JP3999831B2 - Gas detection method and apparatus - Google Patents

Gas detection method and apparatus Download PDF

Info

Publication number
JP3999831B2
JP3999831B2 JP19938196A JP19938196A JP3999831B2 JP 3999831 B2 JP3999831 B2 JP 3999831B2 JP 19938196 A JP19938196 A JP 19938196A JP 19938196 A JP19938196 A JP 19938196A JP 3999831 B2 JP3999831 B2 JP 3999831B2
Authority
JP
Japan
Prior art keywords
gas
gas sensor
voltage
detection
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19938196A
Other languages
Japanese (ja)
Other versions
JPH1038832A (en
Inventor
晋一 松本
弘史 香田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIS Inc
Original Assignee
FIS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIS Inc filed Critical FIS Inc
Priority to JP19938196A priority Critical patent/JP3999831B2/en
Publication of JPH1038832A publication Critical patent/JPH1038832A/en
Application granted granted Critical
Publication of JP3999831B2 publication Critical patent/JP3999831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガス検出方法及びガス検出装置に関するものである。
【0002】
【従来の技術】
金属酸化物半導体を感ガス体として用いたガスセンサを用いてガス検出装置が多く提供されているが、金属酸化物半導体を用いたガスセンサの問題点の1つは雰囲気中の湿度の影響を受け、検知感度が悪くなる、いわゆる湿度依存性を持つ点に有る。この問題を解決するためにセンサ材料の面からの研究が報告されているが未だ解決されていない。この湿度依存性を解決するために回路面からの補償も試みられているが、十分には湿度依存性を解決したものは未だ提供されていない。
【0003】
また金属酸化物半導体を感ガス体として用いたガスセンサの他の問題点としては、長期使用によりガスセンサ(感ガス体)の抵抗値が変化し、検知精度が悪くなる点にある。この問題を解決するためにセンサ材料の面からの研究が報告されているが問題点を解決したガスセンサは未だ提供されていない。
更に金属酸化物半導体を用いたガスセンサはヒータによる加熱を必要とするため消費電力が大きく、電池電源を用いる場合、長期間稼働させることができず、消費電力の小さいガスセンサが要望されているが、やはり未だ実用化に至っていない。
【0004】
【発明が解決しようとする課題】
本発明は上記問題点に鑑みて為されたもので、ガスセンサの湿度依存性を解決してヒーターによる加熱周期を長く、加熱時間を短くすることができるガス検出方法及びその装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために 請求項1の発明は、金属酸化物半導体を感ガス体として用いたガスセンサに直列に負荷抵抗を接続し、ガスセンサと負荷抵抗との直列回路に対して、ガス検出信号を取り込む期間だけ検出電圧を間欠的に印加してガス検出信号を出力させることを特徴とする。
【0006】
請求項2の発明は、請求項1の発明において、ガスセンサに設けたヒータの通電を制御することにより高温期間と低温期間とを交互に設定し、高温期間若しくは低温期間又は両期間にガス検出信号によりガス検出を行なう検出期間を設定する。
請求項3の発明は、直流電源部と、金属酸化物半導体を感ガス体として用いたガスセンサと、該ガスセンサに直列に接続される負荷抵抗と、該ガスセンサと負荷抵抗の直列回路に対して、ガス検出信号を取り込む期間だけ直流電源部の電圧を検出電圧として間欠的に印加させる制御手段と、ガス検出信号を取り込みガス検出を行なうガス検出手段とから成ることを特徴とする。
【0007】
請求項4の発明は、請求項3の発明において、ガスセンサに設けたヒータの通電を制御してガスセンサを高温とする高温期間と、低温とする低温期間とを交互に設定するヒータ制御手段を備え、ガス検出手段は高温期間又は低温期間又は両期間において、負荷抵抗の両端電圧から所定ガスを検出することを特徴とする。
【0008】
【発明の実施の形態】
まず本発明は、本発明者らが金属酸化物半導体を感ガス体として用いたガスセンサの抵抗値測定を例えば1sec間に1回とし、印加する検出電圧の印加時間を1sec、10msec、0.1msecとした場合、検出電圧の印加時間が短いほど湿度依存性を改善することができることを発見したことによって為されたものである。
【0009】
つまり、金属酸化物半導体を感ガス体として用いた図4に示すようなガスセンサ2を用い、ガスセンサ2の温度が約400℃になるようにこのガスセンサ2に付設してあるヒータ4に直流電圧(5V)を印加して加熱状態とし、この加熱状態において、ガスセンサ2に直列に例えば10KΩの負荷抵抗を直列接続し、該直列回路に検出電圧(直流5V)を連続印加とした場合(イ)と、1sec毎に10msec間印加とした場合(ロ)と、1sec毎に0.1msec間印加とした場合(ハ)について、1000ppmのCH4 の中で夫々雰囲気温度が20℃で、雰囲気湿度が20%Rh,40%Rh、60%Rh、80%Rhにおけるガスセンサ2の抵抗値Rsを1sec毎に1回測定して見たところ、図5に示すような結果が得られ、この結果から検出電圧の印加時間が短い程湿度依存性が低いことが分かった。
【0010】
上記ガスセンサ2は次のような構造のものである。つまり厚さ0.3mmで一辺の長さが2mmの正方形のアルミナ基板10の裏面に図4(b)に示すようにヒータ4用の金電極11,11及び信号用の金電極12,12を形成してこれらの金電極11,11間に酸化ルテニュームからなるヒータ4を形成し、表面にはスルホールにより裏面の金電極12,12と接続された金電極13,13を図4(a)に示すように形成したもので、各金電極13,13との間に亘るように添加物を添加したSnO2 に骨材として例えぽ1000メッシュのアルミナを等量混合し、更にテルピネオールを加えてペースト状にした後、塗布して例えば700℃で2時間空気中で焼成し、この焼成により金電極12,12間に金属酸化物半導体たるSnO2 による感ガス体を構成する素子片14を同一基板1上に形成している。またこの形成後アルミナ基板10の裏面側の各電極22,12にはリードワイヤー15を各々接続して、これらリードワイヤー15によりヒータ接続用端子及び出力用端子を構成する。
【0011】
またガスセンサ2として図6に示す構造のものを用いて上述と同様に湿度依存性について検証してみた。
この場合使用するガスセンサ2は長手方向が0.4mm乃至0.8mm、長手方向に直交する方向が0.2mm乃至0.7mmの円球又は楕円球状に形成された金属酸化物半導体からなる感ガス体内に貴金属線からなるヒータ4を兼ねた電極コイルを埋設し、この電極コイルの内部に貴金属線からなる検知用電極を設けた小型のものである。ガスセンサ2の温度が約400℃となるようにヒータ4に0.9Vの直流電圧を印加して加熱し、ガスセンサ2には10KΩの負荷抵抗を直列接続した。そして、直列回路に検出電圧(直流6V)を連続印加とした場合(イ)と、1sec毎に10msec間印加とした場合(ロ)と、1sec毎に0.1msec印加とした場合(ハ)について、1000ppmのCH4 の中で雰囲気温度が20℃で、雰囲気湿度が20%Rh,40%Rh、60%Rh、80%Rhにおけるガスセンサ2の抵抗値Rsを1sec毎に1回測定して見たところ、図7に示すような結果が得られた。この結果からも検出電圧の印加時間が短い程湿度依存性が低いことが分かった。
【0012】
次に図6のガスセンサ2の温度を高温域と低温域とに交互に変化させ、低温域でのガスセンサ2の出力から一酸化炭素ガスを検出する場合のガスセンサ2の湿度依存性を測定してみたところ、図8に示すようになった。つまり上述と同様にガスセンサ2に10KΩの負荷抵抗を直列に接続し、ガスセンサ2は10sec毎に3sec間、約400℃になるようにヒータ4に0.9Vの直流電圧を印加して加熱し、残りの7sec間は非加熱状態とし、ガスセンサ2の抵抗値測定のために印加する検出電圧(6V)の印加時点をヒータ4に0.9Vの直流電圧を印加する1sec前とし、その印加時間を1secする場合(イ)と10msecとする場合(ロ)と、0.1msec(ハ)とする場合について、100ppmのCOの中で雰囲気温度が20℃で、雰囲気湿度が20%Rh,40%Rh、60%Rh、80%Rhにおけるガスセンサ2の抵抗値Rsを測定して見たところ、図8に示すような結果が得られた。この結果から上述と同様に検出電圧の印加時間が短い程湿度依存性が低いことが分かった。
【0013】
また上述と同様にガスセンサ2の温度を高温域と低温域とに交互に変化させ、高温域でのガスセンサ2の出力からメタン、プロパン、アルコール等の可燃性ガスを検出する場合のガスセンサ2の湿度依存性を測定してみたところ、図9に示すようになった。つまり上述と同様にガスセンサ2に10KΩの負荷抵抗を直列に接綻し、ガスセンサ2は10sec毎に3sec間、約400℃になるようにヒータ4に0.9Vの直流電圧を印加して加熱し、残りの7sec間は非加熱状態とし、ガスセンサ2の抵抗値測定のために印加する検出電圧(6V)の印加時点をヒータ4に0.9Vの直流電圧を印加を終了する1sec前とし、その印加時間を1secする場合(イ)と、10msecとする場合(ロ)と、0.1msec(ハ)とする場合について、100ppmのCH4 の中で雰囲気温度が20℃で、雰囲気湿度が20%Rh,40%Rh、60%Rh、80%Rhにおけるガスセンサ2の抵抗値Rsを測定して見たところ、図9に示すような結果が得られた。この結果から上述と同様に検出電圧の印加時間が短い程湿度依存性が低いことが分かった。
【0014】
以上の結果に基づいて湿度依存性について考察してみたところ検出電圧の印加時間とガスセンサ2の表面に吸着する吸着水の量に相関関係があり、検出電圧を印加するとガスセンサ2の表面に吸着した吸着水の吸着形態が変わり、吸着水がより吸着しやすい状態となり、時間と共により多くの吸着水が吸着すると考えられる。従って検出電圧の印加時間は短ければ短いほど、吸着水の量が少ないため、湿度依存性を向上させることができる。またガスセンサ7の表面に長時間多量の吸着水が存在すると、添加されている触媒種や金属酸化物半導体自身がシンタリングを起こし易くなり、長期安定性が損なわれることが分かった。
【0015】
そしてガスセンサ2に検出電圧を印加する場合、間欠的に行ない且つその印加時間を信号処理に必要最小の時間とすることにより、湿度依存性を小さくすることができることが分かった。
また湿度依存性が改善できることにより、ガスセンサ2を加熱する場合、長い周期で且つ短時間で良いことが分かった。
【0016】
以上の発見と考察に基づいて為された本発明方法及び装置を実施形態により詳述する。
(実施形態1)
本実施形態装置は、検出対象ガスを一酸化炭素ガスとするもので、図1に示すように直流電源部たる電池電源1(例えばDC6V)と、金属酸化物半導体を感ガス体として用いた例えば図6に示すガスセンサ2と、警報回路3と、ガスセンサ2の検知電圧の印加を制御するとともに、ガスセンサ2に設けたヒータ4の通電を制御する制御機能と警報回路3及び発光ダイオードLED1 ,LED2 からなる表示部の制御を行なう制御機能及びガスセンサ2に直列された負荷抵抗R0 の両端電圧を取り込み、この両端電圧によりガス検出を行なうガス検出機能を備えたマイクロコンピュータからなる演算制御部5とを主なる構成要素として備えている。
【0017】
ガスセンサ2は感ガス体をトランジスタQ1 と負荷抵抗R0 とを介して直流電源たる電池電源1に接続し、付設しているヒータ4を電池電源1を構成する電池群の一部1a(例えばDC1.5V)にトランジタQ2 を介して接続しており、トランジスタQ1 のオン時に例えば10KΩの負荷抵抗R0 と感ガス体との直列回路に電池電源1から検出電圧が印加され、またトランジスタQ3 のオン時にヒータ4が通電され、この通電期間が制御されることにより感ガス体が所定温度に加熱されるようになっている。
【0018】
演算制御部5は制御機能により、外部に設けたセラミック発振子等からなる基準クロック発生部6の基準クロックに基づいて所定周期で所定時間トランジスタQ1 を直接駆動する駆動信号を出力ポートO1 より出力するとともに、この駆動信号とは別の所定周期で後述する高温期間設定時にトランジスタQ3 をオン、オフさせるための制御信号を出力ポートO2 より出力し、またトランジスタQ1 をオン駆動している期間に負荷抵抗R0 の両端電圧をガス検出信号として入力ポートI1 より取り込み、検出機能により予め設定してある基準値と比較して対象ガスを検出する。本実施形態の場合検知対象ガスを一酸化炭素ガスとするため、低温期間で1sec毎に、0.6msec間トランジスタQ1 をオンさせそのオン期間において取り込むガス検出信号たる電圧と基準値との比較を行なう。
【0019】
更にガス検出機能によって対象ガスが検出された時に警報制御機能により出力ポートO3 を”L”とし内部回路を通じて警報回路3の通電路をオンさせるようになっている。
ここで上記トランジスタQ3 は上記トランジスタQ2 を介してヒータ4に安定化した電圧(0.9V)を供給するための安定化回路7に直列に挿入されており、オン時に安定化回路7に電池電源1に安定化回路7のオペアンプOPを接続し、このオペアンプOPはツェナーダイオードZDのツェナー電圧(2V)を可変抵抗器VR1 で分圧された電圧(0.9V)を非反転端子に、またヒータ4の電圧を反転入力端に入力してその差が零となるようにトランジスタQ2 のベース電流を制御し、このトランジスタQ2 により電池電源1の一部1aからヒータ4に印加される電圧を0.9Vに設定する。
【0020】
而してヒータ4はトランジスタQ3 のオン、オフに同期して0.9Vの電圧が印加され、その加熱温度が約400℃となるように制御されることになる。
警報回路3は圧電ブザーBZを備えたもので、演算制御部5が検出対象のガスを検出して出力ポートO3 を”L”とした時に通電され、トランジスタQ4 と圧電素子Q5 等で発振回路を構成する圧電ブザーBZが間欠的に鳴動し警報音を発するようになっている。また表示部の発光ダイオードLED1 ,LED2 は夫々演算制御5の出力ポートO4 ,O5 に接続されており、発光ダイオードLED1 は演算制御部5が検出対象のガスを検出した時の出力ポートO4 の所定周期の”H””L”の出力に応じて点滅発光し警報表示を行なう。また発光ダイオードLED3 は、感度調整スイッチSWがオンされたときに、演算制御部5が出力ポートO3 を”L”とすることにより点灯するもので、調整モードを表示する。
【0021】
尚サーミスタTHと抵抗R1 の直列回路は接続点電圧を演算制御部5に入力させ、演算制御部5の温度補償を行なうための回路であり、抵抗R2 と可変抵抗器VR2 との直列回路は接続点電圧を演算制御部5にガス検知の際の基準電圧として入力するもので、調整モード時に可変抵抗器VR2 により基準電圧を可変設定して感度調整を行なうことができるようになっている。
【0022】
尚図中8は電源リセット回路であって、電源投入時にマイクロコンピュータからなる演算制御部5のリセット端子RSにリセット信号を与えて初期状態にするためのものである。
而して本実施形態において、電池電源1が接続されると演算制御部5は予めプログラムしてある所定周期で低温期間と高温期間とを設定し、高温期間においてトランジタQ3 をオン、オフし、このトランジスタQ3 のオン、オフに同期して安定化回路7及びトランジスタQ2 により安定化された電圧が間欠的にガスセンサ2のヒータ4に印加され、ヒータ4による加熱が行なわれ、低温期間ではトランジスタQ3 をオフ状態にしてヒータ4による加熱を停止する。ここで、ガスセンサ2の温度を高温期間と低温期間とを交互に設定するために、演算制御部5は180sec毎に1sec間トランジスタQ3 をオン、オフ駆動させるPWM信号を出力しており、このトランジスタQ3 のオン、オフ期間中トランジスタQ2 を介してヒータ4に電池電源1の一部1aから0.9Vの電圧が間欠的に印加され、ガスセンサ2は略400℃に加熱される。そして通電されない179sec間を低温期間とする。
【0023】
そして演算制御部5は低温期間中1sec毎に0.6msec間トランジスタQ1 をオンする駆動信号を出力して負荷抵抗R0 とガスセンサの感ガス体との直列回路に電池電源1を接続して検出電圧を印加するようになっている。この検出電圧が印加されると、負荷抵抗R0 と感ガス体との直列回路には感ガス体の抵抗値変化に応じた電流が流れ、負荷抵抗R0 の両端には感ガス体の抵抗値変化に応じた電圧が発生することになる。この電圧をガス検出信号として演算制御部5は検出電圧印加と同期して取り込み、この電圧と予め設定してある基準電圧とを比較して対象ガスを検出し、入力した電圧が基準電圧を越えると、検出対象ガスが検出されたと判断して出力ポートO3 を”L”にして警報回路3を動作させとともに、出力ポートO4 を一定周期で”H””L”とし、発光ダイオードLED1 を点滅させる。
【0024】
図2は1sec毎に0.6ms検出電圧を印加する本実施形態装置にて長時間使用したガスセンサ2を、雰囲気温度が20℃で、雰囲気湿度が夫々20%Rhの場合と80%Rhの場合に設定した状態で、一酸化炭素ガスの濃度が0ppm(イ)、60ppm(ロ)、120ppm(ハ)、240ppm(ニ)、480ppm(ホ)における感ガス体の加熱時から抵抗値Rsの変化を測定した結果を示しており、各濃度に応じて抵抗値Rsが安定し、且つ夫々の濃度に応じて抵抗値Rsの差があり、特に0ppm(イ)、つまり空気のみの場合略抵抗値Rsは高い値に固定され、一酸化炭素ガスとを識別できることを示しており、このことは略180secの間に1回加熱するだけで、略180sec間一酸化炭素ガスの濃度が検出できることを示している。
【0025】
これに対して図3に示すように連続的に検知電圧をガスセンサ2に印加し、雰囲気温度が20℃で、雰囲気湿度が夫々20%Rhの場合と80%Rhの場合に設定した状態で、一酸化炭素ガスの濃度が0ppm(イ)、60ppm(ロ)、120ppm(ハ)、240ppm(ニ)、480ppm(ホ)における感ガス体の加熱時から抵抗値Rsを測定してみたところ、0ppm(イ)の場合も急激に低下して、60ppm(ロ)、120ppm(ハ)、240ppm(ニ)、480ppm(ホ)の場合と殆ど差が取れなくなり、一酸化炭素ガスの検知が不可能になっていることが分かる。
【0026】
かように本実施形態では、180秒間に1回(0.6sec)程度のヒータ4によっても充分に感度を得ることができ、そのため消費電力を大幅に低減できて容量の小さな電池電源1を用いても1年以上に亘り連続使用することが可能となる。
尚本実施形態ではヒータ4の通電を180sec毎に1sec間とした構成であったが、1800sec毎というような長周期で加熱を行なうことも可能で、この場合一層の消費電力の低減が図れる。
【0027】
また本実施形態では検出電圧の印加時間を0.6msecとしたが、印加時間は演算処理部5が負荷抵抗R0 の両端電圧の取り込みに要する時間を下限とし10msec程度を上限とする範囲であれば湿度依存性を小さくでき且つ長期に亘って安定した特性が得られ、その結果上記のように加熱周期を長くすることができるので、実施形態の印加周期及び印加時間に特に限定されない。
【0028】
また本実施形態では、検出対象ガスを一酸化炭素ガスとし低温期間中1sec毎に0.6msecの間検出電圧を印加してガス検出を行なうようにしているが、メタン、プロパン、アルコール等の可燃性がスを検出対象ガスとする場合には、高温期間中に検出電圧を印加してガス検出動作を行なうようにすれば良い。
また低温期間と、高温期間とにおいて夫々検出電圧を印加するタイミングを設定することにより、一酸化炭素ガスと、可燃性ガスとを検出するガス検出装置を実現することができる。
【0029】
【発明の効果】
請求項1の発明は、金属酸化物半導体を感ガス体として用いたガスセンサに直列に負荷抵抗を接続し、ガスセンサと負荷抵抗との直列回路に対して、ガス検出信号を取り込む期間だけ検出電圧を間欠的に印加してガス検出信号を出力させるので、金属酸化物半導体を感ガス体として用いたガスセンサの湿度依存性を小さくすることができ、そのためヒータによる加熱周期を長くまたその加熱時間を短くすることができるという効果がある。
【0030】
請求項2の発明は、請求項1の発明において、ガスセンサに設けたヒータの通電を制御することにおり高温期間と低温期間とを交互に設定し、高温期間若しくは低温期間又は両期間をガス検出信号によりガス検出を行なう検出期間としたので、ガスセンサの湿度依存性が小さく、ヒータの通電周期を長く通電時間を短くすることができて、電力消費を押えつつ、可燃性ガス又は一酸化炭素ガス或いは両者を検出することができるガス検出方法が実現できるという効果がある。
【0031】
請求項3の発明は、直流電源部と、金属酸化物半導体を感ガス体として用いたガスセンサと、該ガスセンサに直列に接続される負荷抵抗と、該ガスセンサと負荷抵抗の直列回路に対して、ガス検出信号を取り込む期間だけ直流電源部の電圧を検出電圧として間欠的に印加させる制御手段と、ガス検出信号を取り込みガス検出を行なうガス検出手段とから成るので、ガスセンサの湿度依存性を小さく、そのためヒータ加熱の周期を長く且つ加熱期間を短く設定することができ、そのため消費電力が小さくなり、電池電源による長期使用が可能となるという効果がある。
【0032】
請求項4の発明は、請求項3の発明において、ガスセンサに設けたヒータの通電を制御してガスセンサを高温とする高温期間と、低温とする低温期間とを交互に設定するヒータ制御手段を備え、ガス検出手段は高温期間又は低温期間又は両期間において、負荷抵抗の両端電圧から所定ガスを検出するので、請求項3の発明の効果に加えて、可燃性ガス又は一酸化炭素ガス或いは両者を検出することができるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施形態の回路図である。
【図2】同上による湿度依存性の特性図である。
【図3】同上と比較するための例の湿度依存性の特性図である。
【図4】(a)は金属酸化物半導体を用いたガスセンサの表面側からみた斜視図である。
(b)は同上センサの裏面側からみた斜視図である。
【図5】同上センサを用いて湿度依存性の測定結果を示すグラフ。
【図6】(a)は別の金属酸化物半導体を用いたガスセンサの断面図である。
(b)は同上センサの内部ヒータ及び電極構造の説明図である。
(c)同上の斜視図である。
【図7】同上センサを用いて湿度依存性の測定結果を示すグラフ。
【図8】同上センサを用いて別の湿度依存性の測定結果を示すグラフ。
【図9】同上センサを用いて他の湿度依存性の測定結果を示すグラフ。
【符号の説明】
1 電池電源
2 ガスセンサ
3 警報回路
4 ヒータ
5 演算制御部
7 安定化回路
1 乃至Q4 トランジスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas detection method and a gas detection device.
[0002]
[Prior art]
Many gas detection devices are provided using a gas sensor using a metal oxide semiconductor as a gas sensitive body. However, one of the problems of a gas sensor using a metal oxide semiconductor is affected by humidity in the atmosphere. This is because it has a so-called humidity dependency that the detection sensitivity deteriorates. In order to solve this problem, research from the aspect of sensor materials has been reported but has not been solved yet. In order to solve this humidity dependency, compensation from the circuit surface has also been attempted, but a solution that sufficiently solves the humidity dependency has not yet been provided.
[0003]
Another problem with a gas sensor using a metal oxide semiconductor as a gas sensitive body is that the resistance value of the gas sensor (gas sensitive body) changes due to long-term use, resulting in poor detection accuracy. In order to solve this problem, research from the aspect of sensor materials has been reported, but a gas sensor that has solved the problem has not yet been provided.
Furthermore, a gas sensor using a metal oxide semiconductor consumes a large amount of power because it needs to be heated by a heater. When a battery power source is used, it cannot be operated for a long time, and a gas sensor with low power consumption is desired. After all it has not yet reached practical use.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and provides a gas detection method and apparatus capable of solving the humidity dependency of the gas sensor, extending the heating cycle by the heater, and shortening the heating time. Objective.
[0005]
[Means for Solving the Problems]
The invention of claim 1 in order to achieve the above object, load resistor is connected in series with the gas sensor using a metal oxide semiconductor as a gas-sensitive member, for the series circuit of the gas sensor and the load resistance, gas detection signal The gas detection signal is output by intermittently applying the detection voltage only during the period when the gas is taken in.
[0006]
According to a second aspect of the present invention, in the first aspect of the invention, the high temperature period and the low temperature period are alternately set by controlling energization of the heater provided in the gas sensor, and the gas detection signal is set in the high temperature period or the low temperature period or both periods. To set the detection period for performing gas detection.
The invention according to claim 3, a DC power supply unit, and a gas sensor using a metal oxide semiconductor as a gas-sensitive member, and a load resistance connected in series with said gas sensor, for the series circuit of the load resistance and the gas sensor, It is characterized by comprising control means for intermittently applying the voltage of the DC power source as a detection voltage only during a period for taking in the gas detection signal, and gas detection means for taking in the gas detection signal and performing gas detection.
[0007]
According to a fourth aspect of the present invention, there is provided the heater control means according to the third aspect of the present invention, wherein the heater control means is configured to alternately set a high temperature period in which the gas sensor is heated to a high temperature and a low temperature period in which the gas sensor is cooled. The gas detection means detects the predetermined gas from the voltage across the load resistance during the high temperature period, the low temperature period, or both periods.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
First, in the present invention, the inventors measured the resistance value of a gas sensor using a metal oxide semiconductor as a gas sensitive body, for example, once every 1 sec, and applied the detection voltage for 1 sec, 10 msec, 0.1 msec. In this case, it was made by discovering that the humidity dependency can be improved as the application time of the detection voltage is shorter.
[0009]
That is, a gas sensor 2 as shown in FIG. 4 using a metal oxide semiconductor as a gas sensitive body is used, and a direct current voltage (a voltage is applied to the heater 4 attached to the gas sensor 2 so that the temperature of the gas sensor 2 is about 400 ° C. 5V) is applied to form a heating state, and in this heating state, for example, a load resistance of, for example, 10 KΩ is connected in series to the gas sensor 2, and the detection voltage (DC 5V) is continuously applied to the series circuit. When applied for 10 msec every 1 sec (b) and when applied for 0.1 msec every 1 sec (c), the atmospheric temperature is 20 ° C. and the atmospheric humidity is 20 ° C. in 1000 ppm of CH 4. When the resistance value Rs of the gas sensor 2 at% Rh, 40% Rh, 60% Rh, and 80% Rh was measured once every 1 sec, the result shown in FIG. 5 was obtained. From the results, it was found that the shorter the application time of the detection voltage, the lower the humidity dependency.
[0010]
The gas sensor 2 has the following structure. That is, the gold electrodes 11 and 11 for the heater 4 and the gold electrodes 12 and 12 for signals are provided on the back surface of the square alumina substrate 10 having a thickness of 0.3 mm and a side length of 2 mm as shown in FIG. A heater 4 made of ruthenium oxide is formed between the gold electrodes 11 and 11, and gold electrodes 13 and 13 connected to the gold electrodes 12 and 12 on the back surface by through holes are formed on the front surface as shown in FIG. A paste formed by mixing an equal amount of alumina, for example 1000 mesh as an aggregate, with SnO 2 added with an additive so as to extend between the gold electrodes 13 and 13, and adding terpineol to the paste. Then, it is applied and baked in air at 700 ° C. for 2 hours, for example, and the element piece 14 constituting the gas sensitive body made of SnO 2 which is a metal oxide semiconductor is formed on the same substrate between the gold electrodes 12 and 12 by this baking. Up one Forming. Further, after this formation, lead wires 15 are connected to the electrodes 22 and 12 on the back surface side of the alumina substrate 10, respectively, and the lead wires 15 constitute a heater connection terminal and an output terminal.
[0011]
Further, the gas sensor 2 having the structure shown in FIG. 6 was used, and the humidity dependency was verified in the same manner as described above.
The gas sensor 2 used in this case is a gas-sensitive gas made of a metal oxide semiconductor formed in a circular or elliptical shape having a longitudinal direction of 0.4 mm to 0.8 mm and a direction orthogonal to the longitudinal direction of 0.2 mm to 0.7 mm. An electrode coil that also serves as a heater 4 made of a noble metal wire is embedded in the body, and a detection electrode made of a noble metal wire is provided inside the electrode coil. The heater 4 was heated by applying a DC voltage of 0.9 V so that the temperature of the gas sensor 2 was about 400 ° C., and a load resistance of 10 KΩ was connected in series to the gas sensor 2. When the detection voltage (DC 6V) is continuously applied to the series circuit (b), when it is applied for 10 msec every 1 sec (b), and when 0.1 msec is applied every 1 sec (c) The resistance value Rs of the gas sensor 2 is measured once every 1 sec when the atmospheric temperature is 20 ° C. and the atmospheric humidity is 20% Rh, 40% Rh, 60% Rh, 80% Rh in 1000 ppm of CH 4. As a result, a result as shown in FIG. 7 was obtained. Also from this result, it was found that the humidity dependency is lower as the application time of the detection voltage is shorter.
[0012]
Next, the humidity dependence of the gas sensor 2 is measured when the temperature of the gas sensor 2 in FIG. 6 is alternately changed between a high temperature region and a low temperature region and carbon monoxide gas is detected from the output of the gas sensor 2 in the low temperature region. As a result, it became as shown in FIG. That is, a load resistance of 10 KΩ is connected in series to the gas sensor 2 in the same manner as described above, and the gas sensor 2 is heated by applying a DC voltage of 0.9 V to the heater 4 so as to be about 400 ° C. for 3 seconds every 10 seconds, The remaining 7 sec is not heated, and the detection voltage (6 V) applied for measuring the resistance value of the gas sensor 2 is set to 1 sec before the DC voltage of 0.9 V is applied to the heater 4. In the case of 1 sec (b), 10 msec (b), and 0.1 msec (c), the atmospheric temperature is 20 ° C. and the atmospheric humidity is 20% Rh, 40% Rh in 100 ppm CO. When the resistance value Rs of the gas sensor 2 was measured at 60% Rh and 80% Rh, the result shown in FIG. 8 was obtained. From this result, it was found that the humidity dependency was lower as the detection voltage application time was shorter as described above.
[0013]
Similarly to the above, the humidity of the gas sensor 2 when the temperature of the gas sensor 2 is alternately changed between a high temperature region and a low temperature region, and combustible gases such as methane, propane, and alcohol are detected from the output of the gas sensor 2 in the high temperature region. When the dependency was measured, it was as shown in FIG. In other words, a load resistance of 10 KΩ is connected in series to the gas sensor 2 in the same manner as described above, and the gas sensor 2 is heated by applying a DC voltage of 0.9 V to the heater 4 so as to reach about 400 ° C. for 3 seconds every 10 seconds. The remaining 7 sec is not heated, and the detection voltage (6 V) applied for measuring the resistance value of the gas sensor 2 is set to 1 sec before the end of applying the DC voltage of 0.9 V to the heater 4. When the application time is 1 sec (b), 10 msec (b), and 0.1 msec (c), the atmospheric temperature is 20 ° C. and the atmospheric humidity is 20% in 100 ppm of CH 4. When the resistance value Rs of the gas sensor 2 at Rh, 40% Rh, 60% Rh, and 80% Rh was measured, the result as shown in FIG. 9 was obtained. From this result, it was found that the humidity dependency was lower as the detection voltage application time was shorter as described above.
[0014]
Considering the humidity dependence based on the above results, there is a correlation between the application time of the detection voltage and the amount of adsorbed water adsorbed on the surface of the gas sensor 2, and when the detection voltage is applied, it is adsorbed on the surface of the gas sensor 2. It is considered that the adsorption form of the adsorbed water changes, the adsorbed water is more easily adsorbed, and more adsorbed water is adsorbed with time. Therefore, the shorter the application time of the detection voltage, the less the amount of adsorbed water, and thus the humidity dependency can be improved. Further, it has been found that when a large amount of adsorbed water is present on the surface of the gas sensor 7 for a long time, the added catalyst species and the metal oxide semiconductor itself are easily sintered, and long-term stability is impaired.
[0015]
And when applying a detection voltage to the gas sensor 2, it turned out that it is performed intermittently and the humidity dependence can be made small by making the application time into the minimum time required for signal processing.
Further, it was found that the humidity dependency can be improved, so that the gas sensor 2 can be heated in a long cycle and in a short time.
[0016]
The method and apparatus of the present invention made based on the above discovery and consideration will be described in detail by embodiments.
(Embodiment 1)
The apparatus according to the present embodiment uses carbon monoxide gas as a detection target gas. For example, as shown in FIG. 1, a battery power source 1 (for example, DC 6V) as a DC power source and a metal oxide semiconductor are used as a gas sensitive body. The gas sensor 2, the alarm circuit 3, and the control function for controlling the energization of the heater 4 provided in the gas sensor 2, the alarm circuit 3, and the light emitting diodes LED 1 and LED are controlled. 2 is an arithmetic control unit 5 comprising a microcomputer having a control function for controlling the display unit 2 and a voltage across the load resistor R 0 in series with the gas sensor 2 and having a gas detection function for performing gas detection using the voltage across the voltage sensor 2. As main components.
[0017]
The gas sensor 2 connects a gas sensitive body to a battery power source 1 which is a DC power source via a transistor Q 1 and a load resistor R 0, and an attached heater 4 is a part of a battery group 1 a (for example, a battery power source 1). DC1.5V) to have been connected through the Toranjita Q 2, the detected voltage from the battery power source 1 in series circuit with the load resistance R 0 and the gas-sensitive body 10KΩ for example, at the time of the oN transistor Q 1 is applied, also the transistor heater 4 is energized during on of Q 3, so that the gas-sensitive material is heated to a predetermined temperature by the conduction period is controlled.
[0018]
The arithmetic control unit 5 uses a control function to output a drive signal from the output port O 1 for directly driving the transistor Q 1 at a predetermined period based on a reference clock of a reference clock generation unit 6 made of an external ceramic oscillator or the like. And outputs a control signal for turning on and off the transistor Q 3 from the output port O 2 at the time of setting a high temperature period, which will be described later, at a predetermined cycle different from this drive signal, and also turns on the transistor Q 1 to turn it on. During this period, the voltage across the load resistor R 0 is taken in from the input port I 1 as a gas detection signal, and the target gas is detected by comparison with a reference value preset by the detection function. In the case of the present embodiment, since the detection target gas is carbon monoxide gas, the transistor Q 1 is turned on for 0.6 msec every 1 sec in the low temperature period, and the voltage as the gas detection signal taken in the on period is compared with the reference value To do.
[0019]
Furthermore, when the target gas is detected by the gas detection function, the output port O 3 is set to “L” by the alarm control function, and the energization path of the alarm circuit 3 is turned on through the internal circuit.
Here, the transistor Q 3 is inserted in series in a stabilization circuit 7 for supplying a stabilized voltage (0.9 V) to the heater 4 via the transistor Q 2, and is connected to the stabilization circuit 7 when turned on. connect the operational amplifier OP of the stabilizing circuit 7 to the battery power source 1, the operational amplifier OP is the Zener voltage of the Zener diode ZD and (2V) the variable resistor VR 1 in the divided voltage (0.9V) to the non-inverting terminal Further, the base current of the transistor Q 2 is controlled so that the voltage of the heater 4 is inputted to the inverting input terminal so that the difference becomes zero, and is applied to the heater 4 from the part 1 a of the battery power source 1 by this transistor Q 2. Set the voltage to 0.9V.
[0020]
Thus to the heater 4 is turned on of the transistor Q 3, off voltage of 0.9V in synchronism is applied to, so that the heating temperature is controlled to be about 400 ° C..
The alarm circuit 3 is provided with a piezoelectric buzzer BZ. The alarm circuit 3 is energized when the calculation control unit 5 detects the gas to be detected and sets the output port O 3 to “L”, and the transistor Q 4 and the piezoelectric element Q 5 The piezoelectric buzzer BZ constituting the oscillation circuit rings intermittently and emits an alarm sound. Further, the light emitting diodes LED 1 and LED 2 of the display unit are respectively connected to the output ports O 4 and O 5 of the calculation control 5, and the light emitting diode LED 1 is output when the calculation control unit 5 detects the gas to be detected. In response to the output of “H” and “L” in a predetermined cycle of the port O 4 , the flashing light is emitted and an alarm is displayed. The light-emitting diode LED 3 is turned on when the sensitivity adjustment switch SW is turned on by the arithmetic control unit 5 setting the output port O 3 to “L”, and displays the adjustment mode.
[0021]
The series circuit of the thermistor TH and the resistor R 1 is a circuit for inputting the connection point voltage to the calculation control unit 5 and performing temperature compensation of the calculation control unit 5, and the series of the resistor R 2 and the variable resistor VR 2. The circuit inputs the connection point voltage to the arithmetic control unit 5 as a reference voltage for gas detection. In the adjustment mode, the reference voltage can be variably set by the variable resistor VR 2 to adjust the sensitivity. ing.
[0022]
In the figure, reference numeral 8 denotes a power reset circuit for giving a reset signal to the reset terminal RS of the arithmetic control unit 5 composed of a microcomputer when the power is turned on to set the initial state.
Thus, in this embodiment, when the battery power source 1 is connected, the arithmetic control unit 5 sets a low temperature period and a high temperature period in a predetermined cycle programmed in advance, and turns on and off the transistor Q 3 in the high temperature period. The voltage stabilized by the stabilization circuit 7 and the transistor Q 2 is intermittently applied to the heater 4 of the gas sensor 2 in synchronism with the on / off of the transistor Q 3 , and heating by the heater 4 is performed. in stopping the heating by the heater 4 to the transistor Q 3 in the oFF state. Here, in order to set the temperature of the gas sensor 2 in alternating hot period and a cold period, the arithmetic and control unit 5 is outputted on the 1sec between transistors Q 3 each 180 sec, a PWM signal for turning off the drive, this During the on / off period of the transistor Q 3 , a voltage of 0.9 V is intermittently applied to the heater 4 from the part 1 a of the battery power source 1 through the transistor Q 2 , and the gas sensor 2 is heated to about 400 ° C. A period of 179 seconds when no power is supplied is a low temperature period.
[0023]
The arithmetic control unit 5 outputs a drive signal for turning on the transistor Q 1 every 1 sec during the low temperature period, and connects the battery power source 1 to the series circuit of the load resistor R 0 and the gas sensor of the gas sensor. A detection voltage is applied. When this detection voltage is applied, a current corresponding to a change in the resistance value of the gas sensing element flows through the series circuit of the load resistance R 0 and the gas sensing element, and the resistance of the gas sensing element is applied to both ends of the load resistance R 0. A voltage corresponding to the change in value is generated. The arithmetic control unit 5 takes this voltage as a gas detection signal in synchronism with the detection voltage application, compares this voltage with a preset reference voltage, detects the target gas, and the input voltage exceeds the reference voltage. Then, it is determined that the detection target gas has been detected, the output port O 3 is set to “L”, the alarm circuit 3 is operated, the output port O 4 is set to “H” and “L” at regular intervals, and the light emitting diode LED 1 Blinks.
[0024]
FIG. 2 shows a case in which the gas sensor 2 used for a long time in the apparatus of this embodiment that applies a detection voltage of 0.6 ms every 1 sec is used when the ambient temperature is 20 ° C. and the ambient humidity is 20% Rh and 80% Rh, respectively. Change of the resistance value Rs from the time of heating the gas sensitive body when the concentration of carbon monoxide gas is 0 ppm (b), 60 ppm (b), 120 ppm (c), 240 ppm (d), and 480 ppm (e) The resistance value Rs is stable according to each concentration, and there is a difference in the resistance value Rs according to each concentration, particularly 0 ppm (A), that is, substantially the resistance value when only air is used. Rs is fixed at a high value, indicating that it can be distinguished from carbon monoxide gas. This means that the carbon monoxide gas concentration can be detected for about 180 seconds only by heating once for about 180 seconds. The shows.
[0025]
On the other hand, as shown in FIG. 3, the detection voltage is continuously applied to the gas sensor 2, the atmospheric temperature is 20 ° C., and the atmospheric humidity is 20% Rh and 80% Rh, respectively. When the concentration of carbon monoxide gas was 0 ppm (b), 60 ppm (b), 120 ppm (c), 240 ppm (d), and 480 ppm (e), the resistance value Rs was measured from the time of heating. In the case of (b), it is drastically decreased and almost no difference can be obtained from the cases of 60 ppm (b), 120 ppm (c), 240 ppm (d), and 480 ppm (e), making it impossible to detect carbon monoxide gas. You can see that
[0026]
Thus, in the present embodiment, sufficient sensitivity can be obtained even by the heater 4 once every 180 seconds (0.6 sec), so that the battery power source 1 having a small capacity can be used because the power consumption can be greatly reduced. However, it can be used continuously for more than one year.
In the present embodiment, the heater 4 is energized every 180 sec for 1 sec. However, it is possible to heat the heater 4 at a long period of 1800 sec. In this case, the power consumption can be further reduced.
[0027]
In this embodiment, the detection voltage application time is 0.6 msec. However, the application time may be within a range in which the time required for the arithmetic processing unit 5 to capture the voltage across the load resistor R 0 is the lower limit and about 10 msec is the upper limit. For example, the humidity dependency can be reduced and a stable characteristic can be obtained over a long period of time. As a result, the heating cycle can be lengthened as described above, and thus the application cycle and the application time of the embodiment are not particularly limited.
[0028]
In this embodiment, the detection target gas is carbon monoxide gas, and the detection voltage is applied for 0.6 msec every 1 sec during the low temperature period to detect the gas. However, combustible gases such as methane, propane, and alcohol are used. When the gas is to be detected, the gas detection operation may be performed by applying a detection voltage during the high temperature period.
Moreover, the gas detection apparatus which detects carbon monoxide gas and a combustible gas is realizable by setting the timing which applies a detection voltage in a low temperature period and a high temperature period, respectively.
[0029]
【The invention's effect】
The invention of claim 1 is to connect the load resistor in series with the gas sensor using a metal oxide semiconductor as a gas-sensitive member, for the series circuit of the gas sensor and the load resistor, only the detection voltage period to incorporate gas detection signal Since the gas detection signal is output by applying intermittently, the humidity dependency of the gas sensor using the metal oxide semiconductor as the gas sensitive body can be reduced, so that the heating cycle by the heater is lengthened and the heating time is shortened. There is an effect that can be done.
[0030]
According to a second aspect of the present invention, in the first aspect of the invention, the energization of the heater provided in the gas sensor is controlled, and the high temperature period and the low temperature period are alternately set, and the high temperature period, the low temperature period, or both periods are detected. Since the detection period is to detect the gas by the signal, the humidity dependence of the gas sensor is small, the energization period of the heater can be lengthened, the energization time can be shortened, and the combustible gas or carbon monoxide gas can be suppressed while suppressing power consumption. Or there exists an effect that the gas detection method which can detect both is realizable.
[0031]
The invention according to claim 3, a DC power supply unit, and a gas sensor using a metal oxide semiconductor as a gas-sensitive member, and a load resistance connected in series with said gas sensor, for the series circuit of the load resistance and the gas sensor, Since the control means for intermittently applying the voltage of the DC power supply unit as the detection voltage only during the period for taking in the gas detection signal and the gas detection means for taking in the gas detection signal and performing gas detection, the humidity dependence of the gas sensor is reduced, Therefore, the heater heating cycle can be set long and the heating period can be set short, so that the power consumption is reduced and the battery power supply can be used for a long time.
[0032]
According to a fourth aspect of the present invention, there is provided the heater control means according to the third aspect of the present invention, wherein the heater control means is configured to alternately set a high temperature period in which the gas sensor is heated to a high temperature and a low temperature period in which the gas sensor is cooled. The gas detecting means detects the predetermined gas from the voltage across the load resistance during the high temperature period or the low temperature period or both periods. In addition to the effect of the invention of claim 3, the gas detection means detects flammable gas or carbon monoxide gas or both. There is an effect that it can be detected.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an embodiment of the present invention.
FIG. 2 is a characteristic diagram of humidity dependency according to the above.
FIG. 3 is a characteristic diagram of humidity dependency of an example for comparison with the above.
FIG. 4A is a perspective view seen from the surface side of a gas sensor using a metal oxide semiconductor.
(B) is the perspective view seen from the back side of the sensor same as the above.
FIG. 5 is a graph showing a measurement result of humidity dependence using the sensor.
FIG. 6A is a cross-sectional view of a gas sensor using another metal oxide semiconductor.
(B) is explanatory drawing of the internal heater and electrode structure of a sensor same as the above.
(C) It is a perspective view same as the above.
FIG. 7 is a graph showing measurement results of humidity dependence using the sensor.
FIG. 8 is a graph showing another humidity dependence measurement result using the sensor.
FIG. 9 is a graph showing another humidity dependence measurement result using the sensor.
[Explanation of symbols]
1 battery power supply 2 gas sensor 3 alarm circuit 4 heater 5 the calculation control unit 7 stabilizing circuit Q 1 to Q 4 transistor

Claims (4)

金属酸化物半導体を感ガス体として用いたガスセンサに直列に負荷抵抗を接続し、ガスセンサと負荷抵抗との直列回路に対して、ガス検出信号を取り込む期間だけ検出電圧を間欠的に印加してガス検出信号を出力させることを特徴とするガス検出方法。The metal oxide semiconductor load resistor is connected in series with the gas sensor used as the gas-sensitive material, for the series circuit of the gas sensor and the load resistor, only the detection voltage period to incorporate gas detection signal intermittently applied gas A gas detection method comprising outputting a detection signal . ガスセンサに設けたヒータの通電を制御することにより高温期間と低温期間とを交互に設定し、高温期間若しくは低温期間又は両期間にガス検出信号によりガス検出を行なう検出期間を設定するとしたことを特徴とする請求項1記載のガス検出方法。A high temperature period and a low temperature period are alternately set by controlling energization of a heater provided in the gas sensor, and a detection period in which gas detection is performed by a gas detection signal in the high temperature period or the low temperature period or both periods is set. The gas detection method according to claim 1. 直流電源部と、金属酸化物半導体を感ガス体として用いたガスセンサと、該ガスセンサに直列に接続される負荷抵抗と、該ガスセンサと負荷抵抗の直列回路に対して、ガス検出信号を取り込む期間だけ直流電源部の電圧を検出電圧として間欠的に印加させる制御手段と、前記ガス検出信号を取り込みガス検出を行なうガス検出手段とから成ることを特徴とするガス検出装置。A DC power supply unit, and a gas sensor using a metal oxide semiconductor as a gas-sensitive member, and a load resistance connected in series with said gas sensor, for the series circuit of the load resistance and the gas sensor, for a period of time taking the gas detection signal A gas detection apparatus comprising: control means for intermittently applying a voltage of a DC power supply as a detection voltage; and gas detection means for taking in the gas detection signal and detecting gas. ガスセンサに設けたヒータの通電を制御してガスセンサを高温とする高温期間と、低温とする低温期間とを交互に設定するヒータ制御手段を備え、ガス検出手段は高温期間又は低温期間又は両期間において、負荷抵抗の両端電圧から所定ガスを検出することを特徴とする請求項3記載のガス検出装置。Heater control means for controlling energization of a heater provided in the gas sensor to alternately set a high temperature period in which the gas sensor is at a high temperature and a low temperature period in which the gas sensor is at a low temperature is provided. The gas detection device according to claim 3, wherein a predetermined gas is detected from a voltage across the load resistance.
JP19938196A 1996-07-29 1996-07-29 Gas detection method and apparatus Expired - Lifetime JP3999831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19938196A JP3999831B2 (en) 1996-07-29 1996-07-29 Gas detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19938196A JP3999831B2 (en) 1996-07-29 1996-07-29 Gas detection method and apparatus

Publications (2)

Publication Number Publication Date
JPH1038832A JPH1038832A (en) 1998-02-13
JP3999831B2 true JP3999831B2 (en) 2007-10-31

Family

ID=16406826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19938196A Expired - Lifetime JP3999831B2 (en) 1996-07-29 1996-07-29 Gas detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3999831B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283943A (en) * 1999-03-30 2000-10-13 Matsushita Seiko Co Ltd Gas detector
WO2018003977A1 (en) * 2016-06-30 2018-01-04 株式会社キッツ Apparatus and method for pressure resistance test for valve, and hydrogen gas-detection unit

Also Published As

Publication number Publication date
JPH1038832A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
JP4871776B2 (en) Gas detection device and gas detection method
US8555701B1 (en) Enhanced metal oxide gas sensor
JP4758791B2 (en) Gas concentration measuring apparatus and gas concentration measuring method
JP3999831B2 (en) Gas detection method and apparatus
JP4528638B2 (en) Gas detector
JP4050838B2 (en) Gas detector
JP2008064491A (en) Gas detection device
JP2004069465A (en) Gas detection method and device using adsorption combustion gas sensor
JP3987650B2 (en) Gas detector
JPH11142356A (en) Semiconductor gas sensor
JP3897327B2 (en) Portable gas detector
JP2003185613A (en) Portable gas detector
JP2002082083A (en) Gas detector
JP3929846B2 (en) Intermittent drive type combustible gas detector
JP3779886B2 (en) Humidity detector
JP3999891B2 (en) Gas detection method and apparatus
JP2001194330A (en) Gas alarm unit and gas alarming method
JP3742587B2 (en) Gas detection method and apparatus
JP3936469B2 (en) Gas detection method and apparatus using semiconductor gas detection element
JPH07198644A (en) Gas sensor and method of detecting gas
JP5903353B2 (en) Gas detector
JP4408553B2 (en) Gas detection device and gas detection method
JP2019015703A (en) Oxidative gas sensor, gas alarm, controller, and control method
JPH10221182A (en) Method and device for measuring temperature using total area air/fuel ratio sensor
JP6920905B2 (en) Gas detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term