JP3998200B2 - 燃料電池の冷却装置 - Google Patents

燃料電池の冷却装置 Download PDF

Info

Publication number
JP3998200B2
JP3998200B2 JP2003125964A JP2003125964A JP3998200B2 JP 3998200 B2 JP3998200 B2 JP 3998200B2 JP 2003125964 A JP2003125964 A JP 2003125964A JP 2003125964 A JP2003125964 A JP 2003125964A JP 3998200 B2 JP3998200 B2 JP 3998200B2
Authority
JP
Japan
Prior art keywords
storage container
gas
coolant
fuel cell
ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003125964A
Other languages
English (en)
Other versions
JP2004335154A (ja
Inventor
光晴 今関
晃生 山本
義郎 下山
貴嗣 小山
輝明 河崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003125964A priority Critical patent/JP3998200B2/ja
Priority to CA002464224A priority patent/CA2464224C/en
Priority to US10/826,016 priority patent/US7494730B2/en
Priority to EP04009014A priority patent/EP1482586B1/en
Publication of JP2004335154A publication Critical patent/JP2004335154A/ja
Application granted granted Critical
Publication of JP3998200B2 publication Critical patent/JP3998200B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池の冷却装置、さらに詳しくは燃料電池の冷却液中に混入する気体を分離して排気する燃料電池の冷却装置に関する。
【0002】
【従来の技術】
近年、電気自動車の動力源などとして注目されている固体高分子型の燃料電池は、常温でも発電することが可能であり、様々な用途に実用化されつつある。
【0003】
この固体高分子型の燃料電池は、一般に、固体高分子電解質を挟んで一方側にカソード電極を区画し、他方側にアノード電極を区画して形成される燃料電池セルを多数配列して構成され、カソード電極に供給される空気中の酸素と、アノード電極に供給される燃料ガスとの化学反応(以下、「発電反応」という)によって発電するシステムである。
しかし、このような発電反応は発熱反応であるため、燃料電池内を一定の温度に保って安定した運転を維持するために、燃料電池は、発生した熱を除去する冷却装置を必要とする。
【0004】
通常、燃料電池内においては、各燃料電池セル毎に、セパレータによって燃料ガス(燃料ガス)や酸化ガス(空気)と完全に分離された流路を設け、この流路と熱交換器の間に冷却液を循環流通させて燃料電池の冷却を行うシステムが採用されている。
【0005】
しかし、燃料電池を長期に亘って使用していると、前記のセパレータの周辺部をシールしているシール部材が劣化して、燃料ガスや酸化ガスが冷却液中に漏出する場合がある。そして、冷却液中に漏出した燃料ガス等の気体は、冷却性能の低下等の原因となるおそれがある。
【0006】
そこで、燃料電池に熱交換媒体を供給して熱交換を行わせる熱交換システムにおいて、熱交換手段および熱交換媒体流路の内の少なくとも1つ、例えば、ラジエタ(熱交換器)の最上部にあるラジエタキャップまたはリザーブタンクの上部等の冷却液より分離した気体が集まる箇所に燃料ガス検出手段を設け、この燃料ガス検出手段によって冷却液より分離した気体を検出し、冷却液中への燃料ガス等の気体の漏洩を検知した場合、警告を発するようにした技術が提案されている(特許文献1参照)。
【0007】
【特許文献1】
特開2001−250570号公報(請求項1、請求項5、請求項7および請求項8)
【0008】
【発明が解決しようとする課題】
しかしながら、従来の技術においては、冷却液中に燃料ガス等が漏洩した場合、所定の濃度に達する前に検知して警告を発し、その後更に濃度上昇があった場合、燃料電池の運転を停止する等の措置をとれるものの、人間が熱交換器や冷却液の循環流路等より溜まった気体を除去する等の人的整備に頼らざるを得ず、使い勝手の良いものではなかった。
【0009】
そこで本発明は、前記の問題に鑑みてなされたものであり、その目的とするところは、冷却液の循環流路に混入した燃料ガスを希釈して低濃度で排出すること、また、従来、熱交換器や冷却液の循環流路内に溜まるにまかせていた気体を、人的整備を必要とせずに随時換気して冷却液中の当該気体の濃度を低いレベルに維持させることが可能となり、燃料電池の冷却装置の冷却性能の低下を防止し、燃料電池による発電システムの使い勝手をより向上させることにある。
【0010】
【課題を解決するための手段】
前記の課題を解決するために、請求項1に記載の発明は、空気と燃料ガスの供給を受けて発電する燃料電池と熱交換器との間に冷却液を循環させる循環流路を設けた燃料電池の冷却装置であって、ガス抜き流路を介して前記循環流路に連絡され、かつ冷却液戻し流路を介して前記循環流路に連絡された前記循環流路の冷却液の一部を貯蔵する冷却液貯蔵容器を備え、前記燃料電池へ供給する空気または前記燃料電池から排出される空気を流通させる空気配管を備え、前記冷却液貯蔵容器は換気用配管を介して前記空気配管に連絡され、かつ前記冷却液貯蔵容器に滞留する燃料ガスを、前記換気用配管を流通する換気流によって系外へ排出するガス排出機構を備えることを特徴とする燃料電池の冷却装置を発明の構成とする。
【0011】
この燃料電池の冷却装置では、ガス排出機構によって、換気用配管を流通して冷却液貯蔵容器内に導入される換気流によって、冷却液貯蔵容器内に滞留する燃料ガスが換気される。
【0012】
また、請求項2に記載の発明は、前記請求項1に記載の燃料電池の冷却装置において、前記冷却液貯蔵容器内の燃料ガス濃度に応じて、前記換気流の流量を制御することを特徴とする。
【0013】
この燃料電池の冷却装置では、冷却液貯蔵容器内の燃料ガス濃度に応じて、ガス排出機構が、換気用配管を流通して冷却液貯蔵容器内に導入される換気流の流量を制御して冷却液貯蔵容器内に滞留する燃料ガスが換気される。
【0014】
また、請求項3に記載の発明は、前記請求項2に記載の燃料電池の冷却装置において、前記冷却液貯蔵容器内の燃料ガス濃度が所定の濃度以上に達したときは、前記冷却液貯蔵容器の換気量を増加させることを特徴とする。
【0015】
この燃料電池の冷却装置では、冷却液貯蔵容器内の燃料ガス濃度が所定の濃度以上となったとき、ガス排出機構が、換気用配管を流通して冷却液貯蔵容器内に導入される換気流による、冷却液貯蔵容器の換気量を増加させることによって、冷却液貯蔵容器内に滞留する燃料ガスが換気される。
【0016】
また、請求項4に記載の発明は、前記請求項3に記載の燃料電池の冷却装置において、前記空気配管内の圧力を増大させたことによって前記冷却液貯蔵容器内の燃料ガス濃度が所定の濃度まで低減されたときは、前記ガス排出機構によって前記冷却液貯蔵容器内のガスを排出させることを特徴とする。
【0017】
この燃料電池の冷却装置では、空気配管内の圧力を増大させることによって換気用配管を流通して冷却液貯蔵容器内に換気流が導入されて冷却液貯蔵容器内の燃料ガス濃度が所定の濃度まで低減されたときに、ガス排出機構によって冷却液貯蔵容器内のガスが排出される。
【0018】
また、請求項5に記載の発明は、前記請求項2に記載の燃料電池の冷却装置において、前記冷却液貯蔵容器内の燃料ガス濃度が所定の濃度以上に達したときは、前記ガス排出機構によって前記冷却液貯蔵容器内の圧力を低下させることで、前記換気流の流量を増加させることを特徴とする。
【0019】
この燃料電池の冷却装置では、冷却液貯蔵容器内の燃料ガス濃度が所定の濃度に達したときに、ガス排出機構によって冷却液貯蔵容器内の圧力を低下させることによって、換気用配管を流通する換気流の流量が増加し、冷却液貯蔵容器内のガスが換気される。
【0020】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照しながら詳細に説明する。
図1は、本発明の第1の実施形態に係る燃料電池の冷却装置の構成を示すブロック図である。
【0021】
本発明の第1の実施形態に係る燃料電池の冷却装置は、図1に示すとおり、燃料電池1に供給される冷却液を冷却するための熱交換器2と、燃料電池1と熱交換器2との間に冷却液を熱交換可能に循環させる循環流路3と、循環流路3の冷却液の一部を貯蔵する冷却液貯蔵容器4と、換気用配管5とを備える。
【0022】
燃料電池1は、例えば固体ポリマーイオン交換膜等からなる固体高分子電解質膜をアノード電極とカソード電極とで両側から挟み込んだ燃料電池セルをさらにセパレータで挟持し、複数積層して構成されている。アノード電極に燃料ガスとして水素ガスを供給し、カソード電極に酸化剤ガスとして酸素を含む空気を供給すると、アノード電極で触媒反応により発生した水素イオンが、固体高分子電解質膜を通過してカソード電極まで移動し、カソード電極の触媒によって酸素と電気化学反応を起こして発電し、水が生成される。この発電反応は発熱反応であり、その燃料電池の温度は反応効率を確保するために、セパレータにおけるアノード電極またはカソード電極の反対側の面に冷却水を循環することで70度前後に維持される。燃料電池の発電電力は、例えば、図示しない燃料電池自動車の走行用モータに供給され、自動車を駆動する。
【0023】
燃料電池1は、エアクリーナ6によって清浄化されてエアポンプ7によって供給空気配管8を通じて供給される空気と、燃料ガス供給配管9を通じて供給される燃料ガスとを発電反応させて発電を行う装置である。発電反応後、反応によって消費されなかった空気は排出空気配管10を通じて排気され、また、発電反応によって消費されなかった燃料ガスは燃料ガス排出配管11を通じて燃料電池1より排出される。また、燃料電池1は、冷却液の流入口12および流出口13を備える。なお、燃料ガスとしては、水素、炭化水素、炭化水素を改質した改質ガス、メタノール等が挙げられる。
【0024】
熱交換器2は、循環流路3によって燃料電池1より戻される冷却液が流入する流入口2aと、図示しない2次冷却媒体と冷却液との間で熱交換を行わせ、冷却液を冷却させる熱交換器本体2bと、熱交換によって冷却された冷却液が流出する流出口2cとを備える。この熱交換器2は、2次冷却媒体として、水またはその他の液体を用いる液冷方式でもよいし、2次冷却媒体として空気を用いる空冷方式でもよい。
また、この熱交換器2は、循環流路3を通じて流入口2aより流入する冷却液の一部を冷却液貯蔵容器4に流通させる冷却液−気体流出口2dを備える。
【0025】
循環流路3は、燃料電池1と熱交換器2との間に冷却液を熱交換可能に循環させる流路であり、流出路3aと、送液路3bと、戻し流路3cと、流入路3dと、調整流路3eとより構成される。
流出路3aは、燃料電池1の流出口13と冷却液ポンプ14との間を連絡して、燃料電池1より流出する冷却液が流通する流路である。
【0026】
送液路3bは、冷却液ポンプ14と熱交換器2の流入口12との間を連絡して、流出路3aを流通して冷却液ポンプ14に流入し、冷却液ポンプ14によって加圧された冷却液が流通する流路である。
戻し流路3cは、熱交換器2の流出口2cとサーモスタット15との間を連絡して、熱交換器2で冷却され、流出口2cより流出する冷却液がサーモスタット15に流通する流路である。
【0027】
流入路3dは、サーモスタット15と燃料電池1の流入口12との間を連絡して、サーモスタット15より流出した冷却液が燃料電池1の流入口12に流通する流路である。
【0028】
調整流路3eは、送液路3bとサーモスタット15との間を連絡し、サーモスタット15により、流入路3dを通って流入口12より燃料電池1内に供給される冷却液の温度が所定範囲となるように、送液路3bを流通する冷却液の一部を、戻し流路3cよりサーモスタット15内に流入する冷却液と合流させるための流路である。
【0029】
サーモスタット15は、熱交換器2より戻し流路3cを通って流入する冷却液C、冷却液貯蔵容器4より冷却液戻し流路17を通って流入する冷却液B、および調整流路3eを通って流入する冷却液Dのそれぞれの温度に応じて、各流路の流入経路を開閉して冷却液B、C、Dを混合し、流出口15aより流出して、流入路3dを通って流入口12より燃料電池1内に供給される冷却液の温度を所定の温度に保つ機能を備える装置である。
【0030】
また、冷却液貯蔵容器4は、気液分離室41と、その気液分離室41の上部に上方に向けて突設され、気液分離室41と開口部42aを介して連通している換気室42とを備え、さらにガス排出機構を備える。この冷却液貯蔵容器4は、循環流路3内の冷却液の一部を下部に滞留させて貯蔵するとともに、冷却液より分離する気体を上部に滞留させる気液分離器としての機能を備える。
【0031】
この冷却液貯蔵容器4において、気液分離室41は、熱交換器2と冷却液ガス抜き流路16を介して連絡されている。冷却液ガス抜き流路16の先端16aは、熱交換器2より流入する冷却液中に含まれる気体が気液分離して、気液分離室41の上部空間に浮上して滞留するように、気液分離室41に滞留している冷却液Aの液面よりも下部になるように配置される。
【0032】
また、気液分離室41は、循環流路3と冷却液戻し流路17を介して連絡されている。この冷却液戻し流路17の先端17aは、循環流路3内を流通する冷却液と冷却液貯蔵容器4内の冷却液とが連絡するように、冷却液貯蔵容器4の下部に滞留する冷却液Aの液面よりも下部になるように配置される。
【0033】
さらに、気液分離室41は、換気用配管5を介して排出空気配管10と連絡されている。また、冷却液貯蔵容器4の換気室42は、前記気液分離室41の上部に上方に向けて突設され、気液分離室41と開口部42aを介して連通し、さらに、排気口42bに換気用排気路18が連絡されている。
【0034】
そして、本実施形態に係る冷却装置においては、前記換気室42と、換気用配管5と、さらに換気用配管5との連絡点10aよりも下流側の排出空気配管10の途中に配設された調圧弁19と、前記排気口42bと、その排気口42bに連絡された換気用排気路18とによって、冷却液貯蔵容器内に滞留する燃料ガスを、燃料電池より排出される空気によって換気するガス排出機構が構成される。
【0035】
調圧弁19は、燃料電池1より排出され、排出空気配管10内を流通して排出される排出空気の排出空気圧を調整するものであり、この調圧弁19による排出空気圧の調整により冷却液貯蔵容器4内の換気が制御される。
【0036】
次に、この第1の実施形態に係る冷却装置における燃料電池1の冷却について説明するとともに、冷却液貯蔵容器4における燃料ガスの換気について説明する。
【0037】
この燃料電池の冷却装置において、空気は、エアクリーナ6によって清浄化された後、エアポンプ7によって供給空気配管8を通じて、燃料電池1内に供給される。この空気と、燃料ガス供給配管9を通じて供給される燃料ガスとが、発電反応して発電が行われる。発電反応後、発電反応によって消費されなかった空気は排出空気配管10を通じて燃料電池1より排気され、また、発電反応によって消費されなかった燃料ガスは燃料ガス排出配管11を通じて燃料電池1より排出される。
【0038】
このとき、発電反応に伴って発生する熱は、流入口12より燃料電池1内に供給され、燃料電池1内に設けられた流路を流通する冷却液によって吸収され、燃料電池1内の温度が所定の温度に保たれる。
【0039】
熱を吸収した冷却液は、流出口13より流出して、循環流路3の流出路3a、冷却液ポンプ14および送液路3bの順で流通し、冷却液ポンプ14によって加圧され、一部が調整流路3eを通ってサーモスタット15に冷却液Dとして流通するとともに、大部分は流入口2aより熱交換器2内に流入して、熱交換器本体2bにおいて2次冷却媒体と熱交換して冷却される。熱交換後、冷却液は、熱交換器2の流出口2cより流出して、戻し流路3cを流通してサーモスタット15に流入する。
【0040】
サーモスタット15においては、熱交換器2より戻し流路3cを通って流入する冷却液C、冷却液貯蔵容器4より冷却液戻し流路17を通って流入する冷却液B、および調整流路3eを通って流入する冷却液Dのそれぞれの温度に応じて、各流路の流入経路を開閉することによって、冷却液B、C、Dを混合して所定の温度に調整された冷却液が流出して、流入路3dを通って流入口12より燃料電池1内に供給される。燃料電池1内に供給された冷却液によって、燃料電池1内が冷却される。
【0041】
このように、本発明の冷却装置は、冷却液を燃料電池1と熱交換器2の間を循環流路3を介して循環流通させて、燃料電池1内を所定の温度に維持し、燃料電池1の安定した運転を図ることができる。
【0042】
また、冷却液貯蔵容器4においては、流入口2aより熱交換器2内に流入した冷却液の一部Eが、冷却液−気体流出口2dより冷却液ガス抜き流路16を通って、先端16aより冷却液貯蔵容器4の気液分離室41内に流入する。このとき、冷却液中に混入した気体が分離して冷却液Aの液面より浮上して、気液分離室41の上部空間に滞留するとともに、冷却液は、気液分離室41の下部に滞留する。気液分離室41の下部に滞留した冷却液Aは、冷却液戻し流路17を介してサーモスタット15に冷却液Bとして流入する。そして、冷却液貯蔵容器4は、排出空気配管10と連絡しているため、燃料電池1より排出空気配管10を通って排出される排出空気の圧力によって循環流路3の流入路3dを流通する冷却液に圧力を負荷する。冷却液貯蔵容器4の気相部内での冷却液の圧力は排出空気の圧力と実質上等しくなり、その後、循環流路3を流通することによって圧力損失が生じるが、その圧力損失は循環流路3内の冷却液の圧力によらずほぼ一定なため、燃料電池1へ供給される冷却液の圧力と燃料電池1より排出される排出空気との圧力差は、その圧力損失の分だけ冷却液の圧力が排出空気の圧力よりも低くなるようになっている。このように構成することによって、積層構造に構成された燃料電池1のスタック内での冷却液の流路と空気の流路との間の圧力差を所定の範囲に保っている。
【0043】
そして、冷却液貯蔵容器4と排出空気配管10とが換気用配管5を介して連絡されていることによって、冷却液貯蔵容器4は、冷却液より分離して冷却液貯蔵容器4の上部に滞留する気体と、排出空気配管10内を流通する排出空気との圧力差に応じて呼吸する。すなわち、冷却液貯蔵容器4の上部に滞留する気体によって形成される気相部の圧力PGと、排出空気配管10を通って燃料電池1より排出される排出空気の圧力PA(排出空気圧)との圧力差に応じて、冷却液貯蔵容器4内の気体と排出空気配管10内の空気とが、換気用配管5内を、冷却液貯蔵容器4または排出空気配管10のいずれかに向けて押戻され、または移動する。気体の圧力PGが排出空気の圧力PAよりも高いときは、図1中、冷却液貯蔵容器4より排出空気配管10に向けて(矢印Gで示す方向に)冷却液貯蔵容器4内の気体が換気用配管5を通じて流通して、排出空気配管10側より換気用配管5中に入り込む空気を排出空気配管10に押戻して冷却液貯蔵容器4内の気体が前記排出空気配管10内に排気され、冷却液貯蔵容器4内が換気される。また、気相部の圧力PGが排出空気の圧力PAよりも低いときは、排出空気配管10より冷却液貯蔵容器4に向けて(矢印Hで示す方向に)冷却液貯蔵容器4内の気体が押戻され、冷却液貯蔵容器4内に空気が流入し、この空気によって気相部の気体が希釈される。
【0044】
この冷却液貯蔵容器4における気相部の圧力と排出空気配管10における排出空気の圧力とは、呼吸することによってほぼ等しくなる(PA=PG)。また、前記のとおり、冷却液貯蔵容器4での冷却液の圧力は、気相部の圧力と実質的に等しくなり、その後、燃料電池1へ供給される前に冷却液が循環流路3を流通することによって圧力損失が生じるが、その圧力損失は循環流路3内の冷却液の圧力によらずほぼ一定なため、燃料電池1へ供給される冷却液の圧力と燃料電池1より排出される排出空気の圧力とは、その圧力損失の分だけ冷却液の圧力が供給空気の圧力よりも低くなるようになっている(PA>PL)。したがって、排出空気の圧力(PA)が燃料電池1の出力変動などによって上昇または低下すると、それに伴ってその圧力を冷却液貯蔵容器4の冷却液に伝えることでPA>PLの関係が保たれ、燃料電池1のスタック内での冷却液と空気の圧力バランスが保たれる。
【0045】
そして、本実施形態においては、前記冷却液貯蔵容器4の呼吸による換気に加えて、さらに前記ガス排出機構によって、冷却液貯蔵容器4内の換気を行うことができる。これは、調圧弁19により排出空気配管10内を流通して排気される排出空気の排出空気圧を調整してPA>PGとすることによって、排出空気配管10内の空気が換気用配管5を通って流入口41cより冷却液貯蔵容器4の気液分離室41内に流入する。気液分離室41内に流入した空気は、冷却液貯蔵容器4(気液分離室41)内に滞留する燃料ガスと混合して、換気室42を通って排気口42bより換気用排気路18に排気される気体の流れ(以下、「換気流」という)を形成させることができる。例えば、調圧弁19を絞り、排出空気配管10側の排出空気圧を高めれば、排出空気は、排出空気配管10より換気用配管8を通って冷却液貯蔵容器4の方向(図中、Gで示す方向)に流れ、換気流が形成され、これによって、冷却液貯蔵容器4内が換気される。このガス排出機構は、常時、作動させてもよいし、必要に応じて作動させるようにしてもよい。燃料電池1の運転時、このガス排出機構を常時作動させておけば、すなわち、調圧弁19を制御して常にPA>PGとなるように排出空気圧を制御すれば、冷却液貯蔵容器4内を換気して、冷却液より気液分離されて冷却液貯蔵容器4内に滞留する気体、特に燃料ガスを排気し、冷却液貯蔵容器4内の気相部における燃料ガス濃度を低く保つことができる。
【0046】
さらに、前記第1の実施形態において、冷却液貯蔵容器4内の気相部の燃料ガス濃度に応じて、前記ガス排出機構が冷却液貯蔵容器4よりのガス排出を制御するようにしてもよい。例えば、図1に示すとおり、冷却液貯蔵容器4の気液分離室41に燃料ガス濃度計21を設け、この燃料ガス濃度計21によって測定される燃料ガス濃度が所定濃度以上になったときに、調圧弁19を絞ってPG>PAとなるようにして前記換気流が形成されるようにしてもよい。これによって、冷却液貯蔵容器4内に形成される気相部の気体が、換気用配管5より気液分離室41に流入される空気と混合され、希釈された混合気体が、さらに換気室42を通って排気口42bより換気用排気路18を介して排気される。このとき、燃料ガス濃度計21は、下部に設けた遮蔽板21aによって、冷却液貯蔵容器4の揺動、傾斜等によって冷却液Aと接触しないように防護されるようにしてもよい。
【0047】
また、前記第1の実施形態において、冷却液貯蔵容器4内の気相部の燃料ガス濃度に応じて、前記ガス排出機構が前記換気流の流量を制御して、冷却液貯蔵容器4よりのガス排出量を増加させるようにしてもよい。例えば、図1に示すとおり、換気用排気路18に設けた開閉制御可能な弁22の開閉を制御することによって、換気用排気路18より排気される前記混合気体の排出量を増加させることができる。すなわち、冷却液貯蔵容器4内の気相部の燃料ガス濃度が所定濃度以上になったときに弁22を開放することによって、一時的にPGを低下させることでPA>PGの関係を作り出し、換気用配管5より導入される空気によって換気流を増大させて、気相部の燃料ガスを希釈し、ガス排出量を増加させる。これによって、冷却液貯蔵容器4の換気量を制御することができる。前記開閉可能な弁22としては、例えば、電磁弁、ダイヤフラム弁等を用いることができる。
【0048】
さらに、前記第1の実施形態において、冷却液貯蔵容器4内の燃料ガス濃度が所定の濃度以上に達したときは、前記排出空気配管10内の圧力を増大させることによって、冷却液貯蔵容器4内の圧力と排出空気配管10内の圧力との差により換気流を増大させることができ、換気流による冷却液貯蔵容器内の燃料ガスの希釈および排気口42bからの排出を増加させ、冷却液貯蔵容器4内の燃料ガス濃度を低減させることができる。このとき、排出空気配管10内の圧力は、前記調圧弁19を絞ることによって増大させることができる。
【0049】
さらに、前記第1の実施形態において、排出空気配管10内の圧力を増大させたことによって冷却液貯蔵容器4内の燃料ガス濃度が所定の濃度まで低減されたときは、ガス排出機構を開放することによって冷却液貯蔵容器4内のガスを排出させるようにしてもよい。このように構成することによって冷却液貯蔵容器の燃料ガス濃度が低減した後にガス排出機構によって冷却液貯蔵容器4内のガスを排出するので、確実に燃料ガス濃度が低減されたガスを系外へ排出することができる。冷却液貯蔵容器4内の燃料ガス濃度は、前記燃料ガス濃度計21を設けることによって検知することができる。また、ガス排出機構の開放は、図1に示すように、排気口42bに連絡された換気用排気路18に設けた開閉制御可能な弁22を開放して行うことができる。
【0050】
また、前記第1の実施形態において、前記冷却液貯蔵容器による換気能力が不足するときに、前記ガス排出機構を開放することによって、前記冷却液貯蔵容器内を換気するようにしてもよい。例えば、前記燃料ガス濃度計21によって測定される燃料ガス濃度が所定濃度以上になった後、所定時間経過しても燃料ガス濃度が依然として所定濃度以下にならないときには、前記ガス排出機構を開放することによって、冷却液貯蔵容器4内を換気するようにしてもよい。ガス排出機構の開放は、開閉可能な弁22等を開閉することによって行うことができる。
【0051】
具体的には、前記冷却液貯蔵容器4内の燃料ガス濃度が所定の濃度以上に達したときは、前記ガス排出機構によって前記冷却液貯蔵容器4内の圧力を低下させることで、前記換気流の流量を増加させるようにしてもよい。例えば、冷却液貯蔵容器4内の燃料ガス濃度が所定の濃度以上に達したときに、弁22を開放して冷却液貯蔵容器4内の圧力を低下させる。これによって、冷却液貯蔵容器4内の圧力と排出空気配管10内の圧力との差により換気流を増大させることができ、換気流による冷却液貯蔵容器内の燃料ガスの希釈および排気口42bからの排出を増加させ、冷却液貯蔵容器4内の燃料ガス濃度を低減させることができる。
【0052】
次に、図2に示す本発明の第2の実施形態に係る燃料電池の冷却装置について説明する。
図2は、本発明の第2の実施形態に係る燃料電池の冷却装置を示すブロック図である。
【0053】
図2に示す第2の実施形態に係る燃料電池の冷却装置は、燃料電池1と熱交換器2の間に冷却液を循環流通させるための循環流路3(3a、3b、3c、3d、3e)、熱交換器2より冷却液貯蔵容器4に冷却液の一部を供給する冷却液ガス抜き流路16、循環流路3内を流通する冷却液の温度を一定に保つためのサーモスタット15、冷却液貯蔵容器4より冷却液を循環流路3に戻すための冷却液戻し流路17、さらに気液分離室41、換気室42等を備える点で、前記第1の実施形態に係る冷却装置と同一の構成を有するものである。したがって、以下の第2の実施形態に係る冷却装置についての説明においては、前記第1の実施形態に係る冷却装置と異なる構成を中心に説明し、第1の実施形態と同一の構成に係るものについては、同一の符号を付して説明を省略する。
【0054】
この第2の実施形態に係る冷却装置においては、前記第1の実施形態と同様に、燃料電池1と熱交換器2の間を循環流路3を介して循環する冷却液の温度が、サーモスタット15によって一定に保たれる。
【0055】
さらに、本実施形態に係る冷却装置においては、前記換気室42と、換気用配管52と、さらに換気用配管52との連絡点8aよりも上流側の供給空気配管8の途中に配設されたエアポンプ7と、換気用配管52の途中に設けられた換気制御手段23と、前記排気口42bと、その排気口42bに連絡された換気用排気路18とによって、冷却液貯蔵容器内に滞留する燃料ガスを、燃料電池に供給する供給空気によって換気するガス排出機構が構成される。
【0056】
このガス排出機構によって、本実施形態においては、冷却液貯蔵容器4内の換気を行うことができる。これは、エアポンプ7により供給空気配管8内を流通して燃料電池1に供給される空気の一部が換気用配管52および換気流制御手段23を通って、流入口41cより冷却液貯蔵容器4の気液分離室41内に流入する。気液分離室41内に流入した空気は、冷却液貯蔵容器4(気液分離室41)内に滞留する燃料ガスと混合して、換気室42を通って排気口42bより換気用排気路18に排気される気体の流れ、すなわち、換気流を形成する。例えば、供給空気の一部は、供給空気配管8より換気用配管52を通って冷却液貯蔵容器4の方向(図中、Hで示す方向)に流れて、換気流が形成され、これによって、冷却液貯蔵容器4内が換気される。このガス排出機構は、常時、作動させてもよいし、必要に応じて作動させるようにしてもよい。燃料電池1の運転時、このガス排出機構を常時作動させておけば、冷却液貯蔵容器4内を換気して、冷却液より気液分離されて冷却液貯蔵容器4内に滞留する気体、特に燃料ガスを供給空気と混合することで希釈して排気することによって、冷却液貯蔵容器4内の気相部における燃料ガス濃度を低く保つことができる。
【0057】
また、この第2の実施形態に係る冷却装置において、換気用配管52の途中に換気流制御手段23を設けると、換気用配管5を流通する換気流の流量を制御するとともに、冷却液貯蔵容器4の揺動、傾斜等により、冷却液貯蔵容器4内に滞留される冷却液が換気用配管52を介して供給空気配管8内に漏出するのを防止するために有効である。例えば、燃料電池を搭載した自動車の走行時に、冷却液貯蔵容器が揺動、傾斜しても冷却液が供給空気配管内に漏出するのを防止して、安定して燃料電池による発電を継続するために有効である。換気流制御手段としては、例えば、逆止弁等を用いることができる。
【0058】
さらに、前記第2の実施形態において、冷却液貯蔵容器4内の気相部の燃料ガス濃度に応じて、前記ガス排出機構が冷却液貯蔵容器4よりのガス排出を制御するようにしてもよい。例えば、図2に示すとおり、冷却液貯蔵容器4の気相部に燃料ガス濃度計21を設け、この燃料ガス濃度計21によって測定される燃料ガス濃度が所定濃度以上になったときに、エアポンプ7による供給空気圧の増加、または換気流制御手段23による換気流の増加等によって前記換気流の流量が増加するようにしてもよい。これによって、冷却液貯蔵容器内に形成される気相部の気体が、より多く換気用配管5より気液分離室41に流入される空気と混合されて希釈され、生じる混合気体が、さらに換気室42を通って排気口42bより換気用排気路18から排気される。このとき、燃料ガス濃度計21は、下部に設けた遮蔽板21aによって、冷却液貯蔵容器4の揺動、傾斜等が生じても冷却液Aと接触しないように防護されていることが望ましい。
【0059】
また、前記第2の実施形態において、冷却液貯蔵容器4内の気相部の燃料ガス濃度に応じて、前記ガス排出機構が冷却液貯蔵容器4よりのガス排出量を増加させるようにしてもよい。例えば、図2に示すとおり、換気用排気路18に開閉制御可能な弁22を設け、この弁22の開閉を制御することによって、換気用排気路18より排気される前記混合気体、すなわち、ガス排出量を増加させることができる。すなわち、冷却液貯蔵容器4内の気相部の燃料ガス濃度が所定濃度以上になったときに弁22を開放することによって、一時的にPGを低下させることでPA>PGの関係を作り出し、換気用配管5より導入される空気によって換気流を増大させて、気相部の燃料ガスを希釈し、ガス排出量を増加させる。これによって、冷却液貯蔵容器4の換気量を制御することができる。前記開閉可能な弁としては、例えば、電磁弁、ダイヤフラム弁等を用いることができる。
【0060】
さらに、前記第2の実施形態において、冷却液貯蔵容器4内の燃料ガス濃度が所定の濃度以上に達したときは、前記供給空気配管8内の圧力を増大させることによって、冷却液貯蔵容器4内の圧力と供給空気配管8内の圧力との差により換気流の流量を増大させることができ、換気流による冷却液貯蔵容器内の燃料ガスの希釈および排気口42bからの排出を増加させ、冷却液貯蔵容器4内の燃料ガス濃度を低減させることができる。このとき、供給空気配管8内の圧力は、前記エアポンプ7によって増大させることができる。
【0061】
さらに、前記第2の実施形態において、供給空気配管8内の圧力を増大させたことによって冷却液貯蔵容器4内の燃料ガス濃度が所定の濃度まで低減されたときは、ガス排出機構によって冷却液貯蔵容器4内のガスを排出させるようにしてもよい。このように構成することによって冷却液貯蔵容器の燃料ガス濃度が低減した後にガス排出機構によって冷却液貯蔵容器4内のガスを排出するので、確実に燃料ガス濃度が低減されたガスを系外へ排出することができる。また、ガス排出機構によるガスの排出は、図2に示すように、排気口42bに連絡された換気用排気路18に設けた開閉制御可能な弁22を開放して行うことができる。
【0062】
具体的には、前記冷却液貯蔵容器4内の燃料ガス濃度が所定の濃度以上に達したときは、前記ガス排出機構によって前記冷却液貯蔵容器4内の圧力を低下させることで、前記換気流の流量を増加させるようにしてもよい。例えば、冷却液貯蔵容器4内の燃料ガス濃度が所定の濃度以上に達したときに、弁22を開放して冷却液貯蔵容器4内の圧力を低下させる。これによって、冷却液貯蔵容器4内の圧力と排出空気配管10内の圧力との差により換気流を増大させることができ、換気流による冷却液貯蔵容器内の燃料ガスの希釈および排気口42bからの排出量を増加させ、冷却液貯蔵容器4内の燃料ガス濃度を低減させることができる。
【0063】
次に、図3に示す本発明の第3の実施形態に係る燃料電池の冷却装置について説明する。
図3は、本発明の第3の実施形態に係る燃料電池の冷却装置の構成を示すブロック図である。
【0064】
図3に示す第3の実施形態に係る燃料電池の冷却装置は、燃料電池1と熱交換器2の間に冷却液を循環流通させるための循環流路3(3a、3b、3c、3d、3e)、熱交換器2より冷却液貯蔵容器4に冷却液の一部を供給する冷却液ガス抜き流路16、循環流路3内を流通する冷却液の温度を一定に保つためのサーモスタット15、冷却液貯蔵容器4より冷却液を循環流路3に戻すための冷却液戻し流路17、さらに気液分離室41、換気室42等を備える点で、前記第1の実施形態に係る冷却装置と同一の構成を有するものである。したがって、以下の第3の実施形態に係る冷却装置についての説明においては、前記第1の実施形態に係る冷却装置と異なる構成を中心に説明し、第1の実施形態と同一の構成に係るものについては、同一の符号を付して説明を省略する。
【0065】
この第3の実施形態に係る冷却装置においては、前記第1の実施形態と同様に、燃料電池1と熱交換器2の間を循環流路3を介して循環される冷却液の温度が、サーモスタット15によって一定に保たれる。
【0066】
このとき、冷却液貯蔵容器4の気液分離室41と供給空気配管8とを換気用配管52を介して連絡させることによって、冷却液貯蔵容器4は、冷却液より分離して気液分離室41の上部および換気室42内に形成される気相部と、供給空気配管8内を流通する空気との圧力差に応じて呼吸する。すなわち、冷却液貯蔵容器4の上部(気液分離室41および換気室42)に滞留する気体によって形成される気相部の圧力PGと、供給空気配管8を通って燃料電池1に供給される空気の圧力PA(供給空気圧)との圧力差に応じて、冷却液貯蔵容器4内の気体と供給空気配管8内の空気とが換気用配管5内を、冷却液貯蔵容器4または供給空気配管8のいずれかに向けて押戻され、または移動する。気体の圧力PGが空気の圧力PAよりも高いときは、図3中、冷却液貯蔵容器4より供給空気配管8に向けて(矢印Gで示す方向に)冷却液貯蔵容器4内の気体が換気用配管5を通じて流通して、供給空気配管8側より換気用配管5中に入り込む空気を供給空気配管8に押戻して冷却液貯蔵容器4内の気体が前記供給空気配管6内に排気される。また、気体の圧力PGが空気の圧力PAよりも低いときは、供給空気配管8より冷却液貯蔵容器4に向けて(矢印Gと逆の方向:図3中、矢印Hで示す方向に)冷却液貯蔵容器4内の気体が押戻され、空気が冷却液貯蔵容器4内に流入して、気相部の気体が希釈される。これにより、冷却液貯蔵容器4内の気相部が換気される。また、供給空気配管8内に排気された気体(例えば、燃料ガス)は、燃料電池1に供給される空気と混合して、前記燃料電池1のカソード電極の触媒で触媒反応する。
【0067】
そして、本実施形態に係る冷却装置においては、前記換気室42と、換気用配管52と、さらに換気用配管52との連絡点8aよりも上流側の供給空気配管8の途中に配設されたエアポンプ7と、前記排気口42bと、その排気口42bに連絡された換気用排気路18と、換気用排気路18の途中に設けられたオリフィス24とによって、冷却液貯蔵容器内に滞留する燃料ガスを、燃料電池に供給する供給空気によって換気するガス排出機構が構成される。オリフィス24は、換気流制御手段として、換気用排気路18の通気断面積を絞るものである。このオリフィス24によって、換気用排気路18を流通して排気される混合気体の流量を制御し、前記換気流による冷却液貯蔵容器4内の換気を安定的に維持することができる。すなわち、冷却液貯蔵容器4内の換気に充分な換気流量を維持するとともに、過剰な換気流を防止することができる。
【0068】
このガス排出機構によって、本実施形態においては、前記冷却液貯蔵容器4の呼吸による換気に加えて、さらにガス排出機構により冷却液貯蔵容器4内の換気を行うことができる。これは、エアポンプ7により供給空気配管8内を流通して燃料電池1に供給される空気の供給空気圧を調整し、PA>PGとすることによって、供給空気配管8内の空気が換気用配管52を通って流入口41cより冷却液貯蔵容器4の気液分離室41内に流入する。気液分離室41内に流入した空気は、冷却液貯蔵容器4(気液分離室41)内に滞留する燃料ガスと混合して、換気室42を通って排気口42bより換気用排気路18に排気される気体の流れ(以下、「換気流」という)を形成することができる。例えば、エアポンプ7により、供給空気配管8側の供給空気圧を高め、PA>PGとなった場合には、供給空気は、供給空気配管8より換気用配管52を通って冷却液貯蔵容器4の方向(図中、Hで示す方向)に流れて換気流が形成され、これによって、冷却液貯蔵容器4内が換気される。このガス排出機構は、常時、作動させてもよいし、必要に応じて作動させるようにしてもよい。燃料電池1の運転時、このガス排出機構を常時作動させておけば、すなわち、エアポンプ7を制御して常にPA>PGとなるように供給空気圧を制御すれば、冷却液貯蔵容器4内を換気して、冷却液より気液分離されて冷却液貯蔵容器4内に滞留する気体、特に燃料ガスを排気して、冷却液貯蔵容器4内の気相部における燃料ガス濃度を低く保つことができる。
【0069】
また、この第3の実施形態に係る冷却装置において、冷却液貯蔵容器4内の気相部の燃料ガス濃度に応じて、前記ガス排出機構が冷却液貯蔵容器4よりのガス排出を制御するようにしてもよい。例えば、図3に示すとおり、気液分離室41に燃料ガス濃度計21を設け、この燃料ガス濃度計21によって測定される燃料ガス濃度が所定濃度以上になったときに、エアポンプ7による供給空気圧を増加させPA>PGとなるように制御して前記換気流が形成されるようにしてもよい。これによって、冷却液貯蔵容器内に形成される気相部の気体が、換気用配管5より気液分離室41に流入される空気と混合されて希釈する。そして、混合気体は、換気室42を通って排気口42bより換気用排気路18から排気される。このとき、燃料ガス濃度計21は、下部に設けた遮蔽板21aによって、冷却液貯蔵容器4の揺動、傾斜等の動作が生じても冷却液Aと接触しないように防護されていることが望ましい。
【0070】
さらに、前記第3の実施形態において、冷却液貯蔵容器4内の燃料ガス濃度が所定の濃度以上に達したときは、前記供給空気配管8内の圧力を増大させることによって、冷却液貯蔵容器4内の圧力と供給空気配管8内の圧力との差により換気流を増大させることができ、換気流による冷却液貯蔵容器内の燃料ガスの希釈および排気口42bからの排出を増加させ、冷却液貯蔵容器4内の燃料ガス濃度を低減させることができる。このとき、供給空気配管8内の圧力は、前記エアポンプ7によって増大させることができる。
【0071】
【実施例】
次に、前記第3の実施形態と同じ構成を備える冷却装置を有し、燃料ガスとして水素を用いる燃料電池を自動車に搭載して、冷却液貯蔵容器4の換気について実験した結果を図4に示す。
【0072】
図4は、自動車に搭載された燃料電池における冷却装置において、自動車の実走行時の冷却液貯蔵容器内の水素濃度の推移を示すものである。この冷却装置を備える燃料電池1を定常運転させているとき、燃料電池自動車の走行モータの要求電力に応じて燃料電池の要求出力が変動する。この燃料電池の要求出力によって燃料電池へ供給する供給空気の圧力を変動させるため、図4中、細線で示す通り、冷却液貯蔵容器内の圧力は自然と変動する。ここで、図4中、点線は第3の実施形態におけるガス排出機構を持たないときの冷却液貯蔵容器内の水素濃度を示し、太線は第3の実施形態におけるガス排出機構を設けたときの冷却液貯蔵容器内の水素濃度を示す。この実験では、一定流量の水素が冷却液に混入してくると想定している。
【0073】
この冷却装置において、冷却液貯蔵容器4の気相部42内の水素濃度は、冷却液貯蔵容器内の圧力変動に伴って冷却液中の気体と供給空気とが気相部42で混合され、供給空気とともに燃料電池のカソード電極に供給されているので、冷却液に混入している水素の濃度は管理目標濃度を超えることがない。しかしながら、燃料電池の出力変動が少なく、(例えば一定速度で燃料電池自動車の運転を続けているときなど)燃料電池への供給空気の圧力変動が行われていない、または供給空気の圧力変動が行われていてもその変動幅が小さいときなどは、図4中点線で示すとおり、気相部における水素濃度が高まっている。ここで、第3の実施形態においては、供給空気の圧力変動による換気に加えて、オリフィスによって常時所定流量の換気がされているので、冷却液中に混入した水素は供給空気によって希釈排出され、冷却液貯蔵容器の水素濃度(太線)は相対的にガス排出機構を持たないときの水素濃度(点線)よりも低い濃度に推移している。
【0074】
以上の図4に示す結果より、本発明の冷却装置によれば、燃料電池の各部より冷却液中に混入される気体、特に燃料ガスを冷却液貯蔵容器内で気液分離して排気し、冷却液貯蔵容器内の燃料ガスを供給空気(または排出空気)によって希釈し系外へ排出できる。
【0075】
【発明の効果】
以上のとおり、本発明の請求項1に記載の燃料電池の冷却装置によれば、冷却液の循環流路に混入した燃料ガスを、燃料電池へ供給される空気または燃料電池から排出される空気によって希釈して低濃度で系外へ排出することができるので、燃料電池の冷却装置の冷却性能の低下を防止することができる。また、従来、熱交換器や冷却液の循環流路内に溜まるにまかせていた気体を、人的整備を必要とせずに、新たな装置を付加することなく簡単な構成で随時排気することができるので、燃料ガスの漏洩による警告や機関停止の必要頻度を低減できるため燃料電池発電システムの使い勝手をより向上できる。
【0076】
また、少なくとも1本の換気用配管を配設するだけで、冷却液貯蔵容器を呼吸させながら換気することが可能となり、軽量かつ低コストな構成で冷却液中に漏出する気体を随時排気することができる。特に、極間差圧(燃料ガス、空気、冷却液間の圧力差)が生じると燃料電池のセパレータやシール構造などに過負荷がかかるため、燃料ガス、冷却液ともに供給圧力を低く保つか、燃料ガスと冷却液の供給圧力差を少なく制御する必要があるが、本発明は、その場合にも充分適用可能である。
【0077】
また、本来、燃料電池システムの有する燃料ガス供給・排出圧力が変動する性質を利用し、冷却液貯蔵容器等を呼吸させながら冷却液中に漏出する気体を換気して排気することが可能となるため、変動ガス圧供給手段を軽量化してコストを削減できる。また、冷却液貯蔵容器等に必要充分な換気を供給しながらも過剰な換気を供給することがなく、必要最適量の換気を供給でき無駄な電力消費を回避できる。
【0078】
また、請求項2に記載の燃料電池の冷却装置によれば、冷却液貯蔵容器内の燃料ガス濃度に応じて換気流の流量を制御できるので、必要十分な量の換気流の流量を冷却液貯蔵容器内に導入することができ、冷却液貯蔵容器内の燃料ガス濃度を低濃度に抑えることができる。
【0079】
また、請求項3に記載の燃料電池の冷却装置によれば、冷却液貯蔵容器内のガス濃度が所定の濃度以上になったときは空気配管内の圧力を増大させるので、冷却液貯蔵容器内の圧力と空気配管内の圧力との差により換気流を増大させることができ、冷却液貯蔵容器内のガス濃度を低減させることができる。
【0080】
また、請求項4に記載の燃料電池の冷却装置によれば、冷却液貯蔵容器内の燃料ガス濃度が低減した後にガス排出機構によって冷却液貯蔵容器内のガスを排出するので、確実に燃料ガス濃度が低減されたガスを系外へ排出することができる。
【0081】
また、請求項5に記載の燃料電池の冷却装置によれば、冷却液貯蔵容器内の燃料ガス濃度が所定の濃度以上になったときは冷却液貯蔵容器内の圧力を低下させるので、冷却液貯蔵容器内の圧力と空気配管内の圧力との差により換気流を増大させることができ、冷却液貯蔵容器内のガス濃度を低減させることができるとともに、換気流によって燃料ガス濃度が低減されたガスを系外へ排出することができる。
【0082】
また、本発明の冷却装置を備える燃料電池を搭載した自動車においては、供給空気配管における供給空気圧の変動に起因して燃料電池出力電圧、カソードガス(空気)供給用エアポンプの消費電力が変化しても、燃料電池に接続された駆動機器への出力電流を適切に制御することで常時所望の駆動出力を供給することが可能となる。そのため、自動車のドライバビリティが向上する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る燃料電池の冷却装置の構成を示すブロック図である。
【図2】本発明の第2の実施形態に係る燃料電池の冷却装置の構成を示すブロック図である。
【図3】本発明の第3の実施形態に係る燃料電池の冷却装置の構成を示すブロック図である。
【図4】本発明の第3の実施形態に係る燃料電池の冷却装置による冷却液貯蔵容器内の換気について実験した結果を示す図である。
【符号の説明】
1 燃料電池
2 熱交換器
3 循環流路
3a 流出路
3b 送液路
3c 戻し流路
3d 流入路
3e 調整流路
4 冷却液貯蔵容器
5、52 換気用配管
8 供給空気配管
9 燃料ガス供給配管
10 空気排出配管
16 冷却液ガス抜き流路
17 冷却液戻し流路
19 調圧弁
41 気液分離室
42 換気室

Claims (5)

  1. 空気と燃料ガスの供給を受けて発電する燃料電池と熱交換器との間に冷却液を循環させる循環流路を設けた燃料電池の冷却装置であって、
    ガス抜き流路を介して前記循環流路に連絡され、かつ冷却液戻し流路を介して前記循環流路に連絡された前記循環流路の冷却液の一部を貯蔵する冷却液貯蔵容器を備え、
    前記燃料電池へ供給する空気または前記燃料電池から排出される空気を流通させる空気配管を備え、
    前記冷却液貯蔵容器は換気用配管を介して前記空気配管に連絡され、かつ前記冷却液貯蔵容器に滞留する燃料ガスを、前記換気用配管を流通する換気流によって系外へ排出するガス排出機構を備えることを特徴とする燃料電池の冷却装置。
  2. 前記冷却液貯蔵容器内の燃料ガス濃度に応じて、前記換気流の流量を制御することを特徴とする請求項1に記載の燃料電池の冷却装置。
  3. 前記冷却液貯蔵容器内の燃料ガス濃度が所定の濃度以上に達したときは、前記冷却液貯蔵容器の換気量を増加させることを特徴とする請求項2に記載の燃料電池の冷却装置。
  4. 前記空気配管内の圧力を増大させたことによって前記冷却液貯蔵容器内の燃料ガス濃度が所定の濃度まで低減されたときは、前記ガス排出機構によって前記冷却液貯蔵容器内のガスを排出させることを特徴とする請求項3に記載の燃料電池の冷却装置。
  5. 前記冷却液貯蔵容器内の燃料ガス濃度が所定の濃度以上に達したときは、前記ガス排出機構によって前記冷却液貯蔵容器内の圧力を低下させることで、前記換気流の流量を増加させることを特徴とする請求項2に記載の燃料電池の冷却装置。
JP2003125964A 2003-04-15 2003-04-30 燃料電池の冷却装置 Expired - Fee Related JP3998200B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003125964A JP3998200B2 (ja) 2003-04-30 2003-04-30 燃料電池の冷却装置
CA002464224A CA2464224C (en) 2003-04-15 2004-04-14 Apparatus for cooling fuel cell
US10/826,016 US7494730B2 (en) 2003-04-15 2004-04-15 Apparatus for cooling fuel cell
EP04009014A EP1482586B1 (en) 2003-04-15 2004-04-15 Apparatus for cooling a fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125964A JP3998200B2 (ja) 2003-04-30 2003-04-30 燃料電池の冷却装置

Publications (2)

Publication Number Publication Date
JP2004335154A JP2004335154A (ja) 2004-11-25
JP3998200B2 true JP3998200B2 (ja) 2007-10-24

Family

ID=33503066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125964A Expired - Fee Related JP3998200B2 (ja) 2003-04-15 2003-04-30 燃料電池の冷却装置

Country Status (1)

Country Link
JP (1) JP3998200B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012960A (ja) * 2008-07-04 2010-01-21 Suzuki Motor Corp 車両用燃料電池の冷却装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025929B2 (ja) * 2005-09-02 2012-09-12 株式会社荏原製作所 燃料電池発電システム
CN101346843A (zh) * 2005-12-30 2009-01-14 Utc电力公司 对燃料电池冷却剂中气体吸入的响应
WO2007129602A1 (ja) * 2006-05-02 2007-11-15 Nissan Motor Co., Ltd. 燃料電池システム
JP7188064B2 (ja) * 2018-12-26 2022-12-13 株式会社デンソー 熱マネジメントシステム
JP7264029B2 (ja) 2019-12-06 2023-04-25 トヨタ自動車株式会社 燃料電池の冷却システム
NO20220699A1 (en) * 2022-06-20 2023-12-21 Corvus Energy AS Safety and Support System for a Fuel Cell Module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012960A (ja) * 2008-07-04 2010-01-21 Suzuki Motor Corp 車両用燃料電池の冷却装置

Also Published As

Publication number Publication date
JP2004335154A (ja) 2004-11-25

Similar Documents

Publication Publication Date Title
KR20200056230A (ko) 연료전지용 가습기
KR20210011204A (ko) 연료전지용 가습기
US6916571B2 (en) PEM fuel cell passive water management
GB2376793A (en) Fuel cell and method of operating same
US7494730B2 (en) Apparatus for cooling fuel cell
JP3998200B2 (ja) 燃料電池の冷却装置
US7413822B2 (en) Device and method to release the overpressure of a fuel cell coolant tank
JP4283584B2 (ja) 燃料電池の冷却装置
JP2004183713A (ja) 燃料電池用開閉弁
JP2002280029A (ja) 燃料電池システムの制御装置
JP4555601B2 (ja) 燃料電池の冷却装置
JP2019091529A (ja) 燃料電池システム
JP2006207654A (ja) 燃料供給システム
CN113497247A (zh) 一种高响应水平的氢燃料电池***
JP5772248B2 (ja) 燃料電池システム
KR20130100591A (ko) 연료전지 시스템, 그 냉각 방법 및 연료전지 시스템을 구비한 운동체
JP2005166404A (ja) 燃料電池システム
JP4555600B2 (ja) 燃料電池の冷却装置
JP2000357527A (ja) 燃料電池システム
US7063907B2 (en) Passive water management system for a fuel cell power plant
JP2006032094A (ja) 燃料電池システム
JP5387710B2 (ja) 燃料電池システム
US20230290970A1 (en) Fuel cell system
JP2012156030A (ja) 燃料電池システム及びその制御方法
JP2012256514A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140817

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees