JP3999623B2 - Method for pretreatment of electroless plating material and method for manufacturing plating coated member - Google Patents

Method for pretreatment of electroless plating material and method for manufacturing plating coated member Download PDF

Info

Publication number
JP3999623B2
JP3999623B2 JP2002298063A JP2002298063A JP3999623B2 JP 3999623 B2 JP3999623 B2 JP 3999623B2 JP 2002298063 A JP2002298063 A JP 2002298063A JP 2002298063 A JP2002298063 A JP 2002298063A JP 3999623 B2 JP3999623 B2 JP 3999623B2
Authority
JP
Japan
Prior art keywords
plating
ozone
plating material
parts
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002298063A
Other languages
Japanese (ja)
Other versions
JP2004131804A (en
Inventor
基記 平岡
毅 別所
滋 鈴木
浩二 鈴木
誠三 藤井
比呂志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Kasei Co Ltd
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Toyota Motor Corp
Original Assignee
Kanto Kasei Co Ltd
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Kasei Co Ltd, Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd, Toyota Motor Corp filed Critical Kanto Kasei Co Ltd
Priority to JP2002298063A priority Critical patent/JP3999623B2/en
Publication of JP2004131804A publication Critical patent/JP2004131804A/en
Application granted granted Critical
Publication of JP3999623B2 publication Critical patent/JP3999623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂素材表面に無電解めっき処理を施してめっき被膜を形成する場合に、めっき被膜の付着性を向上させるために行う前処理方法と、その前処理方法が施されためっき素材を用いためっき被覆部材の製造方法に関する。
【0002】
【従来の技術】
樹脂素材に導電性や金属光沢を付与する方法として、無電解めっき処理が知られている。この無電解めっきとは、溶液中の金属イオンを化学的に還元析出させ、素材表面に金属被膜を形成する方法をいい、電力によって電解析出させる電気めっきと異なり樹脂などの絶縁体にも金属被膜を形成することができる。また金属被膜が形成された樹脂素材には電気めっきすることもでき、用途が拡大される。そのため、自動車部品、家電製品などの分野に用いられる樹脂素材に金属光沢を付与したり、導電性を付与したりする方法として、無電解めっき処理は広く用いられている。
【0003】
ところが、無電解めっき処理によって形成されためっき被膜は、被膜形成までに時間がかかったり、被膜の樹脂素材に対する付着性が十分でないという問題がある。そのため、先ず樹脂素材に対して化学的エッチング処理を行って表面を粗面化し、その後無電解めっき処理する工程が一般に行われている。
【0004】
例えば特開平01−092377号公報には、樹脂素材をオゾンガスで前処理し、その後無電解めっき処理する方法が開示されている。同公報によれば、オゾンガスによって樹脂素材の不飽和結合が開裂して低分子化し、表面に化学組成の異なる分子が混在することになって平滑性が失われ粗面化する。したがって、無電解めっきによって形成された被膜が粗面にしっかり入りこみ容易に剥離しなくなる、と記載されている。
【0005】
上記した従来の技術では、樹脂素材を粗面化し、いわゆる投錨効果によってめっき被膜の付着性を高めている。しかしながら粗面化する方法では、樹脂素材の表面平滑度が低くなってしまう。したがって意匠性の高い金属光沢を得るためには、めっき被膜を厚くしなければならず、工数が多大となるという不具合がある。
【0006】
また特開平08−092752号公報には、ポリオレフィンをめっき素材とし、エッチングによる粗面化後にオゾン水に接触させ、その後カチオン系界面活性剤含有溶液で処理する方法が記載されている。しかしエッチングによって粗面化する方法では、クロム酸、硫酸などの毒劇物を用いる必要があり、廃液処理などに問題がある。また樹脂素材の表面平滑度が低くなるという問題も解決することができない。
【0007】
【特許文献1】
特開平01−092377号
【特許文献2】
特開平08−092752号
【0008】
【発明が解決しようとする課題】
本発明はこのような事情に鑑みてなされたものであり、エッチング処理あるいはオゾンガス処理を不要として樹脂素材を粗面化することなく、付着性に優れためっき被膜を形成できるようにすることを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決する本発明の無電解めっき素材の前処理方法の特徴は、不飽和結合を有する樹脂からなるめっき素材をオゾンを含む第1溶液に接触させてオゾン処理素材とする第1処理工程と、イオン性界面活性剤及び非イオン性界面活性剤の少なくとも一方とアルカリ成分とを含む第2溶液をオゾン処理素材と接触させる第2処理工程と、を行う無電解めっき素材の前処理方法であって、めっき素材は、ジエンゴム成分を含まないか若しくは含まれるジエンゴム成分量が10質量%以下であり、シリコーン強化されたアクリルゴムを用いたグラフト共重合体を含有する樹脂からなることにある。
【0010】
めっき素材をオゾンを含む第1溶液に接触させる時間は、4〜20分であることが望ましい。また第1溶液は、オゾンを100ppm以上含むことが望ましい。
【0011】
また本発明のめっき被覆部材の製造方法の特徴は、本発明の前処理方法を施しためっき素材に、無電解めっき処理を施すことにある。さらに、電解めっき処理を施すことも好ましい。
【0012】
【発明の実施の形態】
本発明の無電解めっき素材の前処理方法では、めっき素材として、ジエンゴム成分を含まないか若しくは含まれるジエンゴム成分量が10質量%以下であり、シリコーン強化されたアクリルゴムを用いたグラフト共重合体を含有する樹脂からなるものを用いる。ジエンゴム成分量が10質量%を超える樹脂ではジエンゴム成分がオゾンにより劣化し、めっき素材の強度低下によってめっき被膜の付着強度が低下するからである。そのため十分な付着強度が発現するまでに、めっき後に室温にて数日の放置が必要となり、作業性に問題が生じる。なおジエンゴム成分量は、アセトン、クロロホルム溶媒分別によるオゾン分解法により算出できる。
【0013】
シリコーン強化されたアクリルゴムとは、シリコーンゴムとアクリルゴムの各々のポリマーセグメントが互いに縮合しあってネットワーク構造を形成している複合ゴム、一方のゴムの周りを他方のゴムが被覆しているコアシェルタイプなどの複合ゴムをいい、ポリアルキルアクリレートとポリオルガノシロキサンからなる複合アクリルゴムなどが例示される。
【0014】
このようなアクリルゴムを用いて、これにアクリロニトリルなどのシアン化ビニル単量体及び/又はスチレン,α−メチルスチレンなどの芳香族ビニル単量体をグラフト重合することにより、本発明にいうグラフト共重合体が得られる。なおグラフト重合には、必要に応じて他の単量体を含有させてもよい。
【0015】
また、本発明に用いるめっき素材は、上記のグラフト共重合体に加えて他の重合体を含有する樹脂組成物であることも好ましい。好ましくは、上記グラフト共重合体5〜80質量%と、他の重合体20〜95質量%(両者の合計量が 100質量%)からなる樹脂組成物とするのがよい。
【0016】
この際、用いる他の重合体としては、特に限定されないが、シアン化ビニル単量体を必須成分とし、これに芳香族ビニル単量体、マレイミド系単量体から選ばれる少なくとも1種の単量体を共重合した硬質重合体であることが好ましい。
【0017】
そして本発明の前処理方法では、不飽和結合を有する樹脂からなるめっき素材をオゾンを含む第1溶液に接触させる第1処理工程を行う。この第1処理工程では、第1溶液中のオゾンによる酸化によってめっき素材表面の不飽和結合が部分的に切断され、C-OH結合又はC=O結合が生成して活性化すると考えられる。
【0018】
第1処理工程は、めっき素材を第1溶液に接触させる。接触の方法としては、めっき素材表面に第1溶液をスプレーしてもよいし、めっき素材を第1溶液中に浸漬してもよい。浸漬によるめっき素材の第1溶液への接触は、スプレーによるめっき素材の第1溶液への接触に比べて第1溶液からオゾンが離脱し難いため好ましい。
【0019】
第1溶液中のオゾン濃度はめっき素材表面の活性化に大きく影響を及ぼし、 10ppm程度から長時間の処理にて活性化の効果が見られるが、100ppm以上とすればその活性化の効果が飛躍的に高まる。また濃度が低いと劣化の方が先行するので、オゾン濃度は高い方が好ましい。
【0020】
なお第1処理工程における処理温度は、原理的には高いほど反応速度が大きくなるが、温度が高くなるほど第1溶液中のオゾンの溶解度が低くなり、40℃を超える温度において第1溶液中のオゾン濃度を100ppm以上とするには、処理雰囲気を大気圧以上に加圧する必要があり、装置が大がかりなものとなる。したがって処理温度は、装置を大掛かりにしたくない場合には、室温程度で十分である。
【0021】
めっき素材をオゾンを含む第1溶液に接触させる時間は、4〜20分とするのが好ましい。4分未満では、オゾン濃度を100ppmとしてもオゾン処理した効果の発現が困難となり、20分を超えると樹脂素材の劣化が生じるようになる。
【0022】
第1溶液は極性溶媒を含むことが望ましい。極性溶媒を含むことで第1溶液中のオゾンの活性を高めることができ、第1処理工程における処理時間を短縮することが可能となる。この極性溶媒としては水が特に好ましいが、アルコール系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドン、ヘキサメチルホスホルアミドなどを単独であるいは水やアルコール系溶媒と混合して用いることもできる。
【0023】
本発明の無電解めっき素材の前処理方法では、オゾンを含む第1溶液で処理されたオゾン処理素材に対して、陰イオン性界面活性剤及び非イオン性界面活性剤の少なくとも一方とアルカリ成分とを含む第2溶液をめっき素材と接触させる第2処理工程を行う。
【0024】
第1処理工程により、めっき素材の表面に C=O及びC-OHから選ばれる少なくとも一方の官能基が存在していると考えられる。したがってこの第2処理工程では、図1(A),(B)に示すように、界面活性剤1は、表出する上記官能基にその疎水基が吸着すると考えられる。またアルカリ成分は、めっき素材の表面を分子レベルで水に可溶化する機能をもち、めっき素材表面の脆化層を除去して上記官能基をより多く表出させる。したがって、脆化層の除去により表出した新たな官能基にも界面活性剤1が吸着する。
【0025】
界面活性剤としては、 C=O及びC-OHからなる少なくとも一方の官能基に対して疎水基が吸着しやすいものが用いられ、陰イオン性界面活性剤及び非イオン性界面活性剤の少なくとも一方が用いられる。陽イオン性界面活性剤及び中性界面活性剤では、めっき被膜が形成できなかったり、効果の発現が困難となる。陰イオン性界面活性剤としては、ラウリル硫酸ナトリウム、ラウリル硫酸カリウム、ステアリル硫酸ナトリウム、ステアリル硫酸カリウムなどが例示される。また非イオン性界面活性剤としては、ポリオキシエチレンドデシルエーテルなどが例示される。
【0026】
アルカリ成分としては、めっき素材の表面を分子レベルで溶解して脆化層を除去できるものを用いることができ、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどを用いることができる。
【0027】
界面活性剤とアルカリ成分とを含む第2溶液の溶媒としては、極性溶媒を用いることが望ましく、水を代表的に用いることができるが、場合によってはアルコール系溶媒あるいは水−アルコール混合溶媒を用いてもよい。また第2溶液をオゾン処理素材と接触させるには、オゾン処理素材を第2溶液中に浸漬する方法、オゾン処理素材表面に第2溶液を塗布する方法、オゾン処理素材表面に第2溶液をスプレーする方法などで行うことができる。
【0028】
第2溶液中の界面活性剤の濃度は、0.01〜10g/Lの範囲とすることが好ましい。界面活性剤の濃度が0.01g/Lより低いとめっき被膜の付着性が低下し、10g/Lより高くなると、めっき素材表面に界面活性剤が会合状態となって余分な界面活性剤が不純物として残留するため、めっき被膜の付着性が低下するようになる。この場合には、前処理後にめっき素材を水洗して余分な界面活性剤を除去すればよい。
【0029】
また第2溶液中のアルカリ成分の濃度は、pH値で12以上が望ましい。pH値が12未満であっても効果は得られるが、表出する上記官能基が少ないために、所定膜厚だけめっき被膜を形成するための時間が長大となってしまう。
【0030】
第2溶液とめっき素材との接触時間は特に制限されないが、室温で1分以上とするのが好ましい。接触時間が短すぎると、官能基に吸着する界面活性剤量が不足してめっき被膜の付着性が低下する場合がある。しかし接触時間が長くなり過ぎると、 C=O及びC-OHから選ばれる少なくとも一方の官能基が表出した層まで溶解して無電解めっきが困難となる場合がある。1〜5分間程度で十分である。また温度は高い方が望ましく、温度が高いほど接触時間を短縮することが可能であるが、室温〜60℃程度で十分である。
【0031】
第2処理工程は、アルカリ成分のみを含む水溶液で処理した後に界面活性剤を吸着させてもよいが、界面活性剤を吸着させるまでの間に再び脆化層が形成されてしまう場合があるので、第2処理工程は本発明のように陰イオン性界面活性剤及び非イオン性界面活性剤の少なくとも一方とアルカリ成分とが共存する状態で行うことが望ましい。
【0032】
また第1処理工程の後に第2処理工程を行うのが好ましいが、場合によっては第1処理工程と第2処理工程を同時に行うことも可能である。この場合には、第1溶液と第2溶液の混合溶液を調製し、その混合溶液中にめっき素材を浸漬する、又は混合溶液をめっき素材表面にスプレーすることで行う。この場合にはオゾンとめっき素材表面との反応が律速となるので、処理時間は混合溶液中のオゾン濃度に応じて決められる。
【0033】
なお第2処理工程後、水洗してアルカリ成分を除去する工程を行ってもよい。界面活性剤は官能基に強固に吸着しているので、水洗する程度では除去されず吸着した状態が維持されることがわかっている。したがって、本発明によって前処理されためっき素材は、無電解めっき工程までに時間が経過しても効果が失われることがない。
【0034】
そして無電解めっき工程では、界面活性剤が吸着しためっき素材が触媒と接触される。すると、図1(C)に示すように、触媒2が上記官能基に吸着している界面活性剤1の親水基に吸着すると考えられる。
【0035】
そして触媒が十分に吸着しているめっき素材に対して無電解めっき処理を施すことにより、界面活性剤が官能基から外れるとともに金属が C-O基及び/又は C=O基と結合すると考えられ、付着性に優れためっき被膜を形成することができる。
【0036】
触媒としては、Pd2+など、従来の無電解めっき処理に用いられる触媒を用いることができる。触媒をめっき素材の表面に吸着させるには、触媒イオンが溶解している溶液を付着素材の表面に接触させればよく、上記した第2溶液の接触と同様に行うことができる。また接触時間、温度などの条件も、従来と同様でよい。
【0037】
また無電解めっき処理の条件、析出させる金属種なども制限されず、従来の無電解めっき処理と同様に行うことができる。
【0038】
無電解めっき処理工程後の樹脂素材に、さらに電解めっきを施す電解めっき処理工程を行うことが望ましい。これにより金属光沢を付与することができ、意匠性が格段に向上する。
【0039】
【実施例】
以下、試験例により本発明を具体的に説明する。
【0040】
(試験例1)
オクタメチルシクロテトラヘキサン98部,γ−メタクリロイルオキシプロピルジメトキシメチルシラン2部を混合してシロキサン系混合物 100部を得た。これにドデシルベンゼンスルホン酸ナトリウム0.56部を蒸留水に溶解した水溶液 300部を添加し、ホモミキサーにて9000回転/分で2分間撹拌した後、ホモジナイザーに 30MPaの圧力で1回通し、安定な予備混合オルガノシロキサンラテックスを得た。
【0041】
一方、試薬注入容器,冷却管,ジャケット加熱器及び撹拌装置を備えた反応器内に、ドデシルベンゼンスルホン酸10部と蒸留水90部とを注入し、10%のドデシルベンゼンスルホン酸水溶液を調製した。
【0042】
この水溶液を85℃に加熱した状態で、上記予備混合オルガノシロキサンラテックスを4時間かけて滴下し、滴下終了後1時間温度を維持した後冷却した。次いでこの反応物を苛性ソーダ水溶液で中和してラテックスを得た。得られたラテックスを 170℃で30分間乾燥して固形分を求めたところ、18.0%であった。
【0043】
試薬注入容器,冷却管,ジャケット加熱器及び撹拌装置を備えた反応器内に、上記で得られたポリオルガノシロキサンラテックス45.2部,ポリオキシエチレンアルキルフェニルエーテルサルフェート(「エマールNC−35」花王(株)製)0.18部を投入し、蒸留水 148.5部を添加混合した後、下記の混合物を添加した。
【0044】
ブチルアクリレート 42部
アリルメタクリレート 0.3部
1,3-ブチレングリコールジメタクリレート 0.1部
t−ブチルハイドロパーオキサイド 0.11部
この反応器内を窒素置換後、60℃まで昇温した。内部の液温が60℃になった時点で、硫酸第一鉄0.000075部,エチレンジアミン四酢酸二ナトリウム塩0.000225部及びロンガリット 0.2部を蒸留水10部に溶解させた水溶液を添加し、ラジカル重合を開始した。アクリレート成分の重合により、液温は78℃まで上昇した。1時間この状態を維持し、アクリレート成分の重合を完結させてポリオルガノシロキサンとブチルアクリレートゴムとの複合ゴムラテックスを得た。
【0045】
上記複合ゴムラテックスの液温が70℃まで低下した後、ロンガリット0.25部を蒸留水10部に溶解した水溶液を添加し、次いでアクリロニトリル 2.5部,スチレンモノマー 7.5部及びt−ブチルハイドロパーオキサイドが0.05部の混合液を2時間かけて滴下し重合した。滴下終了後、温度60℃の状態を1時間保持した後、硫酸第一鉄 0.001部,エチレンジアミン四酢酸二ナトリウム塩 0.003部,ロンガリット 0.2部及び「エマールNC−35」(花王(株)製)0.18部を蒸留水10部に溶解した水溶液を添加し、次いでアクリロニトリル10部,スチレンモノマー30部及びt−ブチルハイドロパーオキサイドが 0.2部の混合液を2時間かけて滴下し重合した。滴下終了後、温度60℃の状態を 0.5時間保持した後、キュメンハイドロパーオキサイド0.05部を添加し、さらに温度60℃の状態を 0.5時間保持した後冷却した。得られたグラフト共重合体ラテックスを、酢酸カルシウム水溶液で凝固させ、遠心分離機により脱液・洗浄を行い、これを乾燥してグラフト共重合体( A-1)の乾燥粉末を得た。
【0046】
アクリロニトリル 30部
スチレンモノマー 70部
アゾビスイソブチロニトリル 0.15部
t−ドデシルメルカプタン 0.40部
リン酸カルシウム 0.50部
蒸留水 150部
上記組成物を 100リットルのオートクレーブに仕込み、激しく撹拌した。系内分散を確認後、75℃に昇温し3時間かけて重合させた。その後 110℃まで昇温し30分間熟成させた。冷却後に脱水,洗浄,乾燥して粉末状の硬質共重合体を得た。
【0047】
上記グラフト共重合体( A-1)を30重量部、上記硬質共重合体を70部の割合で配合し、それらに、
抗酸化剤 0.2部
金属石鹸 0.2部
EBS 0.4部
シリコーンオイル 0.05部
を加え、ヘンシェルミキサーで5分間( 3000rpm)混合した後、シリンダー温度 230℃で押し出してペレット化した。このペレットを成形材料とし、スクリュー式射出成形機(シリンダー温度 230℃、金型温度 60℃)を用いて平板を成形し、これをめっき素材とした。
【0048】
このめっき素材を用い、150ppmのオゾンを含有するオゾン水溶液に室温で1〜30分間浸漬する第1処理工程を行って、オゾン処理素材を得た。浸漬時間を1分,2分,4分,8分,12分,20分,30分の7水準とし、それぞれのオゾン処理素材を作成した。
【0049】
次に、NaOHを50g/L溶解するとともに、ラウリル硫酸ナトリウムを1g/L溶解した混合水溶液を60℃に加熱し、そこへ各オゾン処理素材を2分間浸漬して陰イオン性界面活性剤(ラウリル硫酸ナトリウム)を吸着させた(第2処理工程)。
【0050】
界面活性剤が吸着した各オゾン処理素材を引き上げ、水洗・乾燥後、3N塩酸水溶液に塩化パラジウムを 0.1重量%溶解するとともに塩化錫を5重量%溶解し50℃に加熱された触媒溶液中に3分間浸漬し、次いでパラジウムを活性化するために、1N塩酸水溶液に3分間浸漬した。これにより触媒が吸着した各吸着素材を得た。
【0051】
その後、40℃に保温されたNi−P化学めっき浴中に各吸着素材を浸漬し、10分間Ni−Pめっき被膜を析出させた。析出したNi−Pめっき被膜の厚さは各々 0.5μmである。さらに硫酸銅系Cu電気めっき浴にて、各Ni−Pめっき被膜の表面に銅めっきを 100μm析出させた。
【0052】
めっき被膜の形成後、70℃で2時間乾燥させた後、得られためっき被膜にめっき素材に達する切り込みを1cm幅で入れ、引張り試験機にてめっき被膜の付着強度をそれぞれ測定した。結果を表1に示す。
【0053】
(試験例2)
試験例1と同様のめっき素材を用い、10〜200ppmのオゾンを含有するオゾン水溶液に室温で4分間浸漬する第1処理工程を行って、オゾン処理素材を得た。オゾン水溶液のオゾン濃度を 10ppm, 20ppm, 50ppm,100ppm,150ppm,200ppmの6水準とし、それぞれのオゾン処理素材を作成した。
【0054】
その後試験例1と同様にして前処理を行い、同様に触媒吸着と無電解めっき及び銅めっきを行って、めっき被膜の付着強度を測定した。結果を表2に示す。
【0055】
(試験例3)
固形分含有量が35%,平均粒子径0.28μmのポリブタジエンゴムラテックス50部(固形分)を反応釜に入れ、さらに
不均化ロジン酸カリウム 2.0部
ピロリン酸ソーダ 0.2部
硫酸第一鉄 0.01部
デキストローズ 0.35部
水(ラテックスからくるものも含む) 200部
を投入し、重合開始温度40℃にして、下記単量体混合物を 120分かけて滴下した後1時間保持することでグラフト重合を行った。
【0056】
スチレンモノマー 35部
アクリロニトリル 15部
クメンハイドロパーオキサイド 0.15部
得られた重合体ラテックスに抗酸化剤としてブチル化ヒドロキシトルエン2部,ジラウリルチオプロピオネート 0.5部を加え、5%硫酸水溶液で凝固させ、洗浄,乾燥して、グラフト共重合体( A-2)(ジエンゴム成分量15質量%)の乾燥粉末を得た。
【0057】
上記グラフト共重合体( A-2)を30重量部、試験例1と同様の硬質共重合体を70部の割合で配合し、それらに、
抗酸化剤 0.2部
金属石鹸 0.2部
EBS 0.4部
シリコーンオイル 0.05部
を加え、ヘンシェルミキサーで5分間( 3000rpm)混合した後、シリンダー温度 230℃で押し出してペレット化した。このペレットを成形材料とし、スクリュー式射出成形機(シリンダー温度 230℃、金型温度 60℃)を用いて平板を成形し、これをめっき素材とした。
【0058】
このめっき素材を用いたこと以外は試験例1と同様にして前処理を行い、同様に触媒吸着と無電解めっき及び銅めっきを行って、めっき被膜の付着強度を測定した。結果を表1に示す。
【0059】
(試験例4)
試験例3と同様のめっき素材を用いたこと以外は試験例2と同様にして前処理を行い、同様に触媒吸着と無電解めっき及び銅めっきを行って、めっき被膜の付着強度を測定した。結果を表2に示す。
【0060】
<評価>
【0061】
【表1】

Figure 0003999623
【0062】
【表2】
Figure 0003999623
【0063】
表1,2より、シリコーン強化されたアクリルゴムを使用したグラフト重合体を含有する樹脂をめっき素材とすることで、ジエンゴム成分濃が15質量%のABS樹脂に比べてめっき被膜の付着性が大きく向上していることがわかる。
【0064】
そしてシリコーン強化されたアクリルゴムを使用したグラフト重合体を含有する樹脂をめっき素材とした場合には、オゾン処理時間が2分以下と短いと、めっき被膜が形成されないか付着強度が小さく、20分を超えると樹脂自体の劣化によって付着強度が低下している。したがってオゾン処理時間は4〜20分とするのが好ましいことが明らかである。
【0065】
またシリコーン強化されたアクリルゴムを使用したグラフト重合体を含有する樹脂をめっき素材とした場合には、オゾン処理濃度が 50ppm以下では樹脂が活性化されないために付着強度が小さく、100ppm以上のオゾン濃度とするのが好ましいことが明らかである。
【0066】
【発明の効果】
すなわち本発明の無電解めっき素材の前処理方法によれば、付着強度に優れためっき被膜を容易に形成することができる。また樹脂素材表面を粗面化する必要がないので、高い金属光沢を有するめっき被膜を薄い膜厚で形成することができ、かつクロム酸などが不要となるので廃液処理も容易である。
【図面の簡単な説明】
【図1】本発明の推定される作用を示す説明図である。
【符号の説明】
1:界面活性剤 2:触媒[0001]
BACKGROUND OF THE INVENTION
The present invention provides a pretreatment method for improving the adhesion of a plating film and a plating material subjected to the pretreatment method when an electroless plating treatment is performed on a resin material surface to form a plating film. The present invention relates to a method for manufacturing the plated coating member used.
[0002]
[Prior art]
As a method for imparting conductivity or metallic luster to a resin material, electroless plating treatment is known. This electroless plating is a method in which metal ions in a solution are chemically reduced and deposited to form a metal film on the surface of the material. Unlike electroplating, which is electrolytically deposited by electric power, an insulator such as a resin is also metal. A film can be formed. In addition, the resin material on which the metal film is formed can be electroplated, and the application is expanded. For this reason, electroless plating is widely used as a method for imparting metallic luster or conductivity to resin materials used in fields such as automobile parts and home appliances.
[0003]
However, the plating film formed by the electroless plating process has a problem that it takes time until the film is formed or the adhesion of the film to the resin material is insufficient. For this reason, first, a chemical etching process is first performed on the resin material to roughen the surface, and then a process of electroless plating is generally performed.
[0004]
For example, Japanese Patent Laid-Open No. 01-092377 discloses a method in which a resin material is pretreated with ozone gas and then electroless plating is performed. According to the publication, the unsaturated bond of the resin material is cleaved by ozone gas to lower the molecular weight, and molecules having different chemical compositions are mixed on the surface, resulting in loss of smoothness and roughening. Therefore, it is described that the film formed by electroless plating firmly enters the rough surface and does not easily peel off.
[0005]
In the conventional technology described above, the resin material is roughened, and the adhesion of the plating film is enhanced by a so-called anchoring effect. However, in the roughening method, the surface smoothness of the resin material is lowered. Therefore, in order to obtain a metallic luster with a high designability, the plating film must be thickened, resulting in a problem that man-hours are increased.
[0006]
Japanese Patent Application Laid-Open No. 08-092752 describes a method in which polyolefin is used as a plating material, is roughened by etching, is contacted with ozone water, and is then treated with a cationic surfactant-containing solution. However, in the method of roughening by etching, it is necessary to use poisonous and deleterious substances such as chromic acid and sulfuric acid. Further, the problem that the surface smoothness of the resin material is low cannot be solved.
[0007]
[Patent Document 1]
JP 01-092377 [Patent Document 2]
JP 08-092752 [0008]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and it is an object of the present invention to form a plating film having excellent adhesion without roughening the resin material without requiring etching treatment or ozone gas treatment. And
[0009]
[Means for Solving the Problems]
The feature of the pretreatment method of the electroless plating material of the present invention that solves the above problems is that a plating material made of a resin having an unsaturated bond is brought into contact with a first solution containing ozone to form an ozone treatment material. And a second treatment step in which a second solution containing at least one of an ionic surfactant and a nonionic surfactant and an alkaline component is brought into contact with the ozone treatment material. In this case, the plating material does not contain a diene rubber component or the amount of the diene rubber component contained is 10% by mass or less, and is made of a resin containing a graft copolymer using a silicone-reinforced acrylic rubber.
[0010]
The time for contacting the plating material with the first solution containing ozone is desirably 4 to 20 minutes. The first solution preferably contains 100 ppm or more of ozone.
[0011]
A feature of the method for producing a plating-coated member of the present invention is that an electroless plating treatment is performed on a plating material subjected to the pretreatment method of the present invention. Furthermore, it is also preferable to perform an electrolytic plating process.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the pretreatment method of the electroless plating material of the present invention, a graft copolymer using a diene rubber component as a plating material or a diene rubber component content of 10% by mass or less, and a silicone-reinforced acrylic rubber. The one made of a resin containing is used. This is because the diene rubber component is deteriorated by ozone when the amount of the diene rubber component exceeds 10% by mass, and the adhesion strength of the plating film is lowered due to the strength reduction of the plating material. For this reason, it is necessary to leave at room temperature for several days after plating until sufficient adhesion strength is exhibited, resulting in a problem in workability. The amount of diene rubber component can be calculated by an ozonolysis method using acetone and chloroform solvent fractionation.
[0013]
Silicone-reinforced acrylic rubber is a composite rubber in which polymer segments of silicone rubber and acrylic rubber are condensed with each other to form a network structure, and a core shell in which one rubber is covered with the other rubber This refers to a composite rubber such as a type, such as a composite acrylic rubber composed of polyalkyl acrylate and polyorganosiloxane.
[0014]
By using such an acrylic rubber and graft-polymerizing a vinyl cyanide monomer such as acrylonitrile and / or an aromatic vinyl monomer such as styrene or α-methylstyrene, the graft copolymer referred to in the present invention is used. A polymer is obtained. The graft polymerization may contain other monomers as necessary.
[0015]
The plating material used in the present invention is preferably a resin composition containing another polymer in addition to the graft copolymer. Preferably, the resin composition is composed of 5 to 80% by mass of the graft copolymer and 20 to 95% by mass of another polymer (the total amount of both is 100% by mass).
[0016]
In this case, the other polymer to be used is not particularly limited, but a vinyl cyanide monomer is an essential component, and at least one monomer selected from an aromatic vinyl monomer and a maleimide monomer. It is preferable that it is a hard polymer which copolymerized the body.
[0017]
And in the pre-processing method of this invention, the 1st process process which makes the plating raw material which consists of resin which has an unsaturated bond contact with the 1st solution containing ozone is performed. In this first treatment step, it is considered that the unsaturated bond on the surface of the plating material is partially broken by oxidation with ozone in the first solution, and a C—OH bond or a C═O bond is generated and activated.
[0018]
In the first treatment step, the plating material is brought into contact with the first solution. As a contact method, the first solution may be sprayed on the surface of the plating material, or the plating material may be immersed in the first solution. The contact of the plating material with the first solution by dipping is preferable because ozone is less likely to separate from the first solution than the contact of the plating material with the first solution by spraying.
[0019]
The ozone concentration in the first solution has a significant effect on the activation of the plating material surface. The activation effect can be seen in the treatment for a long time from about 10ppm, but if it exceeds 100ppm, the activation effect jumps dramatically. Increase. Further, since the deterioration is preceded when the concentration is low, the ozone concentration is preferably high.
[0020]
In principle, the higher the treatment temperature in the first treatment step, the higher the reaction rate. However, the higher the temperature, the lower the solubility of ozone in the first solution, and the higher the temperature, the higher the temperature in the first solution. In order to increase the ozone concentration to 100 ppm or more, it is necessary to pressurize the treatment atmosphere to atmospheric pressure or higher, which makes the apparatus large. Accordingly, the treatment temperature is about room temperature when it is not desired to make the apparatus large.
[0021]
The time for contacting the plating material with the first solution containing ozone is preferably 4 to 20 minutes. If it is less than 4 minutes, the effect of ozone treatment becomes difficult even if the ozone concentration is 100 ppm, and if it exceeds 20 minutes, deterioration of the resin material occurs.
[0022]
The first solution desirably contains a polar solvent. By including the polar solvent, the activity of ozone in the first solution can be increased, and the processing time in the first processing step can be shortened. As this polar solvent, water is particularly preferable, but alcohol solvents, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, hexamethylphosphoramide and the like alone or water or alcohol It can also be used by mixing with a system solvent.
[0023]
In the pretreatment method of the electroless plating material of the present invention, at least one of an anionic surfactant and a nonionic surfactant, an alkaline component, and an ozone treatment material treated with a first solution containing ozone. A second treatment step is performed in which the second solution containing slag is brought into contact with the plating material.
[0024]
It is considered that at least one functional group selected from C═O and C—OH is present on the surface of the plating material by the first treatment step. Therefore, in the second treatment step, as shown in FIGS. 1A and 1B, the surfactant 1 is considered to adsorb the hydrophobic group to the functional group that is exposed. Further, the alkali component has a function of solubilizing the surface of the plating material in water at a molecular level, and removes the embrittlement layer on the surface of the plating material to express more functional groups. Therefore, the surfactant 1 is also adsorbed to the new functional group that is exposed by removing the embrittlement layer.
[0025]
As the surfactant, one having a hydrophobic group easily adsorbed to at least one functional group consisting of C═O and C—OH is used, and at least one of an anionic surfactant and a nonionic surfactant is used. Is used. With a cationic surfactant and a neutral surfactant, it is impossible to form a plating film or it is difficult to achieve the effect. Examples of the anionic surfactant include sodium lauryl sulfate, potassium lauryl sulfate, sodium stearyl sulfate, and potassium stearyl sulfate. Examples of the nonionic surfactant include polyoxyethylene dodecyl ether.
[0026]
As an alkali component, what can melt | dissolve the surface of a plating raw material in a molecular level and can remove an embrittlement layer can be used, and sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. can be used.
[0027]
As the solvent of the second solution containing the surfactant and the alkali component, it is desirable to use a polar solvent, and water can be typically used. However, depending on the case, an alcohol solvent or a water-alcohol mixed solvent is used. May be. In order to bring the second solution into contact with the ozone treatment material, a method of immersing the ozone treatment material in the second solution, a method of applying the second solution to the surface of the ozone treatment material, and spraying the second solution on the surface of the ozone treatment material It can be done by the method to do.
[0028]
The concentration of the surfactant in the second solution is preferably in the range of 0.01 to 10 g / L. When the concentration of the surfactant is lower than 0.01 g / L, the adhesion of the plating film is reduced. When the concentration is higher than 10 g / L, the surfactant is in an associated state on the surface of the plating material, and excess surfactant is used as an impurity. Since it remains, the adhesion of the plating film is lowered. In this case, after the pretreatment, the plating material may be washed with water to remove excess surfactant.
[0029]
Further, the concentration of the alkali component in the second solution is preferably 12 or more in terms of pH value. The effect can be obtained even if the pH value is less than 12, but the amount of the functional group to be exposed is small, so that the time for forming the plating film by a predetermined film thickness becomes long.
[0030]
Although the contact time in particular with a 2nd solution and a plating raw material is not restrict | limited, It is preferable to set it as 1 minute or more at room temperature. If the contact time is too short, the amount of the surfactant adsorbed on the functional group may be insufficient, and the adhesion of the plating film may be reduced. However, if the contact time is too long, the layer in which at least one functional group selected from C═O and C—OH is exposed may be dissolved and electroless plating may be difficult. About 1 to 5 minutes is sufficient. A higher temperature is desirable, and the higher the temperature, the shorter the contact time can be. However, room temperature to about 60 ° C. is sufficient.
[0031]
In the second treatment step, the surfactant may be adsorbed after treatment with an aqueous solution containing only an alkali component, but an embrittlement layer may be formed again until the surfactant is adsorbed. The second treatment step is desirably performed in a state where at least one of an anionic surfactant and a nonionic surfactant coexists with an alkali component as in the present invention.
[0032]
In addition, it is preferable to perform the second processing step after the first processing step, but in some cases, the first processing step and the second processing step can be performed simultaneously. In this case, a mixed solution of the first solution and the second solution is prepared, and the plating material is immersed in the mixed solution, or the mixed solution is sprayed on the surface of the plating material. In this case, since the reaction between ozone and the surface of the plating material is rate-limiting, the treatment time is determined according to the ozone concentration in the mixed solution.
[0033]
In addition, you may perform the process of washing with water and removing an alkaline component after a 2nd process process. Since the surfactant is strongly adsorbed to the functional group, it is known that the adsorbed state is maintained without being removed by washing with water. Accordingly, the plating material pretreated by the present invention does not lose its effect even if time elapses before the electroless plating step.
[0034]
In the electroless plating step, the plating material on which the surfactant is adsorbed is brought into contact with the catalyst. Then, as shown in FIG. 1C, it is considered that the catalyst 2 is adsorbed on the hydrophilic group of the surfactant 1 adsorbed on the functional group.
[0035]
By applying an electroless plating process to the plating material on which the catalyst is sufficiently adsorbed, it is considered that the surfactant is removed from the functional group and the metal is bonded to the CO group and / or C = O group. A plating film having excellent properties can be formed.
[0036]
As the catalyst, a catalyst used in conventional electroless plating treatment such as Pd 2+ can be used. In order to adsorb the catalyst on the surface of the plating material, the solution in which the catalyst ions are dissolved may be brought into contact with the surface of the material to be deposited, and can be performed in the same manner as the contact of the second solution. Moreover, conditions, such as contact time and temperature, may be the same as before.
[0037]
Moreover, the conditions of the electroless plating treatment, the metal species to be deposited, etc. are not limited, and can be performed in the same manner as the conventional electroless plating treatment.
[0038]
It is desirable to perform an electrolytic plating treatment step in which electrolytic plating is further performed on the resin material after the electroless plating treatment step. Thereby, metallic luster can be provided and design nature improves remarkably.
[0039]
【Example】
Hereinafter, the present invention will be specifically described with reference to test examples.
[0040]
(Test Example 1)
98 parts of octamethylcyclotetrahexane and 2 parts of γ-methacryloyloxypropyldimethoxymethylsilane were mixed to obtain 100 parts of a siloxane-based mixture. To this was added 300 parts of an aqueous solution of 0.56 parts of sodium dodecylbenzenesulfonate in distilled water, stirred for 2 minutes at 9000 rpm with a homomixer, and then passed once through the homogenizer at a pressure of 30 MPa. A mixed organosiloxane latex was obtained.
[0041]
On the other hand, 10 parts of dodecylbenzenesulfonic acid and 90 parts of distilled water were injected into a reactor equipped with a reagent injection container, a cooling tube, a jacket heater and a stirrer to prepare a 10% aqueous solution of dodecylbenzenesulfonic acid. .
[0042]
While the aqueous solution was heated to 85 ° C., the premixed organosiloxane latex was added dropwise over 4 hours. After completion of the addition, the temperature was maintained for 1 hour and then cooled. Next, this reaction product was neutralized with an aqueous caustic soda solution to obtain a latex. The obtained latex was dried at 170 ° C. for 30 minutes and the solid content was determined to be 18.0%.
[0043]
In a reactor equipped with a reagent injection container, a condenser, a jacket heater and a stirrer, 45.2 parts of the polyorganosiloxane latex obtained above, polyoxyethylene alkylphenyl ether sulfate (“Emar NC-35” Kao Corporation) ) Made) 0.18 part was added, 148.5 parts of distilled water was added and mixed, and then the following mixture was added.
[0044]
Butyl acrylate 42 parts Allyl methacrylate 0.3 parts
1,3-butylene glycol dimethacrylate 0.1 part t-butyl hydroperoxide 0.11 part The inside of the reactor was purged with nitrogen, and then heated to 60 ° C. When the internal liquid temperature reached 60 ° C, an aqueous solution in which 0.000075 parts of ferrous sulfate, 0.000225 parts of disodium ethylenediaminetetraacetate and 0.2 parts of Rongalite were dissolved in 10 parts of distilled water was added, and radical polymerization was started. did. Due to the polymerization of the acrylate component, the liquid temperature rose to 78 ° C. This state was maintained for 1 hour, and the polymerization of the acrylate component was completed to obtain a composite rubber latex of polyorganosiloxane and butyl acrylate rubber.
[0045]
After the liquid temperature of the composite rubber latex is lowered to 70 ° C., an aqueous solution in which 0.25 parts of Rongalite is dissolved in 10 parts of distilled water is added, and then 2.5 parts of acrylonitrile, 7.5 parts of styrene monomer and 0.05 parts of t-butyl hydroperoxide Was mixed dropwise over 2 hours to polymerize. After completion of dropping, the temperature was kept at 60 ° C. for 1 hour, and then 0.001 part of ferrous sulfate, 0.003 part of disodium ethylenediaminetetraacetic acid, 0.2 part of Rongalite and “Emar NC-35” (manufactured by Kao Corporation) 0.18 An aqueous solution in which 10 parts were dissolved in 10 parts of distilled water was added, and then a mixture of 10 parts of acrylonitrile, 30 parts of styrene monomer and 0.2 part of t-butyl hydroperoxide was added dropwise over 2 hours for polymerization. After completion of the dropping, the state at a temperature of 60 ° C. was maintained for 0.5 hours, 0.05 parts of cumene hydroperoxide was added, and the state at a temperature of 60 ° C. was maintained for 0.5 hours, followed by cooling. The obtained graft copolymer latex was coagulated with an aqueous solution of calcium acetate, liquid was removed and washed with a centrifuge, and this was dried to obtain a dry powder of the graft copolymer (A-1).
[0046]
Acrylonitrile 30 parts Styrene monomer 70 parts Azobisisobutyronitrile 0.15 parts t-dodecyl mercaptan 0.40 parts Calcium phosphate 0.50 parts Distilled water 150 parts The above composition was charged into a 100 liter autoclave and stirred vigorously. After confirming the dispersion in the system, the temperature was raised to 75 ° C. and polymerization was performed over 3 hours. Thereafter, the temperature was raised to 110 ° C. and aged for 30 minutes. After cooling, dehydration, washing and drying were performed to obtain a powdery hard copolymer.
[0047]
30 parts by weight of the graft copolymer (A-1) and 70 parts of the hard copolymer are blended,
Antioxidant 0.2 part metal soap 0.2 part EBS 0.4 part silicone oil 0.05 part was added, mixed for 5 minutes (3000 rpm) with a Henschel mixer, and then extruded at a cylinder temperature of 230 ° C. to be pelletized. Using this pellet as a molding material, a flat plate was formed using a screw type injection molding machine (cylinder temperature 230 ° C., mold temperature 60 ° C.), and this was used as a plating material.
[0048]
Using this plating material, an ozone treatment material was obtained by performing a first treatment step of immersing in an ozone aqueous solution containing 150 ppm of ozone at room temperature for 1 to 30 minutes. The immersion time was set to 7 levels of 1 minute, 2 minutes, 4 minutes, 8 minutes, 12 minutes, 20 minutes, and 30 minutes, and each ozone treatment material was created.
[0049]
Next, 50 g / L of NaOH is dissolved, and a mixed aqueous solution in which 1 g / L of sodium lauryl sulfate is dissolved is heated to 60 ° C., and each ozone-treated material is immersed therein for 2 minutes, and an anionic surfactant (lauryl) Sodium sulfate) was adsorbed (second treatment step).
[0050]
Each ozone-treated material adsorbed with the surfactant is pulled up, washed with water, dried, and dissolved in 0.1% by weight of palladium chloride in a 3N aqueous hydrochloric acid solution and 5% by weight of tin chloride in a catalyst solution heated to 50 ° C. Immersion for 1 minute, then immersion in 1N aqueous hydrochloric acid for 3 minutes to activate the palladium. Thereby, each adsorbing material on which the catalyst was adsorbed was obtained.
[0051]
Thereafter, each adsorbing material was immersed in a Ni-P chemical plating bath kept at 40 ° C. to deposit a Ni-P plating film for 10 minutes. The thickness of the deposited Ni—P plating film is 0.5 μm. Further, 100 μm of copper plating was deposited on the surface of each Ni—P plating film in a copper sulfate-based Cu electroplating bath.
[0052]
After forming the plating film, it was dried at 70 ° C. for 2 hours, and then a cut reaching the plating material was made into a 1 cm width in the obtained plating film, and the adhesion strength of the plating film was measured with a tensile tester. The results are shown in Table 1.
[0053]
(Test Example 2)
Using the same plating material as in Test Example 1, an ozone treatment material was obtained by performing a first treatment step of immersing in an ozone aqueous solution containing 10 to 200 ppm of ozone at room temperature for 4 minutes. The ozone concentration of the aqueous ozone solution was set to six levels of 10 ppm, 20 ppm, 50 ppm, 100 ppm, 150 ppm, and 200 ppm, and each ozone treatment material was created.
[0054]
Thereafter, pretreatment was performed in the same manner as in Test Example 1, and catalyst adsorption, electroless plating and copper plating were similarly performed, and the adhesion strength of the plating film was measured. The results are shown in Table 2.
[0055]
(Test Example 3)
50 parts of polybutadiene rubber latex with a solid content of 35% and an average particle size of 0.28 μm (solid content) is placed in a reaction kettle, and further disproportionated potassium rosin acid 2.0 parts sodium pyrophosphate 0.2 parts ferrous sulfate 0.01 parts Rose 0.35 parts Water (including those coming from latex) 200 parts was added, the polymerization initiation temperature was 40 ° C., the following monomer mixture was added dropwise over 120 minutes, and then graft polymerization was performed for 1 hour. .
[0056]
Styrene monomer 35 parts Acrylonitrile 15 parts Cumene hydroperoxide 0.15 parts The resulting polymer latex was added 2 parts butylated hydroxytoluene and 0.5 parts dilauryl thiopropionate as antioxidants and coagulated with 5% aqueous sulfuric acid. After washing and drying, a dry powder of the graft copolymer (A-2) (diene rubber component amount: 15% by mass) was obtained.
[0057]
30 parts by weight of the above graft copolymer (A-2) and 70 parts of the same hard copolymer as in Test Example 1,
Antioxidant 0.2 part metal soap 0.2 part EBS 0.4 part silicone oil 0.05 part was added, mixed for 5 minutes (3000 rpm) with a Henschel mixer, and then extruded at a cylinder temperature of 230 ° C. to be pelletized. Using this pellet as a molding material, a flat plate was formed using a screw type injection molding machine (cylinder temperature 230 ° C., mold temperature 60 ° C.), and this was used as a plating material.
[0058]
Pretreatment was performed in the same manner as in Test Example 1 except that this plating material was used. Similarly, catalyst adsorption, electroless plating, and copper plating were performed, and the adhesion strength of the plating film was measured. The results are shown in Table 1.
[0059]
(Test Example 4)
Pretreatment was performed in the same manner as in Test Example 2 except that the same plating material as in Test Example 3 was used. Similarly, catalyst adsorption, electroless plating and copper plating were performed, and the adhesion strength of the plating film was measured. The results are shown in Table 2.
[0060]
<Evaluation>
[0061]
[Table 1]
Figure 0003999623
[0062]
[Table 2]
Figure 0003999623
[0063]
According to Tables 1 and 2, by using a resin containing a graft polymer using acrylic rubber reinforced with silicone as the plating material, the adhesion of the plating film is greater than that of the ABS resin having a diene rubber component concentration of 15% by mass. It can be seen that it has improved.
[0064]
When the resin containing the graft polymer using silicone reinforced acrylic rubber is used as the plating material, if the ozone treatment time is as short as 2 minutes or less, the plating film is not formed or the adhesion strength is low, 20 minutes If it exceeds, the adhesion strength is reduced due to deterioration of the resin itself. Therefore, it is clear that the ozone treatment time is preferably 4 to 20 minutes.
[0065]
In addition, when a resin containing a graft polymer using silicone reinforced acrylic rubber is used as the plating material, the adhesion strength is small because the resin is not activated at an ozone treatment concentration of 50 ppm or less, and an ozone concentration of 100 ppm or more. It is clear that it is preferable that
[0066]
【The invention's effect】
That is, according to the pretreatment method of the electroless plating material of the present invention, a plating film having excellent adhesion strength can be easily formed. Further, since it is not necessary to roughen the surface of the resin material, a plating film having a high metallic luster can be formed with a thin film thickness, and chromic acid or the like is not required, so that waste liquid treatment is easy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an estimated action of the present invention.
[Explanation of symbols]
1: Surfactant 2: Catalyst

Claims (5)

不飽和結合を有する樹脂からなるめっき素材をオゾンを含む第1溶液に接触させてオゾン処理素材とする第1処理工程と、陰イオン性界面活性剤及び非イオン性界面活性剤の少なくとも一方とアルカリ成分とを含む第2溶液を該オゾン処理素材と接触させる第2処理工程と、を行う無電解めっき素材の前処理方法であって、
該めっき素材は、ジエンゴム成分を含まないか若しくは含まれるジエンゴム成分量が10質量%以下であり、シリコーン強化されたアクリルゴムを用いたグラフト共重合体を含有する樹脂からなることを特徴とする無電解めっき素材の前処理方法。
A first treatment step in which a plating material made of a resin having an unsaturated bond is brought into contact with a first solution containing ozone to form an ozone treatment material; at least one of an anionic surfactant and a nonionic surfactant; and an alkali A second treatment step of bringing a second solution containing a component into contact with the ozone treatment material, and a pretreatment method for an electroless plating material,
The plating material does not contain a diene rubber component or the amount of diene rubber component contained is 10% by mass or less, and is made of a resin containing a graft copolymer using silicone-reinforced acrylic rubber. Pretreatment method for electrolytic plating material.
前記めっき素材をオゾンを含む前記第1溶液に接触させる時間は4〜20分である請求項1に記載の無電解めっき素材の前処理方法。The pretreatment method for an electroless plating material according to claim 1, wherein the time for contacting the plating material with the first solution containing ozone is 4 to 20 minutes. 前記第1溶液はオゾンを100ppm以上含む請求項1又は請求項2に記載の無電解めっき素材の前処理方法。The pretreatment method for an electroless plating material according to claim 1 or 2, wherein the first solution contains ozone at 100 ppm or more. 請求項1〜3のいずれかに記載の前処理方法を施しためっき素材に、無電解めっき処理を施すことを特徴とするめっき被覆部材の製造方法。An electroless plating process is performed on the plating material that has been subjected to the pretreatment method according to claim 1. 前記無電解めっき処理が施された前記めっき素材に、さらに電解めっき処理を施す請求項4に記載のめっき被覆部材の製造方法。The method for manufacturing a plated coating member according to claim 4, wherein the plating material subjected to the electroless plating process is further subjected to an electrolytic plating process.
JP2002298063A 2002-10-10 2002-10-10 Method for pretreatment of electroless plating material and method for manufacturing plating coated member Expired - Fee Related JP3999623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298063A JP3999623B2 (en) 2002-10-10 2002-10-10 Method for pretreatment of electroless plating material and method for manufacturing plating coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298063A JP3999623B2 (en) 2002-10-10 2002-10-10 Method for pretreatment of electroless plating material and method for manufacturing plating coated member

Publications (2)

Publication Number Publication Date
JP2004131804A JP2004131804A (en) 2004-04-30
JP3999623B2 true JP3999623B2 (en) 2007-10-31

Family

ID=32287598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298063A Expired - Fee Related JP3999623B2 (en) 2002-10-10 2002-10-10 Method for pretreatment of electroless plating material and method for manufacturing plating coated member

Country Status (1)

Country Link
JP (1) JP3999623B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057166A (en) * 2004-08-23 2006-03-02 Toyota Motor Corp Method for forming wiring by plating
JP2006070319A (en) * 2004-09-01 2006-03-16 Toyota Motor Corp Resin plating method
JP5552269B2 (en) * 2009-07-02 2014-07-16 トヨタ自動車株式会社 Electroless plating method
JP4870804B2 (en) 2009-10-09 2012-02-08 トヨタ自動車株式会社 Ozone gas treatment method
JP5642432B2 (en) 2010-06-09 2014-12-17 トヨタ自動車株式会社 Electroless plating treatment material manufacturing method and ozone gas treatment device
WO2014017291A1 (en) * 2012-07-26 2014-01-30 学校法人 関東学院 Method for imparting electrical conductivity to silicone resin, and silicone resin provided with metallic coating film

Also Published As

Publication number Publication date
JP2004131804A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JPH01268896A (en) Electroplating apparatus
JP4135459B2 (en) Method for pretreatment of electroless plating material and method for manufacturing plating coated member
JPH04211192A (en) Method of pretreating surface for plating polyimide surface
JP3999623B2 (en) Method for pretreatment of electroless plating material and method for manufacturing plating coated member
JP4449246B2 (en) Pretreatment method of electroless plating material
Inagaki et al. Surface modification of polyimide film surface by silane coupling reactions for copper metallization
JP2006070319A (en) Resin plating method
JP3999624B2 (en) Method for pretreatment of electroless plating material and method for manufacturing plating coated member
Monteiro et al. Pretreatments of improve the adhesion of electrodeposits on aluminium
CN113584537A (en) Ultra-thin copper foil with resin layer and extremely low roughness and manufacturing method thereof
JP5552269B2 (en) Electroless plating method
JP5096273B2 (en) Electroless plating method
JP4365114B2 (en) Pretreatment method of electroless plating material, manufacturing method of plating coated member, and plated component
JP4372491B2 (en) Method for producing plating-coated member
Hara et al. Relationship between peroxide radical species on plasma-treated PFA surface and adhesion strength of PFA/electroless copper-plating film
Pearson et al. Improvements in the Pretreatment of Aluminium as a Substrate for Electrodeposition
JPS6241106B2 (en)
JP2019173112A (en) Metal plating method
US3702286A (en) Method of plating for vinyl chloride resins
JP3675347B2 (en) Electroless plating method
JP5373477B2 (en) Plating method
US4028064A (en) Beryllium copper plating process
JPS586800B2 (en) Insatsu Kairo Youdou Hakuo Hiyou Menshiyo Risuru Hohou
JPH1088104A (en) Surface treatment agent for lead frame or tab and surface treatment thereof
WO2006006735A1 (en) Plated resin molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R151 Written notification of patent or utility model registration

Ref document number: 3999623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees