JP3983115B2 - Refrigerant circuit using CO2 refrigerant - Google Patents

Refrigerant circuit using CO2 refrigerant Download PDF

Info

Publication number
JP3983115B2
JP3983115B2 JP2002188023A JP2002188023A JP3983115B2 JP 3983115 B2 JP3983115 B2 JP 3983115B2 JP 2002188023 A JP2002188023 A JP 2002188023A JP 2002188023 A JP2002188023 A JP 2002188023A JP 3983115 B2 JP3983115 B2 JP 3983115B2
Authority
JP
Japan
Prior art keywords
refrigerant
rotary
compression element
bypass pipe
rotary compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002188023A
Other languages
Japanese (ja)
Other versions
JP2004028492A (en
Inventor
俊行 江原
兼三 松本
孝 佐藤
大 松浦
里  和哉
裕之 松森
隆泰 斎藤
晴久 山崎
昌也 只野
悟 今井
淳志 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002188023A priority Critical patent/JP3983115B2/en
Publication of JP2004028492A publication Critical patent/JP2004028492A/en
Application granted granted Critical
Publication of JP3983115B2 publication Critical patent/JP3983115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉容器内に電動要素と、該電動要素にて駆動される回転圧縮要素を備え、当該回転圧縮要素でCO2冷媒ガスを圧縮して吐出するロータリコンプレッサを備えて構成された冷媒回路に関するものである。
【0002】
【従来の技術】
従来より例えば自動車の車室内を空調するカーエアコンは、ロータリコンプレッサなどの圧縮機、ガスクーラ、減圧装置(膨張弁等)及びエバポレータ(蒸発器)等を順次環状に配管接続して冷媒回路が構成されている。そして、ロータリコンプレッサの回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経て冷媒回路を構成するガスクーラに流入して放熱し、減圧装置で絞られてエバポレータ(蒸発器)に供給される。そこで冷媒が蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮して車室内を空調するものであった。
【0003】
【発明が解決しようとする課題】
ここで、近年では地球環境問題に対処するため、この種のカーエアコン等の冷媒回路においても、従来のフロンを用いずに自然冷媒であるCO2(二酸化炭素)を冷媒として用いることが試みられているが、CO2冷媒は高低圧差の大きい冷媒であり、例えば2段圧縮の場合には、低圧側と高圧側で100KPaG程の差圧が生じる。また、ガス密度が高く、膨張弁などの絞り部があると通路抵抗を生じやすい。そのため、従来の冷媒を使用した場合より、コンプレッサが停止してから冷媒回路内の高低圧差が平衡するまでに長い時間を要するようになる。
【0004】
この圧力平衡までの時間が長くなると、ロータリコンプレッサの低圧側から冷媒回路内に流出するオイルが多くなり、起動時に液圧縮を生じて信頼性が低下する問題がある。
【0005】
また、この高低圧の圧力差が平衡しないうちに起動すると、ロータリコンプレッサに過大な負荷がかかって信頼性が低下してしまうため、通常はこの圧力平衡までの時間ロータリコンプレッサの起動を禁止する措置がとられるが、この時間中コンプレッサは停止するため、快適性が損なわれる結果となる。
【0006】
更に、特にカーエアコンの場合は運転中の誤操作が多く、ロータリコンプレッサが頻繁に起動・停止操作され、それによって一層信頼性に悪影響が生じる問題もある。
【0007】
本発明は、係る従来の技術的課題を解決するために成されたものであり、CO2ガスを冷媒として用いた冷媒回路において、信頼性と快適性の双方を改善することを目的とする。
【0008】
【課題を解決するための手段】
即ち、請求項1の発明は、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮された中間圧のCO2冷媒ガスを第2の回転圧縮要素に吸引し、圧縮して吐出する多段圧縮式のロータリコンプレッサを備えて構成された冷媒回路であって、ロータリコンプレッサの第2の回転圧縮要素の冷媒吐出側と冷媒吸込側とをバイパスするバイパス配管と、このバイパス配管の流路を開閉する弁装置とを備え、弁装置は、ロータリコンプレッサの運転中は閉じており、停止した場合にバイパス配管の流路を開放するものとしたので、ロータリコンプレッサが停止した場合、その第2の回転圧縮要素の冷媒吐出側と冷媒吸込側はバイパス配管によって連通されることになる。
【0009】
これにより、ロータリコンプレッサが停止してから第2の回転圧縮要素の冷媒吐出側である高圧と冷媒吸込側である中間圧とが平衡圧に達するまでの時間を短縮することができるようになり、所謂多段圧縮式のロータリコンプレッサが再起動可能となるまでの時間を短縮して快適性を担保しつつ、信頼性の低下を回避することができるようになる。
【0010】
請求項2の発明は密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮された中間圧のCO2冷媒ガスを第2の回転圧縮要素に吸引し、圧縮して吐出する多段圧縮式のロータリコンプレッサを備えて構成された冷媒回路であって、ロータリコンプレッサの第2の回転圧縮要素の冷媒吐出側と冷媒吸込側とをバイパスする第1のバイパス配管と、ロータリコンプレッサの第1の回転圧縮要素の冷媒吐出側と冷媒吸込側とをバイパスする第2のバイパス配管と、ロータリコンプレッサの第2の回転圧縮要素の冷媒吐出側と第1の回転圧縮要素の冷媒吸込側とをバイパスする第3のバイパス配管と、各バイパス配管の流路をそれぞれ開閉する弁装置とを備え、弁装置は、ロータリコンプレッサの運転中は第1、第2及び第3のバイパス配管の流路を閉じており、停止した場合に先ず第2のバイパス配管の流路を開放し、次に第1のバイパス配管、第3のバイパス配管の順で流路を開放するものとしたので、ロータリコンプレッサが停止した場合、先ず第1の回転圧縮要素の冷媒吐出側と冷媒吸込側が第2のバイパス配管によって連通されることになる。
【0011】
これにより、ロータリコンプレッサが停止してから第1の回転圧縮要素の冷媒吐出側である中間圧と冷媒吸込側である低圧とが平衡圧に達するまでの時間を短縮することができるようになり、所謂多段圧縮式のロータリコンプレッサが再起動可能となるまでの時間を短縮して快適性を担保できるようになる。特に、第1の回転圧縮要素から冷媒回路内に流出するオイル量も削減できるので、再起動時の液圧縮の発生も解消し、信頼性の向上を図ることができるようになる。
【0012】
次に、第2の回転圧縮要素の冷媒吐出側と冷媒吸込側がバイパス配管によって連通されることになるので、ロータリコンプレッサが停止してから第2の回転圧縮要素の冷媒吐出側である高圧と冷媒吸込側である中間圧とが平衡圧に達するまでの時間を短縮することができるようになり、これによっても多段圧縮式のロータリコンプレッサが再起動可能となるまでの時間を短縮して快適性を担保しつつ、信頼性の低下を回避することができるようになる。
【0013】
そして、次に第2の回転圧縮要素の冷媒吐出側と第1の回転圧縮要素の冷媒吸込側が最終的に第3のバイパス配管によって連通されることになるので、ロータリコンプレッサが停止してから第2の回転圧縮要素の冷媒吐出側である高圧と第2の回転圧縮要素の冷媒吸込側である中間圧と第1の回転圧縮要素の冷媒吸込側である低圧の全てが連通され、迅速に平衡圧に達することができるようになり、総じて多段圧縮式のロータリコンプレッサが再起動可能となるまでの時間を短縮して快適性を担保できるようになる。また、同様に第1の回転圧縮要素から冷媒回路内に流出するオイル量も削減できるので、これによっても再起動時の液圧縮の発生も解消し、信頼性の向上を図ることができるようになる。
【0014】
特に請求項3の如く車室内を空調する場合に、運転中誤って頻繁な運転・停止操作が成された場合にも、快適性と信頼性の双方を向上させることが可能となるものである。
【0015】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の冷媒回路に使用するロータリコンプレッサの実施例として、第1及び第2の回転圧縮要素を備えた内部中間圧型多段(2段)圧縮式ロータリコンプレッサ10の縦断側面図である。
【0016】
この図において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段圧縮式ロータリコンプレッサで、この多段圧縮式ロータリコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。密閉容器12は底部をオイル溜めとし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0017】
電動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
【0018】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24ステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0019】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が狭持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ38、下シリンダ40と、この上下シリンダ38、40内を180度の位相差を有して回転軸16に設けた上下偏心部42、44にて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン50、52と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成されている。
【0020】
一方、上部支持部材54及び下部支持部材56には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路は図示せず)と、一部を凹陥させ、この凹陥部を上カバー66、下カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。
【0021】
尚、吐出消音室64と密閉容器12内とは、上下シリンダ38、40や中間仕切板36を貫通する連通路にて連通されており、連通路の上端には中間吐出管121が立設され、この中間吐出管121から第1の回転圧縮要素32で圧縮された中間圧の冷媒が密閉容器12内に吐出される。
【0022】
また、第2の回転圧縮要素34の上シリンダ38内部と連通する吐出消音室62の上面開口部を閉塞する上部カバー66は、密閉容器12内を吐出消音室62と電動要素14側とに仕切る。
【0023】
そして、この場合冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前述した二酸化炭素(CO2)を使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等該存のオイルが使用される。
【0024】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路60(上側は図示せず)、吐出消音室62、上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に隣接すると共に、スリーブ143はスリーブ141の略対角線上にある。また、スリーブ144はスリーブ141と略90度ずれた位置にある。
【0025】
そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の図示しない吸込通路と連通する。この冷媒導入管92は密閉容器12の上側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0026】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60と連通する。この冷媒導入管94の他端はアキュムレータ158の下側に接続されている。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒導入管96の一端は吐出消音室62と連通する。
【0027】
前記アキュムレータ158は吸込冷媒の気液分離を行うタンクであり、密閉容器12の容器本体12Aの上部側面に溶接固定された密閉容器12側のブラケット147に図2に示すアキュムレータ158側のブラケットを介して取り付けられている。
【0028】
次に、図2は本発明をカーエアコン(空気調和機)に適用した場合の冷媒回路を示しており、上述した多段圧縮式ロータリコンプレッサ10は図2に示すカーエアコンの冷媒回路の一部を構成する。即ち、多段圧縮式ロータリコンプレッサ10の冷媒吐出管96はガスクーラ154の入口に接続される。このガスクーラ154を出た配管は内部熱交換器160を介して減圧装置としての膨張弁156を経て、エバポレータ(蒸発器)157の入口に至り、エバポレータ157の出口は内部熱交換器160、前記アキュムレータ158を介して冷媒導入管94に接続される。
【0029】
また、密閉容器12内の冷媒を第2の回転圧縮要素34に導入するための冷媒導入管(冷媒通路)92の途中には第2の回転圧縮要素34の冷媒吸込側と冷媒吐出側を連通する第1のバイパス配管170の一端が接続されており、このバイパス配管170の他端は冷媒吐出管96に接続されている。そして、バイパス配管170にはこのバイパス配管170の流路を開閉する第1の弁装置(電磁弁)171が設けられている。
【0030】
一方、第1の回転圧縮要素32の冷媒導入管94には第1の回転圧縮要素32の冷媒吸込側と冷媒吐出側とを連通する第2のバイパス配管172の一端が接続されており、このバイパス配管172の他端は冷媒導入管92の途中に接続されている。そして、このバイパス配管172にはこのバイパス配管172の流路を開閉する第2の弁装置(電磁弁)173が設けられている。
【0031】
更に、弁装置171の冷媒吐出管96側のバイパス配管170には第3のバイパス配管174の一端が接続され、このバイパス配管174の他端は弁装置173の冷媒導入管94側のバイパス配管172に接続されている。このバイパス配管174は第2回転圧縮要素34の冷媒吐出側と第1の回転圧縮要素32の冷媒吸込側と連通するもので、このバイパス配管174には当該バイパス配管174の流路を開閉する第3の弁装置(電磁弁)175が設けられている。
【0032】
これらバイパス配管170、172及び174の各々に設けられている弁装置171、173及び175は図示しない制御装置により開閉制御される。即ち、多段圧縮式ロータリコンプレッサ10が運転されているときは、これら弁装置171、173及び175は閉じられており、ロータリコンプレッサ10が停止すると、弁装置173、171、175の順で開放される。これにより、冷媒ガスはこれらバイパス配管172、170及び174を自由に移動することができるようになり、多段圧縮式ロータリコンプレッサ10の第1の回転圧縮要素32の冷媒吐出側と冷媒吸込側、第2の回転圧縮要素34の冷媒吐出側と冷媒吸込側、第2の回転圧縮要素の冷媒吐出側と第1の回転圧縮要素の冷媒吸込側との間に生じた冷媒回路内の圧力差を短時間で平衡させることができるようになる。
【0033】
これにより、ロータリコンプレッサ10の運転禁止期間を短縮しながら、圧力差がある状態で起動することによる過負荷の発生を解消し、信頼性を向上させることができるようになる。特に、最初に弁装置173を開放して第1の回転圧縮要素32の冷媒吐出側と冷媒吸込側とを連通させているので、第1の回転圧縮要素32から冷媒回路のアキュムレータ158側へオイルが多量に流出し、再起動時に液圧縮が生じる不都合を効果的に解消するようにしている。
【0034】
尚、また、コンプレッサを起動する際には、図示しない制御装置によりこれら弁装置171、173及び175は閉じられ、通常の運転が行われるようになる。
【0035】
以上の構成で次に動作を説明する。尚、前記制御装置により多段圧縮式ロータリコンプレッサ10の起動時には弁装置171、173及び175は前述の如く閉じられている。ターミナル20及び図示されない配線を介して電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0036】
これにより、冷媒導入管94及び下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートからシリンダ40の低圧室側に吸入された低圧の冷媒は、ローラ48とベーン52の動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる。
【0037】
そして、密閉容器12内の中間圧の冷媒ガスは、スリ−ブ144から出て冷媒導入管92及び上部支持部材54に形成された図示しない吸込通路を経由して図示しない吸込ポートから上シリンダ38の低圧室側に吸入される。吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により2段目の圧縮が行われて高圧高温の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り上部支持部材54に形成された吐出消音室62、冷媒吐出管96を経由してガスクーラ154で放熱された後、内部熱交換器160を通過し、膨張弁156で減圧され、エバポレータ157内に流入する。
【0038】
そこで冷媒が蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮して車内が冷房される。その後、内部熱交換器160、アキュムレータ158を経て冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0039】
車室内温度が設定温度に低下すると、制御装置は多段圧縮式ロータリコンプレッサ10を停止し、前述の如く先ず弁装置173を開放する。これにより第1の回転圧縮要素32の冷媒吐出側と冷媒吸込側とが連通されて圧力平衡がとられるため、第1の回転圧縮要素32の冷媒導入管94からアキュムレータ158側にオイルが逆流してしまう不都合を回避することができる。次に、弁装置171、弁装置175の順で開放される。これにより、第2の回転圧縮要素34の冷媒吐出側と冷媒吸込側、そして、最終的に第1の回転圧縮要素32の冷媒吸込側と冷媒吐出側も連通されるので、多段圧縮式ロータリコンプレッサ10の低圧、中間圧、高圧の全てが連通され、迅速に圧力平衡がとられることになる。
【0040】
これにより、運転中の誤操作で多段圧縮式ロータリコンプレッサ10が頻繁に運転・停止操作された場合にも、再起動にかかる時間を短縮して車室内空調の快適性を向上させながら、ロータリコンプレッサ10が液圧縮を引き起こす不都合を防ぐことができるようになると共に、そのローラ46、48及びピン部等に過大な負荷がかかることにより、損傷を生じる不都合も未然に回避することができるようになる。
【0041】
尚、実施例ではバイパス配管170と弁装置171、バイパス配管172と弁装置173、及び、バイパス配管174と弁装置175を設けたが、それに限らず、それらバイパス配管と弁装置の組み合わせの何れかのみであってもよく、バイパス配管170と弁装置171、及び、バイパス配管172と弁装置173のみ、バイパス配管172と弁装置173、及び、バイパス配管174と弁装置175のみ、バイパス配管170と弁装置171、及び、バイパス配管174と弁装置175のみの組み合わせであっても効果を奏する。
【0042】
【発明の効果】
以上詳述した如く、請求項1の発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮された中間圧のCO2冷媒ガスを第2の回転圧縮要素に吸引し、圧縮して吐出する多段圧縮式のロータリコンプレッサを備えて構成された冷媒回路であって、ロータリコンプレッサの第2の回転圧縮要素の冷媒吐出側と冷媒吸込側とをバイパスするバイパス配管と、このバイパス配管の流路を開閉する弁装置とを備え、弁装置は、ロータリコンプレッサの運転中は閉じており、停止した場合にバイパス配管の流路を開放するものとしたので、ロータリコンプレッサが停止した場合、その第2の回転圧縮要素の冷媒吐出側と冷媒吸込側はバイパス配管によって連通されることになる。
【0043】
これにより、ロータリコンプレッサが停止してから第2の回転圧縮要素の冷媒吐出側である高圧と冷媒吸込側である中間圧とが平衡圧に達するまでの時間を短縮することができるようになり、所謂多段圧縮式のロータリコンプレッサが再起動可能となるまでの時間を短縮して快適性を担保しつつ、信頼性の低下を回避することができるようになる。
【0044】
請求項2の発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮された中間圧のCO2冷媒ガスを第2の回転圧縮要素に吸引し、圧縮して吐出する多段圧縮式のロータリコンプレッサを備えて構成された冷媒回路であって、ロータリコンプレッサの第2の回転圧縮要素の冷媒吐出側と冷媒吸込側とをバイパスする第1のバイパス配管と、ロータリコンプレッサの第1の回転圧縮要素の冷媒吐出側と冷媒吸込側とをバイパスする第2のバイパス配管と、ロータリコンプレッサの第2の回転圧縮要素の冷媒吐出側と第1の回転圧縮要素の冷媒吸込側とをバイパスする第3のバイパス配管と、各バイパス配管の流路をそれぞれ開閉する弁装置とを備え、弁装置は、ロータリコンプレッサの運転中は第1、第2及び第3のバイパス配管の流路を閉じており、停止した場合に先ず第2のバイパス配管の流路を開放し、次に第1のバイパス配管、第3のバイパス配管の順で流路を開放するものとしたので、ロータリコンプレッサが停止した場合、先ず第1の回転圧縮要素の冷媒吐出側と冷媒吸込側が第2のバイパス配管によって連通されることになる。
【0045】
これにより、ロータリコンプレッサが停止してから第1の回転圧縮要素の冷媒吐出側である中間圧と冷媒吸込側である低圧とが平衡圧に達するまでの時間を短縮することができるようになり、所謂多段圧縮式のロータリコンプレッサが再起動可能となるまでの時間を短縮して快適性を担保できるようになる。特に、第1の回転圧縮要素から冷媒回路内に流出するオイル量も削減できるので、再起動時の液圧縮の発生も解消し、信頼性の向上を図ることができるようになる。
【0046】
次に、第2の回転圧縮要素の冷媒吐出側と冷媒吸込側がバイパス配管によって連通されることになるので、ロータリコンプレッサが停止してから第2の回転圧縮要素の冷媒吐出側である高圧と冷媒吸込側である中間圧とが平衡圧に達するまでの時間を短縮することができるようになり、これによっても多段圧縮式のロータリコンプレッサが再起動可能となるまでの時間を短縮して快適性を担保しつつ、信頼性の低下を回避することができるようになる。
【0047】
そして、次に第2の回転圧縮要素の冷媒吐出側と第1の回転圧縮要素の冷媒吸込側が最終的に第3のバイパス配管によって連通されることになるので、ロータリコンプレッサが停止してから第2の回転圧縮要素の冷媒吐出側である高圧と第2の回転圧縮要素の冷媒吸込側である中間圧と第1の回転圧縮要素の冷媒吸込側である低圧の全てが連通され、迅速に平衡圧に達することができるようになり、総じて多段圧縮式のロータリコンプレッサが再起動可能となるまでの時間を短縮して快適性を担保できるようになる。また、同様に第1の回転圧縮要素から冷媒回路内に流出するオイル量も削減できるので、これによっても再起動時の液圧縮の発生も解消し、信頼性の向上を図ることができるようになる。
【0048】
特に請求項3の如く車室内を空調する場合に、運転中誤って頻繁な運転・停止操作が成された場合にも、快適性と信頼性の双方を向上させることが可能となるものである。
【図面の簡単な説明】
【図1】 本発明の実施例の冷媒回路を構成する多段圧縮式ロータリコンプレッサの縦断面図である。
【図2】 本発明の実施例のカーエアコンの冷媒回路図である。
【符号の説明】
10 多段圧縮式ロータリコンプレッサ
32 第1の回転圧縮要素
34 第2の回転圧縮要素
92、94 冷媒導入管
96 冷媒吐出管
154 ガスクーラ
156 膨張弁
157 エバポレータ
158 アキュムレータ
160 内部熱交換器
170、172、174 バイパス配管
171、173、175 弁装置
[0001]
BACKGROUND OF THE INVENTION
The present invention includes an electric element and a rotary compression element that is driven by the electric element in a sealed container, and a refrigerant that includes a rotary compressor that compresses and discharges CO 2 refrigerant gas by the rotary compression element. It relates to the circuit.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for example, a car air conditioner that air-conditions the interior of a car has a refrigerant circuit in which a compressor such as a rotary compressor, a gas cooler, a decompression device (expansion valve, etc.), an evaporator (evaporator), etc. ing. Then, the refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the rotary compression element of the rotary compressor, and is compressed by the operation of the roller and the vane to become a high temperature and high pressure refrigerant gas. After passing through the sound deadening chamber, it flows into the gas cooler constituting the refrigerant circuit to dissipate heat, is throttled by the decompression device, and is supplied to the evaporator (evaporator). Therefore, the refrigerant evaporates, and at that time, heat is absorbed from the surroundings to exert a cooling action to air-condition the passenger compartment.
[0003]
[Problems to be solved by the invention]
Here, in recent years, in order to cope with global environmental problems, it is attempted to use CO 2 (carbon dioxide), which is a natural refrigerant, as a refrigerant in a refrigerant circuit such as this type of car air conditioner without using conventional chlorofluorocarbon. However, the CO 2 refrigerant is a refrigerant having a large high-low pressure difference. For example, in the case of two-stage compression, a differential pressure of about 100 KPaG is generated between the low-pressure side and the high-pressure side. Moreover, if the gas density is high and there is a throttle part such as an expansion valve, passage resistance is likely to occur. Therefore, it takes a longer time for the high-low pressure difference in the refrigerant circuit to equilibrate after the compressor is stopped than when a conventional refrigerant is used.
[0004]
If the time until this pressure equilibrium becomes long, there is a problem that the amount of oil flowing out from the low pressure side of the rotary compressor into the refrigerant circuit increases, causing liquid compression at the time of start-up and lowering reliability.
[0005]
Also, if the pressure difference between the high and low pressures starts up before it is balanced, the rotary compressor will be overloaded and reliability will be reduced. However, the compressor stops during this time, resulting in a loss of comfort.
[0006]
Furthermore, especially in the case of a car air conditioner, there are many misoperations during operation, and the rotary compressor is frequently started and stopped, which causes a further adverse effect on reliability.
[0007]
The present invention has been made to solve the conventional technical problems, and an object of the present invention is to improve both reliability and comfort in a refrigerant circuit using CO 2 gas as a refrigerant.
[0008]
[Means for Solving the Problems]
That is, the invention of claim 1 comprises an electric element in a hermetically sealed container and first and second rotary compression elements driven by the electric element, and an intermediate pressure compressed by the first rotary compression element. A refrigerant circuit comprising a multi-stage compression rotary compressor that sucks CO 2 refrigerant gas into a second rotary compression element, compresses and discharges the refrigerant, and discharges the refrigerant from the second rotary compression element of the rotary compressor A bypass pipe that bypasses the refrigerant side and the refrigerant suction side, and a valve device that opens and closes the flow path of the bypass pipe. The valve device is closed during the operation of the rotary compressor. Since the passage is opened, when the rotary compressor stops, the refrigerant discharge side and the refrigerant suction side of the second rotary compression element are communicated with each other by a bypass pipe.
[0009]
Thereby, it becomes possible to shorten the time from when the rotary compressor stops until the high pressure on the refrigerant discharge side of the second rotary compression element and the intermediate pressure on the refrigerant suction side reach the equilibrium pressure, The time until the so-called multi-stage compression rotary compressor can be restarted is shortened to ensure comfort and avoid deterioration in reliability.
[0010]
According to a second aspect of the present invention, an intermediate pressure CO 2 refrigerant compressed in the first rotary compression element is provided with the electric element in the hermetic container and the first and second rotary compression elements driven by the electric element. A refrigerant circuit comprising a multi-stage compression rotary compressor that sucks gas into a second rotary compression element, compresses and discharges the refrigerant, and the refrigerant discharge side and refrigerant of the second rotary compression element of the rotary compressor A first bypass pipe that bypasses the suction side, a second bypass pipe that bypasses the refrigerant discharge side and the refrigerant suction side of the first rotary compression element of the rotary compressor, and a second rotary compression element of the rotary compressor A third bypass pipe that bypasses the refrigerant discharge side and the refrigerant suction side of the first rotary compression element, and a valve device that opens and closes the flow path of each bypass pipe. During the operation of the presser, the flow paths of the first, second and third bypass pipes are closed. When the presser is stopped, the flow path of the second bypass pipe is first opened, and then the first bypass pipe, Since the flow path is opened in the order of the bypass pipe 3, the refrigerant discharge side and the refrigerant suction side of the first rotary compression element are first communicated by the second bypass pipe when the rotary compressor stops. Become.
[0011]
Thereby, it becomes possible to shorten the time from when the rotary compressor stops until the intermediate pressure on the refrigerant discharge side of the first rotary compression element and the low pressure on the refrigerant suction side reach the equilibrium pressure, The so-called multi-stage compression rotary compressor can reduce the time until it can be restarted, thereby ensuring comfort. In particular, since the amount of oil flowing out from the first rotary compression element into the refrigerant circuit can be reduced, the occurrence of liquid compression at the time of restart can be eliminated, and the reliability can be improved.
[0012]
Next, since the refrigerant discharge side and the refrigerant suction side of the second rotary compression element are communicated by the bypass pipe, the high pressure and refrigerant on the refrigerant discharge side of the second rotary compression element after the rotary compressor stops The time until the intermediate pressure on the suction side reaches the equilibrium pressure can be shortened, and this also shortens the time until the multi-stage compression rotary compressor can be restarted, improving comfort. While guaranteeing, it becomes possible to avoid a decrease in reliability.
[0013]
Then, since the refrigerant discharge side of the second rotary compression element and the refrigerant suction side of the first rotary compression element are finally communicated by the third bypass pipe, the second compressor is stopped after the rotary compressor is stopped. The high pressure on the refrigerant discharge side of the second rotary compression element, the intermediate pressure on the refrigerant suction side of the second rotary compression element, and the low pressure on the refrigerant suction side of the first rotary compression element are all communicated and quickly balanced. As a result, the time until the multi-stage compression rotary compressor can be restarted can be shortened to ensure comfort. Similarly, since the amount of oil flowing out from the first rotary compression element into the refrigerant circuit can be reduced, the occurrence of liquid compression at the time of restart can also be eliminated, thereby improving reliability. Become.
[0014]
In particular, when the vehicle interior is air-conditioned as in claim 3, it is possible to improve both comfort and reliability even if frequent driving / stopping operations are mistakenly performed during driving. .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal side view of an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor 10 having first and second rotary compression elements as an embodiment of a rotary compressor used in the refrigerant circuit of the present invention.
[0016]
In this figure, reference numeral 10 denotes an internal intermediate pressure multistage compression rotary compressor that uses carbon dioxide (CO 2 ) as a refrigerant. The multistage compression rotary compressor 10 includes a cylindrical sealed container 12 made of a steel plate, and the sealed container 12. The electric element 14 arranged and housed above the internal space of the electric element 14 and the first rotary compression element 32 (first stage) and the first rotary compression element 32 arranged below the electric element 14 and driven by the rotating shaft 16 of the electric element 14. The rotary compression mechanism section 18 is composed of two rotary compression elements 34 (second stage). The sealed container 12 has an oil reservoir at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a generally bowl-shaped end cap (lid body) 12B that closes the upper opening of the container body 12A. A circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring is omitted) 20 for supplying power to the electric element 14 is mounted in the mounting hole 12D. It has been.
[0017]
The electric element 14 includes a stator 22 attached in an annular shape along the inner peripheral surface of the upper space of the hermetic container 12, and a rotor 24 inserted and installed inside the stator 22 with a slight gap. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the vertical direction.
[0018]
The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. Further, like the rotor 24 stator 22, it is formed of a laminated body 30 of electromagnetic steel plates, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0019]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder 38 and a lower cylinder 40 disposed above and below the intermediate partition plate 36, and the upper and lower cylinders 38, The upper and lower rollers 46 and 48 that are eccentrically rotated by the upper and lower eccentric portions 42 and 44 provided on the rotary shaft 16 with a phase difference of 180 degrees in the interior 40, and the upper and lower cylinders 38 and 48 abut against the upper and lower rollers 46 and 48, The vanes 50 and 52 that divide the inside of the inside 40 into a low-pressure chamber side and a high-pressure chamber side, and the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40 are closed to serve as bearings for the rotary shaft 16. The upper support member 54 and the lower support member 56 are used as support members.
[0020]
On the other hand, the upper support member 54 and the lower support member 56 are respectively provided with a suction passage 60 (the upper suction passage is not shown) that communicates with the inside of the upper and lower cylinders 38 and 40 through a suction port (not shown), and a part thereof is recessed. Discharge silencing chambers 62 and 64 formed by closing the recessed portion with an upper cover 66 and a lower cover 68 are provided.
[0021]
The discharge silencer chamber 64 and the inside of the sealed container 12 are communicated with each other through a communication passage that penetrates the upper and lower cylinders 38 and 40 and the intermediate partition plate 36, and an intermediate discharge pipe 121 is provided upright at the upper end of the communication passage. The intermediate pressure refrigerant compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 into the sealed container 12.
[0022]
An upper cover 66 that closes the upper opening of the discharge silencing chamber 62 that communicates with the inside of the upper cylinder 38 of the second rotary compression element 34 partitions the inside of the sealed container 12 into the discharge silencing chamber 62 and the electric element 14 side. .
[0023]
In this case, the above-mentioned carbon dioxide (CO 2 ), which is a natural refrigerant in consideration of flammability and toxicity, is used as the refrigerant, and the oil as the lubricating oil is, for example, mineral oil (mineral oil) ), Alkylbenzene oil, ether oil, ester oil, PAG (polyalkylglycol) and the like.
[0024]
On the side surface of the container main body 12A of the sealed container 12, the suction passage 60 (upper side is not shown) of the upper support member 54 and the lower support member 56, the discharge silencer chamber 62, the upper side of the upper cover 66 (on the lower end of the electric element 14). Sleeves 141, 142, 143, and 144 are welded and fixed at positions corresponding to (substantially corresponding positions). The sleeves 141 and 142 are adjacent to each other vertically, and the sleeve 143 is substantially diagonal to the sleeve 141. Further, the sleeve 144 is located at a position shifted by approximately 90 degrees from the sleeve 141.
[0025]
One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted and connected into the sleeve 141, and one end of the refrigerant introduction pipe 92 communicates with a suction passage (not shown) of the upper cylinder 38. The refrigerant introduction pipe 92 passes through the upper side of the sealed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 to communicate with the sealed container 12.
[0026]
In addition, one end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected in the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. The other end of the refrigerant introduction pipe 94 is connected to the lower side of the accumulator 158. In addition, a refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant introduction pipe 96 communicates with the discharge silencer chamber 62.
[0027]
The accumulator 158 is a tank that performs gas-liquid separation of the suction refrigerant. The accumulator 158 side bracket 147 shown in FIG. 2 is connected to the bracket 147 on the airtight container 12 side that is welded and fixed to the upper side surface of the container body 12A of the airtight container 12. Attached.
[0028]
Next, FIG. 2 shows a refrigerant circuit when the present invention is applied to a car air conditioner (air conditioner). The multistage compression rotary compressor 10 described above is a part of the refrigerant circuit of the car air conditioner shown in FIG. Constitute. That is, the refrigerant discharge pipe 96 of the multistage compression rotary compressor 10 is connected to the inlet of the gas cooler 154. The piping that exits the gas cooler 154 passes through an internal heat exchanger 160 through an expansion valve 156 as a pressure reducing device, reaches an inlet of an evaporator (evaporator) 157, and an outlet of the evaporator 157 is connected to the internal heat exchanger 160, the accumulator. It is connected to the refrigerant introduction pipe 94 via 158.
[0029]
Further, the refrigerant suction side and the refrigerant discharge side of the second rotary compression element 34 are communicated with each other in the middle of a refrigerant introduction pipe (refrigerant passage) 92 for introducing the refrigerant in the hermetic container 12 into the second rotary compression element 34. One end of the first bypass pipe 170 is connected, and the other end of the bypass pipe 170 is connected to the refrigerant discharge pipe 96. The bypass pipe 170 is provided with a first valve device (electromagnetic valve) 171 that opens and closes the flow path of the bypass pipe 170.
[0030]
On the other hand, one end of a second bypass pipe 172 that connects the refrigerant suction side and the refrigerant discharge side of the first rotary compression element 32 is connected to the refrigerant introduction pipe 94 of the first rotary compression element 32. The other end of the bypass pipe 172 is connected in the middle of the refrigerant introduction pipe 92. The bypass pipe 172 is provided with a second valve device (electromagnetic valve) 173 that opens and closes the flow path of the bypass pipe 172.
[0031]
Further, one end of a third bypass pipe 174 is connected to the bypass pipe 170 on the refrigerant discharge pipe 96 side of the valve device 171, and the other end of the bypass pipe 174 is a bypass pipe 172 on the refrigerant introduction pipe 94 side of the valve device 173. It is connected to the. The bypass pipe 174 communicates with the refrigerant discharge side of the second rotary compression element 34 and the refrigerant suction side of the first rotary compression element 32, and the bypass pipe 174 opens and closes the flow path of the bypass pipe 174. Three valve devices (electromagnetic valves) 175 are provided.
[0032]
The valve devices 171, 173, and 175 provided in each of the bypass pipes 170, 172, and 174 are controlled to open and close by a control device (not shown). That is, when the multistage compression rotary compressor 10 is in operation, these valve devices 171, 173 and 175 are closed, and when the rotary compressor 10 is stopped, the valve devices 173, 171 and 175 are opened in this order. . As a result, the refrigerant gas can freely move through these bypass pipes 172, 170 and 174, and the refrigerant discharge side, the refrigerant suction side, and the first refrigerant compression side of the first rotary compression element 32 of the multistage compression rotary compressor 10 are provided. The pressure difference in the refrigerant circuit generated between the refrigerant discharge side and the refrigerant suction side of the second rotary compression element 34 and between the refrigerant discharge side of the second rotary compression element and the refrigerant suction side of the first rotary compression element is shortened. It becomes possible to equilibrate with time.
[0033]
Thereby, while shortening the operation prohibition period of the rotary compressor 10, it is possible to eliminate the occurrence of overload caused by starting in a state where there is a pressure difference, and to improve the reliability. In particular, since the valve device 173 is first opened to allow the refrigerant discharge side and the refrigerant suction side of the first rotary compression element 32 to communicate with each other, the oil is transferred from the first rotary compression element 32 to the accumulator 158 side of the refrigerant circuit. In such a manner that a large amount of spills out and liquid inconvenience occurs at the time of restart.
[0034]
In addition, when starting the compressor, these valve devices 171, 173, and 175 are closed by a control device (not shown) so that normal operation is performed.
[0035]
Next, the operation of the above configuration will be described. Incidentally, when the multistage compression rotary compressor 10 is started by the control device, the valve devices 171, 173 and 175 are closed as described above. When the stator coil 28 of the electric element 14 is energized through the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16 rotate eccentrically in the upper and lower cylinders 38 and 40.
[0036]
Thus, the low-pressure refrigerant sucked into the low-pressure chamber side of the cylinder 40 from the suction port (not shown) via the suction passage 60 formed in the refrigerant introduction pipe 94 and the lower support member 56 is operated by the rollers 48 and the vanes 52. Is compressed by the intermediate pressure to be discharged from the intermediate discharge pipe 121 into the sealed container 12 through the communication passage (not shown) from the high pressure chamber side of the lower cylinder 40. Thereby, the inside of the sealed container 12 becomes an intermediate pressure.
[0037]
Then, the intermediate-pressure refrigerant gas in the sealed container 12 exits from the sleeve 144 and passes through a suction passage (not shown) formed in the refrigerant introduction pipe 92 and the upper support member 54 from the suction port (not shown) to the upper cylinder 38. Is sucked into the low pressure chamber side. The sucked intermediate-pressure refrigerant gas is compressed in the second stage by the operation of the roller 46 and the vane 50 to become high-pressure and high-temperature refrigerant gas, and is formed on the upper support member 54 from the high-pressure chamber side through a discharge port (not shown). The heat is radiated from the gas cooler 154 through the discharge silencer chamber 62 and the refrigerant discharge pipe 96, passes through the internal heat exchanger 160, is decompressed by the expansion valve 156, and flows into the evaporator 157.
[0038]
Then, the refrigerant evaporates, and at that time, the inside of the vehicle is cooled by exhibiting a cooling action by absorbing heat from the surroundings. Thereafter, the cycle of being sucked from the refrigerant introduction pipe 94 into the first rotary compression element 32 through the internal heat exchanger 160 and the accumulator 158 is repeated.
[0039]
When the vehicle interior temperature falls to the set temperature, the control device stops the multi-stage compression rotary compressor 10 and first opens the valve device 173 as described above. As a result, the refrigerant discharge side and the refrigerant suction side of the first rotary compression element 32 communicate with each other to achieve pressure balance, so that the oil flows backward from the refrigerant introduction pipe 94 of the first rotary compression element 32 to the accumulator 158 side. The inconvenience that occurs can be avoided. Next, the valve device 171 and the valve device 175 are opened in this order. As a result, the refrigerant discharge side and the refrigerant suction side of the second rotary compression element 34 and finally the refrigerant suction side and the refrigerant discharge side of the first rotary compression element 32 are also communicated with each other, so that the multistage compression rotary compressor All of the 10 low pressures, intermediate pressures, and high pressures are communicated, and the pressure is quickly balanced.
[0040]
Thus, even when the multistage compression rotary compressor 10 is frequently operated / stopped due to an erroneous operation during operation, the rotary compressor 10 is improved while reducing the time required for restart and improving the comfort of the vehicle interior air conditioning. As a result, it is possible to prevent inconveniences that cause liquid compression, and it is possible to avoid inconveniences that cause damage by applying an excessive load to the rollers 46 and 48 and the pin portions.
[0041]
In the embodiment, the bypass pipe 170 and the valve device 171, the bypass pipe 172 and the valve device 173, and the bypass pipe 174 and the valve device 175 are provided. The bypass pipe 170 and the valve device 171, the bypass pipe 172 and the valve device 173 only, the bypass pipe 172 and the valve device 173, the bypass pipe 174 and the valve device 175 only, the bypass pipe 170 and the valve The combination of only the device 171 and the bypass pipe 174 and the valve device 175 is effective.
[0042]
【The invention's effect】
As described above in detail, according to the first aspect of the present invention, the sealed container includes the electric element and the first and second rotary compression elements driven by the electric element. A refrigerant circuit comprising a multi-stage compression rotary compressor that sucks compressed intermediate-pressure CO 2 refrigerant gas into a second rotary compression element and compresses and discharges the compressed gas. A bypass pipe that bypasses the refrigerant discharge side and the refrigerant suction side of the rotary compression element and a valve device that opens and closes the flow path of the bypass pipe are provided. The valve device is closed during operation of the rotary compressor and stopped. In this case, when the rotary compressor stops, the refrigerant discharge side and the refrigerant suction side of the second rotary compression element are communicated by the bypass pipe. That.
[0043]
Thereby, it becomes possible to shorten the time from when the rotary compressor stops until the high pressure on the refrigerant discharge side of the second rotary compression element and the intermediate pressure on the refrigerant suction side reach the equilibrium pressure, The time until the so-called multi-stage compression rotary compressor can be restarted is shortened to ensure comfort and avoid deterioration in reliability.
[0044]
According to the invention of claim 2, the intermediate pressure compressed by the first rotary compression element is provided with the electric element and the first and second rotary compression elements driven by the electric element in the hermetic container. A refrigerant circuit comprising a multi-stage compression rotary compressor that sucks CO 2 refrigerant gas into a second rotary compression element, compresses and discharges the refrigerant, and discharges the refrigerant from the second rotary compression element of the rotary compressor A first bypass pipe that bypasses the refrigerant suction side and the refrigerant suction side, a second bypass pipe that bypasses the refrigerant discharge side and the refrigerant suction side of the first rotary compression element of the rotary compressor, and a second compressor of the rotary compressor A third bypass pipe that bypasses the refrigerant discharge side of the rotary compression element and the refrigerant suction side of the first rotary compression element; and a valve device that opens and closes the flow path of each bypass pipe. During operation of the compressor, the flow paths of the first, second and third bypass pipes are closed, and when stopped, the flow path of the second bypass pipe is first opened, and then the first bypass pipe, Since the flow path is opened in the order of the third bypass pipe, when the rotary compressor stops, the refrigerant discharge side and the refrigerant suction side of the first rotary compression element are first communicated with each other by the second bypass pipe. become.
[0045]
Thereby, it becomes possible to shorten the time from when the rotary compressor stops until the intermediate pressure on the refrigerant discharge side of the first rotary compression element and the low pressure on the refrigerant suction side reach the equilibrium pressure, The so-called multi-stage compression rotary compressor can reduce the time until it can be restarted, thereby ensuring comfort. In particular, since the amount of oil flowing out from the first rotary compression element into the refrigerant circuit can be reduced, the occurrence of liquid compression at the time of restart can be eliminated, and the reliability can be improved.
[0046]
Next, since the refrigerant discharge side and the refrigerant suction side of the second rotary compression element are communicated by the bypass pipe, the high pressure and refrigerant on the refrigerant discharge side of the second rotary compression element after the rotary compressor stops The time until the intermediate pressure on the suction side reaches the equilibrium pressure can be shortened, and this also shortens the time until the multi-stage compression rotary compressor can be restarted, improving comfort. While guaranteeing, it becomes possible to avoid a decrease in reliability.
[0047]
Then, since the refrigerant discharge side of the second rotary compression element and the refrigerant suction side of the first rotary compression element are finally communicated by the third bypass pipe, the second compressor is stopped after the rotary compressor is stopped. The high pressure on the refrigerant discharge side of the second rotary compression element, the intermediate pressure on the refrigerant suction side of the second rotary compression element, and the low pressure on the refrigerant suction side of the first rotary compression element are all communicated and quickly balanced. As a result, the time until the multi-stage compression rotary compressor can be restarted can be shortened to ensure comfort. Similarly, since the amount of oil flowing out from the first rotary compression element into the refrigerant circuit can be reduced, the occurrence of liquid compression at the time of restart can also be eliminated, thereby improving reliability. Become.
[0048]
In particular, when the vehicle interior is air-conditioned as in claim 3, it is possible to improve both comfort and reliability even if frequent driving / stopping operations are mistakenly performed during driving. .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a multistage compression rotary compressor constituting a refrigerant circuit according to an embodiment of the present invention.
FIG. 2 is a refrigerant circuit diagram of the car air conditioner according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Multistage compression rotary compressor 32 1st rotation compression element 34 2nd rotation compression element 92, 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 154 Gas cooler 156 Expansion valve 157 Evaporator 158 Accumulator 160 Internal heat exchanger 170,172,174 Bypass Piping 171, 173, 175 Valve device

Claims (3)

密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮された中間圧のCO2冷媒ガスを前記第2の回転圧縮要素に吸引し、圧縮して吐出する多段圧縮式のロータリコンプレッサを備えて構成された冷媒回路において、
前記ロータリコンプレッサの第2の回転圧縮要素の冷媒吐出側と冷媒吸込側とをバイパスするバイパス配管と、該バイパス配管の流路を開閉する弁装置とを備え、
前記弁装置は、前記ロータリコンプレッサの運転中は閉じており、停止した場合に前記バイパス配管の流路を開放することを特徴とするCO2冷媒を用いた冷媒回路。
An electric element and first and second rotary compression elements driven by the electric element are provided in the hermetic container, and the intermediate pressure CO 2 refrigerant gas compressed by the first rotary compression element is supplied to the second container. In the refrigerant circuit configured to include a multi-stage compression rotary compressor that sucks, compresses and discharges the rotary compression element
A bypass pipe that bypasses the refrigerant discharge side and the refrigerant suction side of the second rotary compression element of the rotary compressor, and a valve device that opens and closes the flow path of the bypass pipe;
The valve device is closed during operation of the rotary compressor, and opens the flow path of the bypass pipe when the rotary compressor is stopped. A refrigerant circuit using a CO 2 refrigerant.
密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮された中間圧のCOAn intermediate pressure CO compressed by the first rotary compression element is provided with an electric element and first and second rotary compression elements driven by the electric element in a sealed container. 22 冷媒ガスを前記第2の回転圧縮要素に吸引し、圧縮して吐出する多段圧縮式のロータリコンプレッサを備えて構成された冷媒回路において、In a refrigerant circuit comprising a multi-stage compression rotary compressor that sucks refrigerant gas into the second rotary compression element, compresses and discharges the gas,
前記ロータリコンプレッサの第2の回転圧縮要素の冷媒吐出側と冷媒吸込側とをバイパスする第1のバイパス配管と、A first bypass pipe that bypasses the refrigerant discharge side and the refrigerant suction side of the second rotary compression element of the rotary compressor;
前記ロータリコンプレッサの第1の回転圧縮要素の冷媒吐出側と冷媒吸込側とをバイパスする第2のバイパス配管と、A second bypass pipe that bypasses the refrigerant discharge side and the refrigerant suction side of the first rotary compression element of the rotary compressor;
前記ロータリコンプレッサの第2の回転圧縮要素の冷媒吐出側と第1の回転圧縮要素の冷媒吸込側とをバイパスする第3のバイパス配管と、A third bypass pipe that bypasses the refrigerant discharge side of the second rotary compression element of the rotary compressor and the refrigerant suction side of the first rotary compression element;
前記各バイパス配管の流路をそれぞれ開閉する弁装置とを備え、A valve device for opening and closing each flow path of each bypass pipe,
前記弁装置は、前記ロータリコンプレッサの運転中は前記第1、第2及び第3のバイパス配管の流路を閉じており、停止した場合に先ず前記第2のバイパス配管の流路を開放し、次に前記第1のバイパス配管、前記第3のバイパス配管の順で流路を開放することを特徴とするCOThe valve device closes the flow paths of the first, second and third bypass pipes during operation of the rotary compressor, and first opens the flow path of the second bypass pipes when stopped. Next, the flow path is opened in the order of the first bypass pipe and the third bypass pipe. 22 冷媒を用いた冷媒回路。Refrigerant circuit using refrigerant.
車室内を空調するために用いられることを特徴とする請求項1又は請求項2に記載のCOThe CO according to claim 1 or 2, wherein the CO is used for air conditioning a vehicle interior. 22 冷媒を用いた冷媒回路。Refrigerant circuit using refrigerant.
JP2002188023A 2002-06-27 2002-06-27 Refrigerant circuit using CO2 refrigerant Expired - Fee Related JP3983115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188023A JP3983115B2 (en) 2002-06-27 2002-06-27 Refrigerant circuit using CO2 refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188023A JP3983115B2 (en) 2002-06-27 2002-06-27 Refrigerant circuit using CO2 refrigerant

Publications (2)

Publication Number Publication Date
JP2004028492A JP2004028492A (en) 2004-01-29
JP3983115B2 true JP3983115B2 (en) 2007-09-26

Family

ID=31182887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188023A Expired - Fee Related JP3983115B2 (en) 2002-06-27 2002-06-27 Refrigerant circuit using CO2 refrigerant

Country Status (1)

Country Link
JP (1) JP3983115B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI325949B (en) * 2004-02-09 2010-06-11 Sanyo Electric Co Refrigerant system
JP2005226918A (en) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd Solar battery driven refrigerant cycle device, water heater, hot storage, cooling storage, beverage feeder, and air conditioner
JP2005226913A (en) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd Transient critical refrigerant cycle device
JP2006258331A (en) * 2005-03-15 2006-09-28 Daikin Ind Ltd Refrigerating apparatus
JP2008089268A (en) * 2006-10-04 2008-04-17 Sanden Corp Vehicle cooler
JP2010112579A (en) * 2008-11-04 2010-05-20 Daikin Ind Ltd Refrigerating device
JP5287831B2 (en) * 2010-10-29 2013-09-11 株式会社デンソー Two-stage boost refrigeration cycle
JP2024010808A (en) * 2022-07-13 2024-01-25 三菱重工業株式会社 Refrigerator, control device for refrigerator, control method for refrigerator, and program

Also Published As

Publication number Publication date
JP2004028492A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
EP1486742B1 (en) Refrigerant cycle apparatus
JP2004293813A (en) Refrigerant cycle device
JP2007100513A (en) Refrigerant compressor and refrigerant cycle device having the same
JP3983115B2 (en) Refrigerant circuit using CO2 refrigerant
JP2004116957A (en) Refrigerant cycle system
JP4278402B2 (en) Refrigerant cycle equipment
JP3762693B2 (en) Multi-stage rotary compressor
JP2006022723A (en) Compression system and refrigerating apparatus using the same
JP3986338B2 (en) Refrigerant circuit using inverter-controlled compressor
JP4766872B2 (en) Multi-cylinder rotary compressor
JP2004251492A (en) Refrigerant cycle device
JP4241127B2 (en) Transcritical refrigerant cycle equipment
JP4236400B2 (en) Defroster for refrigerant circuit
JP4079736B2 (en) Refrigerant cycle equipment
JP2006022766A (en) Multi-cylinder rotary compressor
JP2004251514A (en) Refrigerant cycle device
JP2004308489A (en) Refrigerant cycle apparatus
JP2005147562A (en) Two-stage compression type rotary compressor, and car air conditioner and heat pump type hot water supply apparatus using it
JP4404708B2 (en) Compression system and refrigeration system using the same
JP2007092738A (en) Compressor
JP3863799B2 (en) Multi-stage rotary compressor
JP2004092469A (en) Rotary compressor
JP4169620B2 (en) Refrigerant cycle equipment
JP2006022765A (en) Multiple cylinder rotary compressor
JP2003129977A (en) Rotary compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees