JP3986338B2 - Refrigerant circuit using inverter-controlled compressor - Google Patents

Refrigerant circuit using inverter-controlled compressor Download PDF

Info

Publication number
JP3986338B2
JP3986338B2 JP2002080578A JP2002080578A JP3986338B2 JP 3986338 B2 JP3986338 B2 JP 3986338B2 JP 2002080578 A JP2002080578 A JP 2002080578A JP 2002080578 A JP2002080578 A JP 2002080578A JP 3986338 B2 JP3986338 B2 JP 3986338B2
Authority
JP
Japan
Prior art keywords
refrigerant
inverter
compressor
evaporator
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002080578A
Other languages
Japanese (ja)
Other versions
JP2003279172A (en
Inventor
孝 佐藤
俊行 江原
裕之 松森
大 松浦
隆泰 斎藤
美暁 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002080578A priority Critical patent/JP3986338B2/en
Publication of JP2003279172A publication Critical patent/JP2003279172A/en
Application granted granted Critical
Publication of JP3986338B2 publication Critical patent/JP3986338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • F04C2240/403Electric motor with inverter for speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、インバータによって駆動制御されるコンプレッサを備えて構成された冷媒回路に関するものである。
【0002】
【従来の技術】
従来より例えば家屋の室内や車室内を空調するためのエアコンは、例えば特開平2−294587号公報に示されるようなロータリコンプレッサや、ガスクーラ、膨張弁(減圧装置)及びエバポレータ(蒸発器)等を順次環状に配管接続して冷媒回路が構成されている。そして、ロータリコンプレッサの回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経て冷媒回路を構成するガスクーラに流入して放熱し、膨張弁で絞られてエバポレータ(蒸発器)に供給される。そこで冷媒が蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮して室内を空調するものであった。
【0003】
また、近年では地球環境問題に対処するため、この種のエアコン等の冷媒回路においても、従来のフロンを用いずに自然冷媒である二酸化炭素(CO2)を冷媒として用いることが試みられているが、CO2冷媒は高低圧差の大きい冷媒であるため、コンプレッサとしては多段圧縮式のロータリコンプレッサも使用される。
【0004】
この多段圧縮式のロータリコンプレッサ、例えば内部中間圧型多段圧縮式のロータリコンプレッサでは、第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。そして、この密閉容器内の中間圧のガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行なわれて高温高圧のガスとなり、高圧室側より吐出ポート、吐出消音室を経て外部に吐出されることになる。
【0005】
そして、係るロータリコンプレッサに、二酸化炭素(CO2)を冷媒として用いた場合、吐出冷媒圧力は高圧となる第2の回転圧縮要素で12MPaGに達し、一方、低段側となる第1の回転圧縮要素で8MPaG(中間圧)となる(第1の回転圧縮要素の吸込圧力は4MPaG)。
【0006】
【発明が解決しようとする課題】
このようなエアコンでは温度制御性能を向上させるために、上記ロータリコンプレッサをインバータによって回転数制御するのが一般的となりつつあるが、係るインバータは複数の半導体スイッチング素子から構成されるため、動作中に発熱を伴う。この発熱で許容温度を超えると破壊や動作不良を引き起こすため、従来では送風機やウォータージャケットなどで冷却していたが、装置の大型化やコストの高騰引き起こす問題があった。
【0007】
本発明は、係る従来の技術的課題を解決するために成されたものであり、コンプレッサを駆動制御するためのインバータの冷却を効率的に行える冷媒回路を提供するものである。
【0008】
【課題を解決するための手段】
即ち、本発明ではインバータにより駆動制御されるコンプレッサと、ガスクーラ、減圧装置及びエバポレータ等を順次環状に配管接続して構成された冷媒回路において、ガスクーラを出た冷媒とエバポレータを出てコンプレッサに吸い込まれる冷媒とを熱交換させるための熱交換器を備え、インバータをこの熱交換器と交熱的に配置したので、コンプレッサに吸い込まれる比較的低温の冷媒によってインバータを冷却し、発熱を抑えることができる。
【0009】
これにより、格別なインバータ用の冷却装置を省いて装置の小型化とコストの低減を図ることができるようになるものである。
【0010】
特に、ガスクーラを出た冷媒とエバポレータを出た冷媒とを熱交換させるための熱交換器にインバータを交熱的に配置しているので、熱交換器における熱交換性能を損なうこと無く、インバータの冷却が可能となるものである。
【0011】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の冷媒回路に使用するコンプレッサの実施例として、第1及び第2の回転圧縮要素を備えた内部中間圧型多段(2段)圧縮式ロータリコンプレッサ10の縦断側面図である。
【0012】
この図において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段圧縮式ロータリコンプレッサで、この多段圧縮式ロータリコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。
【0013】
密閉容器12は底部をオイル溜めとし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に後述するインバータ163から電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0014】
電動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とから構成され、前述のインバータ163により駆動回転数が制御される。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
【0015】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24ステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0016】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が狭持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ38、下シリンダ40と、この上下シリンダ38、40内を180度の位相差を有して回転軸16に設けた上下偏心部42、44にて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン50、52と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成されている。
【0017】
一方、上部支持部材54及び下部支持部材56には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路は図示せず)と、一部を凹陥させ、この凹陥部を上カバー66、下カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。
【0018】
尚、吐出消音室64と密閉容器12内とは、上下シリンダ38、40や中間仕切板36を貫通する連通路にて連通されており、連通路の上端には中間吐出管121が立設され、この中間吐出管121から第1の回転圧縮要素32で圧縮された中間圧の冷媒が密閉容器12内に吐出される。
【0019】
また、第2の回転圧縮要素34の上シリンダ38内部と連通する吐出消音室62の上面開口部を閉塞する上部カバー66は、密閉容器12内を吐出消音室62と電動要素14側とに仕切る。
【0020】
そして、この場合冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前述した二酸化炭素(CO2)を使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等該存のオイルが使用される。
【0021】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路60(上側は図示せず)、吐出消音室62、上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に隣接すると共に、スリーブ143はスリーブ141の略対角線上にある。また、スリーブ144はスリーブ141と略90度ずれた位置にある。
【0022】
そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の図示しない吸込通路と連通する。この冷媒導入管92は密閉容器12の上側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0023】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60と連通する。この冷媒導入管94の他端はアキュムレータ158の下側に接続されている。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒導入管96の一端は吐出消音室62と連通する。
【0024】
前記アキュムレータ158は吸込冷媒の気液分離を行うタンクであり、密閉容器12の容器本体12Aの上部側面に溶接固定された密閉容器12側のブラケット147に図2に示すアキュムレータ158側のブラケットを介して取り付けられている。
【0025】
次に、図2は本発明を家屋の室内や車室内を空調するエアコン(空気調和機)に適用した場合の冷媒回路を示しており、上述した多段圧縮式ロータリコンプレッサ10は図2に示すエアコンの冷媒回路の一部を構成する。即ち、多段圧縮式ロータリコンプレッサ10の冷媒吐出管96はガスクーラ154の入口に接続される。このガスクーラ154を出た配管は内部熱交換器160を介して膨張弁(減圧装置)156に至り、この膨張弁156を経て、エバポレータ(蒸発器)157の入口に至る。エバポレータ157の出口は内部熱交換器160、前記アキュムレータ158を介して冷媒導入管94に接続される。
【0026】
即ち、多段圧縮式ロータリコンプレッサ10、ガスクーラ154、内部熱交換器160、膨張弁156、エバポレータ157及びアキュムレータ158が順次環状に配管接続されて本発明の冷媒回路は構成されている。前記内部熱交換器160(本発明の熱交換器)は、二重管から構成され、内管内をガスクーラ154から出た高温高圧冷媒が流れると共に、内管と外管(管路)との間をエバポレータ157から出た低温冷媒が対向流で流れる。これにより、内管を介して両者を熱交換させ、ガスクーラ154から出た冷媒の凝縮若しくは温度低下を促進させると共に、エバポレータ157から出て多段圧縮式ロータリコンプレッサ10に吸い込まれる冷媒の蒸発を促すものである。
【0027】
図中161は制御装置であり、この制御装置161は室内空調のための運転指令信号に基づいて多段圧縮式ロータリコンプレッサ10の運転を制御する制御出力をインバータ163に対して発生する。また、制御装置161は例えば冷媒吐出管96に添設された温度センサ162が検出する吐出冷媒温度に基づいて膨張弁156の弁開度を過熱度一定で制御する。この膨張弁156は、例えばステッピングモータにて駆動される電子式膨張弁である。
【0028】
前記インバータ163は複数の半導体スイッチング素子をブリッジ状に接続して構成されており、制御装置161からの制御出力によってスイッチング制御され、電動要素14のステータコイル28に印加する電力を制御することで、電動要素14の駆動回転数を制御する。そして、このインバータ163は前記内部熱交換器160の外管と交熱的に取り付けられている。この場合の内部熱交換器160へのインバータ163の取り付け構造は、直接外管をインバータ163のケースに添設する方法や、それらを伝熱板を介して取り付ける方法など種々考えられる。
【0029】
以上の構成で次に動作を説明する。例えば室内温度が設定値より高く上昇して制御装置161に起動指令が入力されると、制御装置161はインバータ163に制御出力を発生する。インバータ163はこの制御出力に基づき、ターミナル20及び図示しない配線を介して電動要素14のステータコイル28に電圧を印加し、所定の回転数にて電動要素14を運転する。ステータコイル28に通電されると、電動要素14が起動してロータ24が前記回転数で回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0030】
これにより、冷媒導入管94及び下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートからシリンダ40の低圧室側に吸入された低圧の冷媒は、ローラ48とベーン52の動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる。
【0031】
そして、密閉容器12内の中間圧の冷媒ガスは、スリ−ブ144から出て冷媒導入管92及び上部支持部材54に形成された図示しない吸込通路を経由して図示しない吸込ポートから上シリンダ38の低圧室側に吸入される。吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により2段目の圧縮が行われて高圧高温の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り上部支持部材54に形成された吐出消音室62、冷媒吐出管96を経由してガスクーラ154で放熱された後、内部熱交換器160の内管内を通過し、膨張弁156で減圧され、エバポレータ157内に流入する。この場合、制御装置161は膨張弁156の弁開度を前述の如く過熱度一定で制御している。
【0032】
冷媒はエバポレータ157内で蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮して室内が冷房される。その後、エバポレータ157を出た低温の冷媒は内部熱交換器160の外管を経て(このときに内管内の冷媒と熱交換し、且つ、インバータ163を冷却する)、アキュムレータ158を経て冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0033】
そして、室内温度が設定値に低下すると、制御装置161はインバータ163を制御して電動要素14の回転数を低下させていき、最終的には停止制御する。その後、室内温度が再び設定値より高く上昇すると、制御装置161は前述同様にロータリコンプレッサ10を起動するものである。
【0034】
このように、本発明ではロータリコンプレッサ10の電動要素14を駆動制御するインバータ163をエバポレータ157から出てロータリコンプレッサ10に吸い込まれる冷媒が流れる内部熱交換器160の外管に交熱的に設けているので、ロータリコンプレッサ10に吸い込まれる比較的低温の冷媒(実施例では+35℃程)によってインバータ163を冷却し、発熱を抑えることができる。
【0035】
これにより、格別なインバータ用の冷却装置を省いて装置の小型化とコストの低減を図ることができるようになる。特に、ガスクーラ154を出た冷媒とエバポレータ157を出た冷媒とを熱交換させるための内部熱交換器160にインバータ163を交熱的に配置しているので、内部熱交換器160における熱交換性能を損なうこと無く、インバータ163の冷却が可能となる。
【0036】
尚、実施例ではロータリコンプレッサを用いた冷媒回路に本発明を適用したが、それに限らず、レシプロコンプレッサやスクロールコンプレッサなども適用可能であり、冷媒回路もエアコンに限らないものである。
【0037】
【発明の効果】
以上詳述した如く本発明によれば、インバータにより駆動制御されるコンプレッサと、ガスクーラ、減圧装置及びエバポレータ等を順次環状に配管接続して構成された冷媒回路において、ガスクーラを出た冷媒とエバポレータを出てコンプレッサに吸い込まれる冷媒とを熱交換させるための熱交換器を備え、インバータをこの熱交換器と交熱的に配置したので、コンプレッサに吸い込まれる比較的低温の冷媒によってインバータを冷却し、発熱を抑えることができる。
【0038】
これにより、格別なインバータ用の冷却装置を省いて装置の小型化とコストの低減を図ることができるようになるものである。
【0039】
特に、ガスクーラを出た冷媒とエバポレータを出た冷媒とを熱交換させるための熱交換器にインバータを交熱的に配置しているので、熱交換器における熱交換性能を損なうこと無く、インバータの冷却が可能となるものである。
【図面の簡単な説明】
【図1】 本発明の実施例の冷媒回路を構成する多段圧縮式ロータリコンプレッサの縦断面図である。
【図2】 本発明の実施例のエアコンの冷媒回路図である。
【符号の説明】
10 多段圧縮式ロータリコンプレッサ
32 第1の回転圧縮要素
34 第2の回転圧縮要素
92、94 冷媒導入管
96 冷媒吐出管
154 ガスクーラ
156 膨張弁
157 エバポレータ
158 アキュムレータ
160 内部熱交換器
161 制御装置
162 温度センサ
163 インバータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerant circuit including a compressor that is driven and controlled by an inverter.
[0002]
[Prior art]
Conventionally, for example, an air conditioner for air conditioning the interior of a house or the interior of a vehicle includes a rotary compressor, a gas cooler, an expansion valve (decompression device), an evaporator (evaporator), etc. A refrigerant circuit is configured by connecting pipes in an annular fashion. Then, the refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the rotary compression element of the rotary compressor, and is compressed by the operation of the roller and the vane to become a high temperature and high pressure refrigerant gas. After passing through the sound deadening chamber, it flows into the gas cooler constituting the refrigerant circuit to dissipate heat, is throttled by the expansion valve, and is supplied to the evaporator (evaporator). Therefore, the refrigerant evaporates, and at that time, the refrigerant absorbs heat from the surroundings to exert a cooling action to air-condition the room.
[0003]
In recent years, in order to cope with global environmental problems, it has been attempted to use carbon dioxide (CO 2 ), which is a natural refrigerant, as a refrigerant in a refrigerant circuit such as this type of air conditioner without using conventional chlorofluorocarbon. However, since the CO 2 refrigerant is a refrigerant having a large high-low pressure difference, a multistage compression rotary compressor is also used as the compressor.
[0004]
In this multistage compression rotary compressor, for example, an internal intermediate pressure type multistage compression rotary compressor, refrigerant gas is drawn into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element, and is compressed by the operation of the rollers and vanes. Intermediate pressure is then discharged from the high pressure chamber side of the cylinder through the discharge port and discharge silencer chamber into the sealed container. The intermediate-pressure gas in the sealed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second-stage compression is performed by the operation of the roller and the vane. Thus, the gas is discharged from the high pressure chamber side through the discharge port and the discharge silencer chamber.
[0005]
When carbon dioxide (CO 2 ) is used as the refrigerant in the rotary compressor, the discharged refrigerant pressure reaches 12 MPaG by the second rotary compression element having a high pressure, while the first rotary compression on the low stage side. The element becomes 8 MPaG (intermediate pressure) (the suction pressure of the first rotary compression element is 4 MPaG).
[0006]
[Problems to be solved by the invention]
In such an air conditioner, in order to improve the temperature control performance, it is becoming common to control the rotational speed of the rotary compressor by an inverter. However, since the inverter is composed of a plurality of semiconductor switching elements, Accompanied by fever. If the heat generation exceeds the allowable temperature, it causes destruction or malfunction, and conventionally cooling with a blower or a water jacket has been problematic.
[0007]
The present invention has been made to solve the conventional technical problem, and provides a refrigerant circuit capable of efficiently cooling an inverter for driving and controlling a compressor.
[0008]
[Means for Solving the Problems]
That is, in the present invention, in a refrigerant circuit configured by connecting a compressor driven and controlled by an inverter, a gas cooler, a pressure reducing device, an evaporator, and the like in order of an annular pipe, the refrigerant and the evaporator that have exited the gas cooler are discharged and sucked into the compressor. A heat exchanger for exchanging heat with the refrigerant is provided, and the inverter is arranged in heat exchange with the heat exchanger, so the inverter can be cooled by a relatively low-temperature refrigerant sucked into the compressor, and heat generation can be suppressed. .
[0009]
As a result, it is possible to reduce the size and cost of the apparatus by omitting a special inverter cooling apparatus.
[0010]
In particular, the inverter is arranged in a heat exchanger for exchanging heat between the refrigerant that has exited the gas cooler and the refrigerant that has exited the evaporator, so the heat exchange performance of the heat exchanger is not impaired. Cooling is possible.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal side view of an internal intermediate pressure type multi-stage (two-stage) rotary compressor 10 having first and second rotary compression elements as an embodiment of a compressor used in the refrigerant circuit of the present invention.
[0012]
In this figure, reference numeral 10 denotes an internal intermediate pressure multistage compression rotary compressor that uses carbon dioxide (CO 2 ) as a refrigerant. The multistage compression rotary compressor 10 includes a cylindrical sealed container 12 made of a steel plate, and the sealed container 12. The electric element 14 arranged and housed above the internal space of the electric element 14 and the first rotary compression element 32 (first stage) and the first rotary compression element 32 arranged below the electric element 14 and driven by the rotating shaft 16 of the electric element 14. The rotary compression mechanism section 18 is composed of two rotary compression elements 34 (second stage).
[0013]
The sealed container 12 has an oil reservoir at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a generally bowl-shaped end cap (lid body) 12B that closes the upper opening of the container body 12A. A circular mounting hole 12D is formed at the center of the upper surface of the end cap 12B, and a terminal (wiring is connected to the electric element 14 for supplying power from an inverter 163 described later) to the mounting hole 12D. (Omitted) 20 is attached.
[0014]
The electric element 14 is composed of a stator 22 that is annularly attached along the inner peripheral surface of the upper space of the sealed container 12, and a rotor 24 that is inserted inside the stator 22 with a slight space therebetween. The drive speed is controlled by the inverter 163 described above. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the vertical direction.
[0015]
The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. Further, like the rotor 24 stator 22, it is formed of a laminated body 30 of electromagnetic steel plates, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0016]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder 38 and a lower cylinder 40 disposed above and below the intermediate partition plate 36, and the upper and lower cylinders 38, The upper and lower rollers 46 and 48 that are eccentrically rotated by the upper and lower eccentric portions 42 and 44 provided on the rotary shaft 16 with a phase difference of 180 degrees in the interior 40, and the upper and lower cylinders 38 and 48 abut against the upper and lower rollers 46 and 48, The vanes 50 and 52 that divide the inside of the inside 40 into a low-pressure chamber side and a high-pressure chamber side, and the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40 are closed to serve as bearings for the rotary shaft 16. The upper support member 54 and the lower support member 56 are used as support members.
[0017]
On the other hand, the upper support member 54 and the lower support member 56 are respectively provided with a suction passage 60 (the upper suction passage is not shown) that communicates with the inside of the upper and lower cylinders 38 and 40 through a suction port (not shown), and a part thereof is recessed. Discharge silencing chambers 62 and 64 formed by closing the recessed portion with an upper cover 66 and a lower cover 68 are provided.
[0018]
The discharge silencer chamber 64 and the inside of the sealed container 12 are communicated with each other through a communication passage that penetrates the upper and lower cylinders 38 and 40 and the intermediate partition plate 36, and an intermediate discharge pipe 121 is provided upright at the upper end of the communication passage. The intermediate pressure refrigerant compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 into the sealed container 12.
[0019]
An upper cover 66 that closes the upper opening of the discharge silencing chamber 62 that communicates with the inside of the upper cylinder 38 of the second rotary compression element 34 partitions the inside of the sealed container 12 into the discharge silencing chamber 62 and the electric element 14 side. .
[0020]
In this case, the above-mentioned carbon dioxide (CO 2 ), which is a natural refrigerant in consideration of flammability and toxicity, is used as the refrigerant, and the oil as the lubricating oil is, for example, mineral oil (mineral oil) ), Alkylbenzene oil, ether oil, ester oil, PAG (polyalkylglycol) and the like.
[0021]
On the side surface of the container main body 12A of the sealed container 12, the suction passage 60 (upper side is not shown) of the upper support member 54 and the lower support member 56, the discharge silencer chamber 62, the upper side of the upper cover 66 (on the lower end of the electric element 14). Sleeves 141, 142, 143, and 144 are welded and fixed at positions corresponding to (substantially corresponding positions). The sleeves 141 and 142 are adjacent to each other vertically, and the sleeve 143 is substantially diagonal to the sleeve 141. Further, the sleeve 144 is located at a position shifted by approximately 90 degrees from the sleeve 141.
[0022]
One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted and connected into the sleeve 141, and one end of the refrigerant introduction pipe 92 communicates with a suction passage (not shown) of the upper cylinder 38. The refrigerant introduction pipe 92 passes through the upper side of the sealed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 to communicate with the sealed container 12.
[0023]
In addition, one end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected in the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. The other end of the refrigerant introduction pipe 94 is connected to the lower side of the accumulator 158. In addition, a refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant introduction pipe 96 communicates with the discharge silencer chamber 62.
[0024]
The accumulator 158 is a tank that performs gas-liquid separation of the suction refrigerant. The accumulator 158 side bracket 147 shown in FIG. 2 is connected to the bracket 147 on the airtight container 12 side that is welded and fixed to the upper side surface of the container body 12A of the airtight container 12. Attached.
[0025]
Next, FIG. 2 shows a refrigerant circuit when the present invention is applied to an air conditioner (air conditioner) that air-conditions the interior of a house or the interior of a vehicle. The multistage compression rotary compressor 10 described above is an air conditioner shown in FIG. Part of the refrigerant circuit. That is, the refrigerant discharge pipe 96 of the multistage compression rotary compressor 10 is connected to the inlet of the gas cooler 154. The piping that exits the gas cooler 154 reaches the expansion valve (decompression device) 156 via the internal heat exchanger 160, and reaches the inlet of the evaporator (evaporator) 157 via the expansion valve 156. The outlet of the evaporator 157 is connected to the refrigerant introduction pipe 94 via the internal heat exchanger 160 and the accumulator 158.
[0026]
That is, the multistage compression rotary compressor 10, the gas cooler 154, the internal heat exchanger 160, the expansion valve 156, the evaporator 157, and the accumulator 158 are sequentially connected in an annular manner to constitute the refrigerant circuit of the present invention. The internal heat exchanger 160 (the heat exchanger according to the present invention) is composed of a double pipe, and the high-temperature and high-pressure refrigerant discharged from the gas cooler 154 flows through the inner pipe, and between the inner pipe and the outer pipe (pipe). The low-temperature refrigerant that has flowed out of the evaporator 157 flows in a counterflow. As a result, heat is exchanged between the two through the inner pipe, and the condensation or temperature decrease of the refrigerant discharged from the gas cooler 154 is promoted, and the evaporation of the refrigerant discharged from the evaporator 157 and sucked into the multistage compression rotary compressor 10 is promoted. It is.
[0027]
In the figure, 161 is a control device, and this control device 161 generates a control output for controlling the operation of the multistage compression rotary compressor 10 to the inverter 163 based on an operation command signal for indoor air conditioning. Further, the control device 161 controls the valve opening degree of the expansion valve 156 at a constant superheat degree based on, for example, the discharge refrigerant temperature detected by the temperature sensor 162 attached to the refrigerant discharge pipe 96. The expansion valve 156 is an electronic expansion valve that is driven by a stepping motor, for example.
[0028]
The inverter 163 is configured by connecting a plurality of semiconductor switching elements in a bridge shape, and is controlled to be switched by a control output from the control device 161 to control the power applied to the stator coil 28 of the electric element 14. The drive rotation speed of the electric element 14 is controlled. The inverter 163 is attached to the outer pipe of the internal heat exchanger 160 in a heat exchange manner. There are various conceivable structures for attaching the inverter 163 to the internal heat exchanger 160 in this case, such as a method of directly attaching the outer pipe to the case of the inverter 163 or a method of attaching them via a heat transfer plate.
[0029]
Next, the operation of the above configuration will be described. For example, when the room temperature rises higher than the set value and a start command is input to the control device 161, the control device 161 generates a control output to the inverter 163. Based on this control output, the inverter 163 applies a voltage to the stator coil 28 of the electric element 14 via the terminal 20 and a wiring (not shown), and operates the electric element 14 at a predetermined rotational speed. When the stator coil 28 is energized, the electric element 14 is activated and the rotor 24 rotates at the rotation speed. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16 rotate eccentrically in the upper and lower cylinders 38 and 40.
[0030]
Thus, the low-pressure refrigerant sucked into the low-pressure chamber side of the cylinder 40 from the suction port (not shown) via the suction passage 60 formed in the refrigerant introduction pipe 94 and the lower support member 56 is operated by the rollers 48 and the vanes 52. Is compressed by the intermediate pressure to be discharged from the intermediate discharge pipe 121 into the sealed container 12 through the communication passage (not shown) from the high pressure chamber side of the lower cylinder 40. Thereby, the inside of the sealed container 12 becomes an intermediate pressure.
[0031]
Then, the intermediate-pressure refrigerant gas in the sealed container 12 exits from the sleeve 144 and passes through a suction passage (not shown) formed in the refrigerant introduction pipe 92 and the upper support member 54 from the suction port (not shown) to the upper cylinder 38. Is sucked into the low pressure chamber side. The sucked intermediate-pressure refrigerant gas is compressed in the second stage by the operation of the roller 46 and the vane 50 to become high-pressure and high-temperature refrigerant gas, and is formed on the upper support member 54 from the high-pressure chamber side through a discharge port (not shown). The heat is radiated from the gas cooler 154 through the discharge silencer chamber 62 and the refrigerant discharge pipe 96, passes through the inner pipe of the internal heat exchanger 160, is decompressed by the expansion valve 156, and flows into the evaporator 157. In this case, the control device 161 controls the valve opening degree of the expansion valve 156 at a constant superheat degree as described above.
[0032]
The refrigerant evaporates in the evaporator 157, and at that time, the refrigerant absorbs heat from the surroundings to exert a cooling action, thereby cooling the room. Thereafter, the low-temperature refrigerant exiting the evaporator 157 passes through the outer tube of the internal heat exchanger 160 (at this time, heat is exchanged with the refrigerant in the inner tube and cools the inverter 163), and then passes through the accumulator 158 to form a refrigerant introduction tube. The cycle drawn from 94 into the first rotary compression element 32 is repeated.
[0033]
When the room temperature decreases to the set value, the control device 161 controls the inverter 163 to decrease the rotational speed of the electric element 14, and finally performs stop control. Thereafter, when the room temperature rises again higher than the set value, the control device 161 starts the rotary compressor 10 as described above.
[0034]
As described above, in the present invention, the inverter 163 that drives and controls the electric element 14 of the rotary compressor 10 is provided by heat exchange in the outer pipe of the internal heat exchanger 160 through which the refrigerant drawn from the evaporator 157 flows into the rotary compressor 10 flows. Therefore, the inverter 163 can be cooled by a relatively low-temperature refrigerant (about + 35 ° C. in the embodiment) sucked into the rotary compressor 10 to suppress heat generation.
[0035]
As a result, it is possible to reduce the size and cost of the apparatus by omitting a special inverter cooling apparatus. In particular, since the inverter 163 is arranged in a heat exchange manner in the internal heat exchanger 160 for exchanging heat between the refrigerant that has exited the gas cooler 154 and the refrigerant that has exited the evaporator 157, heat exchange performance in the internal heat exchanger 160 The inverter 163 can be cooled without impairing the power.
[0036]
In the embodiment, the present invention is applied to a refrigerant circuit using a rotary compressor. However, the present invention is not limited to this, and a reciprocating compressor, a scroll compressor, and the like can also be applied, and the refrigerant circuit is not limited to an air conditioner.
[0037]
【The invention's effect】
As described above in detail, according to the present invention, in the refrigerant circuit configured by connecting the compressor driven and controlled by the inverter, the gas cooler, the pressure reducing device, the evaporator, and the like sequentially in an annular manner, the refrigerant and the evaporator that have exited the gas cooler are connected. Since it has a heat exchanger for exchanging heat with the refrigerant that comes out and is sucked into the compressor, and the inverter is arranged in heat exchange with this heat exchanger , the inverter is cooled by a relatively low temperature refrigerant sucked into the compressor, Heat generation can be suppressed.
[0038]
As a result, it is possible to reduce the size and cost of the apparatus by omitting a special inverter cooling apparatus.
[0039]
In particular, the inverter is arranged in a heat exchanger for exchanging heat between the refrigerant that has exited the gas cooler and the refrigerant that has exited the evaporator, so the heat exchange performance of the heat exchanger is not impaired. Cooling is possible.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a multistage compression rotary compressor constituting a refrigerant circuit according to an embodiment of the present invention.
FIG. 2 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Multistage compression rotary compressor 32 1st rotary compression element 34 2nd rotary compression element 92, 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 154 Gas cooler 156 Expansion valve 157 Evaporator 158 Accumulator 160 Internal heat exchanger 161 Control apparatus 162 Temperature sensor 163 Inverter

Claims (1)

インバータにより駆動制御されるコンプレッサと、ガスクーラ、減圧装置及びエバポレータ等を順次環状に配管接続して構成された冷媒回路において、
前記ガスクーラを出た冷媒と前記エバポレータを出て前記コンプレッサに吸い込まれる冷媒とを熱交換させるための熱交換器を備え、前記インバータを該熱交換器と交熱的に配置したことを特徴とするインバータ制御コンプレッサを用いた冷媒回路。
In a refrigerant circuit configured by connecting a compressor that is driven and controlled by an inverter, a gas cooler, a pressure reducing device, an evaporator, and the like sequentially in an annular manner,
A heat exchanger for exchanging heat between the refrigerant exiting the gas cooler and the refrigerant exiting the evaporator and sucked into the compressor is provided, and the inverter is disposed in a heat exchange manner with the heat exchanger. A refrigerant circuit using an inverter-controlled compressor.
JP2002080578A 2002-03-22 2002-03-22 Refrigerant circuit using inverter-controlled compressor Expired - Fee Related JP3986338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002080578A JP3986338B2 (en) 2002-03-22 2002-03-22 Refrigerant circuit using inverter-controlled compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002080578A JP3986338B2 (en) 2002-03-22 2002-03-22 Refrigerant circuit using inverter-controlled compressor

Publications (2)

Publication Number Publication Date
JP2003279172A JP2003279172A (en) 2003-10-02
JP3986338B2 true JP3986338B2 (en) 2007-10-03

Family

ID=29229555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002080578A Expired - Fee Related JP3986338B2 (en) 2002-03-22 2002-03-22 Refrigerant circuit using inverter-controlled compressor

Country Status (1)

Country Link
JP (1) JP3986338B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089268A (en) * 2006-10-04 2008-04-17 Sanden Corp Vehicle cooler
JP2010043754A (en) * 2008-08-08 2010-02-25 Denso Corp Vapor compression type refrigeration cycle
WO2021117141A1 (en) * 2019-12-10 2021-06-17 三菱電機株式会社 Heat pump apparatus
CN110986408A (en) * 2019-12-13 2020-04-10 中国科学院合肥物质科学研究院 Integrated neon refrigerator and refrigeration method

Also Published As

Publication number Publication date
JP2003279172A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
EP1486742B1 (en) Refrigerant cycle apparatus
JP2004293813A (en) Refrigerant cycle device
JP4219198B2 (en) Refrigerant cycle equipment
KR20030095240A (en) Supercritical Refrigerant Cycle Device
JP4208620B2 (en) Refrigerant cycle equipment
JP2004101107A (en) Transition critical refrigerant cycle apparatus
JP2004011959A (en) Supercritical refrigerant cycle equipment
JP3986338B2 (en) Refrigerant circuit using inverter-controlled compressor
JP3983115B2 (en) Refrigerant circuit using CO2 refrigerant
JP2004184022A (en) Cooling medium cycle device
JP2004317073A (en) Refrigerant cycling device
JP4115296B2 (en) Transcritical refrigerant cycle equipment
JP2001153476A (en) Refrigerating plant
JP2004251513A (en) Refrigerant cycle device
JP2004028485A (en) Co2 cooling medium cycle device
JP4079736B2 (en) Refrigerant cycle equipment
JP2012002473A (en) Fluid compression device, and heat pump cycle using the same
JP2005127215A (en) Transition critical refrigerant cycle device
JP2004251492A (en) Refrigerant cycle device
JP2006022766A (en) Multi-cylinder rotary compressor
JP2004251514A (en) Refrigerant cycle device
JP2003279198A (en) Refrigerant circuit using expansion valve
JP4036772B2 (en) Transcritical refrigerant cycle equipment
JP2007092738A (en) Compressor
JP2004309012A (en) Refrigerant cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees