JP3990149B2 - Acrylic plastisol composition - Google Patents

Acrylic plastisol composition Download PDF

Info

Publication number
JP3990149B2
JP3990149B2 JP2001383370A JP2001383370A JP3990149B2 JP 3990149 B2 JP3990149 B2 JP 3990149B2 JP 2001383370 A JP2001383370 A JP 2001383370A JP 2001383370 A JP2001383370 A JP 2001383370A JP 3990149 B2 JP3990149 B2 JP 3990149B2
Authority
JP
Japan
Prior art keywords
methacrylate
fine particles
acrylic
weight
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001383370A
Other languages
Japanese (ja)
Other versions
JP2002322341A (en
Inventor
卓郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP2001383370A priority Critical patent/JP3990149B2/en
Publication of JP2002322341A publication Critical patent/JP2002322341A/en
Application granted granted Critical
Publication of JP3990149B2 publication Critical patent/JP3990149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ナイフコーティング法、ロータリースクリーン印刷法、スラッシュモールディング等の種々の加工法に対応したアクリル系プラスチゾル組成物に関する。
【0002】
【従来技術】
エマルジョン重合されたポリ塩化ビニル系樹脂用い、可塑剤を配合したポリ塩化ビニル系プラスチゾルは、さまざまな用途に使用されている。
しかしながら、燃焼時の塩素系ガスの発生等の問題でポリ塩化ビニル系樹脂の代替として、可塑剤を配合することによりプラスチゾルとすることができる点で、アクリル系樹脂を使用したアクリル系プラスチゾルの開発が行われるようになった。
【0003】
このようにアクリル系プラスチゾルは、主として、アクリル系樹脂と可塑剤とを配合してなるものであるが、アクリル系樹脂の樹脂組成が可塑剤への溶解性の大なるものとすると、得られたプラスチゾルは、急速な粘度上昇を起こしてしまい極めて貯蔵安定性の悪いものとなる。反対に樹脂組成が可塑剤への溶解性の小なるものとすると、粘度上昇を防ぐことができるものの、加熱固化後に経時で可塑剤がブリードアウトしやすいといった問題がある。
【0004】
特開平7−233299号公報には、上述の問題を解決するために、コア・シェル構造のアクリル系樹脂微粒子とジアルキルフタルレート系可塑剤と用いたアクリルゾルであって、シェル部を前記可塑剤への溶解性の小なるものとして急激な粘度上昇を防ぎ、コア部を前記可塑剤への溶解性の大なる樹脂組成のものとして、加熱固化後のブリードアウトを防ぐことが記載されている。
【0005】
しかしながら、アクリルゾルを用いる加工法は、平面へのコーティング、3次元形状のモールド内へのコーティング等のための手段として種々あり、例えばナイフコーティング法、ロータリースクリーン印刷法、ディップコーティング法、スプレーコーティング法、ローテーショナルモールディング法、スラッシュモールディング等の各種加工法がある。
【0006】
特開平7−233299号公報によって得られるアクリルゾルで、それぞれの加工法に対応しようとすると、樹脂微粒子の重合において樹脂組成を変更するか、又は可塑剤の種類や数量の変更、減粘剤、増粘剤、充填剤の添加が必要である。しかし、微粒子の樹脂組成を変更して対応しようとすると多くの商品を管理しなければならない問題が発生し、また可塑剤の種類や数量の変更、減粘剤、増粘剤、充填剤を添加して対応しようとすると加熱固化物において所望の物性が得られない虞があるし、可塑剤を多くしてそれぞれの加工法に対応しようとすると加熱固化物において硬度が柔らかくなり、またブリードアウトの問題も発生する。
【0007】
【発明が解決しようとする課題】
本発明は、上述の問題を解決するためになされたものであって、種々の加工法にも対応でき、加熱固化後に所望の物性が得られるアクリル系プラスチゾル組成物を提供するものである。
【0008】
【課題を解決するための手段】
本発明のアクリル系樹脂プラスチゾル組成物は、少なくともアクリル系樹脂微粒子とフタル酸エステル系可塑剤とを含み、アクリル系樹脂微粒子が、コア・シェル構造の微粒子と単一構造の微粒子とからなり、アクリル系樹脂微粒子中における該単一構造の微粒子の重量比率が5重量%〜30重量%であり、コア・シェル構造の微粒子のコア部が、フタル酸エステル系可塑剤への溶解性の大きいエチルメタクリレート、ノルマルブチルメタクリレート、イソブチルメタクリレート、ターシャリーブチルメタクリレート、シクロヘキシルメタクリレート、エチルヘキシルメタクリレートから選ばれるモノマー単位を、ブリードアウトを防ぐために50重量%以上含有した樹脂にて構成され、シェル部が、フタル酸エステル系可塑剤への溶解性の小さいメチルメタクリレート、ベンジルメタクリレート、スチレンから選ばれるモノマー単位を、急激な粘度上昇を防ぐために50重量%以上含有した樹脂にて構成され、単一構造の微粒子が、メチルメタクリレート、ベンジルメタクリレートから選ばれるモノマーを、プラスチゾル粘度調製のために重合させたものであることを特徴とする。
【0009】
コア・シェル構造の微粒子は、乳化重合あるいは懸濁重合によって得られるが、乳化重合によることが好ましい。乳化重合による場合、まずコア部を含むエマルジョンを作製し、引き続き前記コア部を被覆した形のシェル部を含むエマルジョンを作製した後、乾燥させて得られるものである。
コア・シェル構造の微粒子のコア部とシェル部の重量比率は、ブリードアウトを防ぐ意味からコア部を25重量%以上とすることが好ましく、粘度上昇を抑える意味からシェル部を30重量%以上とすることが好ましい。
このようなアクリル系樹脂樹脂微粒子は、市販されているものを使用してもよく、三菱レイヨン社製ダイアナールLP−3102がある。
また、単一構造の微粒子も、乳化重合あるいは懸濁重合によって得られるが、乳化重合によることが好ましく、また、特にその粒子径が重要であり、平均粒子径が0.8〜50μmのものが好ましく、この中でも1〜20μmのものが特に好適に使用される。粒子径が50μm超であると、加熱固化物になった時に異物状になる虞があり、0.8μm未満であるとプラスチゾル時の混合撹拌が難しくなる。
【0010】
上述のこれらの微粒子には、他のモノマーを共重合させたものであっても良い。他のモノマーとしては、N−オクチル(メタ)アクリレート、デシル(メタ)アクリレート、等の(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸、イタコン酸、クロトン酸等の不飽和カルボン酸、アクリロニトリル、(メタ)アクリルアミド、N−ジメチル(メタ)アクリルアミド、N−ジメチルアミノエチル(メタ)アクリレート、N−ジエチルアミノエチル(メタ)アクリレート、酢酸ビニル、α−メチルスチレン、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、グリシジル(メタ)アクリレート、アリル(メタ)アクリレート等が挙げられる。
【0011】
アクリル系樹脂微粒子(コア・シェル構造の微粒子及び単一構造の微粒子)中の単一構造の微粒子の重量比率は、単一構造の微粒子による粘度調整効果の大きい範囲である、5重量%〜30重量%とすることが好ましい。
【0012】
フタル酸エステル系可塑剤は、フタル酸ジ−n−オクチル、フタル酸ジ−2−エチルヘキシル、フタル酸ジイソノニルが好適に使用される。
また、その他の可塑剤を2次可塑剤として最大10重量%程度であれば併用使用することも可能である。
【0013】
可塑剤の配合量は加熱固化後の所望の硬度等の物性、塗工適性等の加工性を考慮して適宜選定されるものであり特に限定されるものではないが、アクリル系樹脂微粒子100重量部に対して40〜200重量部、好ましくは50〜90重量部の範囲である。40重量部未満では、プラスチゾルの粘度が高くなってしまい全ての加工法で塗工が困難になり、200重量部超では加熱固化後にブリードアウトが発生することがある。
【0014】
アクリル系樹脂微粒子、フタル酸エステル系可塑剤を十分に混合攪拌して均一なプラスチゾルに調整する装置としては、その粘度特性などからディゾルバーミキサー、ホモミキサーなどの撹拌機が好適に使用される。
【0015】
また、アクリル系プラスチゾルは、塩化ビニル系プラスチゾルに比較して熱安定性や耐候性が良好であるが、必要ならば耐候安定剤、耐光安定剤等を添加しても良い。
さらに、必要に応じて、充填材、着色のための顔料等を添加しても良い。
【0016】
得られたアクリル系プラスチゾルは、種々の加工法によって塗工され加熱されることによって固化される。加熱に関しては、樹脂の種類、可塑剤の配合量、塗工量により変化するが、一般的にオーブン加熱の場合は110℃〜150℃程度の温度で1分〜5分間程度が好ましい。
【0017】
【実験例】
以下に具体的な実験例を挙げ、本発明のアクリル系樹脂プラスチゾル組成物に関して詳細に説明するが、本願発明は以下に挙げる例に限定されるものではない。
(アクリル系樹脂プラスチゾルの調製)
表1に示す薬品を計量混合し、プロペラミキサーで十分攪拌し実験例1〜10のプラスチゾルを調製した。なお、配合量は重量部で表した。
【表1】

Figure 0003990149
【0018】
アクリル系樹脂微粒子A:コア・シェル構造アクリル重合体(コア部=ノルマルブチルメタクリレート単独重合体、シェル部=メチルメタクリレート/メタクリル酸のモノマー単位重量比が99/1の共重合体、コア部/シェル部の重量比=30/70、)、平均分子量=約70万
アクリル系樹脂微粒子B:メタクリル酸/メチルメタクリレートのモノマー単位重量比が95/5の共重合体、平均分子量=約200万
アクリル系樹脂微粒子C:メチルメタクリレート単独重合体、平均分子量=300万
可塑剤A:フタル酸ジ−2−エチルヘキシル(DOP)
可塑剤B:フタル酸ジイソノニル(DINP)
【0019】
(性能評価)
実験例1〜10について、配合調製したアクリル系プラスチゾルの粘度をBM型回転式粘度計(東京計器社製)を用いローター回転速度4rpmにて調製直後、調製後1日保存後、調製後7日保存後にそれぞれ測定した。
そして、例えば調製直後の粘度(Pa・s)測定値をη0に記すようにして、また例えば調製後7日保存後の粘度(Pa・s)測定値をη7に記すようにして、その粘度測定結果を表1に示す。
【0020】
また、実験例1〜10について、配合調製したアクリル系プラスチゾルをプラスチックフィルム上に、ナイフコーターにて0.1mmの厚さでコーティングした後、150℃オーブンで2分間加熱してプラスチゾル固化物積層シートを得た。
得られたプラスチゾル固化物積層シートを常温にて7日間保管した後、プラスチゾル固化物表面のブリードアウトを触感にて評価した。
○:ブリードアウトなし
△:表面に僅かにブリードアウト有り
×:激しくブリードアウト有り
【0021】
実験例1に対して実験例2、3、4に示され、また実験例5に対して実験例6、7、8に示されたように、フタル酸系エステル可塑剤を用いた場合において、アクリル系樹脂微粒子として上述のコア・シェル構造の微粒子と上述の単一構造の微粒子を用いたものは、(コア・シェル構造の微粒子)と(単一構造の微粒子)の比率を変化させるだけで粘度調整が可能であり、種々の加工法に対応できるプラスチゾルであった。
【0022】
また、実験例4、実験例8に使用した単一構造の微粒子は(アクリル系樹脂微粒子B)は、メチルメタクリレートのモノマー単位が80%未満であるため僅かにブリードアウトが発生した。
【0023】
【発明の効果】
本発明のアクリル系プラスチゾル組成物は、ブリードアウトを抑制するものの急激な粘度上昇の要因となるフタル酸エステル系可塑剤への溶解性の大きい樹脂組成からなるコア部を、粘度上昇の要因のほとんどないフタル酸エステル系可塑剤への溶解性の小さい樹脂組成の樹脂のシェル部で被覆したアクリル系樹脂微粒子と、粘度上昇の要因のほとんどない単一構造のアクリル系樹脂微粒子とを併用することによって、フタル酸エステル系可塑剤を用いてプラスチゾルとした際に優れた粘度調整効果を有し種々の加工法に対応できる。
また、加熱固化後の物性についても、ブリードアウトがほとんどなく、可塑剤の増加減に見られるような物性の変化もなく、所望の物性が得られやすいものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an acrylic plastisol composition that is compatible with various processing methods such as knife coating, rotary screen printing, and slush molding.
[0002]
[Prior art]
BACKGROUND ART Polyvinyl chloride plastisols using emulsion polymerized polyvinyl chloride resins and blended with plasticizers are used in various applications.
However, the development of acrylic plastisols using acrylic resins can be made by adding plasticizers as an alternative to polyvinyl chloride resins due to problems such as the generation of chlorine-based gases during combustion. Came to be done.
[0003]
As described above, the acrylic plastisol is mainly formed by blending an acrylic resin and a plasticizer. When the resin composition of the acrylic resin is highly soluble in the plasticizer, the acrylic plastisol was obtained. Plastisols cause a rapid increase in viscosity and become extremely poor in storage stability. On the other hand, if the resin composition has a low solubility in the plasticizer, an increase in viscosity can be prevented, but there is a problem that the plasticizer tends to bleed out over time after solidification by heating.
[0004]
JP-A-7-233299 discloses an acrylic sol using an acrylic resin fine particle having a core / shell structure and a dialkylphthalate plasticizer in order to solve the above-mentioned problem, and the shell portion is formed of the plasticizer. It is described that a rapid increase in viscosity is prevented as having a low solubility in water, and that the core portion is made of a resin composition having a high solubility in the plasticizer to prevent bleed-out after heating and solidification.
[0005]
However, there are various processing methods using acrylic sol as a means for coating on a flat surface, coating in a three-dimensional mold, etc., for example, knife coating method, rotary screen printing method, dip coating method, spray coating method. There are various processing methods such as a rotational molding method and a slash molding method.
[0006]
In the acrylic sol obtained by JP-A-7-233299, in order to cope with each processing method, the resin composition is changed in the polymerization of the resin fine particles, or the type and quantity of the plasticizer are changed, the viscosity reducing agent, It is necessary to add thickeners and fillers. However, changing the resin composition of the fine particles causes problems that require management of many products, changes in the type and quantity of plasticizers, addition of thickeners, thickeners, and fillers. If you try to cope with it, you may not be able to obtain the desired physical properties in the heat-solidified product, and if you try to cope with each processing method by increasing the plasticizer, the heat-solidified product will be soft and the bleed out Problems also arise.
[0007]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and provides an acrylic plastisol composition that can be applied to various processing methods and can obtain desired physical properties after heat-solidification.
[0008]
[Means for Solving the Problems]
Acrylic resin plastisol composition of the present invention, and at least an acrylic resin particles and phthalic acid ester plasticizer, an acrylic resin fine particles composed of a fine particulate and a single structure of the core-shell structure, acrylic The weight ratio of the single structure fine particles in the resin fine particles is 5 to 30% by weight, and the core portion of the core / shell structure fine particles has high solubility in the phthalate ester plasticizer. In order to prevent bleed out, a monomer unit selected from normal butyl methacrylate, isobutyl methacrylate, tertiary butyl methacrylate, cyclohexyl methacrylate, and ethyl hexyl methacrylate is composed of a resin containing a phthalate ester Solubility in plasticizer Monomer composed of resin containing 50 wt% or more of monomer units selected from methyl methacrylate, benzyl methacrylate and styrene in order to prevent a sudden increase in viscosity. Is polymerized for plastisol viscosity adjustment.
[0009]
The fine particles having a core / shell structure can be obtained by emulsion polymerization or suspension polymerization, but preferably by emulsion polymerization. In the case of emulsion polymerization, an emulsion including a core portion is first prepared, and subsequently an emulsion including a shell portion coated with the core portion is prepared, followed by drying.
The weight ratio of the core part to the shell part of the fine particles of the core / shell structure is preferably 25% by weight or more for the purpose of preventing bleeding out, and 30% by weight or more of the shell part for suppressing the increase in viscosity. It is preferable to do.
As such acrylic resin resin fine particles, commercially available ones may be used, and there is Dianaal LP-3102 manufactured by Mitsubishi Rayon Co., Ltd.
In addition, fine particles having a single structure can also be obtained by emulsion polymerization or suspension polymerization, preferably by emulsion polymerization, and the particle size is particularly important, and those having an average particle size of 0.8 to 50 μm. Among these, those having 1 to 20 μm are particularly preferably used. If the particle diameter is more than 50 μm, there is a possibility that it becomes a foreign matter when it becomes a heat-solidified product, and if it is less than 0.8 μm, mixing and stirring at the time of plastisol becomes difficult.
[0010]
These fine particles described above may be those obtained by copolymerizing other monomers. Other monomers include N-octyl (meth) acrylate, decyl (meth) acrylate and other (meth) acrylic acid alkyl esters, (meth) acrylic acid, itaconic acid, crotonic acid and other unsaturated carboxylic acids, acrylonitrile, (Meth) acrylamide, N-dimethyl (meth) acrylamide, N-dimethylaminoethyl (meth) acrylate, N-diethylaminoethyl (meth) acrylate, vinyl acetate, α-methylstyrene, hydroxyethyl (meth) acrylate, hydroxypropyl ( Examples include meth) acrylate, ethylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, divinylbenzene, glycidyl (meth) acrylate, and allyl (meth) acrylate.
[0011]
The weight ratio of the fine particles having a single structure in the acrylic resin fine particles (fine particles having a core / shell structure and fine particles having a single structure) is in a range in which the viscosity adjustment effect by the fine particles having a single structure is large. It is preferable to set it as weight%.
[0012]
As the phthalate ester plasticizer, di-n-octyl phthalate, di-2-ethylhexyl phthalate, and diisononyl phthalate are preferably used.
Also, other plasticizers can be used in combination as long as the secondary plasticizer is about 10% by weight at the maximum.
[0013]
The blending amount of the plasticizer is appropriately selected in consideration of physical properties such as desired hardness after heat solidification and processability such as coating suitability, and is not particularly limited. The range is 40 to 200 parts by weight, preferably 50 to 90 parts by weight with respect to parts. If the amount is less than 40 parts by weight, the viscosity of the plastisol becomes high, making coating difficult by all processing methods, and if it exceeds 200 parts by weight, bleeding out may occur after heat solidification.
[0014]
As an apparatus for sufficiently mixing and stirring the acrylic resin fine particles and the phthalate ester plasticizer to prepare a uniform plastisol, a stirrer such as a dissolver mixer or a homomixer is preferably used because of its viscosity characteristics.
[0015]
Acrylic plastisol has better thermal stability and weather resistance than vinyl chloride plastisol, but if necessary, a weather stabilizer, a light stabilizer and the like may be added.
Furthermore, you may add a filler, a pigment for coloring, etc. as needed.
[0016]
The obtained acrylic plastisol is solidified by being applied and heated by various processing methods. Regarding heating, it varies depending on the type of resin, the blending amount of the plasticizer, and the coating amount. In general, in the case of oven heating, a temperature of about 110 ° C. to 150 ° C. is preferably about 1 minute to 5 minutes.
[0017]
[Experimental example]
Specific experimental examples will be given below, and the acrylic resin plastisol composition of the present invention will be described in detail. However, the present invention is not limited to the following examples.
(Preparation of acrylic resin plastisol)
The chemicals shown in Table 1 were weighed and mixed and sufficiently stirred with a propeller mixer to prepare plastisols of Experimental Examples 1 to 10. The blending amount was expressed in parts by weight.
[Table 1]
Figure 0003990149
[0018]
Acrylic resin fine particle A: core / shell structure acrylic polymer (core portion = normal butyl methacrylate homopolymer, shell portion = methyl methacrylate / methacrylic acid monomer unit weight ratio 99/1 copolymer, core portion / shell Part weight ratio = 30/70), average molecular weight = about 700,000 acrylic resin fine particles B: copolymer having a methacrylic acid / methyl methacrylate monomer unit weight ratio of 95/5, average molecular weight = about 2 million acrylic Resin fine particles C: methyl methacrylate homopolymer, average molecular weight = 3 million plasticizer A: di-2-ethylhexyl phthalate (DOP)
Plasticizer B: Diisononyl phthalate (DINP)
[0019]
(Performance evaluation)
For Experimental Examples 1 to 10, the viscosity of the acrylic plastisol prepared and prepared was BM-type rotary viscometer (manufactured by Tokyo Keiki Co., Ltd.) immediately after preparation at a rotor rotational speed of 4 rpm, stored for 1 day after preparation, and 7 days after preparation. Each was measured after storage.
And, for example, the viscosity (Pa · s) measurement immediately after preparation is written in η 0, and the viscosity (Pa · s) measurement value after storage for 7 days after preparation is written in η 7 , for example. The viscosity measurement results are shown in Table 1.
[0020]
In addition, for Experimental Examples 1 to 10, the acrylic plastisol prepared and prepared was coated on a plastic film with a thickness of 0.1 mm with a knife coater, and then heated in a 150 ° C. oven for 2 minutes to be a plastisol solidified laminate sheet Got.
The obtained plastisol solidified product laminated sheet was stored at room temperature for 7 days, and then the bleedout on the surface of the plastisol solidified product was evaluated by tactile sensation.
○: No bleed-out △: Slightly bleed-out on the surface ×: Strongly bleed-out [0021]
As shown in Experimental Examples 2, 3, and 4 for Experimental Example 1 and as shown in Experimental Examples 6, 7, and 8 for Experimental Example 5, in the case of using a phthalate ester plasticizer, Acrylic resin fine particles using the above-mentioned core / shell structure fine particles and the above-mentioned single structure fine particles can be obtained simply by changing the ratio of (core / shell structure fine particles) and (single structure fine particles). The plastisol was capable of adjusting the viscosity and adaptable to various processing methods.
[0022]
In addition, the single structure fine particles used in Experimental Example 4 and Experimental Example 8 (acrylic resin fine particles B) had a slight bleed out because the monomer unit of methyl methacrylate was less than 80%.
[0023]
【The invention's effect】
The acrylic plastisol composition of the present invention suppresses bleed-out, but the core portion composed of a resin composition having high solubility in a phthalate ester plasticizer, which causes a sudden increase in viscosity, has almost no increase in viscosity. By combining acrylic resin fine particles coated with a resin shell with a resin composition with low solubility in a non-phthalate plasticizer and single-structure acrylic resin fine particles that have almost no cause for viscosity increase In addition, when a plastisol is formed using a phthalate ester plasticizer, it has an excellent viscosity adjusting effect and can be applied to various processing methods.
In addition, as for the physical properties after heat solidification, there is almost no bleed-out, there is no change in physical properties as seen in the increase and decrease of the plasticizer, and the desired physical properties are easily obtained.

Claims (1)

少なくともアクリル系樹脂微粒子とフタル酸エステル系可塑剤とを含み、アクリル系樹脂微粒子が、コア・シェル構造の微粒子と単一構造の微粒子とからなり、アクリル系樹脂微粒子中における該単一構造の微粒子の重量比率が5重量%〜30重量%であり、
コア・シェル構造の微粒子のコア部が、エチルメタクリレート、ノルマルブチルメタクリレート、イソブチルメタクリレート、ターシャリーブチルメタクリレート、シクロヘキシルメタクリレート、エチルヘキシルメタクリレートから選ばれるモノマー単位を50重量%以上含有した樹脂にて構成され、
シェル部が、メチルメタクリレート、ベンジルメタクリレート、スチレンから選ばれるモノマー単位を50重量%以上含有した樹脂にて構成され、
単一構造の微粒子が、メチルメタクリレート、ベンジルメタクリレートから選ばれるモノマーを重合させたものであることを特徴とするアクリル系プラスチゾル組成物。
At least an acrylic resin fine particle and a phthalate ester plasticizer, and the acrylic resin fine particle is composed of a core / shell structure fine particle and a single structure fine particle, and the single structure fine particle in the acrylic resin fine particle The weight ratio of 5% to 30% by weight,
The core part of the core-shell structured fine particles is composed of a resin containing 50% by weight or more of a monomer unit selected from ethyl methacrylate, normal butyl methacrylate, isobutyl methacrylate, tertiary butyl methacrylate, cyclohexyl methacrylate, and ethyl hexyl methacrylate,
The shell part is composed of a resin containing 50% by weight or more of a monomer unit selected from methyl methacrylate, benzyl methacrylate, and styrene,
An acrylic plastisol composition, wherein fine particles having a single structure are obtained by polymerizing a monomer selected from methyl methacrylate and benzyl methacrylate.
JP2001383370A 2001-02-23 2001-12-17 Acrylic plastisol composition Expired - Fee Related JP3990149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001383370A JP3990149B2 (en) 2001-02-23 2001-12-17 Acrylic plastisol composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001047775 2001-02-23
JP2001-47775 2001-02-23
JP2001383370A JP3990149B2 (en) 2001-02-23 2001-12-17 Acrylic plastisol composition

Publications (2)

Publication Number Publication Date
JP2002322341A JP2002322341A (en) 2002-11-08
JP3990149B2 true JP3990149B2 (en) 2007-10-10

Family

ID=26609955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001383370A Expired - Fee Related JP3990149B2 (en) 2001-02-23 2001-12-17 Acrylic plastisol composition

Country Status (1)

Country Link
JP (1) JP3990149B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100548628B1 (en) * 2003-10-08 2006-01-31 주식회사 엘지화학 Styrene-based thermoplastic resin composition

Also Published As

Publication number Publication date
JP2002322341A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
EP1162217B1 (en) Fine acrylic polymer particles and plastisol containing the same
JP5597923B2 (en) Plastisol composition and article using the same
JP3990149B2 (en) Acrylic plastisol composition
KR20080104284A (en) (meth)acrylic polymer particle, process for production of the particle, plastisol, and article
JP2529568B2 (en) Resin molded product
JP4838448B2 (en) Acrylic plastisol for rotary screen printing
JP3490769B2 (en) Acrylic sol composition for wallpaper
JP2020517794A (en) Vinyl chloride resin latex composition and method for producing the same
JP2007119651A (en) Polymer fine particle, its manufacturing method and plastisol using the same
JP3946215B2 (en) Acrylic polymer fine particles
JP2001247820A (en) Coating material composition
JP3934796B2 (en) Flooring
JPH0819311B2 (en) Aqueous dispersion consisting of complex giant particles and matting agent for coatings
JP2002249632A (en) Paste sol composition of acrylic resin
JPH06220280A (en) Vinyl chloride resin composition for paste and its production
WO2005017031A1 (en) Acrylic plastisol composition
JP5097383B2 (en) Method for producing acrylic polymer fine particles for plastisol and acrylic blastisol composition
JP4607341B2 (en) Acrylic resin plastisol composition
JP5692608B2 (en) Acrylic polymer fine particles, production method thereof, plastisol and molded product
JP4024549B2 (en) Acrylic resin composition
JP4105065B2 (en) Sizing agent for paper
JP2002030194A (en) Plastisol composition and molded product obtained using the same
JP2005263846A (en) Acrylic plastisol composition
JPH06100748A (en) Vinyl chloride-based resin for paste
JP2005232411A (en) Acrylic plastisol composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3990149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees