JP3989192B2 - Treatment method of chlorine content in waste in gasification reforming system - Google Patents

Treatment method of chlorine content in waste in gasification reforming system Download PDF

Info

Publication number
JP3989192B2
JP3989192B2 JP2001168975A JP2001168975A JP3989192B2 JP 3989192 B2 JP3989192 B2 JP 3989192B2 JP 2001168975 A JP2001168975 A JP 2001168975A JP 2001168975 A JP2001168975 A JP 2001168975A JP 3989192 B2 JP3989192 B2 JP 3989192B2
Authority
JP
Japan
Prior art keywords
gas
water
waste
cleaning
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001168975A
Other languages
Japanese (ja)
Other versions
JP2002363577A (en
Inventor
史洋 三好
益人 清水
聡 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2001168975A priority Critical patent/JP3989192B2/en
Publication of JP2002363577A publication Critical patent/JP2002363577A/en
Application granted granted Critical
Publication of JP3989192B2 publication Critical patent/JP3989192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス化改質方式における廃棄物中の塩素分の処理方法に関する。
【0002】
【従来の技術】
従来より、産業廃棄物あるいは一般廃棄物の多くは、発生したままの姿であるいは何らかの事前処理をされたうえで、焼却処分され減容化された後に埋立などの最終処分が行われる場合が多い。焼却処分の方法は多々あるが、近年、焼却場における発生ガス中のダイオキシンなど有害物質の管理が問題となっており、また、リサイクルの観点から、廃棄物をただ単に焼却するのではなく、廃棄物をガス化し、高温で改質することにより、燃料ガスあるいは化学原料ガスとして回収するシステム(厚生省: 厚生省令第14号、1999年3月3日「ガス化改質方式」)が望まれている。
【0003】
かかるガス化改質方式に則した焼却施設として例えば図1に示されるようなプロセスフローになる川鉄サーモセレクト方式による廃棄物ガス化溶融プロセス(川崎製鉄技報32(2000)4,287-291 )が開発された。このプロセスは、(1)プレス・ 脱ガスチャンネル((a)ごみ(廃棄物)の圧縮、(b)乾燥・ 熱分解)、(2)高温反応炉・ 均質化炉((c)ガス化溶融、(d)スラグ均質化、(e)ガス改質)、(3)ガス精製((f)ガス急冷(急冷・酸洗浄・アルカリ洗浄)、(g)ガス精製(除塵・脱硫・除湿))、(4)水処理((h)水処理・ 塩製造装置)の4ステップから構成されている。各ステップの概要は次のとおりである。
【0004】
(1)プレス・ 脱ガスチャンネル
(a)まずピット1から移送された廃棄物をプレス2で最初の容積の1/5 程度に圧縮する。これにより廃棄物中の水分の分布は均一化され、空気は排除されて脱ガス効率が向上する。
(b)次に圧縮された廃棄物は間接的加熱炉である脱ガスチャンネル3で脱ガス(水分の蒸発、熱分解による揮発分の発生)され、続いて高温反応炉4からの放射熱などによりさらに熱分解される。廃棄物中に含まれる炭化水素、セルロースの熱分解反応として次のような反応例(化1-(1)〜(2) 式)があり、これらの反応により熱分解カーボンが得られる。
【0005】
【化1】

Figure 0003989192
【0006】
(2)高温反応炉・ 均質化炉
(c)脱ガスチャンネル3で発生したガスは高温反応炉4に流入し、熱分解物は新たな圧縮廃棄物の装入により押し出されて高温反応炉4下部に堆積する。高温反応炉4下部にPSA(Pressure Swing Adsorption ;圧力スイング吸着)6で製造した酸素を吹き込み、該酸素と熱分解物中の炭素との反応(化2-(3)〜(4) 式)により下部の温度は中心部で最高約2000℃になり、廃棄物中の金属や無機質の成分は溶融する。
【0007】
【化2】
Figure 0003989192
【0008】
高温反応炉4下部に残存する炭素成分とO2が発熱反応しCO2 になる。発生したCO2 はCを含有する熱分解物中を通過するとCOに還元される(化3-(5)式)。
【0009】
【化3】
Figure 0003989192
【0010】
過剰の高温水蒸気分子が存在する場合は水性ガス化反応が生ずる。この場合、炭素と水蒸気がCOとH2に転換する(化4-(6)式)。
【0011】
【化4】
Figure 0003989192
【0012】
有機化合物はCOとH2などに熱分解される(化5-(7)式)。
【0013】
【化5】
Figure 0003989192
【0014】
(d)溶融物は高温反応炉4から約1600℃に保持された均熱化炉5へ流れ、微量の炭素等はガス化される。均質化炉5において金属溶融物 (メタル)は密度が大きいため、無機質溶融物 (スラグ)の下部に溜まる。これらは連続的に溢流堰を通り水砕システム7へ流れ落ちて冷却固化される。冷却固化した回収混合物は磁選によりスラグ、メタルに分離される。
【0015】
(e)高温反応炉4下部で発生したガスと脱ガスチャンネルで発生した熱分解ガスは合流し、高温反応炉4上部の改質部において約1200℃で2s 以上滞留する。
この条件で、ガス中のタール分やダイオキシン類およびその前駆体は完全に分解され、H2,CO,CO2,H2O を主成分とする粗合成ガスに改質される。約1200℃の温度では化6-(8)式の平衡が右辺に移動し、メタンガスの量は極微量となる。
【0016】
【化6】
Figure 0003989192
【0017】
(3)ガス精製
(f)高温反応炉4で改質された粗合成ガスを、急冷装置8で約1200℃から約70℃まで急水冷し、de novo 合成によるダイオキシン類の再合成を阻止した後、洗浄塔11において、酸洗浄により重金属を、アルカリ洗浄により酸性ガスを、それぞれ除去する。
【0018】
ここで、沸点の低いZn,Pb などの重金属成分は主として高温反応炉4からガスの状態で移送される。また、廃棄物に含まれる塩素は、主としてHCl として合成ガス中に存在し、HCl は冷却・洗浄液に溶け込む。このHCl を含む酸性水(pH2〜3)によって粗合成ガスは洗浄され、重金属成分が取り除かれる(例えば化7-(9)〜(10)式)。よって、このプロセスでは飛灰は発生しない。
【0019】
【化7】
Figure 0003989192
【0020】
このように、このプロセスでは廃棄物中の塩素分が有効に利用される。洗浄液は沈降槽12に送られて炭素微粒子を取り除かれ、熱交換器15A で間接冷却された後、再びガスの急冷に循環使用される。ごみに由来する水は沈降槽12で余剰水となり、水処理装置13へ送られて処理される。
酸洗浄された合成ガスは、アルカリ洗浄され、塩化水素ガスなどの酸性ガスが中和除去される(化8-(11) 式)。生成したNaClは最終的には、塩製造装置14で混合塩として回収される。
【0021】
【化8】
Figure 0003989192
【0022】
(g)さらに、ガスは洗浄塔11からマルチスクラバー9に送られて除塵され、脱硫洗浄され、除湿乾燥されて、有害物質を除去されたクリーンな精製合成ガスとなり、例えばガスエンジン発電機10の燃料ガスとして使用される。
(4)水処理
(h)ガス改質工程までに生成したH2O がガス急冷・精製工程で凝縮し、従来の焼却方式では飛灰となって排ガス中に含まれていた重金属や塩類はすべて洗浄水中に移行する。そのため、飛灰は発生せず、Fe,Zn,Pb,Na,Kなどの金属を含む水が発生するが、水処理装置13により、金属は水酸化物や混合塩などの有用物として回収される。なお、千葉プラント(川崎製鉄株式会社千葉製鉄所内に設置した廃棄物ガス化溶融設備)では臨海部にあるため塩製造装置14は設置されていないが、イオン交換処理により下水道に放流できる水質のものとされている。一方、標準的な設備(フォンドトチェ(伊)、カールスルーエ(独)に設置されたもの)では塩製造装置14によりプロセス冷却水としての再利用が可能な水質の水、および混合塩が得られ、クローズド化されている。
【0023】
【発明が解決しようとする課題】
前記ガス化改質方式の廃棄物処理プロセスでは、廃棄物中の塩素分が塩化水素ガスと化してガス改質後の粗合成ガスに含まれているものを洗浄液(洗浄水)に吸収させて重金属成分除去用の酸洗浄液として使用し、使用後の酸洗浄液はNaOHで中和し、この中和液(塩化ナトリウム水溶液)を再び洗浄液(塩化水素ガスの吸収液)として循環使用する一方、その一部を取り出して不純物を除去し、濃縮して混合塩を抽出し回収する。また、洗浄後の粗合成ガスはガス精製工程に送り、除塵→脱硫洗浄→除湿乾燥して精製合成ガスとされる。
【0024】
しかし、このプロセスでは、回収される混合塩の品質(塩化ナトリウム濃度や粒度)を工業塩に相応しい範囲に安定させることが難しいという問題があった。そこで、本発明は、廃棄物中の塩素分を安定した高品質の混合塩として回収でき、さらに処理の必要な水を低減することのできるガス化改質方式における廃棄物中の塩素分の処理方法を提供することを目的とする。
【0025】
【課題を解決するための手段】
本発明者らは、前記目的を達成すべく鋭意検討した結果、回収される混合塩の品質には、アルカリ洗浄液の塩濃度が大きく影響する。混合塩の品質を安定化させるには、アルカリ洗浄液の塩濃度と、さらに好ましくはpHを一定に保つことが重要である。また、アルカリ洗浄液の塩濃度と、さらにpHを一定に保つには、一つにはアルカリ洗浄工程入側のガス温度および/またはアルカリ洗浄工程出側のガス温度を制御すること、また一つにはアルカリ洗浄工程よりも下流側の工程で発生する余剰水でアルカリ洗浄液を希釈することが有効であることを見出し、本発明をなした。とくに、後者の手段(アルカリ洗浄工程よりも下流側の工程で発生する余剰水でアルカリ洗浄液を希釈すること)によれば、下流側の余剰水がアルカリ洗浄液に添加されるから処理の必要な水量が削減される。
【0026】
すなわち、本発明は、ガス化改質方式により廃棄物をガス化・改質してなるガス化・改質ガス中の塩素分を、該ガスにアルカリ洗浄液を加えるアルカリ洗浄により、吸収し、混合塩として回収する、ガス化改質方式における廃棄物中の塩素分の処理方法において、前記アルカリ洗浄前のガス化・改質ガスに洗浄液を加えて急冷し、ガス中の塩化水素分の一部と重金属分を吸収する酸洗浄を行い、前記アルカリ洗浄により塩化水素分を除いてなる粗合成ガスこれをさらに純化して精製合成ガスと前記アルカリ洗浄に用いるアルカリ洗浄液は、 NaOH を足しながら循環させて使用し、その際に、下記の制御を行いつつ、当該循環中のアルカリ洗浄液の一部を抜き取り、不純物除去後、蒸発・晶析させて混合塩を得ることを特徴とするガス化改質方式における廃棄物中の塩素分の処理方法である。
【0027】

(a)前記アルカリ洗浄入側のガス温度の制御
(b)前記アルカリ洗浄出側のガス温度制御
(c)前記粗合成ガスの純化で生成する冷却凝縮水を前記循環中のアルカリ洗浄液に添加すること
のいずれか一または二以上の組合せにより、前記循環中のアルカリ洗浄液の塩濃度を15%以下好ましくは1〜15%、さらに好ましくは1〜4%である。)かつpHを7.0 〜8.5にする制御
【0028】
また、本発明では、不純物除去後の液を逆浸透法で濃縮して濃縮液と膜透過水を得、濃縮液を蒸発・晶析させ、膜透過水を酸洗浄の冷却塔の補給水として使用することが好ましい。
また、本発明では、不純物除去後の液を電気透析法で濃縮して濃縮液と脱塩水を得、濃縮液を蒸発・晶析させ、脱塩水を酸洗浄の冷却塔の補給水として使用することが好ましい。
【0029】
また、本発明では、前記蒸発で生じた蒸気の凝縮水を酸洗浄の冷却塔の補給水として使用することが好ましい。
また、本発明では、前記晶析の被処理液を一部前記不純物除去の入側に戻して該不純物除去を施すことが好ましい。
【0030】
【発明の実施の形態】
図2は本発明の実施形態の例を示す工程図である。図示のように、本発明では、塩素を含有する廃棄物200 が、ガス化改質装置100 で熱分解可能温度(100 〜600 ℃程度)に加熱され、酸素を用いてガス化溶融した後、酸素を用いて部分燃焼し、約1200℃に昇温することで改質される。改質後のガス(粗合成ガス201 )にはガス化の過程で発生した塩化水素(廃棄物 200中の塩素分に由来する)が含まれている。ガス化改質装置100 としては、図1の脱ガスチャンネル3、高温反応炉4、均質化炉5などを組み合わせたものが好ましく用いうる。酸素の供給には図1のPSA6が好ましく用いうる。
【0031】
改質後のガスは洗浄液 300を適用して急冷101 され、さらに、これに洗浄液300 を適用してガス中の塩化水素分と重金属分を吸収する酸洗浄102 を行う。急冷101 および酸洗浄102 はガスの熱を洗浄液300 に吸収させこれをさらに熱交換器111 を介して冷却塔110 で吸収するよう構成したものが好ましい。
ついで、酸洗浄出側のガス202 にアルカリ洗浄液400 を加え塩化水素分をさらに吸収するアルカリ洗浄103 を行う。アルカリ洗浄液としてはNaClを高濃度に取り出すために水酸化ナトリウム(NaOH)を含有する溶液であることが好ましい。このようにして、アルカリ洗浄出側のガスを塩化水素分を除いた粗合成ガス203 とし、これをさらに純化(例えば除塵104 →脱硫105 →除湿106 )して精製合成ガス204 とする。精製合成ガス204 は燃料ガスあるいは化学原料ガスとして使用される。除塵104 、脱硫105 、除湿106 の各工程では図1のマルチスクラバー9などが好ましく用いうる。
【0032】
その一方で、急冷出側および酸洗浄入側の液301 を沈降槽107 に導いて上澄部302 と沈降部303 に分離させ、上澄部302 は前記洗浄液300 として循環使用し、沈降部303 は図1の高温反応炉4、ピット1、脱ガスチャンネル3などに返送する。上澄部302 およびアルカリ洗浄出側の液401 は不純物を除去108 後、蒸発・晶析109 させて混合塩304 を回収する。
【0033】
不純物除去108 工程で除去すべき不純物には、鉄分、シリカ分、アルミ分、重金属分、カルシウム分などがあり、該工程では例えば図1の水処理装置13などを用いて前記不純物に含まれる金属(鉄、アルミニウム、重金属、カルシウムなど)をそれらの水酸化物にし、沈殿させて母液から除去するのがよい。
蒸発・晶析109 工程において、蒸発用装置としては、エネルギー削減(省エネルギー)の観点から多重効用缶が好適である。なお、多重効用缶とは、いくつかの蒸発缶を直列にならべ、最初の缶で発生した蒸気を次の缶の熱源として利用し、最終缶の発生蒸気は凝縮器を通して回収する方式の装置である。この方式では熱源となる新しい蒸気は最初の缶に供給すればよいから、蒸気の節約をはかることができる。また、晶析用(塩の回収)装置としては塩の品質の観点から晶析缶が好適である。蒸発乾固による方法では、塩に不純物が混入する。なお、晶析缶とは、結晶性の物質を溶解している溶液から、 溶媒を蒸発させて濃縮し、飽和溶解度よりも濃度を高くして結晶を析出させる装置である。また、晶析缶出側に遠心分離機を有するものが好ましい。
【0034】
かかるガス化改質方式における廃棄物中の塩素分の処理方法において、本発明では、前記アルカリ洗浄液400 の塩濃度が目標に合うように、さらに好ましくは塩濃度およびpHが目標に合うように、アルカリ洗浄103 入側(酸洗浄 102出側)のガス202 の温度および/またはアルカリ洗浄103 出側のガス203 の温度を制御する。もしくはアルカリ洗浄103 出側の粗合成ガス203 の純化(例:除湿106 )で生成する冷却凝縮水305 をアルカリ洗浄液400 に添加するようにした。ここに、アルカリ洗浄液の塩濃度は塩化ナトリウム濃度で表される。
【0035】
回収する混合塩の品質を安定化させるためには、洗浄塔内でガス中の塩化水素分を残らず洗浄液に吸収させる必要があり、それには、洗浄液の塩濃度を適正範囲に保つ(目標に一致させる)必要がある。この一致制御は、アルカリ洗浄103 入側のガス温度制御および/またはアルカリ洗浄103 出側のガス温度制御(手段A)により精度よく行いうる。手段Aでは、アルカリ洗浄入側(酸洗浄後)のガス温度を酸洗浄の熱交換器で制御する、アルカリ洗浄出側のガス温度はアルカリ洗浄の熱交換器で制御する、ことによりアルカリ洗浄103 後のガス温度を露点以下にして凝縮水を生成させ、アルカリ洗浄液として利用するのがよい。また、前記一致制御は、粗合成ガスの純化工程(例:除湿工程)で生成する冷却凝縮水をアルカリ洗浄液に添加すること(手段B)によっても同様に精度よく行いうる。手段A,Bはそれぞれ単独に用いてもよく、また、併用してもよい。とくに、 手段Bによれば、洗浄工程の下流工程で生成する余剰水を洗浄液の希釈に利用するから、廃棄物処理系外への放流水(処理の必要な水)量が低減する。
【0036】
アルカリ洗浄液の塩濃度の目標は15%(mass%の意。以下同じ。)以下とするのが好ましい。さらに好ましくは1〜15%、さらには1〜4%が好ましい。アルカリ洗浄出側の洗浄液の塩濃度を制御することが好ましい。pHの目標は7.0 〜8.5 とするのが好ましい。アルカリ洗浄液の塩濃度が15%超では洗浄塔内で局所的に塩濃度が飽和値(約26%)を超えて塩化ナトリウムが析出し、ガスや液の流れを妨げ、設備の円滑な運転が困難となる可能性が高くなる。アルカリ洗浄液の塩濃度が1%未満では塩化ナトリウムの回収率が落ちる傾向になる。アルカリ洗浄液のpHが7.0 未満では液が酸性となって塩化水素吸収効率が低下する。アルカリ洗浄液のpHが8.5 超では液のアルカリ性が強すぎてガス中に残すべきCO2 までもが吸収されやすくなる。吸収されたCO2 は主にNaHCO3と化して洗浄塔内に析出し、ガスや液の流れを妨げる。
【0037】
なお、廃棄物処理系外からのアルカリ洗浄液の補充量を可及的に低減して水のリサイクル性を向上させる観点からすれば、アルカリ洗浄液の塩濃度の目標は、より好ましくは10%以下、最も好ましくは4%以下である。とくに、前記手段A(アルカリ洗浄入側ガスおよび/またはアルカリ洗浄出側ガス、温度制御)によりアルカリ洗浄液の塩濃度を4%以下に制御すると、粗合成ガスの急冷でガス中から生成する凝縮水で洗浄液の必要量の略50%以上を賄うことができ、廃棄物処理系外からのアルカリ洗浄液の補充量を大幅に節減することができる。
【0038】
さらに、前記手段Bの実行、すなわち粗合成ガスの純化工程(除湿)から得られる凝縮水を使用することによって、系外からのアルカリ洗浄液の補充量をさらに節減することができる。
また、本発明では、例えば図3に示すように、不純物除去108 後の液を逆浸透113 法で濃縮して濃縮液306 と膜透過水307 を得、濃縮液306 を蒸発・晶析109 させ、膜透過水307 を酸洗浄102 の急冷でのガス温度制御に用いる冷却塔110 の補給水として使用する実施形態が好ましい。ここに、逆浸透法とは、水は透過するが溶質はほとんど透過しない性質を持った膜(これを逆浸透膜または半透膜という。)を介して溶液と水を置き、溶液側に浸透圧以上の圧力(浸透圧の2倍ないし数倍の圧力)をかけて溶液側の水を水側に移動させて取り出す手法である。逆浸透膜を透過して溶液側から水側に移動した水を膜透過水という。逆浸透膜としては、アセチルセルロース系、芳香族ポリアミド系など数種類が実用化されており、それらのいずれも好ましく用いうる。この実施形態によれば、より高濃度の溶液を蒸発・晶析できて混合塩の回収率が向上し、同時に得られた膜透過水を廃棄物処理系内で有効利用できて処理の必要な水量が低減する。
【0039】
また、本発明では、例えば図4に示すように、不純物除去108 後の液を電気透析114 法で濃縮して濃縮液306 と脱塩水308 を得、濃縮液306 を蒸発・晶析109 させ、脱塩水308 を酸洗浄102 の急冷でのガス温度制御に用いる冷却塔110 の補給水として使用する実施形態が好ましい。ここに、電気透析法とは、陰陽両イオンのいずれか一方だけを選択的に透過させる膜(透析膜)を交互に多数配列し、その両端に直流電圧を加えて各イオンをそれぞれの膜を透過させて移動させ、一つおきのセル(相互隣接膜間)内に脱塩水と濃縮液を生成させる手法である。透析膜はイオン交換樹脂を膜状に成型したものが用いられる。この実施形態によれば、より高濃度の溶液を蒸発・晶析できて混合塩の回収率が向上し、同時に得られた脱塩水を廃棄物処理系内で有効利用できて系外への放流水量が低減する。
【0040】
また、本発明では、例えば図5に示すように、蒸発・晶析109 での蒸発工程で生じた蒸気の凝縮水309 を酸洗浄102 の急冷でのガス温度制御に用いる冷却塔110 の補給水として使用する実施形態が好ましい。この実施形態によれば、蒸発工程で生じた余剰水を廃棄物処理系内で有効利用できて処理の必要な水を無くすことができる。
【0041】
また、本発明では、例えば図6に示すように、蒸発・晶析109 での晶析工程の被処理液310 を一部不純物除去108 工程の入側に戻して該不純物除去108 を施す実施形態が好ましい。この実施形態によれば、混合塩の純度がより向上すると共に、晶析工程の余剰液を廃棄物処理系内で有効利用できて系外への放流水または処理すべき水を無くすことができる。
【0042】
【実施例】
(実施例1)
塩素を含む廃棄物200 を図3のプロセスフローに沿って処理し、精製合成ガス204 と混合塩304 を回収した。ガス化改質装置100 としては図1の脱ガスチャンネル3、高温反応炉4、均質化炉5などを組み合わせたものを用い、酸素の供給には図1のPSA6を用い、除塵104 、脱硫105 、除湿106 の各工程では図1のマルチスクラバー9を用い、不純物除去108 工程では図1の水処理装置13を用い、蒸発工程では多重効用缶を用い、晶析工程では晶析缶とその出側の遠心分離機を用いた。
【0043】
この処理操業では、アルカリ洗浄液400 の塩濃度(NaCl濃度)=1〜3%、pH=7.3 〜7.7 となるように、アルカリ洗浄103 入側および出側のガス温度を変更しかつ除湿106 で生じた冷却凝縮水305 を随時アルカリ洗浄液400 に添加した。逆浸透113 工程で得た膜透過水 307を酸洗浄102 での冷却速度制御用の冷却塔110 の補給水として利用した。アルカリ洗浄入側ガス温度は60℃に制御した。また、熱交換器 112で冷却することによりアルカリ洗浄出側ガス温度を45℃に制御した。
【0044】
その結果、得られた精製合成ガスは、そのまま燃料ガスとして使用できた。また、得られた混合塩は、塩化ナトリウム濃度=95%、平均粒径=0.3mm であり、そのままソーダ工業用の原料に供することができた。
(実施例2)
塩素を含む廃棄物200 を図6のプロセスフローに沿って処理し、精製合成ガス204 と混合塩304 を回収した。ガス化改質装置100 としては図1の脱ガスチャンネル3、高温反応炉4、均質化炉5などを組み合わせたものを用い、酸素の供給には図1のPSA6を用い、除塵104 、脱硫105 、除湿106 の各工程では図1のマルチスクラバー9を用い、不純物除去108 工程では図1の水処理装置13を用い、蒸発工程では多重効用缶を用い、晶析工程では晶析缶とその出側の遠心分離機を用いた。
【0045】
この処理操業では、アルカリ洗浄液400 の塩濃度(NaCl濃度)=2〜4%、pH=7.4 〜7.8 となるように、アルカリ洗浄103 入側および出側のガス温度を変更しかつ除湿106 で生じた冷却凝縮水305 を随時アルカリ洗浄液400 に添加した。逆浸透113 工程で得た膜透過水307 および蒸発工程で生じた蒸気の凝縮水309 を酸洗浄102 での冷却速度制御用の冷却塔110 の補給水として利用した。晶析工程の被処理液310 はその一部(遠心分離機の濾液)を不純物除去108 工程の入側に戻して不純物除去108 を施した。アルカリ洗浄入側ガス温度は60℃に制御した。また、熱交換器 112で冷却することによりアルカリ洗浄出側ガス温度を45℃に制御した。
【0046】
その結果、得られた精製合成ガスは、そのまま燃料ガスとして使用できた。また、得られた混合塩は、塩化ナトリウム濃度=96%、平均粒径=0.4mm であり、そのままソーダ工業用の原料に供することができた。
(比較例)
比較のため、実施例1において、アルカリ洗浄103 入側のガス温度とアルカリ洗浄液400 への冷却凝縮水305 の添加量を、洗浄液の塩濃度とpHとが目標に一致するように、変更する代わりに、アルカリ洗浄入側ガス温度を一定値(60℃)に制御し、アルカリ洗浄の熱交換器112 で制御せずに、かつアルカリ洗浄液400 への冷却凝縮水305 の添加を行わずに操業した。このとき、洗浄液の塩濃度(NaCl濃度)は10〜26%、pHは7.6 〜9.0 の範囲で変動した。
【0047】
その結果、得られた精製合成ガスは、CO2 濃度が変動し、燃料ガスとして使用するにはカロリーの変動が大きすぎた。また、得られた混合塩は、塩化ナトリウム濃度=85%、平均粒径=0.1mm であり、そのままソーダ工業用の原料に供するには不十分で、さらなる精製を要した。
【0048】
【発明の効果】
本発明によれば、ガス化改質方式で処理される廃棄物中の塩素分を安定した高品質の混合塩として回収でき、また、廃棄物処理系外への放流水量を少なくできるという優れた効果を奏する。
【図面の簡単な説明】
【図1】ガス化改質方式の例を示すプロセスフロー図である。
【図2】本発明の実施形態の例を示すプロセスフロー図である。
【図3】本発明の実施形態の例を示すプロセスフロー図である。
【図4】本発明の実施形態の例を示すプロセスフロー図である。
【図5】本発明の実施形態の例を示すプロセスフロー図である。
【図6】本発明の実施形態の例を示すプロセスフロー図である。
【符号の説明】
1 ピット
2 プレス
3 脱ガスチャンネル
4 高温反応炉
5 均質化炉
6 PSA
7 水砕システム
8 急冷装置
9 マルチスクラバー
10 ガスエンジン発電機
11 洗浄塔
12 沈降槽
13 水処理装置
14 塩製造装置
15A,15B 熱交換器
100 ガス化改質装置
101 急冷
102 酸洗浄
103 アルカリ洗浄
104 除塵
105 脱硫
106 除湿
107 沈降槽
108 不純物除去
109 蒸発・晶析
110 冷却塔
111,112 熱交換器
113 逆浸透
114 電気透析
200 廃棄物
201 粗合成ガス(酸洗浄入側)
202 粗合成ガス(アルカリ洗浄入側)
203 粗合成ガス(アルカリ洗浄出側)
204 精製合成ガス
300 洗浄液
301 酸洗浄出側の液
302 上澄部
303 沈降部
304 混合塩
305 冷却凝縮水
306 濃縮液
307 膜透過水
308 脱塩水
309 蒸発工程で生じた蒸気の凝縮水
310 晶析工程の被処理液
400 アルカリ洗浄液
401 アルカリ洗浄出側の液[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating chlorine in waste in a gasification reforming system.
[0002]
[Prior art]
Conventionally, most industrial waste or general waste is often disposed of in landfills after being incinerated and reduced in volume as it is or after some kind of pretreatment. . There are many methods for incineration, but in recent years, management of harmful substances such as dioxin in the gas generated at the incineration plant has become a problem, and from the viewpoint of recycling, waste is not simply incinerated but discarded. A system that recovers fuel gas or chemical raw material gas by gasifying and reforming materials at high temperature (Ministry of Health and Welfare: Ministry of Health and Welfare Ordinance No. 14, March 3, 1999 "Gasification reforming system") is desired Yes.
[0003]
A waste gasification and melting process (Kawasaki Steel Technical Report 32 (2000) 4,287-291) was developed as an incineration facility in accordance with the gasification reforming method, for example, using the Kawatetsu Thermo Select method with the process flow shown in FIG. It was done. This process consists of (1) pressing and degassing channels ((a) waste (waste) compression, (b) drying and pyrolysis), (2) high temperature reactor and homogenization furnace ((c) gasification and melting) , (D) slag homogenization, (e) gas reforming), (3) gas purification ((f) gas quenching (quenching, acid cleaning, alkali cleaning), (g) gas purification (dust removal, desulfurization, dehumidification)) , (4) Water treatment ((h) Water treatment / salt production equipment). The outline of each step is as follows.
[0004]
(1) Press and degassing channel (a) First, the waste transferred from the pit 1 is compressed to about 1/5 of the initial volume by the press 2. Thereby, the distribution of moisture in the waste is made uniform, air is excluded, and the degassing efficiency is improved.
(B) Next, the compressed waste is degassed in the degassing channel 3 which is an indirect heating furnace (evaporation of moisture, generation of volatile components by thermal decomposition), and then radiant heat from the high temperature reactor 4 etc. Is further thermally decomposed. Examples of the thermal decomposition reaction of hydrocarbons and cellulose contained in waste include the following reaction examples (formula 1- (1) to (2)), and these reactions yield pyrolytic carbon.
[0005]
[Chemical 1]
Figure 0003989192
[0006]
(2) High-temperature reactor / homogenization furnace (c) The gas generated in the degassing channel 3 flows into the high-temperature reactor 4, and the pyrolysate is pushed out by charging new compressed waste, and the high-temperature reactor 4 Deposit at the bottom. Oxygen produced by PSA (Pressure Swing Adsorption) 6 is blown into the lower part of the high-temperature reactor 4, and the reaction between the oxygen and the carbon in the pyrolyzate (formula 2- (3) to (4)) The temperature at the bottom reaches a maximum of about 2000 ° C in the center, and the metal and inorganic components in the waste melt.
[0007]
[Chemical 2]
Figure 0003989192
[0008]
The carbon component remaining in the lower part of the high temperature reactor 4 and O 2 react exothermically to become CO 2 . The generated CO 2 is reduced to CO when it passes through the pyrolyzate containing C (formula 3- (5)).
[0009]
[Chemical 3]
Figure 0003989192
[0010]
In the presence of excess hot water vapor molecules, a water gasification reaction occurs. In this case, carbon and water vapor are converted to CO and H 2 (formula 4- (6)).
[0011]
[Formula 4]
Figure 0003989192
[0012]
Organic compounds are thermally decomposed into CO and H 2 (Formula 5- (7)).
[0013]
[Chemical formula 5]
Figure 0003989192
[0014]
(D) The melt flows from the high temperature reactor 4 to the soaking furnace 5 maintained at about 1600 ° C., and a small amount of carbon is gasified. In the homogenization furnace 5, the metal melt (metal) has a high density and therefore accumulates in the lower part of the inorganic melt (slag). These continuously flow through the overflow weir and flow down to the granulation system 7 to be cooled and solidified. The recovered mixture cooled and solidified is separated into slag and metal by magnetic separation.
[0015]
(E) The gas generated in the lower part of the high temperature reactor 4 and the pyrolysis gas generated in the degassing channel merge and stay in the reforming part at the upper part of the high temperature reactor 4 for about 2 s at about 1200 ° C.
Under these conditions, the tar content, dioxins and their precursors in the gas are completely decomposed and reformed into a crude synthesis gas containing H 2 , CO, CO 2 and H 2 O as main components. At a temperature of about 1200 ° C, the equilibrium of formula 6- (8) shifts to the right side, and the amount of methane gas becomes extremely small.
[0016]
[Chemical 6]
Figure 0003989192
[0017]
(3) Gas purification (f) The crude synthesis gas reformed in the high-temperature reactor 4 was rapidly cooled with water from about 1200 ° C. to about 70 ° C. with the quenching device 8 to prevent re-synthesis of dioxins by de novo synthesis. Thereafter, in the washing tower 11, heavy metals are removed by acid washing, and acid gases are removed by alkali washing.
[0018]
Here, heavy metal components such as Zn and Pb having a low boiling point are mainly transferred from the high temperature reactor 4 in a gas state. Chlorine contained in the waste is mainly present in the synthesis gas as HCl, and HCl is dissolved in the cooling / cleaning solution. The crude synthesis gas is washed with the acidic water (pH 2 to 3) containing HCl to remove heavy metal components (for example, chemical formulas 7- (9) to (10)). Therefore, fly ash is not generated in this process.
[0019]
[Chemical 7]
Figure 0003989192
[0020]
Thus, in this process, the chlorine content in the waste is effectively utilized. The cleaning liquid is sent to the settling tank 12 to remove the carbon fine particles, indirectly cooled by the heat exchanger 15A, and then recirculated for gas quenching. The water derived from the garbage becomes surplus water in the settling tank 12 and is sent to the water treatment device 13 for treatment.
The acid-cleaned synthesis gas is alkali-cleaned, and an acidic gas such as hydrogen chloride gas is neutralized and removed (Formula 8- (11)). The produced NaCl is finally recovered as a mixed salt by the salt production apparatus 14.
[0021]
[Chemical 8]
Figure 0003989192
[0022]
(G) Further, the gas is sent from the washing tower 11 to the multi scrubber 9 to be dedusted, desulfurized and washed, dehumidified and dried to obtain a clean refined synthetic gas from which harmful substances have been removed. Used as fuel gas.
(4) Water treatment (h) H 2 O produced up to the gas reforming process is condensed in the gas quenching and refining process, and heavy metals and salts contained in the exhaust gas as fly ash in the conventional incineration system Move all into the wash water. Therefore, fly ash is not generated, and water containing metals such as Fe, Zn, Pb, Na, and K is generated, but the metal is recovered by the water treatment device 13 as useful substances such as hydroxides and mixed salts. The The Chiba Plant (waste gasification and melting equipment installed in the Chiba Works, Kawasaki Steel Co., Ltd.) is located in the coastal area, so the salt production equipment 14 is not installed, but it has water quality that can be discharged into the sewer by ion exchange treatment. It is said that. On the other hand, with standard equipment (installed in Fondo Toche (Italy) and Karlsruhe (Germany)), water can be reused as process cooling water and mixed salt can be obtained by the salt production device 14 and closed. It has become.
[0023]
[Problems to be solved by the invention]
In the gasification reforming type waste treatment process, the chlorine content in the waste is converted into hydrogen chloride gas, and the cleaning solution (washing water) absorbs the gas contained in the crude synthesis gas after gas reforming. It is used as an acid cleaning solution for removing heavy metal components. The acid cleaning solution after use is neutralized with NaOH, and this neutralized solution (sodium chloride aqueous solution) is used again as a cleaning solution (hydrogen chloride gas absorption solution). A portion is removed to remove impurities, and concentrated to extract and recover the mixed salt. Moreover, the crude synthesis gas after washing is sent to a gas purification step, and is subjected to dust removal → desulfurization washing → dehumidification drying to obtain a purified synthesis gas.
[0024]
However, this process has a problem that it is difficult to stabilize the quality of the mixed salt to be recovered (sodium chloride concentration and particle size) within a range suitable for industrial salt. Therefore, the present invention is able to recover the chlorine content in the waste as a stable high-quality mixed salt, and further reduce the water required for processing in the gasification reforming system, which can reduce the water required for processing. It aims to provide a method.
[0025]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the inventors of the present invention have a great influence on the quality of the recovered mixed salt due to the salt concentration of the alkaline cleaning liquid. In order to stabilize the quality of the mixed salt, it is important to keep the salt concentration and more preferably the pH of the alkaline cleaning solution constant. In order to keep the salt concentration and pH of the alkaline cleaning solution constant, one is to control the gas temperature on the inlet side of the alkaline cleaning process and / or the gas temperature on the outlet side of the alkaline cleaning process. Has found that it is effective to dilute the alkaline cleaning liquid with surplus water generated in the process downstream of the alkaline cleaning process, and has made the present invention. In particular, according to the latter means (diluting the alkaline cleaning liquid with the excess water generated in the downstream process from the alkaline cleaning process), the excess water on the downstream side is added to the alkaline cleaning liquid. Is reduced.
[0026]
That is, the present invention absorbs and mixes the chlorine content in the gasification / reformed gas obtained by gasifying / reforming waste by the gasification reforming method, by alkali cleaning in which an alkali cleaning liquid is added to the gas. In the method for treating chlorine in waste in the gasification reforming method, which is recovered as a salt , a cleaning solution is added to the gasification / reformation gas before the alkali cleaning, followed by rapid cooling, and a portion of the hydrogen chloride in the gas and perform acid washing to absorb heavy metals content, the crude synthesis gas obtained by removing hydrogen chloride content by alkali cleaning was purified syngas which was further purified, alkaline cleaning solution used in the alkali washing, adding NaOH use by circulating while, in time, wherein while performing the control described below, withdrawn part of the alkaline cleaning liquid in the circulation, after impurity removal, and Turkey resulting mixed salt is evaporated, crystallization Gasification reform It is a chlorine treatment method in waste in system.
[0027]
Record
(A) Control of gas temperature on the alkali cleaning inlet side
(B) the alkali cleaning the exit side of the control of the gas temperature
(C) adding cooling condensate produced by purification of the crude synthesis gas to the circulating alkaline cleaning liquid
Or a combination of two or more of the above , the salt concentration of the circulating alkaline cleaning liquid is 15% or less ( preferably 1 to 15%, more preferably 1 to 4% ) and the pH is 7.0 to 8.5 . Control to do .
[0028]
Further, in the present invention, the liquid after removing impurities is concentrated by reverse osmosis to obtain a concentrated liquid and membrane permeated water, the concentrated liquid is evaporated and crystallized, and the membrane permeated water is used as makeup water for a cooling tower for acid washing. It is preferable to use it.
In the present invention, the liquid after removing impurities is concentrated by electrodialysis to obtain a concentrated liquid and demineralized water, the concentrated liquid is evaporated and crystallized, and the demineralized water is used as make-up water for a cooling tower for acid washing. It is preferable.
[0029]
In the present invention, it is preferable to use the condensed water of the vapor generated by the evaporation as makeup water for the cooling tower for acid cleaning.
In the present invention, it is preferable to remove the impurities by returning a part of the liquid to be crystallized to the entry side for removing impurities.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 2 is a process diagram showing an example of an embodiment of the present invention. As shown in the figure, in the present invention, after the waste 200 containing chlorine is heated to a pyrolyzable temperature (about 100 to 600 ° C.) in the gasification reformer 100 and gasified and melted using oxygen, Partial combustion with oxygen and reforming by raising the temperature to about 1200 ° C. The reformed gas (crude synthesis gas 201) contains hydrogen chloride (derived from the chlorine content in the waste 200) generated during the gasification process. As the gasification reforming apparatus 100, a combination of the degassing channel 3, the high temperature reaction furnace 4, the homogenization furnace 5 and the like of FIG. 1 can be preferably used. The PSA 6 in FIG. 1 can be preferably used for supplying oxygen.
[0031]
The reformed gas is quenched 101 by applying the cleaning liquid 300, and further, the cleaning liquid 300 is applied to the gas to perform acid cleaning 102 for absorbing hydrogen chloride and heavy metals in the gas. The quenching 101 and the acid cleaning 102 are preferably configured so that the heat of the gas is absorbed by the cleaning liquid 300 and further absorbed by the cooling tower 110 via the heat exchanger 111.
Next, an alkaline cleaning solution 103 is further added to the acid cleaning outlet gas 202 by adding an alkaline cleaning solution 400 to further absorb hydrogen chloride. The alkaline cleaning solution is preferably a solution containing sodium hydroxide (NaOH) in order to extract NaCl at a high concentration. In this way, the gas on the alkali washing outlet side is the crude synthesis gas 203 from which hydrogen chloride has been removed, and this is further purified (for example, dust removal 104 → desulfurization 105 → dehumidification 106) to obtain the purified synthesis gas 204. The purified synthesis gas 204 is used as a fuel gas or a chemical raw material gas. The multi-scrubber 9 of FIG. 1 and the like can be preferably used in each step of dust removal 104, desulfurization 105, and dehumidification 106.
[0032]
On the other hand, the liquid 301 on the rapid cooling side and the acid cleaning inlet side is guided to the sedimentation tank 107 to be separated into the supernatant part 302 and the sedimentation part 303. The supernatant part 302 is circulated and used as the washing liquid 300, and the sedimentation part 303 Is returned to the high temperature reactor 4, pit 1, degassing channel 3, etc. of FIG. The supernatant 401 and the liquid 401 on the alkali washing outlet side 108 remove impurities, and then evaporate and crystallize 109 to recover the mixed salt 304.
[0033]
Impurity removal 108 The impurities to be removed in the step include iron, silica, aluminum, heavy metal, calcium, etc. In this step, for example, the metal contained in the impurities using the water treatment device 13 of FIG. (Iron, aluminum, heavy metals, calcium, etc.) should be made into their hydroxides, precipitated and removed from the mother liquor.
In the step of evaporation / crystallization 109, a multi-effect can is suitable as the evaporation apparatus from the viewpoint of energy reduction (energy saving). A multi-effect can is a system in which several evaporators are arranged in series, the steam generated in the first can is used as the heat source for the next can, and the steam generated in the final can is recovered through a condenser. is there. In this method, it is only necessary to supply new steam as a heat source to the first can, so that steam can be saved. As a crystallization (salt recovery) apparatus, a crystallization can is suitable from the viewpoint of salt quality. In the method by evaporation to dryness, impurities are mixed into the salt. The crystallization can is an apparatus for concentrating the solvent by evaporating the solvent from a solution in which a crystalline substance is dissolved, and depositing crystals at a concentration higher than the saturation solubility. Moreover, what has a centrifuge in the crystallization can outlet side is preferable.
[0034]
In the method for treating a chlorine content in waste in such a gasification reforming method, in the present invention, so that the salt concentration of the alkaline cleaning liquid 400 meets the target, more preferably, the salt concentration and pH meet the target. The temperature of the gas 202 on the inlet side (acid cleaning 102 outlet side) of the alkali cleaning 103 and / or the temperature of the gas 203 on the outlet side of the alkali cleaning 103 is controlled. Alternatively, the cooled condensed water 305 generated by the purification (eg, dehumidification 106) of the crude syngas 203 on the outlet side of the alkali cleaning 103 is added to the alkali cleaning liquid 400. Here, the salt concentration of the alkaline cleaning liquid is expressed as a sodium chloride concentration.
[0035]
In order to stabilize the quality of the mixed salt to be recovered, it is necessary to absorb all hydrogen chloride in the gas in the cleaning tower in the cleaning liquid. To achieve this, the salt concentration of the cleaning liquid is kept within an appropriate range (to the target Need to match). This coincidence control can be accurately performed by controlling the gas temperature on the inlet side of the alkali cleaning 103 and / or controlling the gas temperature on the outlet side of the alkali cleaning 103 (means A). In the means A, the gas temperature on the alkali cleaning inlet side (after acid cleaning) is controlled by an acid cleaning heat exchanger, and the gas temperature on the alkali cleaning outlet side is controlled by an alkali cleaning heat exchanger. It is preferable to generate condensed water at a later gas temperature below the dew point and use it as an alkaline cleaning liquid. The coincidence control can also be performed with high accuracy by adding cooling condensate generated in the crude syngas purification step (eg, dehumidification step) to the alkaline cleaning liquid (means B). Means A and B may be used alone or in combination. In particular, according to the means B, surplus water generated in the downstream process of the cleaning process is used for diluting the cleaning liquid, so that the amount of discharged water (water that needs to be processed) to the outside of the waste treatment system is reduced.
[0036]
The target salt concentration of the alkaline cleaning liquid is preferably 15% (meaning mass%, the same shall apply hereinafter) or less. More preferably, it is 1 to 15%, and further preferably 1 to 4%. It is preferable to control the salt concentration of the cleaning liquid on the alkali cleaning outlet side. The pH target is preferably 7.0 to 8.5. If the salt concentration of the alkaline cleaning liquid exceeds 15%, the salt concentration locally exceeds the saturation value (about 26%) in the cleaning tower, so that sodium chloride is deposited, preventing the flow of gas and liquid, and smooth operation of the equipment. The possibility of difficulty increases. If the salt concentration of the alkaline cleaning liquid is less than 1%, the recovery rate of sodium chloride tends to decrease. If the pH of the alkaline cleaning solution is less than 7.0, the solution becomes acidic and the hydrogen chloride absorption efficiency decreases. If the pH of the alkaline cleaning solution exceeds 8.5, the alkalinity of the solution is too strong and even CO 2 that should be left in the gas is easily absorbed. The absorbed CO 2 is mainly converted into NaHCO 3 and is deposited in the washing tower, preventing the flow of gas and liquid.
[0037]
From the viewpoint of reducing the replenishment amount of the alkaline cleaning liquid from outside the waste treatment system as much as possible and improving the recyclability of water, the salt concentration target of the alkaline cleaning liquid is more preferably 10% or less, Most preferably, it is 4% or less. In particular, when the salt concentration of the alkali cleaning liquid is controlled to 4% or less by means A (alkali cleaning inlet side gas and / or alkali cleaning outlet side gas, temperature control), condensed water generated from the gas by rapid cooling of the crude synthesis gas. Can cover about 50% or more of the required amount of cleaning liquid, and can greatly reduce the replenishment amount of alkaline cleaning liquid from outside the waste treatment system.
[0038]
Furthermore, by using condensed water obtained from the execution of the means B, that is, the purification step (dehumidification) of the crude synthesis gas, the replenishment amount of the alkaline cleaning liquid from outside the system can be further reduced.
Further, in the present invention, for example, as shown in FIG. 3, the liquid after the impurity removal 108 is concentrated by the reverse osmosis 113 method to obtain the concentrated liquid 306 and the membrane permeated water 307, and the concentrated liquid 306 is evaporated and crystallized 109. An embodiment in which the membrane permeated water 307 is used as makeup water for the cooling tower 110 used for gas temperature control in the rapid cooling of the acid wash 102 is preferred. Here, the reverse osmosis method is a method in which a solution and water are placed through a membrane (this is called a reverse osmosis membrane or semipermeable membrane) that has the property of allowing water to permeate but hardly allowing solutes to permeate. This is a technique in which water on the solution side is moved to the water side and taken out by applying a pressure higher than the pressure (pressure twice or several times the osmotic pressure). Water that has passed through the reverse osmosis membrane and moved from the solution side to the water side is referred to as membrane permeated water. Several types of reverse osmosis membranes such as acetyl cellulose and aromatic polyamide have been put into practical use, and any of them can be preferably used. According to this embodiment, a higher-concentration solution can be evaporated and crystallized to improve the recovery rate of the mixed salt, and at the same time, the obtained membrane permeated water can be effectively used in the waste treatment system and needs to be treated. The amount of water is reduced.
[0039]
In the present invention, for example, as shown in FIG. 4, the liquid after removing impurities 108 is concentrated by electrodialysis 114 to obtain a concentrated liquid 306 and demineralized water 308, and the concentrated liquid 306 is evaporated and crystallized 109. An embodiment in which the demineralized water 308 is used as make-up water for the cooling tower 110 used to control the gas temperature during quenching of the acid wash 102 is preferred. Here, electrodialysis is a method in which a number of membranes (dialysis membranes) that selectively permeate only one of the yin and yang ions are alternately arranged, and a DC voltage is applied to both ends of each membrane so that each ion is passed through each membrane. This is a technique for generating demineralized water and concentrated solution in every other cell (between adjacent membranes) through permeation. As the dialysis membrane, a membrane obtained by molding an ion exchange resin into a membrane shape is used. According to this embodiment, a higher-concentration solution can be evaporated and crystallized to improve the recovery rate of the mixed salt, and at the same time, the obtained desalted water can be effectively used in the waste treatment system and discharged to the outside of the system. The amount of water is reduced.
[0040]
Further, in the present invention, for example, as shown in FIG. 5, the condensate 309 of the vapor generated in the evaporation process in the evaporation / crystallization 109 is used for the control of the gas temperature in the quenching of the acid cleaning 102, and the makeup water for the cooling tower 110 is used. The embodiment used as is preferred. According to this embodiment, surplus water generated in the evaporation step can be effectively used in the waste treatment system, and water that needs to be treated can be eliminated.
[0041]
Further, in the present invention, as shown in FIG. 6, for example, the liquid 310 to be treated in the crystallization process in the evaporation / crystallization 109 is partially returned to the entry side of the impurity removal 108 process to perform the impurity removal 108. Is preferred. According to this embodiment, the purity of the mixed salt is further improved, and the surplus liquid of the crystallization step can be effectively used in the waste treatment system, so that the discharged water or the water to be treated can be eliminated. .
[0042]
【Example】
Example 1
Waste 200 containing chlorine was treated according to the process flow of FIG. 3 to recover purified synthesis gas 204 and mixed salt 304. As the gasification reformer 100, a combination of the degassing channel 3, the high temperature reactor 4 and the homogenizing furnace 5 shown in FIG. 1 is used, and the PSA 6 shown in FIG. 1 is used in each process of dehumidification 106, the water treatment device 13 in FIG. 1 is used in the process of removing impurities 108, a multi-effect can is used in the evaporation process, and the crystallization can and its output are used in the crystallization process. A side centrifuge was used.
[0043]
In this treatment operation, the alkali cleaning liquid 400 has a salt concentration (NaCl concentration) of 1 to 3% and a pH of 7.3 to 7.7, and the gas temperature on the inlet and outlet sides of the alkaline cleaning 103 is changed and dehumidification 106 occurs. The cooled condensed water 305 was added to the alkaline cleaning liquid 400 as needed. The membrane permeated water 307 obtained in the reverse osmosis 113 step was used as make-up water for the cooling tower 110 for controlling the cooling rate in the acid washing 102. The alkali cleaning inlet gas temperature was controlled at 60 ° C. In addition, the alkali cleaning outlet gas temperature was controlled at 45 ° C. by cooling with the heat exchanger 112.
[0044]
As a result, the obtained refined synthesis gas could be used as a fuel gas as it was. Further, the obtained mixed salt had a sodium chloride concentration of 95% and an average particle size of 0.3 mm, and could be used as a raw material for the soda industry.
(Example 2)
Waste 200 containing chlorine was treated according to the process flow of FIG. 6, and purified synthesis gas 204 and mixed salt 304 were recovered. As the gasification reformer 100, a combination of the degassing channel 3, the high temperature reactor 4 and the homogenizing furnace 5 shown in FIG. 1 is used, and the PSA 6 shown in FIG. 1 is used in each process of dehumidification 106, the water treatment device 13 in FIG. 1 is used in the process of removing impurities 108, a multi-effect can is used in the evaporation process, and the crystallization can and its output are used in the crystallization process. A side centrifuge was used.
[0045]
In this treatment operation, the alkali cleaning liquid 400 has a salt concentration (NaCl concentration) = 2 to 4% and pH = 7.4 to 7.8 so that the gas temperature on the inlet side and the outlet side of the alkali cleaning 103 is changed and dehumidification 106 occurs. The cooled condensed water 305 was added to the alkaline cleaning liquid 400 as needed. Membrane permeated water 307 obtained in the reverse osmosis 113 step and steam condensed water 309 generated in the evaporation step were used as make-up water for the cooling tower 110 for controlling the cooling rate in the acid cleaning 102. A part of the liquid 310 to be treated in the crystallization process (the filtrate of the centrifuge) was returned to the entry side of the impurity removal 108 process and subjected to the impurity removal 108. The alkali cleaning inlet gas temperature was controlled at 60 ° C. In addition, the alkali cleaning outlet gas temperature was controlled at 45 ° C. by cooling with the heat exchanger 112.
[0046]
As a result, the obtained refined synthesis gas could be used as a fuel gas as it was. The obtained mixed salt had a sodium chloride concentration of 96% and an average particle size of 0.4 mm, and could be used as a raw material for the soda industry.
(Comparative example)
For comparison, in Example 1, instead of changing the gas temperature on the inlet side of the alkali cleaning 103 and the amount of cooling condensed water 305 added to the alkali cleaning liquid 400 so that the salt concentration and pH of the cleaning liquid match the target. In addition, the alkali cleaning inlet side gas temperature was controlled to a constant value (60 ° C.), and was not controlled by the alkali cleaning heat exchanger 112, and the cooling cleaning water 305 was not added to the alkaline cleaning liquid 400. . At this time, the salt concentration (NaCl concentration) of the cleaning solution varied in the range of 10 to 26% and the pH in the range of 7.6 to 9.0.
[0047]
As a result, the purified synthesis gas obtained had a variation in CO 2 concentration, and the variation in calories was too large for use as a fuel gas. Further, the obtained mixed salt had a sodium chloride concentration of 85% and an average particle size of 0.1 mm, which was insufficient for use as a raw material for the soda industry, and required further purification.
[0048]
【The invention's effect】
According to the present invention, the chlorine content in the waste treated by the gasification reforming method can be recovered as a stable high-quality mixed salt, and the amount of discharged water outside the waste treatment system can be reduced. There is an effect.
[Brief description of the drawings]
FIG. 1 is a process flow diagram showing an example of a gasification reforming system.
FIG. 2 is a process flow diagram illustrating an example embodiment of the present invention.
FIG. 3 is a process flow diagram illustrating an example embodiment of the present invention.
FIG. 4 is a process flow diagram illustrating an example embodiment of the present invention.
FIG. 5 is a process flow diagram illustrating an example embodiment of the present invention.
FIG. 6 is a process flow diagram illustrating an example embodiment of the present invention.
[Explanation of symbols]
1 Pit 2 Press 3 Degassing channel 4 High temperature reactor 5 Homogenizing furnace 6 PSA
7 Granulation system 8 Quenching device 9 Multi scrubber
10 Gas engine generator
11 Washing tower
12 Settling tank
13 Water treatment equipment
14 Salt production equipment
15A, 15B heat exchanger
100 Gasification reformer
101 Rapid cooling
102 Acid cleaning
103 Alkaline cleaning
104 Dust removal
105 Desulfurization
106 Dehumidification
107 Settling tank
108 Impurity removal
109 Evaporation and crystallization
110 Cooling tower
111,112 heat exchanger
113 Reverse osmosis
114 electrodialysis
200 waste
201 Crude synthesis gas (acid cleaning inlet side)
202 Crude synthesis gas (inside of alkali cleaning)
203 Crude synthesis gas (alkali cleaning outlet)
204 Refined synthesis gas
300 Cleaning fluid
301 Acid cleaning outlet liquid
302 supernatant
303 Settling part
304 mixed salt
305 Cooled condensed water
306 Concentrate
307 Permeated water
308 Demineralized water
309 Steam condensate from the evaporation process
310 Liquid to be treated in crystallization process
400 Alkaline cleaning solution
401 Alkali cleaning outlet liquid

Claims (5)

ガス化改質方式により廃棄物をガス化・改質してなるガス化・改質ガス中の塩素分を、該ガスにアルカリ洗浄液を加えるアルカリ洗浄により、吸収し、混合塩として回収する、ガス化改質方式における廃棄物中の塩素分の処理方法において、
前記アルカリ洗浄前のガス化・改質ガスに洗浄液を加えて急冷し、ガス中の塩化水素分の一部と重金属分を吸収する酸洗浄を行い、
前記アルカリ洗浄により塩化水素分を除いてなる粗合成ガスこれをさらに純化して精製合成ガスと
前記アルカリ洗浄に用いるアルカリ洗浄液は、 NaOH を足しながら循環させて使用し、
その際に、
(a)前記アルカリ洗浄入側のガス温度の制御、
(b)前記アルカリ洗浄出側のガス温度制御
(c)前記粗合成ガスの純化で生成する冷却凝縮水を前記循環中のアルカリ洗浄液に添加すること、
のいずれか一または二以上の組合せにより、前記循環中のアルカリ洗浄液の塩濃度を 15 %以下かつ pH 7.0 8.5 に制御しつつ、
当該循環中のアルカリ洗浄液の一部を抜き取り、不純物除去後、蒸発・晶析させて混合塩を得る
ことを特徴とするガス化改質方式における廃棄物中の塩素分の処理方法。
Gas that is gasified and reformed by gasification and reforming method. Gas in the gasification and reformed gas is absorbed by alkali cleaning by adding alkaline cleaning liquid to the gas and recovered as a mixed salt. In the treatment method of chlorine content in waste in chemical reforming system,
Plus washings was quenched gasification reforming gas before the alkaline cleaning, acid cleaning was carried out for absorbing a part and heavy metal content of the hydrogen chloride content in the gas,
The crude synthesis gas obtained by removing hydrogen chloride content by alkaline wash and purified synthesis gas is further purify this,
The alkali cleaning solution used for the alkali cleaning is used by adding and circulating NaOH .
At that time,
(A) control of the gas temperature at the inlet side of the alkali cleaning ;
(B) the alkali cleaning the exit side of the control of the gas temperature,
(C) adding cooling condensate produced by the purification of the crude synthesis gas to the circulating alkaline cleaning liquid;
In any one or a combination of two or more of the above , while controlling the salt concentration of the circulating alkaline cleaning liquid to 15 % or less and the pH to 7.0 to 8.5 ,
A method for treating the chlorine content in waste in a gasification reforming method, wherein a part of the alkaline cleaning liquid in the circulation is extracted, impurities are removed, and then evaporated and crystallized to obtain a mixed salt. .
不純物除去後の液を逆浸透法で濃縮して濃縮液と膜透過水を得、濃縮液を蒸発・晶析させ、膜透過水を酸洗浄の冷却塔の補給水として使用することを特徴とする請求項記載のガス化改質方式における廃棄物中の塩素分の処理方法。The solution after removing impurities is concentrated by reverse osmosis to obtain a concentrated solution and membrane permeated water, the concentrated solution is evaporated and crystallized, and the membrane permeated water is used as make-up water for a cooling tower for acid washing. The method for treating chlorine in waste in the gasification reforming system according to claim 1 . 不純物除去後の液を電気透析法で濃縮して濃縮液と脱塩水を得、濃縮液を蒸発・晶析させ、脱塩水を酸洗浄の冷却塔の補給水として使用することを特徴とする請求項1または2に記載のガス化改質方式における廃棄物中の塩素分の処理方法。The liquid after removing impurities is concentrated by electrodialysis to obtain a concentrated liquid and demineralized water, the concentrated liquid is evaporated and crystallized, and the demineralized water is used as makeup water for an acid-washed cooling tower. Item 3. A method for treating chlorine in waste in the gasification reforming method according to Item 1 or 2 . 前記蒸発で生じた蒸気の凝縮水を酸洗浄の冷却塔の補給水として使用することを特徴とする請求項1〜のいずれかに記載のガス化改質方式における廃棄物中の塩素分の処理方法。The evaporated resulting condensed water in the waste in the gasification reforming method according to any one of claims 1 to 3, characterized in that used as makeup water for cooling towers acid cleaning of chlorine vapor Processing method. 前記晶析の被処理液を一部前記不純物除去の入側に戻して該不純物除去を施すことを特徴とする請求項1〜のいずれかに記載のガス化改質方式における廃棄物中の塩素分の処理方法。In the waste in the gasification reforming method according to any one of claims 1 to 4, characterized in that performing the impurities removing return the liquid to be treated in the crystallization in the entry side of said portion removing impurities Chlorine treatment method.
JP2001168975A 2001-06-05 2001-06-05 Treatment method of chlorine content in waste in gasification reforming system Expired - Lifetime JP3989192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001168975A JP3989192B2 (en) 2001-06-05 2001-06-05 Treatment method of chlorine content in waste in gasification reforming system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001168975A JP3989192B2 (en) 2001-06-05 2001-06-05 Treatment method of chlorine content in waste in gasification reforming system

Publications (2)

Publication Number Publication Date
JP2002363577A JP2002363577A (en) 2002-12-18
JP3989192B2 true JP3989192B2 (en) 2007-10-10

Family

ID=19011107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001168975A Expired - Lifetime JP3989192B2 (en) 2001-06-05 2001-06-05 Treatment method of chlorine content in waste in gasification reforming system

Country Status (1)

Country Link
JP (1) JP3989192B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649631B2 (en) * 2004-09-27 2011-03-16 Jfeエンジニアリング株式会社 Treatment method of gas generated from incinerator
CN101906324B (en) * 2010-07-20 2013-04-03 武汉凯迪控股投资有限公司 Indirect gasification process of biomass water vapor and equipment thereof
CN112665022B (en) * 2019-10-16 2022-02-25 广东美的制冷设备有限公司 Air conditioner and control method and device for cleaning fresh air dehumidification system thereof
CN112742182B (en) * 2020-12-22 2022-11-04 南通润中石墨设备有限公司 Gas-liquid separation system of HCL falling film absorber
CN115212694B (en) * 2022-07-22 2023-10-03 光大环境科技(中国)有限公司 Method and device for treating fly ash plasma fusion flue gas

Also Published As

Publication number Publication date
JP2002363577A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
US4123506A (en) Utilization of impure steam contaminated with hydrogen sulfide
BRPI0714113A2 (en) process for removing ammonia
JP3985052B2 (en) Waste treatment method in gasification reforming system
JP2006213535A (en) Method of and apparatus for producing salt from salt water generated when waste materials are treated in gasification-melting furnace
US4202864A (en) Process for controlling environmental pollution from steam containing hydrogen sulfide
JP3989192B2 (en) Treatment method of chlorine content in waste in gasification reforming system
US20200048128A1 (en) Method and Apparatus for Gasification Wastewater Treatment
JP2008174393A (en) Method for producing salt
KR20020051011A (en) Apparatus and method for purifying Coke oven gas
DE3803905C2 (en)
JP3843940B2 (en) Method for producing mixed salt from waste in gasification reforming system
JP2000328070A (en) Waste gasification treatment method
JP4429066B2 (en) How to remove iodine from salt water
CN102826520B (en) Method for implementing co-production of ammonium sulfate from ADC foaming agent wastewater by extracting hydrazine hydrate
JP3220669B2 (en) Waste treatment method and equipment
US4596698A (en) Apparatus for utilizing impure steam with extraction of one or more substances therefrom
KR100270088B1 (en) Purification method of coke gas
JP4456899B2 (en) Method and apparatus for producing salt from salt water generated when processing waste or incineration ash of waste
US4242305A (en) Apparatus for controlling emissions of hydrogen sulfide from a system utilizing geothermal steam
JP2005068535A (en) Method of treating gas or flying ash containing lead and zinc
KR101525556B1 (en) a apparatus that purifying mixture gas using combustible matter by carbonizing and method using the apparatus
JP3741400B2 (en) Exhaust gas desulfurization method and apparatus
JP2019072678A (en) Method of processing aluminum-containing waste
KR100314846B1 (en) Method for refining coke gas by removing ammonia, hydrogen sulfide, and hydrogen cyanide from the coke gas
KR100516462B1 (en) Method for collecting nh4scn from cog purification process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3989192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140727

Year of fee payment: 7

EXPY Cancellation because of completion of term