の光偏向デバイスによる光偏向手段を備えるので、入射光の偏光方向と垂直な偏光成分が混在することに起因して、偏光成分の一部は所定の位置に偏向されずに発生するノイズ光を有効に除去することができ、よって、入射光の偏光方向と垂直な偏光成分が混在するために発生するコントラスト低下を防ぐことができ、良好な画像を得ることができ、高精細表示が可能な画像表示装置を提供することができる。
【0111】
請求項7記載の発明の画像表示装置によれば、光偏向手段による偏向方向を、印加電界を変化させることにより切換える際に、液晶分子の運動による散乱光が発生することに起因するノイズ光は光偏向手段の光出射側に設けられて、当該光偏向手段において発生するノイズ光を除去するための開口部材によって有効に除去することができ、よって、液晶スイッチング時に発生する散乱光を低減することができるため、これによるコントラスト低下を防ぐことができ、良好な画像が得られる画像表示装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第一の実施の形態の光偏向素子の原理的構成例を示す断面図である。
【図2】(a)はその液晶配向を模式的に示す光偏向素子の動作原理を説明するための斜視図、(b)は液晶分子の配向方向を基板に投影したCダイレクタを示す斜視図である。
【図3】液晶分子と光偏向との関係を示し、(a)は断面構造図、(b)は液晶分子の配向状態の説明図である。
【図4】液晶膜厚と液晶配向角に対する光軸シフト量との関係を示す特性図である。
【図5】光偏向素子への入射光の方向とノイズ光比率との関係の計算結果を示す特性図である。
【図6】図5に示す計算の条件を示す概略図である。
【図7】本発明の第二の実施の形態の光偏向デバイスを光偏向素子の模式的な液晶配向を併せて示す概略斜視図である。
【図8】その変形例の光偏向デバイスの構成例を示す断面図である。
【図9】本発明の第三の実施の形態の光偏向素子の構成例を示す断面図である。
【図10】その光偏向素子における、ノイズ光比率を液晶分子方向と偏光フィルタのなす角をパラメータにして示す特性図である。
【図11】偏光フィルタ透過軸と液晶配向方向の関係を示す説明図である。
【図12】本発明の第四の実施の形態の光偏向装置の構成例を示す断面構造図である。
【図13】本発明の第五の実施の形態の画像表示装置の構成例を示す概略側面図である。
【図14】本発明の第六の実施の形態の画像表示装置の構成例を示す概略側面図である。
【図15】実施例1及び比較例1に示すCTF評価装置の概略図である。
【符号の説明】
1 光偏向素子
1A 第一の光偏向素子
1B 第二の光偏向素子
2,3 基板
5 液晶層
6a,6b 電圧印加手段
7 偏光フィルタ、ノイズ光除去手段
11 光偏向デバイス
15 開口部材
22 偏光方向切換手段
81 光源
84 画像表示素子
85 光学部材
89 光偏向手段
91 開口部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical deflection element, an optical deflection device, an optical deflection apparatus, and an image display apparatus using these optical deflection elements or optical deflection devices that change the direction of light according to an electric signal.
[0002]
[Definition]
In this specification, “light deflecting element” refers to whether the optical path of light is deflected by an external electric signal, that is, the outgoing light is shifted in parallel to the incident light, or is rotated at a certain angle. Alternatively, it means an optical element capable of switching the optical path by combining both of them. In this description, the magnitude of the shift is referred to as “shift amount” with respect to the light deflection due to the parallel shift, and the rotation amount is referred to as “rotation angle” with respect to the light deflection due to rotation. The “light deflection device” means a device that includes such a light deflection element and deflects the optical path of light.
[0003]
The “pixel shift element” is an image display element in which a plurality of pixels that can control light according to image information is two-dimensionally arranged, a light source that illuminates the image display element, and an image displayed on the image display element. An optical member for observing the pattern, and a light deflecting means for deflecting the optical path between the image display element and the optical member for each of a plurality of subfields obtained by dividing the image field in time. Means light deflecting means in an image display device that displays an image pattern in which the display position is shifted according to the deflection of the optical path for each field, thereby increasing the apparent number of pixels of the image display element. To do. Therefore, basically, it can be said that the optical deflection element and the optical deflection device defined above can be applied as the optical deflection means.
[0004]
[Prior art]
Conventionally, KH has been used as an optical element as a light deflection element2PO4(KDP), NH4H2PO4(ADP), LiNbO3, LiTaO3, GaAs, CdTe, and other materials having a large primary electro-optic effect (Pockels effect), KTN, SrTiO3, CS2Electro-optical devices using materials with large secondary electro-optic effect such as nitrobenzene, glass, silica, TeO2Acoustooptic devices using materials such as these are known (for example, Shoji Aoki; “Optoelectronic Device”, Shosodo). In general, in order to obtain a sufficiently large amount of light deflection, it is necessary to take a long optical path length, and the use is limited because the material is expensive.
[0005]
On the other hand, various types of optical elements, which are light deflecting elements using a liquid crystal material, have been proposed, and several examples thereof are as follows.
[0006]
For example, according to Japanese Patent Laid-Open No. 6-18940, a light beam shifter made of an artificial birefringent plate is proposed for the purpose of reducing the light loss of the optical space switch. Specifically, two wedge-shaped transparent substrates are arranged in opposite directions, and a light beam shifter in which a liquid crystal layer is sandwiched between the transparent substrates and a light beam shifter connected to the rear surface of a matrix-type deflection control element. At the same time, two wedge-shaped transparent substrates are arranged in opposite directions, matrix drive is possible between these transparent substrates, and a light beam shifter sandwiching a liquid crystal layer that shifts the incident light beam by a half cell is provided. There has been proposed a light beam shifter in which multiple stages are shifted by half a cell.
[0007]
Japanese Patent Laid-Open No. 9-133904 proposes an optical deflection switch that can obtain a large deflection, has a high deflection efficiency, and can arbitrarily set a deflection angle and a deflection distance. Yes. Specifically, two transparent substrates are arranged opposite to each other at a predetermined interval, a vertical alignment process is performed on the opposed surfaces, and a smectic A phase ferroelectric liquid crystal is sealed between the transparent substrates. The liquid crystal element includes a driving device that is vertically aligned with respect to the electrode pair, the electrode pair is arranged so that an AC electric field can be applied in parallel with the smectic layer, and the AC electric field is applied to the electrode pair. In other words, the refraction angle and the direction of displacement of the polarized light incident on the liquid crystal layer can be changed by the birefringence due to the inclination of the liquid crystal molecules by using the electroclinic effect of the smectic A phase ferroelectric liquid crystal.
[0008]
In the former Japanese Patent Application Laid-Open No. 6-18940, nematic liquid crystal is used as the liquid crystal material, so it is difficult to increase the response speed to sub ms. Can not.
[0009]
In the latter example of JP-A-9-133904, a smectic A-phase ferroelectric liquid crystal is used. However, since the smectic A-phase does not have spontaneous polarization, high-speed operation cannot be expected.
[0010]
Next, several techniques that have been conventionally proposed for the pixel shift element will be described.
[0011]
For example, as disclosed in Japanese Patent No. 2939826, in a projection display apparatus that projects an image displayed on a display element on a screen by a projection optical system, transmitted light is transmitted in the middle of an optical path from the display element to the screen. Means for shifting a projection image having at least one optical element capable of rotating the polarization direction of the light and at least one transparent element having a birefringence effect, and effectively reducing the aperture ratio of the display element And a means for discretely projecting the projection area of each pixel of the display element on the screen.
[0012]
In the example of the publication, a projection having at least one optical element (referred to as an optical rotatory element) capable of rotating the polarization direction and at least one transparent element (referred to as a birefringent element) having a birefringence effect. Pixel shift is performed by image shift means (pixel shift means).
[0013]
However, as a problem, since the optical rotation element and the birefringence element are used in combination, the loss of light amount is large, the pixel shift amount fluctuates due to the wavelength of light, and the resolution tends to decrease, and the optical rotation element and the birefringence element Due to the mismatch of optical characteristics, optical noise such as ghost due to leaked light tends to occur at a position outside the pixel shift where an image is not originally formed, and the cost for elementization is high. In particular, the KH as described above for the birefringent element2PO4(KDP), NH4H2PO4(ADP), LiNbO3, LiTaO3This is remarkable when a material having a large primary electro-optic effect (Pockels effect) such as, GaAs, CdTe is used.
[0014]
In the projector disclosed in Japanese Patent Application Laid-Open No. 5-313116, the image to be originally displayed stored in the image storage circuit is sampled in a checkered pattern in the pixel selection circuit by the control circuit and sequentially displayed on the spatial light modulator. Then, the control circuit controls the panel rocking mechanism in correspondence with the display and moves the adjacent pixel pitch distance of the spatial light modulator by an integer by one. Is reproduced by temporal synthesis. As a result, an image can be displayed with a resolution that is an integral multiple of the pixels of the spatial light modulator, and a projector can be constructed at low cost by using a spatial light modulator with coarse pixels and a simple optical system.
[0015]
However, the example of the publication describes a pixel shift method in which the image display element itself is swung at a high speed by a distance smaller than the pixel pitch. In this method, the optical system is fixed, and various aberrations are thus eliminated. Although the occurrence is small, since the image display element itself needs to be translated accurately and at high speed, the accuracy and durability of the movable part is required, and vibration and sound become a problem.
[0016]
Further, according to Japanese Patent Laid-Open No. 6-324320, in order to improve the resolution of a display image apparently without increasing the number of pixels of an image display device such as an LCD, they are arranged in the vertical and horizontal directions. Each of the plurality of pixels emits light according to the display pixel pattern, and an optical member that changes the optical path for each field is disposed between the image display device on which the image is displayed and the observer or the screen. In addition, for each field, a display pixel pattern whose display position is shifted in accordance with the change of the optical path is displayed on the image display device. Here, the optical path is changed by causing the parts having different refractive indexes to appear alternately in the optical path between the image display device and the observer or the screen for each field of the image information. is there.
[0017]
In this example, a combination mechanism of an electro-optic element and a birefringent material, a lens shift mechanism, a vari-angle prism, a rotating mirror, a rotating glass, etc. are described as means for changing the optical path. In addition to the method of combining elements, a method of switching optical paths by displacing (translating, tilting) optical elements such as lenses, reflectors, and birefringent plates by means of voice coils, piezoelectric elements, etc. has been proposed. In the system, since the optical element is driven, the configuration becomes complicated and the cost increases.
[0018]
Further, according to Japanese Patent Laid-Open No. 10-133135, a rotating machine element can be eliminated, the entire size can be reduced, high accuracy and high resolution can be realized, and light beam deflection which is not easily affected by external vibrations can be realized. A device has been proposed. Specifically, a translucent piezoelectric element disposed on the traveling path of the light beam, a transparent electrode provided on the surface of the piezoelectric element, a light beam incident surface A and a light beam emitting surface B of the piezoelectric element. Voltage applying means for applying a voltage to the piezoelectric element through the electrode in order to change the optical path length between and the electrode to deflect the optical axis of the light beam.
[0019]
In the example of the publication, a method is proposed in which a light-transmitting piezoelectric element is sandwiched between transparent electrodes and a thickness is changed by applying a voltage to shift the optical path. However, a relatively large transparent piezoelectric element is required. However, there is a problem similar to the case of the above-mentioned Japanese Patent Laid-Open No. 6-324320, such as an increase in apparatus cost.
[0020]
[Problems to be solved by the invention]
In order to solve the above-described problems of the prior art, the present applicant previously disclosed in Japanese Patent Application No. 2002-12479 (filed on January 22, 2002, unpublished at the time of the present application) a pair of transparent substrates, An optical deflection element comprising a liquid crystal composed of a chiral smectic C phase having a homeotropic alignment filled in between, and one or more sets of electric field applying means for applying an electric field to the liquid crystal, and image display using the optical deflection element A device is proposed.
[0021]
Even in the optical deflection element using the liquid crystal as in the above proposed example improved by the present applicant, there are still the following problems.
[0022]
{Circle around (1)} For example, when the incident light is incident with an inclination from the element normal direction, the polarization state of the emitted light may differ from the polarization state of the incident light due to birefringence. That is, the polarization component perpendicular to the polarization direction of the incident light is mixed. A part of this polarization component becomes noise light without being deflected to a predetermined position.
[0023]
{Circle around (2)} When the direction of deflection by the light deflection element is switched by changing the applied electric field, scattered light is generated by the movement of liquid crystal molecules, which becomes noise light. In particular, in an image display device or the like, it occurs remarkably at the time of frame switching, and the image deteriorates.
[0024]
When considering use for an image display device or the like, it is necessary to suppress the problem (1), and thus it is necessary to cut the obliquely incident light component significantly before and after entering the light deflection element. Even the wide-angle component of the illumination light cannot be used effectively, and the light use efficiency is reduced.
[0025]
Further, in order to set the deflection direction to four directions, for example, even in an optical deflection device in which the first and second optical deflection elements are arranged in series, these noise components of the light emitted from the first optical deflection element are reduced. When the light component is incident on the polarization direction switching means and the second light deflection element in the subsequent stage without being removed, the polarization direction of the noise component is switched by the polarization direction switching means, and the light deflection is performed by the second light deflection element in the subsequent stage. Since it goes straight without being received, light is received at a position different from the original light deflection position.
[0026]
It is an object of the present invention to provide an optical deflecting element and an optical deflecting device that can remove the influence of these noise lights, and an optical deflecting device and an image display apparatus using them.
[0027]
[Means for Solving the Problems]
The optical deflection element according to the first aspect of the present invention is a transparent pair of substrates and filled between these substrates.Consists of chiral smectic C phase with homeotropic orientationLiquid crystal and this liquid crystalIn the direction of the plate surface of the pair of substratesBy applying an electric fieldDeflection of the optical path of light passing through the liquid crystal layerOne or more sets of electric field applying means; andThe optical deflection element includes an alignment film on at least one surface of the substrate. And saidNoise light removing means comprising a polarizing filter disposed on the light exit side of the liquid crystalBe equippedGetThere is a special feature.
[0028]
Therefore, the noise light component can be reduced by providing noise light removing means comprising a polarizing filter on the light exit side of the liquid crystal. For this reason, when using for an image display apparatus or an imaging device, the malfunction that an image deteriorates with noise light can be eliminated. Specifically, it is not necessary to cut the obliquely incident light component significantly before and after entering the light deflecting element, and even the wide-angle component of the illumination light can be used effectively, so that the light utilization efficiency can be improved. . Image noise can also be reduced with respect to noise light that is prominently generated during frame switching. Furthermore, when used for optical switches, the SN ratio can be improved and the occurrence of errors can be reduced, the accuracy of the light detection system can be relaxed, and the operating temperature range of the optical switch can be widened. It becomes.
[0029]
The invention according to claim 2 is the optical deflection element according to claim 1.,in frontThe direction of the optical axis determined as the direction in which the molecular major axis direction of the liquid crystal is averaged is directed from one substrate surface to the other substrate surface in a state in which the direction of the optical axis is directed to a predetermined direction by application of an electric field by the electric field applying means. A projection optical axis direction obtained by projecting the optical axis coincides with the transmission optical axis direction of the polarizing filter.
[0030]
Therefore, in realizing the invention according to claim 1, in the state where the direction of the optical axis determined as the averaged direction of the molecular major axis direction of the liquid crystal is directed to a predetermined direction by applying an electric field by the electric field applying means, By installing a polarizing filter having a transmission optical axis in the projection optical axis direction obtained by projecting the optical axis from one substrate surface to the other substrate surface on the light output side, noise light can be removed and Can be effective. Moreover, since a polarizing filter can be used, a target function can be exhibited without increasing the size of the polarizing filter as compared with a conventional optical deflection element.
[0031]
According to a third aspect of the present invention, in the optical deflection element according to the first aspect, the pair of substrates has a region in which the other substrate surface is inclined with respect to the opposing one substrate surface.,in frontThe rotation axis of the liquid crystal by applying an electric field is arranged to form an angle of 45 ° with the transmission optical axis direction of the polarizing filter.
[0032]
Accordingly, a pair of substrates each having a region in which the other substrate surface is inclined with respect to one opposing substrate surface, a chiral smectic C liquid crystal provided between these substrates, and one or more sets of electric fields that cause an electric field to act on the liquid crystal Also in the optical deflection element including the applying unit, the noise light accompanying the cause as described above can be effectively removed by including the polarizing filter. At this time, by setting the direction of the transmission optical axis of the polarizing filter so as to form an angle of 45 ° with the rotation axis of the liquid crystal applied with the electric field, the amount of emitted light obtained by applying the electric field can be matched.
[0033]
An optical deflection device according to a fourth aspect of the present invention is a set of a pair of transparent substrates, a liquid crystal comprising a chiral smectic C phase having a homeotropic orientation filled between the substrates, and an electric field acting on the liquid crystals. The first and second light deflection elements each including the above-described electric field applying means, and the first and second light deflection elements arranged in series in order from the light incident side. A polarization direction switching means for aligning the polarization direction of the light emitted from one light deflection element with the deflection direction of the second light deflection element; and disposed between the polarization direction switching means and the second light deflection element. Noise light removing means comprising a polarizing filter.
[0034]
Therefore, even in an optical deflection device in which optical deflection elements are arranged in series to set the deflection direction to four directions, effective noise light removal can be performed. In addition, when the polarizing filter is disposed between the polarization direction switching means and the second light deflection element, the polarization direction switching means is compared with the case where the polarization filter is disposed between the first light deflection element and the polarization direction switching means. Since the noise light generated in step 1 can be removed at the same time, the noise light removal effect is higher. In particular, when the wavelength of incident light is multiplexed, the polarization direction switching performance of the polarization direction switching means is often wavelength-dependent, so that the effect is even greater. However, in an optical deflection device in which a plurality (two or more) of optical deflection elements are arranged in series and the polarization direction switching means is arranged between the respective optical deflection elements, the polarization direction switching means, the optical deflection element, A similar effect can be obtained by disposing a polarizing filter between them.
[0035]
An optical deflection apparatus according to a fifth aspect of the present invention is provided on the light deflection side of the optical deflection element according to the first, second or third aspect or the optical deflection device according to the fourth aspect, and on the light emitting side of the optical deflection means. And an opening member that shields noise light traveling outside the predetermined region in the light deflecting means.
[0036]
Therefore, when the deflection direction by the light deflecting means is switched by changing the applied electric field, scattered light is generated due to the movement of the liquid crystal molecules, and the noise light due to such a cause is mainly a so-called scattering component and the liquid crystal portion. However, if an aperture member that shields noise light that passes outside a predetermined area in the light deflection element is provided at the rear stage (light emission side) of the light deflection element, noise can be improved. Light removal can be performed.
[0037]
According to a sixth aspect of the present invention, there is provided an image display device in which a plurality of pixels capable of controlling light according to image information are two-dimensionally arranged, a light source that illuminates the image display element, and the image display element. The optical member for observing the displayed image pattern, and the optical path between the image display element and the optical member is deflected for each of a plurality of subfields obtained by temporally dividing the image field. And an optical deflection unit using the optical deflection device according to claim 4.
[0038]
Therefore, by providing the light deflecting means by the light deflecting element according to claim 1, 2 or 3, or the light deflecting device according to claim 4, the polarization component perpendicular to the polarization direction of the incident light is mixed. Therefore, a part of the polarization component can effectively remove noise light generated without being deflected to a predetermined position, thereby reducing a contrast reduction caused by a mixture of polarization components perpendicular to the polarization direction of the incident light. It is possible to provide an image display device that can prevent, obtain a good image, and perform high-definition display.
[0039]
According to a seventh aspect of the present invention, there is provided an image display device in which a plurality of pixels capable of controlling light according to image information are two-dimensionally arranged, a light source that illuminates the image display device, and the image display device. An optical member for observing the displayed image pattern, an optical deflection means for deflecting an optical path between the image display element and the optical member for each of a plurality of subfields obtained by temporally dividing the image field, and the optical deflection Provided on the light emitting side of the means, and an opening member for removing noise light generated in the light deflecting means.
[0040]
Therefore, when switching the deflection direction by the light deflection means by changing the applied electric field, the noise light caused by the generation of scattered light due to the movement of the liquid crystal molecules is provided on the light exit side of the light deflection means, The aperture member for removing the noise light generated in the light deflecting means can be effectively removed, and thus the scattered light generated at the time of liquid crystal switching can be reduced, thereby preventing a decrease in contrast due to this. And an image display device capable of obtaining a good image can be provided.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view showing an example of the basic configuration of the optical deflection element 1 of the present embodiment. In this optical deflection element 1, first, a pair of transparent substrates 2 and 3 are provided so as to face each other. An alignment film 4 is formed on at least one of the inner surfaces of the substrate 2 here, and a liquid crystal 5 that is a ferroelectric liquid crystal composed of a chiral smectic C phase is filled between the alignment film 4 and the other substrate 3. Has been.
[0042]
For such a structure having a pair of substrates 2 and 3 and a liquid crystal 5, a pair of electrodes 6 including electrodes 6 a and 6 b is arranged in correspondence with a target light deflection direction and connected to a power source 21. Yes. The electrode pair 6 functions as an electric field applying means, and is installed so that the electric field vector is oriented in a direction substantially perpendicular to the liquid crystal rotation axis of the light deflection element 1 at a position that does not overlap the optical path. The electrodes 6a and 6b may be provided integrally with the substrates 2 and 3, or may be provided separately. In addition, a spacer for defining the film thickness of the liquid crystal 5 can also be used as an electrode.
[0043]
A polarizing filter 7 functioning as a noise light removing unit is disposed in close contact with the substrate 3 at the subsequent stage (light emitting side) of the liquid crystal in the light traveling direction. The operation of this polarizing filter 7 will be described later.
[0044]
Incident light is deflected by the direction of the electric field formed by the electrode pair 6 and takes the optical path of either the first outgoing light or the second outgoing light.
[0045]
Here, the liquid crystal 5 will be described. A “smectic liquid crystal” is a liquid crystal molecule formed by arranging the major axis directions of liquid crystal molecules in layers. With respect to such a liquid crystal, a liquid crystal in which the normal direction of the above-described layer (layer normal direction) and the major axis direction of the liquid crystal molecules coincide with each other is referred to as “smectic A phase”, and a liquid crystal that does not coincide with the normal direction. This is called “chiral smectic C phase”. The ferroelectric liquid crystal 5 composed of a chiral smectic C phase generally has a so-called spiral structure in which the liquid crystal molecular direction is spirally rotated for each layer in the state where an external electric field does not work, and the chiral smectic C phase antiferroelectric liquid crystal is The liquid crystal molecules face each other in the opposite direction. Since the liquid crystal composed of these chiral smectic C phases has an asymmetric carbon in the molecular structure and is spontaneously polarized by this, the liquid crystal molecules are rearranged in a direction determined by the spontaneous polarization Ps and the external electric field E. Optical properties are controlled.
[0046]
In the present embodiment and the like, the ferroelectric liquid crystal is taken as an example of the liquid crystal 5 and the light deflection element 1 is described. However, the liquid crystal 5 can be similarly used in the case of an antiferroelectric liquid crystal.
[0047]
The structure of a ferroelectric liquid crystal composed of a chiral smectic C phase is composed of a main chain, a spacer, a skeleton, a bonding part, a chiral part, and the like. As the main chain structure, polyacrylate, polymethacrylate, polysiloxane, polyoxyethylene and the like can be used. The spacer is for linking a skeleton, a bonding part, and a chiral part responsible for molecular rotation to the main chain, and a methylene chain having an appropriate length is selected. In addition, a —COO— bond or the like is selected as a bond portion that bonds the chiral portion and a rigid skeleton such as a biphenyl structure.
[0048]
In the optical deflecting element 1 of the present embodiment, the ferroelectric liquid crystal 5 made of a chiral smectic C phase is oriented so that the rotation axis of the molecular helix rotation is perpendicular to the surfaces of the substrates 2 and 3 by the alignment film 4, so-called homeotropic alignment. Make. As an alignment method for such homeotropic alignment, a conventionally performed method can be applied. (1) shear stress method, (2) magnetic field orientation method, (3) temperature gradient method, (4) SiO oblique deposition method, (5) photo-alignment method, etc. (for example, Takezoe, Fukuda “Structure and Physical Properties of Dielectric Liquid Crystals” (see Corona, p235).
[0049]
One of the features of the light deflection element 1 of the present embodiment is that it is not necessary to form a transparent electrode pattern made of an ITO film or the like in the element. This is because the layer structure is simple and the manufacturing cost can be suppressed. However, the transparent electrode pattern can be sufficiently functioned by forming it in the element. Further, the chiral smectic C phase has an extremely fast response compared to nematic liquid crystal, and is characterized in that switching in sub ms is possible. In addition, the liquid crystal molecule direction is uniquely determined with respect to the electric field direction, and the director direction is fixed above a certain electric field strength, so that the smectic A phase utilizing the electroclinic effect that takes the director angle proportional to the electric field strength. Compared with liquid crystal, the director direction is easier to control and easier to handle.
[0050]
In addition, the liquid crystal 5 composed of a chiral smectic C phase having homeotopic orientation has a liquid crystal molecule operation of the substrate 2, as compared to a homogeneous orientation (a state in which the liquid crystal molecules are oriented parallel to the substrate surface). 3 has the advantage that it is difficult to receive the regulation force from No. 3, the light deflection direction is easily controlled by adjusting the external electric field direction, and the required electric field is low. Further, when the liquid crystal molecules are homogeneously aligned, the liquid crystal molecules strongly depend not only on the direction of the electric field but also on the substrate surface, so that more positional accuracy is required for the installation of the optical deflection element. Conversely, in the case of homeotopic orientation as in the present embodiment, the setting margin of the optical deflection element 1 increases with respect to optical deflection. In making use of these features, it is not necessary to strictly direct the spiral axis perpendicular to the planes of the substrates 2 and 3, and it may be tilted to some extent. For example, even if a part of the side surface forming the spiral structure is perpendicular to the substrates 2 and 3 and the spiral axis itself is tilted from the normal direction of the substrate, the liquid crystal molecules exert a regulating force from the substrates 2 and 3. What is necessary is just to be able to face two directions without receiving.
[0051]
Next, the principle of operation of the optical deflection element 1 of the present embodiment will be described with reference to FIGS. FIG. 2A schematically shows liquid crystal alignment with respect to the configuration shown in FIG. However, in FIG. 1, the electric field is drawn so as to be applied in the vertical direction, but in FIG. 2A, it is drawn so as to be applied in the front and back direction of the paper for convenience, and the electric field is generated in the front and back direction of the paper. To do. The electric field direction is switched by the power source 21 in accordance with the target light deflection direction. The electrodes 6a and 6b in FIG. 2A may be integrated with or separated from the substrates 2 and 3 as described above.
[0052]
Further, the incident light with respect to the light deflection element 1 is linearly polarized light, and its polarization direction is the vertical direction as shown by the upper and lower arrows in FIG. 2A (hereinafter, similarly, the polarization direction is up and down or left and right). The electrodes 6a and 6b are arranged to face each other so that the direction of the electric field is orthogonal to the polarization direction. In addition, a spacer for defining the film thickness of the liquid crystal 5 can also be used as an electrode. In any case, it is preferable to provide an electromagnetic shield so that the leakage electric field from the electrodes 6a and 6b does not adversely affect the devices around the optical deflection element 1. The liquid crystal molecules 8 can take the orientation direction spirally as described above depending on the applied electric field direction, and the orientation state that can be taken is shown in a cone shape in the drawing.
[0053]
FIG. 3 shows an XZ cross section in the liquid crystal 5 when the XYZ orthogonal coordinate system is taken as shown in FIG. As shown in FIG. 3, if the liquid crystal molecules 8 have a sufficiently large electric field, they are distributed in either the first alignment state or the second alignment state (see FIG. 3B) depending on the direction of the electric field. To do. θ is the tilt angle of the liquid crystal molecules 8 from the liquid crystal rotation axis, and is simply referred to as “tilt angle” hereinafter. Assuming that the spontaneous polarization Ps of the liquid crystal 5 is positive and the electric field E is applied in the positive Y-axis direction (upward on the paper surface), the liquid crystal molecules 8 have the liquid crystal rotation axis substantially in the direction perpendicular to the substrate. This corresponds to the direction of the first orientation state shown.
[0054]
When the refractive index in the major axis direction of the liquid crystal 5 is ne and the refractive index in the minor axis direction is no, when linearly polarized light having a polarization direction in the Y-axis direction is selected as incident light, and the incident light advances in the X-axis positive direction, Light undergoes a refractive index no as ordinary light in the liquid crystal 5 and travels straight in the direction a in FIG. That is, no light deflection is received.
[0055]
On the other hand, when linearly polarized light whose polarization direction is the Z-axis direction is incident, the refractive index in the incident direction is obtained from both the direction of the liquid crystal molecules 8 and the refractive indexes no and ne. More specifically, it is obtained from the relationship with the direction of light passing through the center of the ellipsoid in a refractive index ellipsoid having refractive indexes no and ne as principal axes, but details are omitted here. The light is deflected corresponding to the refractive indexes no and ne and the direction (tilt angle θ) of the liquid crystal molecules 8 and shifted in the direction shown by a (in the first alignment state) in FIG.
[0056]
Now, when the thickness (gap) of the liquid crystal 5 is d, the shift amount S is expressed by the following equation (see, for example, “Crystal Optics” Applied Physics Society, Optical Society, p198).
[0057]
S = [(1 / no)2− (1 / ne)2] sin (2θ ・ d)
÷ [2 ((1 / ne)2sin2θ + (1 / no)2cos2θ)] …… (1)
Further, when the electric field direction is reversed, the liquid crystal molecules 8 take a line-symmetrical arrangement (second alignment state) about the X axis in FIG. 3 and the traveling direction of linearly polarized light whose polarization direction is the Z axis direction. Is as shown by b 'in FIG.
[0058]
Therefore, by controlling the direction of the electric field applied to the liquid crystal 5 with respect to this linearly polarized light, it is possible to deflect light at two positions b and b ′, that is, 2S.
[0059]
FIG. 4 shows a result of calculating the light deflection amount S with respect to the light deflection amount obtained with respect to the representative physical property values (no = 1.6, ne = 1.8) of the material of the liquid crystal 5. The light deflection amount is the largest in the vicinity of θ = 45 °. If the tilt angle θ of the liquid crystal molecules 8 is 22.5 °, in order to obtain a deflection amount of 2S = 5 (μm), the thickness of the liquid crystal may be set to 32 μm as shown here. In addition, in homeotropic alignment ferroelectric liquid crystal, a response speed of 0.1 ms has been reported for an electric field of about 700 V / cm (Ozaki et al., JJAppl. Physics, Vol. 30, No. 9B, pp2366-2368. (See (1991)), a sufficiently high response speed on the order of sub ms is obtained.
[0060]
In a liquid crystal composed of a chiral smectic C phase, the tilt angle θ varies with temperature T, and θ∝ (T−Tc) where Tc is the phase transition point.βThere is a relationship. β varies depending on the material, but takes a value of about 0.5. It is also possible to control the amount of light deflection by temperature control utilizing this characteristic.
[0061]
For example, if 22.5 ° is set as the tilt angle θ and the corresponding temperature is Tθ = 22.5 °, θ <22.5 ° when T> Tθ = 22.5 °. When T <Tθ = 22.5 °, θ> 22.5 °, the tilt angle θ can be controlled by temperature, and the amount of light deflection can be controlled by this. As for position control, fine adjustment by an electric field can be performed in the same manner, and appropriate light deflection can be achieved by temperature, electric field, or a combination of both.
[0062]
The above has been described for the case where the electric field strength is Es or higher and the spiral structure is dissolved and the tilt angle θ is equal to the tilt angle of the optical axis. However, when the electric field strength is equal to or lower than Es, θ is averaged in the liquid crystal molecular direction. It can be handled as the tilt angle of the optical axis.
[0063]
When incident light is incident with an inclination from the element normal direction, the polarization state of the emitted light may differ from the polarization state of the incident light due to birefringence. That is, the polarization component perpendicular to the polarization direction of the incident light is mixed. This polarization component becomes noise light without receiving the predetermined deflection shown in the equation (1).
[0064]
FIG. 5 shows the polarization component obtained by calculation. Various conditions used for the calculation will be described with reference to FIG. In FIG. 6, the optical deflection element 1 is disposed between polarizers 9 and 10 arranged in a crossed Nicol arrangement. The illumination light is non-polarized light having a wavelength of 550 nm and is incident at a predetermined angle from the substrate normal direction. This tilt is obtained by taking the tilt angle (polar angle) from the X axis as θ when the substrate normal direction is the X axis, the tilt direction of the liquid crystal molecules is the Z axis, the X axis, and the direction perpendicular to the Z axis is the Y axis. The azimuth angle with the counterclockwise direction from the Z axis as the positive direction is expressed as φ. The illumination light is linearly polarized by the polarizer 9 and enters the light deflecting element 1 (this linearly polarized component is referred to as “incident light”). Further, it is assumed that the polarizer 9 (or 10) ideally transmits only the polarization component in the Z (Y) direction and absorbs all the Y (Z) direction component in the entire wavelength range. The liquid crystal has no (ordinary refractive index) = 1.48, ne (extraordinary refractive index) = 1.58 at a wavelength of 550 nm, a tilt angle of 22.5 °, and a gap of 50 μm.
[0065]
As shown in FIG. 5, the noise light ratio (Transmittance) in the outgoing light with respect to the incident light varies greatly depending on the azimuth angle (Azimuth Angle), and this ratio increases as the polar angle (Pola Angle) increases.
[0066]
In order to effectively remove this noise light component, as shown in FIG. 1, polarized light that transmits only the polarization component in a predetermined direction to the subsequent stage (light emission side) of the liquid crystal (this direction is referred to as “transmission optical axis”). A filter 7 may be disposed. In this case, the predetermined direction is the projection optical axis direction. FIG. 2B shows the direction (C director) 8b of liquid crystal molecules projected onto the substrate 2 from the substrate 3 (not shown). When the liquid crystal molecules are aligned in a uniform direction, the projection optical axis direction coincides with the C director direction.
[0067]
The polarization filter is an optical element that transmits only a linearly polarized component in a predetermined direction with respect to incident light and reflects or absorbs a component perpendicular thereto. In the present embodiment, a commercially available one can be applied as the polarizing filter 7, for example, various thin film polarizers, dichroic polarizers, various prisms using birefringent materials such as calcite, and the like. Can be applied. In particular, a dichroic polarizer that is relatively inexpensive and has excellent efficiency in the visible light region can be suitably used.
[0068]
A second embodiment of the present invention will be described with reference to FIG. Portions that are the same as or correspond to those in the above-described embodiment are denoted by the same reference numerals, and description thereof is also omitted (the same applies to subsequent embodiments).
[0069]
FIG. 7 shows two light deflection elements 1A (first light deflection elements) and 1B (second light deflection elements) shown in FIG. 2A installed in directions in which the deflection directions are inclined at a predetermined angle of 90 °. Are arranged in series in this order, and a polarization direction switching means for aligning the polarization direction of the light emitted from the first light deflection element 1A with the deflection direction of the second light deflection element 1B between the light deflection elements 1A and 1B. The optical deflection device 11 includes a polarization filter 7a between the polarization direction switching means 22 and the second optical deflection element 1B.
[0070]
According to such an optical deflection device 11, the two-position light shift is performed in the vertical direction (Z-axis direction) in the optical deflection element 1A, and the optical deflection element 1B is shifted by 2 in the 90 ° direction from the shift direction of the optical deflection element 1A. Since the optical shift of the position is performed, the light can be shifted to a total of four positions as the entire device.
[0071]
As shown in FIG. 7, the light incident on the optical deflection device 11 has a polarization direction in the Z-axis direction, and the vertical direction (Z-axis direction) in the optical deflection element 1A on the front stage side with respect to the light traveling direction. Then, the polarization direction is rotated by 90 ° by the polarization direction switching means 22 and is incident on the subsequent polarization filter 7a and the light deflection element 1B. As described above, in the optical deflection element 1A, a part of the light incident from the oblique direction is emitted as a noise light component. 90 °), the noise light component travels straight without receiving any deflection when the light is incident on the second light deflection element 1B as it is, and the noise is not eliminated. Further, even if a polarizing filter is provided at the subsequent stage of the second light deflection element 1B, this component cannot be removed. Therefore, in order to effectively remove this noise light component, it is preferable to provide a polarizing filter 7a between the first light deflection element 1A and the second light deflection element 1B. More preferably, since the polarization direction switching means 22 also generates noise light, a polarization filter 7a is provided between the polarization direction switching means 22 and the second light deflection element 1B, which can also remove this component. It is preferable to arrange. In the figure, a polarizing filter 7b for removing noise light from the light emitted from the second optical deflecting element 1B is also provided, and the effects described in the first embodiment can be obtained by the polarizing filter 7b. Can do.
[0072]
In the embodiment shown here, the case where the relative angle of the deflection direction in the optical deflection elements 1A and 1B is 90 ° is shown, but it is also possible to set the angle other than this, and the polarization filter 7a in that case Is made to coincide with the polarization direction of incidence on the second light deflection element 1B.
[0073]
As the polarization direction switching means 22, a Faraday rotation element, a liquid crystal element having a twist structure, or the like can be used, and the polarization direction rotation angle φ1Is the φ2Is set to approximately match. In particular, a liquid crystal element having a twisted structure can be set to have a relatively small variation in polarization direction rotation angle depending on the wavelength, and thus is suitable for handling light having multiple wavelengths.
[0074]
As a liquid crystal element having a twist structure, a so-called low-molecular twist nematic liquid crystal is used as the φ2For example, an element having a structure filled in a pair of transparent substrates subjected to an alignment treatment so as to obtain a twist angle, or a liquid crystal element having a twist structure formed of a polymer is used. In a liquid crystal element in which a twist structure is formed of a polymer, for example, liquid crystal can be formed directly on a base film without using a pair of transparent substrates, so that it is possible to reduce the thickness and save space. To preferred.
[0075]
Further, as the polarization direction switching means 22, a half-wave plate formed of a birefringent material such as mica or quartz can be used. These materials have a relatively small variation in characteristics due to temperature, and are particularly useful when used in an environment where the temperature changes greatly.
[0076]
Here, although the embodiment for shifting in four directions has been described, a plurality (two or more) of light deflection elements 1A, 1B,..., 1N are arranged in series, and each of the light deflection elements 1A, 1B,. , 1N, the polarization direction switching means 22 is disposed correspondingly, as shown in FIG. 8, the polarization filter 7 is provided between the polarization direction switching means 22 and the optical deflection element 1 at the subsequent stage. The same effect can be acquired by arranging.
[0077]
A third embodiment of the present invention will be described with reference to FIGS.
FIG. 9 is a cross-sectional view showing an example of the principle configuration of the optical deflection element 1 of the present embodiment. A pair of transparent substrates 2 ′, 3, a liquid crystal layer 5 made of chiral smectic C liquid crystal provided between the transparent substrates 2 ′, 3, and a substrate surface on the liquid crystal layer 5 side for applying an electric field to the chiral smectic C liquid crystal And a pair of transparent electrodes (not shown). The liquid crystal layer side substrate surface of the transparent substrate 2 ′ on the light incident side is processed into a sawtooth shape so as to have a structure inclined at a predetermined angle ψ with respect to the other substrate surface. The liquid crystal layer 5 exists in a homogeneously aligned state, and the liquid crystal molecule major axis is aligned substantially parallel to the ridgeline of the sawtooth structure (referred to as a first alignment state) and the state 32 (first alignment). Called a second orientation state).
[0078]
As methods for forming a sawtooth structure, methods such as etching on a glass substrate, heat-pressure transfer of a master disk, injection molding of a transparent plastic material, etc. have been industrialized. Can be used.
[0079]
A polarizing filter 7 functioning as a noise removing unit is disposed in close contact with the substrate 3 at the subsequent stage of the liquid crystal in the light traveling direction. The operation of the polarizing filter 7 is as described above.
[0080]
The incident light behaves as ordinary light or extraordinary light depending on the states 31 and 32 of the liquid crystal molecules, and is refracted according to the respective refractive indexes. The figure shows a case where the ordinary light refractive index is equal to the substrate refractive index, the incident light travels straight (straight arrow in the figure), and the extraordinary light refractive index is refracted upward (the broken arrow).
[0081]
If the alignment states 31 and 32 of the liquid crystal are perpendicular to each other (tilt angle is 45 °), the generation of noise light can be suppressed by setting the incident polarization direction in parallel with any alignment state. Actually, the one of 45 ° or less is often used. In this case, noise light corresponding to the misalignment angle between the incident polarization direction and the liquid crystal molecules is generated.
[0082]
FIG. 10 shows the ratio (Transmittance) of the noise light emitted with respect to the incident light in this case, and the noise light ratio increases as the deviation angle (2 ° to 10 °) shown in the figure increases. It is shown that. Since the calculation here is simple, a system in the case where a liquid crystal with ne-no (= Δn) = 0.2 and a thickness of 2 μm is filled between parallel plates is calculated. It can be considered that the same tendency is basically exhibited when the space between the sawtooth-shaped substrates 2 'and 3 is filled.
[0083]
In order to effectively remove the noise light component, as shown in FIG. 9, a polarizing filter 7 that transmits only the polarization component in a predetermined direction may be disposed after the liquid crystal. In this case, the predetermined direction is preferably an angle of 45 ° with the rotation axis with respect to the liquid crystal alignment states 31 and 32, and only the effective removal of noise light can be achieved by making the incident light polarization direction coincide with this direction. In other words, it is possible to make the light amounts of both the outgoing lights (indicated by the solid line and the broken line in FIG. 9) coincide. FIG. 11 shows this arrangement. In FIG. 11, an arrow D indicates the polarizing filter transmission optical axis direction and the incident light polarization direction.
[0084]
As the polarizing filter 7, a commercially available one can be applied. For example, various prisms using a birefringent material such as a metal thin film polarizer, a dichroic polarizer, and calcite can be applied. In particular, a dichroic polarizer that is relatively inexpensive and has excellent efficiency in the visible light region can be suitably used.
[0085]
A fourth embodiment of the present invention will be described with reference to FIG.
In FIG. 12, a pair of transparent substrates, liquid crystal filled between the substrates, one or more sets of electric field applying means for applying an electric field to the liquid crystals, and a polarizing filter at the rear stage (light emitting side) of the liquid crystals. The optical deflector 1, the laser light source 13, and the photodiode, which are provided as described above, are arranged at positions corresponding to the respective light beams of the light deflector 14 a and 14 b, and the rear stage (light emitting side) of the optical deflector 1. And an opening member 15 having an opening 15a of a predetermined size and a non-transmission part 15b that shields noise light scattered in the light deflecting element 1 and traveling outside the predetermined region. An optical deflecting device 16 is constituted by the optical deflecting element 1 and the opening member 15. The predetermined region referred to here is a range including a light beam to be effectively taken into the light receivers 14a and 14b through which each light by light deflection travels.
[0086]
The noise light due to (2) described above in the section of the problem of the conventional example is so-called scattered light, and is emitted in a hemispherical shape with the liquid crystal part as a bright spot. By providing an opening member 15 that shields noise light that passes outside a predetermined region in the light deflection element 1 as a removing means from the traveling direction of the incident light, on the rear stage (light emission side) of the light deflection element 1, good noise can be obtained. Light removal can be performed. The non-transmissive portion 15b surrounding the opening portion 15a is preferably formed of a material that absorbs light so as not to cause reflection.
[0087]
A fifth embodiment of the present invention will be described with reference to FIG.
This embodiment shows an application example to the image display device 80. In FIG. 13, reference numeral 81 denotes a light source in which LED lamps are arranged in a two-dimensional array. In the traveling direction of light emitted from the light source 81 toward the screen 86, a diffusion plate 82, a condenser lens 83, and an image display element are used. A transmissive liquid crystal panel 84 and a projection lens 85 as an optical member for observing the image pattern are sequentially arranged. Reference numeral 87 denotes a light source drive unit for the light source 81, and 88 denotes a drive unit for the transmissive liquid crystal panel 84.
[0088]
Here, on the optical path between the transmissive liquid crystal panel 84 and the projection lens 85, light deflecting means 89 functioning as a pixel shift element is interposed and connected to the drive unit 90. As such an optical deflection means 89, the optical deflection element 1 shown in the first embodiment or the optical deflection device 11 shown in the second embodiment is used.
[0089]
The illumination light that is controlled by the light source drive unit 87 and emitted from the light source 81 becomes illumination light that is made uniform by the diffuser plate 82, and is controlled by the condenser lens 83 in synchronization with the illumination light source by the liquid crystal drive unit 88 and is transmissive. The liquid crystal panel 84 is critically illuminated. The illumination light spatially modulated by the transmissive liquid crystal panel 84 enters the light deflecting unit 89 as image light, and the image light is shifted by an arbitrary distance in the pixel arrangement direction by the light deflecting unit 89. This light is magnified by the projection lens 85 and projected onto the screen 86.
[0090]
An image pattern in which the display position is shifted in accordance with the deflection of the optical path for each of the plurality of subfields obtained by temporally dividing the image field by the light deflecting unit 89 is displayed. The number of apparent pixels is multiplied and displayed. Thus, the shift amount by the light deflecting means 89 is set to ½ of the pixel pitch because the image multiplication is performed twice as much as the pixel arrangement direction of the transmissive liquid crystal panel 84. By correcting the image signal for driving the transmissive liquid crystal panel 84 according to the shift amount by the shift amount, an apparently high-definition image can be displayed. At this time, since the light deflection element 1 or the light deflection device 11 as in each of the above-described embodiments is used as the light deflection means 89, the light utilization efficiency is improved and the load on the light source 81 is not increased. Brighter and higher quality images can be provided to the observer.
[0091]
A sixth embodiment of the present invention will be described with reference to FIG.
In the present embodiment, in the image display device 80 shown in FIG. 13, an opening having a predetermined size for removing noise light generated in the light deflecting unit 89 is provided at the rear stage (light emitting side) of the light deflecting unit 89. An opening member 91 having a portion 91a and a non-transmissive portion 91b is added. The opening member 91 may be disposed before and after the projection lens 85 or between the lenses when the projection lens 85 is formed of a multi-group lens. In any case, the scattered light generated by the liquid crystal switching of the light deflecting unit 89 is shielded, and the light for image formation on the screen 86 is disposed at a position that is not blocked.
[0092]
【Example】
[Example 1]
Two transparent substrates (thickness 1.1 mm) were prepared, and each of the substrates was coated with an alignment agent JALS2021-R2 (manufactured by JRS) to a thickness of about 600 mm, and then sintered. The transparent glass substrate was faced with the orientation agent coating surface facing inward, and a cell was formed by adhering both ends of the substrate in a state where a gap of 50 μm was secured with a spacer disposed outside the light transmission region. At that time, two Al wires having a width of 1 mm were arranged in parallel in the cell at intervals of 2 mm. While the substrate was heated to 90 ° C., a liquid crystal (Chisso CS1029) having a chiral smectic C phase at room temperature was injected between the two substrates by the capillary method, and after slow cooling, sealed with an adhesive. Thereafter, the dichroic polarizing filter 7 was brought into close contact with the substrate in the direction in which the transmission axis coincided with the light deflection direction, and the light deflection element 1 was produced.
[0093]
When the alignment state was conoscopically observed with a polarizing microscope, it was confirmed that the optical axis was homeotropic alignment perpendicular to the substrate. Further, when a voltage of 200 V was applied between the Al lines, it was confirmed that the optical axis was inclined perpendicular to the electric field direction.
[0094]
As shown in FIG. 15A, the light deflecting element 1 is disposed after the polarizer 9 and the Cr mask 17 having a 2000 Line / inch pattern, and a CCD camera 19 is provided. The transmission optical axes of the polarizer 9 and the dichroic polarizing filter 7 were set in the same direction, and the line direction of the Cr mask 17 was also made parallel thereto. Further, the deflection direction by the optical deflection element 1 was set to a direction perpendicular to these. The CCD camera 19 received the light transmitted through the optical system with respect to the illumination light from the high-pressure mercury lamp 18 with the magnification of about 2500 times and the focus on the Cr mask 17.
[0095]
The CTF (Contrast Transfer Function) obtained from the mask image is 95% by inserting the optical deflection element 1 as compared with the case without the optical deflection element 1, and even if the optical deflection element 1 is inserted, the image is almost deteriorated. Confirmed that there is no.
[0096]
[Comparative Example 1]
As shown in FIG. 15B, when the same experiment as in Example 1 was performed with the dichroic polarizing filter 7 removed, a mask was obtained by inserting the light deflecting element 1 compared to the case without the light deflecting element 1. The CTF obtained from the image was reduced to 85% or less.
[0097]
Considering together with the first embodiment, it was confirmed that the image quality is lower when the dichroic polarizing filter 7 is not provided than when the dichroic polarizing filter 7 is provided.
[0098]
[Example 2]
A pair of smooth transparent substrates (thickness 1.1 mm) each having a transparent electrode (ITO) and a sawtooth structure substrate having a sawtooth structure with a surface inclination angle of 1 ° on one side surface was prepared. An alignment agent AL3046 (manufactured by JRS) was applied on one side of the substrate to a thickness of about 800 mm and sintered, and then rubbed in the sawtooth ridge direction. A cell was formed by adhering such a transparent glass substrate with the alignment agent-coated surface facing inward in a state where a spacer was disposed outside the light transmission region so as to have a gap of 2 to 3 μm. Liquid crystal AL5002 (manufactured by Clariant), which takes a chiral smectic C phase at room temperature, was injected between the two substrates with the substrate heated to 90 ° C. by a capillary method, and after slow cooling, sealed with an adhesive. Thereafter, the dichroic polarizing filter 7 was set so that the rotation axis of the liquid crystal was at an angle of 45 ° with the dichroic polarizing filter 7, and was in close contact with the substrate to produce the light deflection element 1.
[0099]
When the alignment state was observed with a polarizing microscope, it was confirmed that the optical axis was homogeneously aligned parallel to the sawtooth structure ridgeline, and when a voltage of 20 V was applied between the ITO electrodes, the optical axis was sawtooth structure ridgeline. It was confirmed that it tilted by about 80 ° from the direction parallel to the.
[0100]
As shown in FIG. 15A, the light deflecting element 1 is disposed after the polarizer 9 and the Cr mask 17 having a 2000 Line / inch pattern, and a CCD camera 19 is provided. The transmission optical axes of the polarizer 9 and the dichroic polarizing filter 7 were set in the same direction, and the line direction of the Cr mask 17 was also made parallel thereto. Further, the deflection direction by the optical deflection element 1 was set to a direction perpendicular to these. The CCD camera 19 received the light transmitted through the optical system with respect to the illumination light from the high-pressure mercury lamp 18 with the magnification of about 2500 times and the focus on the Cr mask 17.
[0101]
By inserting the optical deflection element 1, the CTF obtained from the mask image was 95%, and it was confirmed that even if the optical deflection element 1 was inserted, there was almost no deterioration of the image. In addition, it was confirmed that the amount of transmitted light hardly changed even when a voltage was applied compared to the initial state of the optical deflection element 1 and the liquid crystal alignment state was changed, and there was no change in the amount of light due to switching of the optical deflection.
[0102]
[Comparative Example 2]
As shown in FIG. 15B, when the same experiment as in Example 1 was performed with the dichroic polarizing filter 7 removed, a mask was obtained by inserting the light deflecting element 1 compared to the case without the light deflecting element 1. The CTF obtained from the image was 85%, and it was confirmed that the image quality was lowered in the absence of the dichroic polarizing filter 7 as compared with the case of being present.
[0103]
[Comparative Example 3]
The installation angle of the optical deflecting element 1 in the second embodiment is arranged so that the sawtooth structure ridge line in the optical deflecting element 1 coincides with the transmitted optical axis direction of the dichroic polarizing filter 7, and the same operation as in the second embodiment is performed. As a result, although the noise light removal effect was the same, it was confirmed that there was a large change in the amount of transmitted light when the liquid crystal alignment state was changed, and a change in the amount of light due to switching of light deflection occurred.
[0104]
[Example 3]
The optical deflection element 1 obtained in Example 1 was placed in the optical system shown in FIG. 12, and the liquid crystal was switched by reversing the electric field application direction. When the opening member 15 was present, no light leaked to the portions other than the light receivers 14a and 14b during switching, but it was confirmed that leakage light was generated when the opening member 15 was removed. Since this leaked light causes flare light in the optical deflecting device 16, it was confirmed that the flare light can be reduced by providing the opening member 15.
[0105]
According to the optical deflecting element of the first aspect of the invention, a pair of transparent substrates and a space between these substrates are filled.Consists of chiral smectic C phase with homeotropic orientationLiquid crystal and this liquid crystalIn the direction of the plate surface of the pair of substratesBy applying an electric fieldDeflection of the optical path of light passing through the liquid crystal layerOne or more sets of electric field applying means; andThe optical deflection element includes an alignment film on at least one surface of the substrate. And saidNoise light removing means comprising a polarizing filter disposed on the light exit side of the liquid crystalBe equippedGetThere is a special feature. Therefore,Noise light components can be reduced. For this reason, when using for an image display apparatus or an imaging device, the malfunction that an image deteriorates with noise light can be eliminated. Furthermore, when used for an optical switch, the SN ratio can be improved, the occurrence of errors can be reduced, the accuracy of the light detection system can be relaxed, and the operating temperature range of the optical switch can be widened. .
[0106]
According to the second aspect of the invention, in order to realize the first aspect of the invention, the direction of the optical axis determined as the averaged direction of the molecular major axis direction of the liquid crystal is determined by applying an electric field by the electric field applying means. Since the polarizing filter having the transmission optical axis aligned with the projection optical axis direction obtained by projecting the optical axis from one substrate surface to the other substrate surface in the state directed in the direction is installed on the light emission side, Noise light can be removed satisfactorily and effectively, and a polarizing filter can be used in the form of a film, so that the object is not increased in size as compared with a conventional optical deflection element. The function can be demonstrated.
[0107]
According to a third aspect of the present invention, in the optical deflection element according to the first aspect, the pair of substrates having a region in which the surface of the other substrate is inclined with respect to the surface of the opposite substrate is provided between these substrates.LiquidEven in an optical deflection element comprising a crystal and one or more electric field applying means for applying an electric field to the liquid crystal, it is possible to effectively remove noise light caused by the cause as described above by providing a polarizing filter. In this case, by setting the direction of the transmission optical axis of the polarizing filter so as to form an angle of 45 ° with the rotation axis by applying the electric field of the liquid crystal, it is possible to match the amount of emitted light obtained by applying the electric field. .
[0108]
According to the optical deflection device of the invention described in claim 4, a pair of transparent substrates, a liquid crystal composed of a chiral smectic C phase having a homeotropic orientation filled between the substrates, and an electric field applied to the liquid crystal. A first and a second light deflection element each comprising one or more sets of electric field application means, and installed between these first and second light deflection elements arranged in series in order from the light incident side, A polarization direction switching means for aligning the polarization direction of the light emitted from the first light deflection element with the deflection direction of the second light deflection element; and between the polarization direction switching means and the second light deflection element. Noise light removing means comprising the arranged polarizing filter, so that effective noise light removal is performed even in an optical deflection device in which optical deflection elements are arranged in series in order to set the deflection direction to four directions. It is possible In addition, since the polarization filter is disposed between the polarization direction switching means and the second light deflection element as compared with the case where the polarization filter is disposed between the first light deflection element and the polarization direction switching means, the polarization direction is switched. The noise light generated by the means can be removed at the same time, so the effect of removing the noise light can be further enhanced. Especially, when the wavelength of the incident light is multiplexed, the polarization direction switching means can improve the polarization direction switching performance. Since there are many cases where there is wavelength dependency, the effect can be further increased.
[0109]
According to the light deflecting device of the invention of claim 5, the light deflecting means by the light deflecting element of claim 1, 2 or 3, or the light deflecting device of claim 4, and the light exit side of the light deflecting means Provided with an opening member that shields noise light traveling outside the predetermined region in the light deflecting means, so that when the deflection direction by the light deflecting means is switched by changing the applied electric field, the liquid crystal molecules Scattered light due to motion is generated, and noise light due to such causes is mainly a so-called scattered component and is emitted in a spherical shape with the liquid crystal part as a bright spot, but in the latter stage (light emitting side) of the light deflection element Noise light can be satisfactorily removed by the opening member that is provided and shields the noise light that passes outside the predetermined region in the light deflection element.
[0110]
According to the image display apparatus of the sixth aspect of the present invention, since the light deflecting means by the light deflection element according to the first, second or third aspect or the light deflection device according to the fourth aspect is provided, the polarization direction of the incident light is perpendicular. Due to the presence of various polarization components, it is possible to effectively remove noise light that is generated without being deflected to a predetermined position, and thus polarization that is perpendicular to the polarization direction of incident light. It is possible to provide an image display device that can prevent a decrease in contrast that occurs due to the mixture of components, can obtain a good image, and can perform high-definition display.
[0111]
According to the image display device of the seventh aspect of the present invention, when the deflection direction by the light deflecting means is switched by changing the applied electric field, the noise light caused by the generation of scattered light due to the movement of the liquid crystal molecules is Provided on the light exit side of the light deflecting means, and can be effectively removed by an opening member for removing noise light generated in the light deflecting means, and therefore, the scattered light generated at the time of liquid crystal switching is reduced. Therefore, it is possible to provide an image display device that can prevent a decrease in contrast due to this and obtain a good image.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of the basic configuration of an optical deflection element according to a first embodiment of the present invention.
2A is a perspective view for explaining the operation principle of an optical deflection element schematically showing the liquid crystal alignment, and FIG. 2B is a perspective view showing a C director in which the alignment direction of liquid crystal molecules is projected onto a substrate. It is.
FIGS. 3A and 3B show a relationship between liquid crystal molecules and light deflection, where FIG. 3A is a cross-sectional structure diagram, and FIG. 3B is an explanatory diagram of an alignment state of liquid crystal molecules.
FIG. 4 is a characteristic diagram showing a relationship between a liquid crystal film thickness and an optical axis shift amount with respect to a liquid crystal alignment angle.
FIG. 5 is a characteristic diagram showing the calculation result of the relationship between the direction of incident light to the light deflection element and the noise light ratio.
6 is a schematic diagram showing the calculation conditions shown in FIG.
FIG. 7 is a schematic perspective view showing an optical deflection device according to a second embodiment of the present invention together with a schematic liquid crystal alignment of an optical deflection element.
FIG. 8 is a cross-sectional view showing a configuration example of an optical deflection device according to the modification.
FIG. 9 is a cross-sectional view illustrating a configuration example of an optical deflection element according to a third embodiment of the present invention.
FIG. 10 is a characteristic diagram showing the noise light ratio in the optical deflecting element with the angle between the liquid crystal molecule direction and the polarizing filter as a parameter.
FIG. 11 is an explanatory diagram showing a relationship between a polarizing filter transmission axis and a liquid crystal alignment direction;
FIG. 12 is a cross-sectional structure diagram illustrating a configuration example of an optical deflecting device according to a fourth embodiment of the present invention.
FIG. 13 is a schematic side view showing a configuration example of an image display apparatus according to a fifth embodiment of the present invention.
FIG. 14 is a schematic side view showing a configuration example of an image display device according to a sixth embodiment of the present invention.
15 is a schematic diagram of a CTF evaluation apparatus shown in Example 1 and Comparative Example 1. FIG.
[Explanation of symbols]
1 Light deflection element
1A First optical deflection element
1B Second optical deflection element
2, 3 substrate
5 Liquid crystal layer
6a, 6b Voltage application means
7 Polarizing filter, noise light removal means
11 Optical deflection device
15 Opening member
22 Polarization direction switching means
81 light source
84 Image display element
85 Optical members
89 Light deflection means
91 Opening member

Claims (7)

透明な一対の基板と、これらの基板間に充填されたホメオトロピック配向をなすキラルスメクチックC相よりなる液晶と、この液晶に対し前記一対の基板の板面方向に電界を作用させ液晶層を透過する光の光路を偏向する一組以上の電界印加手段と、前記基板の少なくとも一方の表面には配向膜を備えた光偏向素子において、
前記液晶の光出射側に配設された偏光フィルタよりなるノイズ光除去手段を備える光偏向素子。
A pair of transparent substrates, a liquid crystal composed of a homeotropically aligned chiral smectic C phase filled between the substrates, and an electric field acting on the liquid crystal in the plate surface direction of the pair of substrates to transmit the liquid crystal layer In one or more sets of electric field applying means for deflecting the optical path of the light to be performed , and at least one surface of the substrate, an optical deflection element comprising an alignment film,
Optical deflection element having a noise light elimination hand stage consisting polarizing filter disposed on the light emitting side of the liquid crystal.
記液晶の分子長軸方向を平均化した方向として定まる光学軸の方向を、前記電界印加手段による電界の印加により所定方向に向けた状態で、一方の基板面から他方の基板面に向かって前記光学軸を投影して得られる投影光学軸方向が、前記偏光フィルタの透過光軸方向と一致している請求項1記載の光偏向素子。The direction of the optical axis determined the molecular long axis direction before Symbol crystal as averaged direction, the state toward the predetermined direction by the application of an electric field by the electric field applying means, toward the surface of one substrate to the other substrate surface The optical deflection element according to claim 1, wherein a projection optical axis direction obtained by projecting the optical axis coincides with a transmission optical axis direction of the polarizing filter. 前記一対の基板が、対向する一方の基板表面に対し他方の基板表面が傾斜した領域を有し、前記液晶の電界印加による回転軸が、前記偏光フィルタの透過光軸方向と45°の角をなすよう配置されている請求項1記載の光偏向素子。Said pair of substrates, have one region where the other substrate surface is inclined relative to the substrate surface of opposed, pre-Symbol rotation axis due to the application of the electric field of the liquid crystal is, the corners of the transmission optical axis direction and 45 ° in the polarizing filter The light deflection element according to claim 1, which is arranged to form 透明な一対の基板と、これらの基板間に充填されたホメオトロピック配向をなすキラルスメクチックC相よりなる液晶と、この液晶に電界を作用させる一組以上の電界印加手段と、を各々備える第一及び第二の光偏向素子と、光入射側から順に直列に配列されたこれらの第一及び第二の光偏向素子間に設置されて、前記第一の光偏向素子からの出射光の偏光方向を前記第二の光偏向素子の偏向方向に揃える偏光方向切換手段と、この偏光方向切換手段と前記第二の光偏向素子との間に配置された偏光フィルタよりなるノイズ光除去手段と、を備える光偏向デバイス。  A first pair comprising a pair of transparent substrates, a liquid crystal composed of a chiral smectic C phase having a homeotropic orientation filled between the substrates, and one or more sets of electric field applying means for applying an electric field to the liquid crystals. And a second light deflection element, and a polarization direction of light emitted from the first light deflection element, which is installed between the first and second light deflection elements arranged in series in order from the light incident side. A polarization direction switching means for aligning the second light deflection element with the deflection direction of the second light deflection element, and a noise light removal means comprising a polarization filter disposed between the polarization direction switching means and the second light deflection element, Optical deflection device provided. 請求項1,2又は3記載の光偏向素子又は請求項4記載の光偏向デバイスによる光偏向手段と、この光偏向手段の光出射側に設けられて、当該光偏向手段において所定領域外を進行するノイズ光を遮蔽する開口部材と、を備える光偏向装置。  A light deflecting means using the light deflecting element according to claim 1, 2 or 3, or the light deflecting device according to claim 4, and provided on the light emitting side of the light deflecting means, wherein the light deflecting means travels outside a predetermined region An optical deflecting device comprising: an opening member that shields noise light. 画像情報に従って光を制御可能な複数の画素を二次元的に配列した画像表示素子と、この画像表示素子を照明する光源と、前記画像表示素子に表示した画像パターンを観察するための光学部材と、画像フィールドを時間的に分割した複数のサブフィールド毎に前記画像表示素子と前記光学部材の間の光路を偏向する請求項1,2又は3記載の光偏向素子又は請求項4記載の光偏向デバイスによる光偏向手段と、を備える画像表示装置。  An image display element in which a plurality of pixels capable of controlling light according to image information are two-dimensionally arranged, a light source that illuminates the image display element, and an optical member for observing an image pattern displayed on the image display element, 5. The optical deflection element according to claim 1, wherein the optical path between the image display element and the optical member is deflected for each of a plurality of subfields obtained by dividing the image field in time. An image display device comprising: a light deflecting unit by a device. 画像情報に従って光を制御可能な複数の画素を二次元的に配列した画像表示素子と、この画像表示素子を照明する光源と、前記画像表示素子に表示した画像パターンを観察するための光学部材と、画像フィールドを時間的に分割した複数のサブフィールド毎に前記画像表示素子と前記光学部材の間の光路を偏向する光偏向手段と、この光偏向手段の光出射側に設けられて、当該光偏向手段において発生するノイズ光を除去するための開口部材と、を備える画像表示装置。  An image display element in which a plurality of pixels capable of controlling light according to image information are two-dimensionally arranged, a light source that illuminates the image display element, and an optical member for observing an image pattern displayed on the image display element, A light deflector for deflecting an optical path between the image display element and the optical member for each of a plurality of subfields obtained by dividing the image field in time, and a light deflector provided on the light emitting side of the light deflector And an aperture member for removing noise light generated in the deflecting means.
JP2002086538A 2002-03-26 2002-03-26 Optical deflection element, optical deflection device, optical deflection apparatus, and image display apparatus Expired - Fee Related JP3980390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086538A JP3980390B2 (en) 2002-03-26 2002-03-26 Optical deflection element, optical deflection device, optical deflection apparatus, and image display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002086538A JP3980390B2 (en) 2002-03-26 2002-03-26 Optical deflection element, optical deflection device, optical deflection apparatus, and image display apparatus

Publications (2)

Publication Number Publication Date
JP2003279926A JP2003279926A (en) 2003-10-02
JP3980390B2 true JP3980390B2 (en) 2007-09-26

Family

ID=29233105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086538A Expired - Fee Related JP3980390B2 (en) 2002-03-26 2002-03-26 Optical deflection element, optical deflection device, optical deflection apparatus, and image display apparatus

Country Status (1)

Country Link
JP (1) JP3980390B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608292B2 (en) * 2004-11-24 2011-01-12 株式会社リコー Optical path shift optical system, pixel shift projection optical system, and pixel shift projection apparatus
JP4599330B2 (en) * 2006-07-19 2010-12-15 株式会社東芝 Tunable optical output device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2939826B2 (en) * 1990-09-03 1999-08-25 日本電信電話株式会社 Projection display device
JP3255250B2 (en) * 1993-04-30 2002-02-12 ソニー株式会社 Liquid crystal optical low-pass filter
JPH09133904A (en) * 1995-11-07 1997-05-20 Oki Electric Ind Co Ltd Optical deflection switch
JPH10197857A (en) * 1996-12-28 1998-07-31 Canon Inc Liquid crystal element and its production
JP2001194647A (en) * 2000-01-11 2001-07-19 Mitsubishi Electric Corp Ferroelectric liquid crystal display device and its manufacturing and driving method

Also Published As

Publication number Publication date
JP2003279926A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
JP4537664B2 (en) Optical path deflecting element, optical path deflecting device, image display device, optical writing device, optical interconnection device, optical element and manufacturing method thereof
JPH08234192A (en) Color display continuously coupled to liquid-crystal filter
JP5071552B2 (en) Projection display
WO2006082901A1 (en) Variable transmission light quantity element and projection display
JP4798366B2 (en) Reflective liquid crystal display element and projection display device
JP3987347B2 (en) Optical deflection element, optical deflection device, and image display apparatus
KR101169401B1 (en) Vertically aligned nematic mode liquid crystal display having large tilt angles and high contrast
US20020135729A1 (en) Light deflection element, light deflection device and image display device
JP4773649B2 (en) Optical deflection apparatus and image display apparatus
JP2007017485A (en) Liquid crystal display device and liquid crystal projector
JP4520099B2 (en) Optical element, light deflection element, and image display device
JP3980390B2 (en) Optical deflection element, optical deflection device, optical deflection apparatus, and image display apparatus
JP4194381B2 (en) Optical deflection device
JP4031702B2 (en) Optical deflection element
JP2003091026A (en) Light deflecting device, image display device, image pick up device and optical switching device each using the light deflecting device
JP2005309100A (en) Optical element, optical deflection element, optical deflection device and image display apparatus
JP4485773B2 (en) Optical deflection device and image display device
JP4743574B2 (en) Optical deflection element manufacturing method, optical deflection apparatus, and image display apparatus
JP2004021098A (en) Optical path deflection device and picture display device
JP3943450B2 (en) Optical deflection apparatus, optical deflection method, and image display apparatus
JP2003057689A (en) Optical element and image display device using the optical element
JP2004286961A (en) Optical element, optical deflection element, and image display apparatus
JP3987346B2 (en) Optical deflection element, optical deflection device, and image display apparatus
JP4272446B2 (en) Projection display device
JP2005037530A (en) Optical deflector and image display device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050209

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees