JP3993340B2 - Method and heating furnace for uniformly heating a plurality of metal wires - Google Patents

Method and heating furnace for uniformly heating a plurality of metal wires Download PDF

Info

Publication number
JP3993340B2
JP3993340B2 JP15890099A JP15890099A JP3993340B2 JP 3993340 B2 JP3993340 B2 JP 3993340B2 JP 15890099 A JP15890099 A JP 15890099A JP 15890099 A JP15890099 A JP 15890099A JP 3993340 B2 JP3993340 B2 JP 3993340B2
Authority
JP
Japan
Prior art keywords
furnace
heating
metal wire
lower wall
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15890099A
Other languages
Japanese (ja)
Other versions
JP2000345243A (en
Inventor
義昭 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP15890099A priority Critical patent/JP3993340B2/en
Publication of JP2000345243A publication Critical patent/JP2000345243A/en
Application granted granted Critical
Publication of JP3993340B2 publication Critical patent/JP3993340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、複数本の金属線材、例えばタイヤコード等に用いられる鋼線材を均一に加熱する方法及び加熱炉に関するものである。
【0002】
【従来の技術】
複数本の金属線材、例えばタイヤコード等に用いられる鋼線材を同時にパテンティング処理等の熱処理を行うための加熱炉としては、熱効率がよく、経済的である等の点から、金属線材と燃焼バーナーとの間にマッフルを有さず加熱炎が直接通過線を加熱する、いわゆる直火式加熱炉が広く用いられている。
【0003】
直火式加熱炉としては、図3(a) に示すように、炉の両側壁102,103 に配置され水平方向に加熱炎を噴出する対をなす燃焼バーナー104a,104b を加熱手段とする水平炊き式加熱炉101 と、図4(a)に示すように、上壁110 に配置され下方に向かって炎を噴出する燃焼バーナー112a,112b を加熱手段とする天井炊き式加熱炉107 とがある。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の直火式加熱炉101,107 は、いずれの形式においても炉の下壁内面105,111 が平らであって、これと金属線材100 との距離が炉の幅方向で一定に構成されているのが一般的であり、この構成では、加熱炉101,107 内に並置した各金属線材100 への輻射熱が、以下に示す理由から幅方向で一定にはならず、並置した複数本の金属線材100 を均一に加熱することが困難であるという問題を有している。
【0005】
すなわち、水平炊き式加熱炉101 の場合には、炉の幅方向の中央部に位置する金属線材は炉の側壁102,103 からの輻射熱をほとんど受けないのに対し、前記幅方向の端部側に位置する金属線材は側壁102,103 からの輻射熱を多く受けるため、各金属線材を同じ速度で炉内を通過させると、前記幅方向端部側に位置する金属線材ほど単位体積あたりの入熱量が多くなるのに伴って線材温度が高くなる傾向があり、その結果、図3(b) に示すように、炉内の幅方向に並置した各金属線材の温度分布はU字状となり、並置した金属線材の全てを均一加熱することは困難であるからである。
【0006】
また、天井炊き式加熱炉107 の場合には、燃焼バーナー112a,112b の加熱炎による温度分布が水平炊き式よりも不均一であるため、前記加熱炎を噴出する方向に位置する金属線材100 は、高温に加熱されて単位体積あたりの入熱量が多くなるのに伴って線材温度が高くなる傾向があり、その結果、例えば図4(a) に示すように2個の燃焼バーナー112a,112b を配設した場合には、図4(b) に示すように、炉内の幅方向に並置した各金属線材の温度分布はM字状となり、並置した金属線材の全てを均一加熱することは困難であるからである。
【0007】
ところで、例えば高炭素鋼線材のパテンティング処理を行う場合には、鋼線材を所定温度に加熱して完全にオーステナイト化する必要があるが、加熱しすぎると鋼中の結晶粒が粗大化し、これに起因して延性が劣化する傾向があるため、適正な温度範囲内で線材を加熱することが要求される。
【0008】
従って、上述した従来の直火式加熱炉101,107 は、いずれの方式とも、並置した複数本の線材の全てを均一に加熱するのは困難である。即ち、前記線材の全てを完全にオーステナイト化する温度に炉内温度を設定すると、適正温度範囲よりも高い温度に加熱される線材が不可避的に発生し、製品歩留り等の悪化を招くからである。
【0009】
尚、従来の水平炊き式加熱炉101 の場合には、炉の側壁102,103 からの輻射熱による線材の不均一温度分布を緩和するための手段として、炉の幅方向端部側に位置する金属線材と炉の側壁102,103 との間の距離を大きく設定すること (例えば数10cm以上)、具体的には、炉の両側壁102,103 間距離を大きくすることが有用であるが、この構成だと、炉内に無駄な空間が生じることになり、これに伴って加熱炉全体も大きくなり、炉面積当たりの生産性が劣るため好ましくない。
【0010】
そこで、この発明の目的は、炉の下壁からの輻射熱による金属線材への入熱量を、炉の幅方向にわたって適正に制御することによって、並置した複数本の金属線材を均一に加熱する方法及び加熱炉を提供することにある。尚、この発明は、例えばタイヤコード等に用いられる鋼線材をパテンティング処理等の熱処理を行うのに適している。
【0011】
【課題を解決するための手段】
上記目的を達成するため、第1発明は、上壁、下壁、前後側壁及び左右側壁からなる炉壁によって炉内空間を区画形成する加熱炉内に複数本の金属線材を並置し、該金属線材を、それらの上方位置に配置された加熱手段によって加熱する際に、前記加熱によって炉内から受ける各金属線材の単位体積あたりの入熱量に応じて、並置した金属線材の下壁内面からの距離を、加熱炉の幅方向断面で見て、異ならせ、かつ、前記距離は、前記入熱量が少ないほど、下壁内面を***させることによって短く設定することを特徴とする、複数本の金属線材を均一に加熱する方法である。
【0012】
また、前記金属線材の下壁内面からの距離はより好適には、最大値が最小値の1.5 倍以上である
【0013】
加えて、加熱炉の設置スペースの狭小化や炉面積当たりの生産性を向上させる必要がある場合には、前記金属線材のうち、左右側壁に最も近い位置にある金属線材と該側壁間を炉の幅方向に沿って測定した距離は、いずれも15cm以下であることが好ましい。
【0014】
また、第2発明は、上壁、下壁、前後側壁及び左右側壁からなる炉壁と、該左右側壁間に間隔をおいて並置された複数本の金属線材の上方位置に、これらの金属線材を加熱するための加熱手段とを有する加熱炉において、前記加熱によって炉内から受ける各金属線材の単位体積あたりの入熱量に応じて、並置した金属線材の下壁内面からの距離を、加熱炉の幅方向断面で見て、異ならせ、かつ、前記距離は、前記入熱量が少ないほど、下壁内面を***させることによって短く設定することを特徴とする複数本の金属線材を均一に加熱する加熱炉である。
【0015】
前記加熱炉は、例えば複数本の金属線材を連続的に炉内を通過させて加熱する連続熱処理炉であることが好ましい。
【0016】
加えて、前記加熱炉は、具体的には、左右側壁に配置され水平方向に加熱炎を噴出する対をなす燃焼バーナーを加熱手段とする水平炊き式加熱炉であるか、又は、上壁に配置され下方に向かって加熱炎を噴出する燃焼バーナーを加熱手段とする天井炊き式加熱炉であることが好ましく、前者の場合には、前記金属線材の下壁内面からの距離を、炉の幅方向中央部位置でその幅方向端部位置よりも短くし、一方、後者の場合には、前記金属線材の下壁内面からの距離を、加熱炎による熱影響を大きく受ける金属線材よりもそれ以外の金属線材で短くすることが必要である。
【0017】
さらに、前記金属線材の下壁内面からの距離は、前記入熱量の少ない金属線材の直下位置にある下壁部分のみを***させることによって短く設定することが好ましく、前記***は、平坦な下壁内面上に耐火レンガのブロック、耐火金属のブロック又は箱を載置することによって形成することがより好適である。
【0018】
【発明の実施の形態】
以下にこの発明の実施の形態を図面に示すところに基づいて説明する。
図1(a) 及び(b) は、第1発明の一の実施形態である加熱方法を実施するために用いた第2発明の一の実施形態である水平炊き式加熱炉1を、その長手方向に沿ってそれぞれ水平方向及び垂直方向に切断したものであり、また、図2は図1(a) のA−A線上で切断したものであり、いずれも加熱炉の炉内状態を説明するための図であり、図中1は加熱炉、2は上壁、3は下壁、4〜7は側壁、8は金属線材、9a及び9bは加熱手段、10は炉内空間、11は金属線材の移動方向、12は輻射熱発生部材である。
【0019】
図1(a),(b) に示す加熱炉1は、上壁2、下壁3、左右側壁4,5及び前後側壁6,7からなる炉壁と、左右側壁4,5間に間隔をおいて並置された複数本の金属線材8a,8b,--,8n の上方位置に、これらの金属線材8a,8b,--,8n を加熱するための加熱手段9a,9b (加熱手段9a,9b は図2にのみ示す。)とを有し、炉壁によって炉内空間10が区画形成されている連続熱処理炉であある。
【0020】
尚、図1では、水平炊き式加熱炉の構成を示すため、その加熱手段9a,9b は、図2に示すように、対をなす燃焼バーナーを、水平方向に加熱炎を噴出するように左右側壁に配置した場合を示してあるが、これだけには限定されない。例えば、天井炊き式加熱炉の場合には、加熱手段9a,9b は、図4(a) に示すように燃焼バーナーを上壁に下方に向かって加熱炎を噴出するように配置すればよい。
【0021】
そして、第1発明の加熱方法の構成上の主な特徴は、上記加熱炉1内で前記金属線材8a,8b,--,8n を加熱する際に、前記加熱によって加熱炉1内から受ける各金属線材8a,8b,--,8n の単位体積あたりの入熱量に応じて、並置した金属線材8a,8b,--,8n の下壁内面3aからの距離La,Lb,--,Ln を、加熱炉1の幅方向断面(図2参照)で見て、異ならせ、かつ、前記距離は、前記入熱量が少ないほど、下壁内面を***させることによって短く設定することにあり、この構成を採用することによって、並置した複数本の金属線材の全てを均一に加熱することが可能になる。
【0022】
以下に、上記発明を完成させるに至った経緯を作用とともに説明する。
発明者は、まず加熱炉内で並置した金属線材がどのように加熱されるかについて詳細に調査した。
【0023】
その結果、加熱炉内で前記金属線材が受ける熱は、加熱炉の上記いずれの形式の相違に依らず、主に、(1) 高温雰囲気ガスからの伝導熱、(2) 炉の側壁からの輻射熱及び(3) 炉の下壁からの輻射熱の3つの複合熱によるものであること、また、高温雰囲気ガスからの伝導熱が金属線材が接する雰囲気ガス及び熱伝達率に依存し、炉の側壁及び下壁からの輻射熱がいずれも各々の側壁及び下壁と線材との距離の影響が大きく、即ち、この距離が短いほど線材が受ける輻射熱が大きくなることが判明した。
【0024】
次に、従来の加熱炉において、前記金属線材を均一に加熱できないという問題点が生じる理由について検討したところ、(炉の下壁が平らである)従来の水平炊き式加熱炉の場合には、高温雰囲気ガスからの伝導熱及び炉の下壁からの輻射熱により受ける入熱量は、いずれの金属線材ともほぼ等しいが、炉の側壁、特に左右側壁からの輻射熱により受ける入熱量が、左右側壁側に近い位置にある金属線材ほど大きくなり、図3(b)に示すようなU字状の不均一温度分布をとることになるからであり、また、(炉の下壁が平らである)従来の天井炊き式加熱炉の場合には、加熱炎の分布が炉の幅方向で不均一でありこれに伴って高温ガス雰囲気も同様に不均一になり、この雰囲気ガスの伝導熱差が生じることにより線材の温度分布に不均一になるからであることが分かった。
【0025】
そこで、発明者は、従来の加熱炉の問題点を解決するため鋭意検討を行ったところ、上記いずれの形式の加熱炉の場合であっても、炉の下壁からの輻射熱を炉の幅方向に制御することによって、並置した金属線材の全てを均一に加熱することができることを見出した。
【0026】
即ち、従来の加熱炉では、炉の下壁内面が平らであり、各金属線材と下壁内面との距離は一律に等しく設定されていたが、この発明では、炉の下壁内面を平らにしないで、その所定位置だけを***させることなどによって、前記距離を異ならせること、より具体的には、並置された複数本の金属線材のうち、入熱量が相対的に少ない金属線材の下方に位置する下壁内面のみを***させることによって、入熱量が相対的に少ない金属線材が、下壁からの輻射熱による入熱量が相対的に高まり、並置された複数本の金属線材のそれぞれに対する入熱量がをほぼ等しくすることができ、この結果として、並置した金属線材の全てを均一に加熱することができることを見出したのである。
【0027】
さらに具体的に言えば、水平炊き式加熱炉の場合には、炉の下壁内面が平らであるとすると、図3(b) に示すように、炉の幅方向中央部位置にある金属線材が、幅方向端部位置にある金属線材よりも線材温度が低くなる傾向があるため、かかる場合には、前記金属線材の下壁内面からの距離を、炉の幅方向中央部位置でその幅方向端部位置よりも短くすることによって、並置した金属線材の全てを均一に加熱することができる。
【0028】
また、天井炊き式加熱炉の場合には、炉の下壁内面が平らであるとすると、図4(b) に示すように、加熱炎による熱影響を大きく受ける金属線材がそれ以外の金属線材よりも温度が高くなる傾向があるため、かかる場合には、前記金属線材の下壁内面からの距離を、加熱炎による熱影響を大きく受ける金属線材よりもそれ以外の金属線材で短くすることによって、並置した金属線材の全てを均一に加熱することができる。
【0029】
尚、前記金属線材を均一に加熱するには、天井炊き式加熱炉よりも、加熱効率の高い水平炊き式加熱炉の方が好ましい。
【0030】
前記金属線材の下壁内面からの距離を調整するための手段としては、前記距離を短くする下壁内面位置のみを***させることが好ましく、この***は、例えば平坦な下壁内面上に耐火レンガのブロック、耐火金属のブロック又は箱を載置することによって形成することができ、これによれば、炉の下壁内面が平らである従来の加熱炉を用いることができ、設備コストの点で有利になる。
【0031】
また、この発明では、前記***を、下壁内面3a上に輻射熱発生部材12を載置することによって形成する場合には、かかる輻射熱発生部材12を載置した下壁内面部分については、輻射熱発生部材の内面を下壁内面位置とする。
【0032】
そして、第1発明の加熱方法は、上述した加熱炉内に並置した金属線材8a,8b,--,8n を一定の速度で図1(a),(b) の矢印方向11に移動させ、炉内空間10内を所定時間で通過させることによって前記金属線材8a,8b,--,8n を連続的に均一に加熱することができる。
【0033】
また、この発明は、炉の下壁からの輻射熱を制御することによって金属線材への入熱量を一定にすることができるが、下壁からの輻射熱を線材温度に大きく反映させる必要がある場合には、前記金属線材の下壁内面からの距離は、最大値が最小値の1.5 倍以上に設定することが好ましい。
【0034】
さらに、加熱炉の設置スペースの制限があるか、又は炉面積当たりの生産性をより一層向上させる必要がある場合には、加熱炉内に並置された金属線材のうち、左右側壁に最も近い位置にある金属線材と該側壁間を炉の幅方向に沿って測定した距離は、いずれも15cm以下に設定することが好適である。
【0035】
尚、ここまでは、いずれも加熱炉の構造上の問題から生ずる金属線材の不均一温度分布を均一にするための技術について述べてきたが、この発明は、このような加熱炉の構造上の問題の有無に関わらず、異なる線径の金属線材を均一に加熱することも可能にすることができる。
【0036】
即ち、線径の異なる複数本の金属線材を従来の加熱炉で加熱するとき、仮に加熱炉から受ける入熱量が各金属線材とも同じであるとしても、線径が異なる場合には、金属線材は、その単位長さあたりの体積が線径に依存して異なるため、前記体積が小さいほど線材温度が高くなり、その結果、これらの金属線材を均一に加熱することは難しかったが、この発明では、かかる場合であっても、前記加熱によって炉内から受ける各金属線材の単位体積あたりの入熱量に応じて、並置した金属線材の下壁内面からの距離を、加熱炉の幅方向断面で見て、異ならせることによって、異なる線径の金属線材を均一に加熱することが可能にすることができる。
【0037】
上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。
【0038】
【実施例】
次に、この発明に従う加熱方法によって、線径が1.7 mmである42本の高炭素鋼線材(線番1〜42)に同時にパテンティング処理を施し、各鋼線材の機械的特性を評価したので以下で説明する。
【0039】
加熱炉は、図1及び図2に示す水平炊き式連続加熱炉であり、その寸法が、炉内全長が20m、炉内幅が0.74m、炉内高さが0.53mであり、炉内設定温度を1025℃とし、炉の下壁内面3a上の幅方向中央位置に、長さが3.8 m、幅が0.34m及び厚さが0.045 mである5個の耐火レンガブロックを4個の線材支持部材と交互に載置した。
【0040】
左側壁4とこれに最も近接する鋼線材(線番1)との間を炉の幅方向に沿って測定した距離はいずれも13cmとした。また、各鋼線材と炉の下壁との距離(mm)、炉の出口で測定した鋼線材温度 (℃)、並びにパテンティング処理後の各鋼線材の抗張力(MPa)及び絞り(%)について測定した結果については表1に示す。
【0041】
尚、上記測定は、42本の鋼線材の全てで行ったが、表1には、同様な測定結果については特に示さず、適当に選択した11本の鋼線材についての測定結果のみを示してあり、表1中の抗張力と絞りの数値はいずれも平均値である。
【0042】
比較のため、炉の下壁内面が平らである図3(a) に示す従来の水平炊き式加熱炉で同様な条件下でパテンティング処理を行い、同様な項目について測定したので、それらの測定結果を表2に示す。
【0043】
【表1】

Figure 0003993340
【0044】
【表2】
Figure 0003993340
【0045】
表1及び表2の測定結果を比較すると、従来の加熱炉 (従来例)でパテンティング処理を行ったときの炉出口での線材温度 (表2)は、最低で920 ℃、最高で935 ℃、これらの温度差が15℃と大きいのに対して、この発明の加熱炉 (実施例)でパテンティング処理を行ったときの炉出口での線材温度は、最低で930 ℃、最高で935 ℃、これらの温度差が5℃と1/3 に縮小され、加熱炉内に並置された線材はほぼ均一に加熱されているのがわかる。
【0046】
また、パテンティング処理後の各鋼線材の抗張力及び絞りの数値に関しては、、従来例は、抗張力が最低で1250MPa 、最高で1288MPa 、これらの差が38MPa と大きく、絞り値も、最低で43.3%、最高で51.5%、これらの差が8.2 %と大きいのに対して、実施例は、抗張力が最低で1270MPa 、最高で1288MPa 、これらの差が18MPa と従来例の半分以下に縮小され、絞り値も、最低で43.6%、最高で47.2%、これらの差が3.6 %と従来例の半分以下に縮小されており、実施例では、加熱炉内に並置された線材が上記均一加熱に伴い、各線材とも所期したとおりの機械的強度が得られている。
【0047】
特に、従来例では、炉の幅方向両端側に位置する線番1、2、41及び42の鋼線材は、伸線加工時の断線発生が多く伸線加工性の生産性を悪化させるが、実施例では、前記平均値からの差が縮小されることでかかる鋼線材においても適正な抗張力と絞りが得られる結果、伸線加工時の断線が減少し、生産性が向上する。加えて、従来例では、線番1〜6 及び37〜42(計12線番)が所期した機械的特性が得られないため、かかる線番について減線することも考えられるが、実施例では、これらの線番についても同時にパテンティング処理できるので、生産性が向上すると同時に熱効率が高まり、コストを削減することができる。
【0048】
さらに、実施例では、炉の幅方向の線材温度をほぼ均一にすることができるので、従来よりも精密な加熱を行うことができ、各鋼線材の機械的特性のばらつきを減少できるため、従来実現できなかったレベルの高抗張力のスチールコードが実現できる伸線材をを供給できる。
【0049】
【発明の効果】
この発明によれば、水平炊き式や天井炊き式の加熱方式に依らず、加熱炉内に並置した複数本の金属線材を均一に加熱することができ、加えて、金属線材の線径が異なる場合であっても、同様に金属線材を均一に加熱することができる。
【図面の簡単な説明】
【図1】 第1発明の加熱方法に使用した加熱炉の炉内状態を示す図であり、
(a) は水平断面図であり、(b) は垂直断面図である。
【図2】 図1のA−A断面図である。
【図3】 (a) は従来の水平炊き式加熱炉の幅方向断面図であり、
(b) は(a) の加熱炉内に並置した複数本の金属線材の温度の傾向を示す図である。
【図4】 (a) は従来の天井炊き式加熱炉の幅方向断面図であり、
(b) は(a) の加熱炉内に並置した複数本の金属線材の温度の傾向を示す図である。
【符号の説明】
1 加熱炉
2 上壁
3 下壁
4〜7 側壁
8,8a,8b,-- ,8n 金属線材
9a, 9bは加熱手段
10 炉内空間
11 金属線材の移動方向
12 輻射熱発生部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and a heating furnace for uniformly heating a plurality of metal wires, for example, steel wires used for tire cords and the like.
[0002]
[Prior art]
As a heating furnace for simultaneously performing heat treatment such as patenting on a plurality of metal wires, for example, steel wires used for tire cords, the metal wire and the combustion burner from the standpoint of high thermal efficiency and economy. A so-called direct-fired heating furnace in which a heating flame directly heats the passage line without having a muffle between them is widely used.
[0003]
As shown in FIG. 3 (a), the direct-fired heating furnace is a horizontal cooking type in which combustion burners 104a and 104b, which are arranged on both side walls 102 and 103 of the furnace and jet a heating flame in the horizontal direction, are used as heating means. As shown in FIG. 4 (a), there are a heating furnace 101 and a ceiling-heating furnace 107 that uses combustion burners 112a and 112b that are arranged on an upper wall 110 and jet flames downward as heating means.
[0004]
[Problems to be solved by the invention]
However, the conventional direct-fired heating furnaces 101 and 107 have a flat bottom wall inner surface 105 and 111 in any type, and the distance between the inner wall 105 and the metal wire 100 is constant in the width direction of the furnace. In this configuration, the radiant heat to the metal wires 100 juxtaposed in the heating furnaces 101 and 107 is not constant in the width direction for the following reason, and the plural metal wires 100 juxtaposed are uniform. It has a problem that it is difficult to heat.
[0005]
That is, in the case of the horizontal cooking furnace 101, the metal wire located at the center in the width direction of the furnace receives little radiant heat from the side walls 102, 103 of the furnace, whereas it is located on the end side in the width direction. Since the metal wire that receives the radiant heat from the side walls 102 and 103 passes through the furnace at the same speed, the amount of heat input per unit volume increases as the metal wire located at the end in the width direction. As a result, the temperature distribution of the metal wires juxtaposed in the width direction in the furnace becomes U-shaped, as shown in FIG. 3 (b). This is because it is difficult to uniformly heat everything.
[0006]
In addition, in the case of the ceiling-heating furnace 107, the temperature distribution due to the heating flame of the combustion burners 112a and 112b is more uneven than in the horizontal cooking type, so the metal wire 100 positioned in the direction in which the heating flame is ejected is As the amount of heat input per unit volume increases as a result of being heated to a high temperature, the wire temperature tends to increase. As a result, for example, as shown in FIG. 4 (a), two combustion burners 112a and 112b are provided. When arranged, as shown in FIG. 4 (b), the temperature distribution of the metal wires juxtaposed in the width direction in the furnace becomes M-shaped, and it is difficult to uniformly heat all of the juxtaposed metal wires. Because.
[0007]
By the way, for example, when performing a patenting treatment of a high carbon steel wire, it is necessary to heat the steel wire to a predetermined temperature to completely austenite, but if it is heated too much, the crystal grains in the steel become coarse and this Therefore, it is required to heat the wire within an appropriate temperature range.
[0008]
Therefore, it is difficult for the above-described conventional direct-fired heating furnaces 101 and 107 to uniformly heat all of the plurality of wires arranged in parallel with each other. That is, if the furnace temperature is set to a temperature at which all of the wire is completely austenitic, wires that are heated to a temperature higher than the appropriate temperature range are inevitably generated, resulting in deterioration of product yield and the like. .
[0009]
In the case of the conventional horizontal cooking furnace 101, as means for alleviating the non-uniform temperature distribution of the wire due to radiant heat from the side walls 102, 103 of the furnace, a metal wire positioned on the end side in the width direction of the furnace is used. It is useful to set the distance between the side walls 102 and 103 of the furnace large (for example, several tens of centimeters or more). Specifically, it is useful to increase the distance between the side walls 102 and 103 of the furnace. As a result, a wasteful space is generated, and as a result, the entire heating furnace becomes larger, and productivity per furnace area is inferior.
[0010]
Accordingly, an object of the present invention is to uniformly heat a plurality of juxtaposed metal wires by appropriately controlling the amount of heat input to the metal wire by radiant heat from the lower wall of the furnace, and across the width direction of the furnace, and It is to provide a heating furnace. In addition, this invention is suitable for performing heat processing, such as a patenting process, on the steel wire used for a tire cord etc., for example.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the first aspect of the present invention is to arrange a plurality of metal wires in a heating furnace in which a furnace space is defined by a furnace wall composed of an upper wall, a lower wall, front and rear side walls, and left and right side walls. When the wires are heated by the heating means disposed above them, the heat from the inner wall of the juxtaposed metal wires depends on the heat input per unit volume of each metal wire received from the furnace by the heating. A plurality of metals, characterized in that the distance is different when viewed in the cross-section in the width direction of the heating furnace , and the distance is set shorter by raising the inner surface of the lower wall as the amount of heat input is smaller In this method, the wire is heated uniformly.
[0012]
Further, as for the distance from the inner surface of the lower wall of the metal wire , more preferably, the maximum value is 1.5 times or more the minimum value .
[0013]
In addition, when it is necessary to reduce the installation space of the heating furnace or improve the productivity per furnace area, among the metal wires, the metal wire located closest to the left and right side walls and the side wall are connected to the furnace. The distances measured along the width direction are preferably 15 cm or less.
[0014]
Further, the second invention provides a furnace wall composed of an upper wall, a lower wall, front and rear side walls, and left and right side walls, and a plurality of metal wire rods juxtaposed at intervals between the left and right side walls. And a heating means for heating the metal wire according to the amount of heat input per unit volume of each metal wire received from the furnace by the heating, the distance from the lower wall inner surface of the juxtaposed metal wire, The plurality of metal wires are uniformly heated by varying the distance in the cross-section in the width direction and setting the distance to be shorter by raising the inner surface of the lower wall as the amount of heat input decreases. It is a heating furnace.
[0015]
The heating furnace is preferably a continuous heat treatment furnace that heats a plurality of metal wires continuously passing through the furnace.
[0016]
In addition, the heating furnace is specifically a horizontal cooking type heating furnace having a pair of combustion burners arranged on the left and right side walls and ejecting a heating flame in the horizontal direction as heating means, or on the upper wall. It is preferable that it is a ceiling-heating furnace that uses a combustion burner that is arranged and jets a heating flame downward as a heating means. In the former case, the distance from the inner surface of the lower wall of the metal wire is the width of the furnace. In the latter case, the distance from the inner surface of the lower wall of the metal wire is greater than that of the metal wire that is greatly affected by heat from the heating flame. It is necessary to shorten the length with a metal wire.
[0017]
Furthermore, the distance from the inner surface of the lower wall of the metal wire is preferably set short by raising only the lower wall portion located immediately below the metal wire with a small amount of heat input, and the bump is a flat lower wall. More preferably, it is formed by placing a refractory brick block, a refractory metal block or a box on the inner surface.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the drawings.
1 (a) and 1 (b) show a horizontal cooking furnace 1 according to one embodiment of the second invention used for carrying out the heating method according to one embodiment of the first invention. FIG. 2 is a cross-sectional view taken along line AA in FIG. 1 (a), and both illustrate the in-furnace state of the heating furnace. 1 is a heating furnace, 2 is an upper wall, 3 is a lower wall, 4 to 7 are side walls, 8 is a metal wire, 9a and 9b are heating means, 10 is a space in the furnace, and 11 is a metal. The moving direction of the wire, 12 is a radiant heat generating member.
[0019]
A heating furnace 1 shown in FIGS. 1 (a) and 1 (b) has a space between a furnace wall composed of an upper wall 2, a lower wall 3, left and right side walls 4 and 5, and front and rear side walls 6 and 7, and left and right side walls 4 and 5. The heating means 9a, 9b (heating means 9a, 8a, 8b) for heating the metal wires 8a, 8b, ---, 8n above the plurality of metal wires 8a, 8b, ---, 8n arranged in parallel 9b is shown only in FIG. 2), and is a continuous heat treatment furnace in which a furnace space 10 is defined by a furnace wall.
[0020]
In FIG. 1, in order to show the configuration of the horizontal cooking furnace, the heating means 9a and 9b are arranged so that the pair of combustion burners squeeze the heating flame horizontally as shown in FIG. Although the case where it arrange | positions to a side wall is shown, it is not limited only to this. For example, in the case of a ceiling-heating furnace, the heating means 9a, 9b may be arranged so that a combustion flame is ejected downward on the upper wall as shown in FIG. 4 (a).
[0021]
The main structural features of the heating method of the first invention are as follows. When the metal wires 8a, 8b,..., 8n are heated in the heating furnace 1, each of the heat received from the heating furnace 1 by the heating. Depending on the heat input per unit volume of the metal wires 8a, 8b, ---, 8n, the distances La, Lb,-, Ln from the lower wall inner surface 3a of the juxtaposed metal wires 8a, 8b, ---, 8n In the cross-section in the width direction of the heating furnace 1 (see FIG. 2), the distance is varied , and the distance is set shorter by raising the inner surface of the lower wall as the heat input is smaller. By adopting, it becomes possible to uniformly heat all of the plurality of juxtaposed metal wires.
[0022]
Below, the background to the completion of the above invention will be described together with the action.
The inventor first investigated in detail how the metal wires juxtaposed in the heating furnace are heated.
[0023]
As a result, the heat received by the metal wire in the heating furnace is mainly (1) conduction heat from the high-temperature atmosphere gas, (2) from the side wall of the furnace, regardless of the difference in any of the above types of heating furnace. The side wall of the furnace depends on the radiant heat and (3) the combined heat of the radiant heat from the bottom wall of the furnace, and the heat conduction from the high temperature atmosphere gas depends on the atmosphere gas and heat transfer coefficient with which the metal wire is in contact. It has been found that the radiant heat from the lower wall and the lower wall are greatly affected by the distance between the respective side walls and the lower wall and the wire, that is, the shorter the distance, the greater the radiant heat received by the wire.
[0024]
Next, in the conventional heating furnace, when the reason why the problem that the metal wire cannot be heated uniformly occurs was examined, in the case of the conventional horizontal cooking furnace (the bottom wall of the furnace is flat) The heat input received by the heat conduction from the high-temperature atmosphere gas and the radiant heat from the bottom wall of the furnace is almost the same as any metal wire, but the heat input received by the radiant heat from the side walls of the furnace, particularly the left and right side walls, is on the left and right side walls. This is because the closer the metal wire is, the larger it will be, and it will have a U-shaped non-uniform temperature distribution as shown in Fig. 3 (b), and the conventional (the bottom wall of the furnace is flat) In the case of a ceiling-heating furnace, the distribution of the heating flame is non-uniform in the width direction of the furnace, and accordingly, the high-temperature gas atmosphere is also non-uniform, resulting in a difference in conduction heat of this atmospheric gas. Does the temperature distribution of the wire become uneven? I found out that
[0025]
Therefore, the inventor has intensively studied to solve the problems of the conventional heating furnace, and in any case of the above-mentioned type of heating furnace, the radiant heat from the lower wall of the furnace is reduced in the width direction of the furnace. It has been found that all of the juxtaposed metal wires can be heated uniformly by controlling to.
[0026]
That is, in the conventional heating furnace, the inner surface of the lower wall of the furnace is flat, and the distance between each metal wire and the inner surface of the lower wall is uniformly set. However, in the present invention, the inner surface of the lower wall of the furnace is flattened. Without changing the distance, for example, by raising only the predetermined position, more specifically, among a plurality of juxtaposed metal wires, below the metal wire with a relatively small amount of heat input By raising only the inner surface of the lower wall, the metal wire with a relatively low heat input has a relatively high heat input due to radiant heat from the lower wall, and the heat input to each of a plurality of juxtaposed metal wires Has been found to be substantially equal, and as a result, all of the juxtaposed metal wires can be heated uniformly.
[0027]
More specifically, in the case of a horizontal cooking furnace, assuming that the inner wall of the bottom wall of the furnace is flat, as shown in FIG. 3 (b), the metal wire rod located at the center in the width direction of the furnace. However, since the wire temperature tends to be lower than that of the metal wire at the end portion in the width direction, in such a case, the distance from the inner surface of the lower wall of the metal wire is the width at the center portion in the width direction of the furnace. By making it shorter than the direction end position, all of the juxtaposed metal wires can be heated uniformly.
[0028]
In addition, in the case of a ceiling-heating furnace, if the inner wall of the bottom wall of the furnace is flat, as shown in Fig. 4 (b), the metal wire that is greatly affected by the heat from the heating flame is the other metal wire. In such a case, the distance from the inner surface of the lower wall of the metal wire is shortened by a metal wire other than the metal wire that is greatly affected by the heating flame. All of the juxtaposed metal wires can be heated uniformly.
[0029]
In addition, in order to heat the said metal wire uniformly, the horizontal cooking type heating furnace with a high heating efficiency is more preferable than a ceiling cooking type heating furnace.
[0030]
As a means for adjusting the distance from the inner surface of the lower wall of the metal wire, it is preferable that only the position of the inner surface of the lower wall that shortens the distance is raised. Can be formed by mounting a block, a refractory metal block or a box, and according to this, a conventional heating furnace in which the inner surface of the bottom wall of the furnace is flat can be used, and in terms of equipment cost Become advantageous.
[0031]
In the present invention, when the ridge is formed by placing the radiant heat generating member 12 on the lower wall inner surface 3a, the lower wall inner surface portion on which the radiant heat generating member 12 is placed generates radiant heat. The inner surface of the member is the lower wall inner surface position.
[0032]
And the heating method of 1st invention moves the metal wire 8a, 8b, ---, 8n juxtaposed in the heating furnace mentioned above at a constant speed in the arrow direction 11 of FIG. 1 (a), (b), The metal wires 8a, 8b,-, 8n can be continuously and uniformly heated by passing through the furnace space 10 for a predetermined time.
[0033]
In addition, this invention can make the heat input to the metal wire constant by controlling the radiant heat from the lower wall of the furnace, but it is necessary to largely reflect the radiant heat from the lower wall to the wire temperature. The distance from the inner surface of the lower wall of the metal wire is preferably set such that the maximum value is at least 1.5 times the minimum value.
[0034]
Furthermore, when there is a restriction on the installation space of the heating furnace or when it is necessary to further improve the productivity per furnace area, the position closest to the left and right side walls among the metal wires juxtaposed in the heating furnace It is preferable that the distance measured between the metal wire and the side wall along the width direction of the furnace is set to 15 cm or less.
[0035]
In addition, until now, although all have described the technique for making uniform the non-uniform temperature distribution of the metal wire resulting from the structural problem of a heating furnace, this invention is based on the structure of such a heating furnace. Regardless of the presence or absence of problems, it is possible to uniformly heat metal wires having different wire diameters.
[0036]
That is, when heating a plurality of metal wire rods with different wire diameters in a conventional heating furnace, even if the heat input received from the heating furnace is the same for each metal wire rod, Since the volume per unit length differs depending on the wire diameter, the smaller the volume, the higher the wire temperature, and as a result, it was difficult to uniformly heat these metal wires. Even in such a case, according to the heat input per unit volume of each metal wire received from the furnace by the heating, the distance from the lower wall inner surface of the juxtaposed metal wires is seen in the cross section in the width direction of the heating furnace. Thus, it is possible to uniformly heat the metal wires having different wire diameters.
[0037]
The above description is merely an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.
[0038]
【Example】
Next, by the heating method according to the present invention, 42 high carbon steel wires (wire numbers 1 to 42) having a wire diameter of 1.7 mm were simultaneously subjected to patenting treatment, and the mechanical properties of each steel wire were evaluated. This will be described below.
[0039]
The heating furnace is a horizontal cooking type continuous heating furnace as shown in Fig. 1 and Fig. 2, and its dimensions are 20m in length, 0.74m in width, 0.53m in height, and set in the furnace. Supports four refractory brick blocks with a length of 3.8 m, a width of 0.34 m and a thickness of 0.045 m at the center in the width direction on the inner surface 3a of the bottom wall of the furnace at 1025 ° C. It was placed alternately with the members.
[0040]
The distance measured along the width direction of the furnace between the left side wall 4 and the steel wire (wire number 1) closest to the left side wall 4 was 13 cm. Also, the distance (mm) between each steel wire and the bottom wall of the furnace, the temperature of the steel wire measured at the furnace outlet (℃), and the tensile strength (MPa) and drawing (%) of each steel wire after patenting treatment The measured results are shown in Table 1.
[0041]
Although the above measurements were performed on all 42 steel wires, Table 1 shows only the measurement results for 11 appropriately selected steel wires, with no particular measurement results shown. Yes, the values of tensile strength and aperture in Table 1 are average values.
[0042]
For comparison, patenting was performed under the same conditions in the conventional horizontal cooking furnace shown in Fig. 3 (a), where the inner wall of the bottom wall of the furnace was flat. The results are shown in Table 2.
[0043]
[Table 1]
Figure 0003993340
[0044]
[Table 2]
Figure 0003993340
[0045]
Comparing the measurement results in Tables 1 and 2, the wire temperature at the furnace outlet (Table 2) at the time of patenting in a conventional heating furnace (conventional example) is at least 920 ° C and at most 935 ° C While the temperature difference is as large as 15 ° C, the wire temperature at the furnace outlet when performing the patenting process in the heating furnace of the present invention (Example) is at least 930 ° C and at most 935 ° C These temperature differences are reduced to 5 ° C and 1/3, and it can be seen that the wires arranged in the heating furnace are heated almost uniformly.
[0046]
Regarding the tensile strength and drawing value of each steel wire after patenting treatment, the conventional example has a minimum tensile strength of 1250MPa and a maximum of 1288MPa, and the difference between them is as large as 38MPa, and the drawing value is also at least 43.3%. The maximum difference is as high as 51.5% and the difference is 8.2%. In contrast, the example shows a minimum tensile strength of 1270MPa and a maximum of 1288MPa. These differences are reduced to 18MPa, less than half of the conventional example. However, the minimum difference is 43.6%, the maximum difference is 47.2%, and the difference between these is 3.6%, which is less than half that of the conventional example. Both the wires have the expected mechanical strength.
[0047]
In particular, in the conventional example, the steel wire rods of wire numbers 1, 2, 41 and 42 located at both ends in the width direction of the furnace often cause the occurrence of wire breakage at the time of wire drawing and deteriorate the productivity of wire drawing workability. In the example, as the difference from the average value is reduced, an appropriate tensile strength and drawing can be obtained even in such a steel wire material. As a result, wire breakage during wire drawing is reduced and productivity is improved. In addition, in the conventional example, the expected mechanical properties of wire numbers 1 to 6 and 37 to 42 (total of 12 wire numbers) cannot be obtained. Then, since these wire numbers can also be patented at the same time, productivity can be improved and thermal efficiency can be increased, and costs can be reduced.
[0048]
Furthermore, in the embodiment, the wire temperature in the width direction of the furnace can be made almost uniform, so that heating can be performed more precisely than before, and variations in mechanical properties of each steel wire can be reduced. It is possible to supply a wire drawing material that can realize a high tensile strength steel cord that could not be realized.
[0049]
【The invention's effect】
According to this invention, it is possible to uniformly heat a plurality of metal wire rods juxtaposed in a heating furnace regardless of the horizontal cooking type or ceiling cooking type heating method, and in addition, the wire diameters of the metal wire materials are different. Even if it is a case, a metal wire can be heated uniformly similarly.
[Brief description of the drawings]
FIG. 1 is a view showing an in-furnace state of a heating furnace used in the heating method of the first invention,
(a) is a horizontal sectional view, and (b) is a vertical sectional view.
FIG. 2 is a cross-sectional view taken along the line AA of FIG.
FIG. 3 (a) is a cross-sectional view in the width direction of a conventional horizontal cooking furnace,
(b) is a figure which shows the tendency of the temperature of the several metal wire arranged in parallel in the heating furnace of (a).
FIG. 4 (a) is a cross-sectional view in the width direction of a conventional ceiling-heating furnace,
(b) is a figure which shows the tendency of the temperature of the several metal wire arranged in parallel in the heating furnace of (a).
[Explanation of symbols]
1 Heating furnace 2 Upper wall 3 Lower wall 4-7 Side wall
8,8a, 8b,-, 8n Metal wire
9a and 9b are heating means
10 Furnace space
11 Moving direction of metal wire
12 Radiant heat generating material

Claims (9)

上壁、下壁、前後側壁及び左右側壁からなる炉壁によって炉内空間を区画形成する加熱炉内に複数本の金属線材を並置し、該金属線材を、それらの上方位置に配置された加熱手段によって加熱する際に、前記加熱によって炉内から受ける各金属線材の単位体積あたりの入熱量に応じて、並置した金属線材の下壁内面からの距離を、加熱炉の幅方向断面で見て、異ならせ、かつ、前記距離は、前記入熱量が少ないほど、下壁内面を***させることによって短く設定することを特徴とする、複数本の金属線材を均一に加熱する方法。A plurality of metal wires are juxtaposed in a heating furnace in which a furnace space is defined by a furnace wall composed of an upper wall, a lower wall, front and rear side walls, and left and right side walls, and the metal wires are arranged at positions above them. When heating by means, the distance from the lower wall inner surface of the juxtaposed metal wires according to the heat input per unit volume of each metal wire received from the furnace by the heating is seen in the cross section in the width direction of the heating furnace. The method for uniformly heating a plurality of metal wires, characterized in that the distance is set shorter by raising the inner surface of the lower wall as the amount of heat input is smaller . 前記金属線材の下壁内面からの距離は、最大値が最小値の1.5倍以上に設定する請求項1に記載の複数本の金属線材を均一に加熱する方法。The method for uniformly heating a plurality of metal wires according to claim 1, wherein the distance from the inner surface of the lower wall of the metal wire is set to a maximum value of 1.5 times or more of a minimum value. 前記金属線材のうち、左右側壁に最も近い位置にある金属線材と該側壁間を炉の幅方向に沿って測定した距離は、いずれも15cm以下である請求項1または2に記載の複数本の金属線材を均一に加熱する方法。Among the metal wire, the distance measured along the metal wire and the side walls located closest to the left and right side walls in the width direction of the furnace, a plurality of claim 1 or 2 either is 15cm or less A method of heating a metal wire uniformly. 上壁、下壁、前後側壁及び左右側壁からなる炉壁と、該左右側壁間に間隔をおいて並置された複数本の金属線材の上方位置に、これらの金属線材を加熱するための加熱手段とを有する加熱炉において、
前記加熱によって炉内から受ける各金属線材の単位体積あたりの入熱量に応じて、並置した金属線材の下壁内面からの距離を、加熱炉の幅方向断面で見て、異ならせ、かつ、前記距離は、前記入熱量が少ないほど、下壁内面を***させることによって短く設定することを特徴とする複数本の金属線材を均一に加熱する加熱炉。
A heating means for heating these metal wires to a position above a furnace wall composed of an upper wall, a lower wall, front and rear side walls, and left and right side walls, and a plurality of metal wires arranged side by side between the left and right side walls. In a heating furnace having
According to the amount of heat input per unit volume of each metal wire received from the inside of the furnace by heating, the distance from the lower wall inner surface of the juxtaposed metal wires is varied in the cross-section in the width direction of the heating furnace , and The heating furnace for uniformly heating a plurality of metal wires , wherein the distance is set shorter by raising the inner surface of the lower wall as the heat input amount is smaller .
前記加熱炉は、複数本の金属線材を連続的に炉内を通過させて加熱する連続熱処理炉である請求項4に記載の加熱炉。The heating furnace according to claim 4, wherein the heating furnace is a continuous heat treatment furnace that continuously heats a plurality of metal wires through the furnace. 前記加熱炉は、左右側壁に配置され水平方向に加熱炎を噴出する対をなす燃焼バーナーを加熱手段とする水平炊き式加熱炉であり、前記距離は、炉の幅方向中央部位置でその幅方向端部位置よりも短く設定する請求項4または5に記載の加熱炉。The heating furnace is a horizontal cooking type heating furnace having a pair of combustion burners arranged on the left and right side walls and ejecting a heating flame in the horizontal direction as a heating means, and the distance is the width at the center position in the width direction of the furnace. The heating furnace according to claim 4 or 5, wherein the heating furnace is set to be shorter than a direction end portion position. 前記加熱炉は、上壁に配置され下方に向かって加熱炎を噴出する燃焼バーナーを加熱手段とする天井炊き式加熱炉であり、前記金属線材の下壁内面からの距離は、加熱炎による熱影響を大きく受ける金属線材よりもそれ以外の金属線材で短く設定する請求項4または5に記載の加熱炉。The heating furnace is a ceiling-heating furnace that uses a combustion burner that is disposed on the upper wall and jets a heating flame downward as a heating means, and the distance from the inner surface of the lower wall of the metal wire is the heat generated by the heating flame. The heating furnace according to claim 4 or 5 , wherein the length is set shorter with a metal wire other than the metal wire that is greatly affected. 前記金属線材の下壁内面からの距離は、前記入熱量の少ない金属線材の直下位置にある下壁部分のみを***させることによって短く設定する請求項4〜7のいずれか1項に記載の加熱炉。The heating according to any one of claims 4 to 7, wherein the distance from the inner surface of the lower wall of the metal wire is set short by raising only the lower wall portion located immediately below the metal wire with a small amount of heat input. Furnace. 前記***は、平坦な下壁内面上に耐火レンガのブロック、耐火金属のブロック又は箱を載置することによって形成する請求項4〜8のいずれか1項に記載の加熱炉。The heating furnace according to any one of claims 4 to 8, wherein the ridge is formed by placing a refractory brick block, a refractory metal block, or a box on the inner surface of a flat lower wall.
JP15890099A 1999-06-07 1999-06-07 Method and heating furnace for uniformly heating a plurality of metal wires Expired - Lifetime JP3993340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15890099A JP3993340B2 (en) 1999-06-07 1999-06-07 Method and heating furnace for uniformly heating a plurality of metal wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15890099A JP3993340B2 (en) 1999-06-07 1999-06-07 Method and heating furnace for uniformly heating a plurality of metal wires

Publications (2)

Publication Number Publication Date
JP2000345243A JP2000345243A (en) 2000-12-12
JP3993340B2 true JP3993340B2 (en) 2007-10-17

Family

ID=15681829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15890099A Expired - Lifetime JP3993340B2 (en) 1999-06-07 1999-06-07 Method and heating furnace for uniformly heating a plurality of metal wires

Country Status (1)

Country Link
JP (1) JP3993340B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235710A (en) * 1975-09-16 1977-03-18 Ulvac Corp In-material-heat reflection plate device in heating furnaces
JPS61201721A (en) * 1985-03-05 1986-09-06 Kobe Steel Ltd Edge heater with curved heat collection surface
JPH068465B2 (en) * 1986-08-18 1994-02-02 三菱重工業株式会社 Metal strip radiation cooling device
JP2593884B2 (en) * 1987-09-09 1997-03-26 東京瓦斯 株式会社 Heating method of the heated object in the heating furnace
JPH059596A (en) * 1991-06-28 1993-01-19 Aichi Steel Works Ltd Heat treating device for metallic wire having metallic gloss

Also Published As

Publication number Publication date
JP2000345243A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
KR101278400B1 (en) Method for adjusting hardness of a sheet like product
KR19980033296A (en) METHOD AND APPARATUS FOR PRODUCING HOT-ROLLED STEEL SHEET
JP3993340B2 (en) Method and heating furnace for uniformly heating a plurality of metal wires
JP5629992B2 (en) Horizontal continuous annealing furnace for metal strip
JP6436309B2 (en) Temperature control device and temperature control method for metal strip in continuous annealing equipment
JP2582299B2 (en) Fluidized bed heat treatment furnace for wires
JPS6144127A (en) Uniformly heating device for metal material in motion
JP2000212645A (en) Continuous heating of steel material
US1144884A (en) Method of heat-treating rolled steel sheets and plates.
JP2894871B2 (en) Multi-stage heating furnace and multi-stage heating method for steel pipe
KR20090016221A (en) The structure of pusher type heating furnace
CN215328293U (en) Heat treatment device for spring steel wire processing with uniform heating
JP4479100B2 (en) Continuous heat treatment furnace for metal strip
JP3494735B2 (en) Continuous heating method of steel strip by vertical open flame furnace
JPS6214009B2 (en)
CN201945185U (en) Structure for matching guide rails with furnace body for metal circular rod heating furnace
CN102175086A (en) Fitting structure of guide rail and furnace body of metal round bar heating furnace
JP2010150614A (en) Heating furnace and heating method
JP5181679B2 (en) Heating furnace and temperature control method for heated material
EP1083396A2 (en) Kiln for firing industrial articles
KR101536440B1 (en) Apparatus for preventing transformation of furnace
CN103014290A (en) Stepped hot coiling spring resistance coiling heating furnace
SU1638507A1 (en) Continuous furnace
SU1025975A1 (en) Muffle
JPH09318271A (en) Tunnel furnace and method for heating and cooling baked item using the furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070726

R150 Certificate of patent or registration of utility model

Ref document number: 3993340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term