JP3985494B2 - Electric deionization apparatus and deionization method - Google Patents

Electric deionization apparatus and deionization method Download PDF

Info

Publication number
JP3985494B2
JP3985494B2 JP2001325285A JP2001325285A JP3985494B2 JP 3985494 B2 JP3985494 B2 JP 3985494B2 JP 2001325285 A JP2001325285 A JP 2001325285A JP 2001325285 A JP2001325285 A JP 2001325285A JP 3985494 B2 JP3985494 B2 JP 3985494B2
Authority
JP
Japan
Prior art keywords
chamber
water
exchange resin
ion exchange
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001325285A
Other languages
Japanese (ja)
Other versions
JP2003126862A (en
Inventor
邦博 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001325285A priority Critical patent/JP3985494B2/en
Publication of JP2003126862A publication Critical patent/JP2003126862A/en
Application granted granted Critical
Publication of JP3985494B2 publication Critical patent/JP3985494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体、液晶、製薬、食品工業等の各種の産業において利用される電気式脱イオン装置に係わり、特に処理水の比抵抗値と弱電解質アニオンの除去率の向上を図り、高純度の純水を連続的に製造することができる電気式脱イオン装置に関する。また、本発明は、この電気式脱イオン装置を用いた脱イオン方法に関する。
【0002】
【従来の技術】
電気式脱イオン装置は、電極(陽極と陰極)同士の間に複数のカチオン交換膜とアニオン交換膜とを交互に配列して脱塩室と濃縮室とを交互に形成し、脱塩室にイオン交換樹脂を充填した構成を有する。この電気式脱イオン装置にあっては陽極、陰極間に電圧を印加しながら脱塩室に被処理水を流入させると共に、濃縮室に濃縮水を流入させ被処理水中の不純物イオンを除去し、脱イオン水を製造する。
【0003】
図6はこの電気式脱イオン装置の基本的な構成を示す分解図である。
【0004】
陰極側のエンドプレート1に沿って陰極電極板2が配置され、この陰極電極板2の周縁部に枠状の陰極用スペーサ3が重ね合わされる。この陰極用スペーサ3の上にカチオン交換膜4、脱塩室形成用の枠状フレーム5、アニオン交換膜6及び濃縮室形成用の枠状フレーム7がこの順に重ね合わされる。このカチオン交換膜4、脱塩室形成用の枠状フレーム5、アニオン交換膜6及び濃縮室形成用の枠状フレーム7を1単位として多数重ね合わされる。即ち、膜4、フレーム5、膜6、フレーム7が連続して繰り返し積層される。最後のアニオン交換膜6に対し枠状の陽極用スペーサ8を介して陽極電極板9が重ね合わされ、その上に陽極側エンドプレート10が重ね合わされて積層体とされる。この積層体はボルト等によって締め付けられる。
【0005】
上記の脱塩室用フレーム5の内側スペースが脱塩室となっており、この脱塩室にはイオン交換樹脂等のイオン交換樹脂5Rが充填される。濃縮室用フレーム7の内側が濃縮室となっている。この濃縮室にはメッシュスペーサなどが配置される。
【0006】
このような装置にあっては、陽極9と陰極2の間に直流電流を通じ、且つ被処理水(原水)を被処理水流入ライン11を通して脱塩室内に通水せしめ、また、濃縮水を濃縮水流入ライン12を通して濃縮室8内に通水せしめる。脱塩室内に流入してきた被処理水はイオン交換樹脂の充填層を流下し、その際、該被処理水中の不純物イオンが除かれて脱イオン水となり、これが脱イオン水流出ライン13を経て流出する。
【0007】
一方、濃縮室内に通水された濃縮水は濃縮室内を流下するときに、イオン交換膜4,6を介して移動してくる不純物イオンを受け取り、不純物イオンを濃縮した濃縮水として濃縮水流出ライン14より流出する。電極室にはそれぞれ導入ライン15,16及び取出ライン17,18を介して電極水が流通される。
【0008】
ところで、脱塩室内に上下方向に仕切り用リブを設け、脱塩室内を上下方向に長い小室に区画した電気式脱イオン装置が特公平4−72567号公報に記載されている。このように脱塩室内をリブによって細長い小室に区画し、各小室にそれぞれイオン交換樹脂を充填した電気式脱イオン装置にあっては、脱塩室の入口から出口に向って局部的に偏って水が流れるチャンネル化現象が防止されると共に、脱塩室内においてイオン交換樹脂が圧縮されたり移動したりすることが防止される。
【0009】
この特公平4−72567号の電気式脱イオン装置にあっては、脱塩室を上下に細長い小室に区画するため、小室の数に制限がある。即ち、あまり多くの小室を形成することができない。また、リブによって水の左右方向への流れが阻止されるため、水とイオン交換樹脂との接触効率が悪い。さらに、小室の下部にあってはイオン交換樹脂が圧縮され、上部に隙間があき、イオン交換樹脂の充填率が低くなりがちであるという短所もある。
【0010】
本出願人は、このような種々の短所を克服し、水とイオン交換樹脂との接触効率が高く、イオン交換樹脂等の充填密度も高い電気式脱イオン装置を特開2001−25647号にて提案している。
【0011】
同号の電気式脱イオン装置は、脱塩室内を区画部材によって多数の小室に区画し、各小室にイオン交換樹脂を充填したものである。この各小室に臨む区画部材の少なくとも一部は、脱塩室内の平均的な水の流れ方向に対して傾斜しており、この傾斜した部分は、水は通過させるが、イオン交換樹脂は通過させない構造となっている。このため、脱塩室内に流入した水の少なくとも一部は、平均的な水の流れ方向に対し斜め方向に流れるようになり、脱塩室内の全体に分散して流れる。従って、水とイオン交換樹脂との接触効率が向上し、脱イオン特性が向上する。
【0012】
この小室を平均的な水の流れ方向及びこれと直交方向のいずれにおいても膜面に沿って複数個配置することにより、(例えば縦横に多数配置することにより、)水とイオン交換樹脂との接触効率がきわめて高いものとなる。また、各小室内の上下方向の高さが小さくなり、イオン交換樹脂が局部的に圧縮されにくくなる。従って、小室に隙間が生じることがなく、イオン交換樹脂の充填密度が高い。
【0013】
この小室は、イオン交換膜面に投影した形状が六角形又は四角形であってもよい。六角形の場合には、1対の平行な辺が平均的な水の流れ方向となるように各小室を配置するのが好ましい。四角形の場合には、各辺が平均的な水の流れ方向に対し傾斜するように配置する。
【0014】
1つの小室内に1種類のイオン交換特性のイオン交換樹脂のみを充填してもよく、複数種類のイオン交換特性のイオン交換樹脂を充填してもよい。例えば1つの小室内にアニオン交換体と両性イオン交換樹脂とを混合して充填してもよい。
【0015】
【発明が解決しようとする課題】
電気式脱イオン装置は、被処理水中のイオンを電極間の電位差に基づいて脱塩室から濃縮室へ移動させるものであるから、炭酸やシリカのような弱電解質成分は除去されにくい。
【0016】
たとえば市水を逆浸透膜装置で処理し、その透過水を電気式脱イオン装置で処理した場合、比抵抗値10MΩ・cm前後の脱イオン水が得られる。しかしながら給水の炭酸濃度が10ppm以上と高い場合、比抵抗値は1〜5MΩ・cmに低下する。従って、比抵抗値が高い処理水とするために、電気脱イオン装置の前段に脱炭酸装置をあらかじめ設置しなければならない。
【0017】
また、従来の電気式脱イオン装置によると、シリカの除去率は70〜90%程度の低い値である。そのため、電気式脱イオン装置の後段に設置されたポリッシャーの再生頻度あるいは交換頻度が高くなる。
【0018】
本発明は、比抵抗値10MΩ・cm以上の安定した処理水とシリカの除去率を飛躍的に向上し得る電気式脱イオン装置及び脱イオン方法を提供することを目的とするものである。
【0019】
【課題を解決するための手段】
本発明の電気式脱イオン装置は、電極同士の間に複数のカチオン交換膜とアニオン交換膜とを交互に配列して脱塩室と濃縮室とを交互に形成し、脱塩室にイオン交換樹脂を充填し、脱塩室に被処理水を通水し、濃縮室に濃縮水を通水するようにした電気式脱イオン装置であって、該脱塩室内に区画部材が配置され、該区画部材と該カチオン交換膜及びアニオン交換膜とによって囲まれた多数の小室が該脱塩室内に形成されており、各小室にそれぞれイオン交換樹脂が充填されており、各小室に臨む区画部材の少なくとも一部は該脱塩室内の平均的な水の流れ方向に対し傾斜しており、該区画部材の少なくとも傾斜した部分は、水を通過させるがイオン交換樹脂の通過を阻止する構造となっている電気式脱イオン装置において、該イオン交換樹脂は、アニオン交換樹脂とカチオン交換樹脂とを含む混合物であり、該アニオン交換樹脂とカチオン交換樹脂との合量に対するアニオン交換樹脂の割合が60〜80体積%であることを特徴とする。
【0020】
また、本発明の脱イオン方法は、かかる本発明の電気脱イオン装置を用いて炭酸濃度10mgCO/L以上の被処理水を脱イオン処理することを特徴とするものである。
【0021】
弱電解質である炭酸の電気式脱イオン装置における除去機構は次のように考えられている。被処理水の炭酸(CO)は、電気式脱イオン装置内において水酸化物イオン(OH)とのイオン化反応により重炭酸イオンに変わる(CO+OH→HCO )。
【0022】
この重炭酸イオンが脱塩室内を移動し、アニオン交換膜を通過して濃縮室へ移動する。従って、第一にイオン化反応を促進させること、第二に重炭酸イオンの移動度を改善することが炭酸除去によって重要である。
【0023】
この炭酸のイオン化反応(重炭酸イオンの生成)促進のためには、OHイオンの供給が必要であり、これは水解離(HO→H+OH)によってもたらされる。
【0024】
この水解離が発生する場所はイオン交換樹脂同士の間およびイオン交換樹脂とイオン交換膜同士の間である。このうち、イオン交換樹脂同士の間で発生した水素イオンおよび水酸化物イオンは脱塩室内で再び会合するのでその寿命は短い。それ故に、炭酸のイオン化のためのOHとしては、イオン交換膜とイオン交換樹脂との間、特にカチオン交換膜とアニオン交換樹脂との間で発生するOHイオンが有効である。従って、例えばアニオン交換樹脂の割合を60%から70%に高めると、カチオン交換膜へのアニオン樹脂の接触率が約17%上昇し、これに伴い、発生するOHイオン量も増加する。この結果、炭酸のイオン化反応が促進される。なお、アニオン交換樹脂の割合を80%に高めると、OHイオン発生量はさらに増加するが、Hイオンが減少しすぎるためNaイオンの除去性が低下し、処理水の比抵抗を悪くする。
【0025】
このイオン化した重炭酸イオンは速やかに濃縮室へ移動させる必要がある。アニオン交換樹脂の割合を60%から70%へ上げると、アニオン交換樹脂を介して移動する割合が約3倍に増える。この結果、重炭酸イオンの移動度改善により炭酸の除去性が向上する。しかしながら、カチオン交換樹脂の割合が減少するため、Naリークを招き、比抵抗を悪くする。
【0026】
このようにアニオンの除去性を改善することは、カチオンの除去性を悪くすることと表裏一体である。従って、通常のリブ式の電気脱イオン装置では、本発明の様なアニオン交換樹脂比では、もはやカチオンの除去性が悪く、Naリークが発生してしまう。そこで、本発明では、電気式脱イオン装置として脱イオン特性に優れた特開2001−25647号の電気式脱イオン装置の構造を採用する。
【0027】
【発明の実施の形態】
以下、図面を参照して実施の形態について説明する。図1は実施の形態に係る脱塩室の構成を示す分解斜視図、図2は区画部材の要部斜視図、図3は区画部材の分解斜視図、図4は区画部材の通水状況を示す正面図である。
【0028】
この脱塩室は、長方形状のフレーム20と、このフレーム20内に配置された好ましくは導電性を有した区画部材21と、区画部材21によって形成された小室22内に充填されたイオン交換樹脂23と、フレーム20を挟むように配置されたアニオン交換膜24及びカチオン交換膜25とによって構成されている。
【0029】
フレーム20の上部には被処理水(原水)の導入用の通水孔26及び濃縮水(流入側)の通水孔27が穿孔され、下部には脱塩水の通水孔28及び濃縮水(排出側)の通水孔29が穿孔されている。この原水導入用通水孔26及び脱塩水の通水孔28は切欠状の水路26a,28aを介してそれぞれフレーム20の内側に連通している。
【0030】
なお、水路26aは、図1では左上の小室にのみ連通するように図示しているが、左右方向の各小室に原水が均等に分配されるように水路26aは実際にはフレーム20の上部に複数設けられ、通水孔26は最上部の各小室に直接に連通している。同様に、図1では水路28aは右下の小室にのみ連通するように図示してあるが、実際には水路28aはフレーム20の下部に複数個設けられており、通水孔28は最下部の各小室に直接に連通している。
【0031】
この実施の形態に係る区画部材21は六角形のハニカム形状のものであり、小室22は上下左右に多数配置されている。各小室22の1対の側辺がフレーム20の長手方向即ち上下方向となるように配置されている。
【0032】
この区画部材21は、予め一体成形されたものであってもよく、複数の部材を組み合わせたものであってもよい。例えば図3のようにジグザグ状の屈曲板30の長手方向面31同士を連結することにより構成される。この屈曲板30は、長手方向面31に対し120゜の角度で連なる通水性の斜向面32,33を備えている。長手方向面31同士を連結するには例えば接着剤を用いることができる。この屈曲板30は、水は通過させるがイオン交換樹脂は通過させない材料、例えば織布、不織布、メッシュ、多孔質材などにより構成されている。この屈曲板30は耐酸性及び耐アルカリ性を有した合成樹脂又は金属により剛性を有するように形成されるのが好ましい。長手方向面31は通水性を有していてもよく、有していなくてもよい。
【0033】
区画部材21はフレーム20に嵌め込まれてもよい。また、フレーム20の片面側に透水性シート又はメッシュを張設し、これに区画部材を接着してもよい。
【0034】
この脱塩室を有した電気式脱イオン装置の全体構造それ自体は前記図6と同じであり、原水、濃縮水及び電極水の通水系路も同じである。
【0035】
この電気式脱イオン装置に通水して脱塩運転を行う場合、脱塩室に流入した原水は、図4の通り小室22を囲む区画部材21を通過して隣接する小室22に流れ込み、徐々に下方に流れ、この間に脱イオン処理を受ける。そして、遂には脱塩室の下部に達し、水路28aを介して脱塩水取出用の孔28に流入し、脱塩水として電気式脱イオン装置外に取り出される。
【0036】
この脱塩室における平均的な水の流れ方向は、原水流入用の水路26aがフレーム20の上部に存在し、脱塩水取出用の水路28aがフレーム20の下部に存在するところから、上から下に向う鉛直方向となっている。この平均的な水の流れ方向に対し小室の上部及び下部が傾斜しているので、被処理水は1つの小室22から左及び右側の小室22へ斜めに分かれて流下するようになる。このため、被処理水が各小室22にほぼ均等に分散して流れるようになり、被処理水とイオン交換樹脂との接触効率が良好なものとなる。
【0037】
この脱塩室にあっては、小室22が比較的小さく、イオン交換樹脂の自重及び水圧によって各小室22内においてイオン交換樹脂に対し加えられる下向きの圧力が小さい。従って、いずれの小室22内においてもイオン交換樹脂が圧縮されることがなく、イオン交換樹脂が小室内の下部において局部的に圧密化されることがない。
【0038】
各小室22に対して充填されるイオン交換樹脂は、アニオン交換樹脂とカチオン交換樹脂との混合物である。両者の混合割合は、アニオン交換樹脂とカチオン交換樹脂との合量に対するアニオン交換樹脂の割合が60〜80体積%となる範囲である。
【0039】
アニオン交換樹脂の割合が60体積%よりも少ないと、水の解離によるOH生成量が不足し、炭酸の重炭酸イオンへのイオン化が不足し、炭酸除去効果が低くなる。一方、アニオン交換樹脂の割合が80体積%よりも多くなると、Naイオン等のカチオンの除去効率が悪くなり、処理水中のNaイオン等の濃度が高くなる。アニオン交換樹脂が60〜80体積%好ましくは65〜75体積%の範囲であると、炭酸及びNaイオン等の除去がいずれも十分に行われると共に、弱酸であるシリカのイオン化も促進され、シリカ除去率も高くなる。
【0040】
本発明によると、炭酸濃度が10mgCO/L以上の被処理水からも、10MΩ・cm以上の高比抵抗の処理水を生産することが可能である。
【0041】
なお、小室22に充填されるイオン交換樹脂は、アニオン交換樹脂とカチオン交換樹脂のみであることが好ましいが、少量のII型のアニオン交換樹脂が混合されてもよい。II型のアニオン交換樹脂の混合割合は、アニオン交換樹脂全体の10体積%以下であることが望ましい。
【0042】
図1〜4では小室は六角形であるが、四角形例えば菱形であってもよい。また、区画部材は、三角形の小室を形成する三角格子状区画部材であってもよく、さらに別形状の小室を有する区画部材であってもよい。
【0043】
本発明の電気式脱イオン装置において、小室のイオン交換膜面への投影面積は1〜100cmとくに5〜80cmとりわけ10〜50cm程度が好ましい。脱塩室を挟む1対のアニオン交換膜とカチオン交換膜の間隔、即ち脱塩室の厚みは1.5〜15mmとくに3〜10mm程度が好ましい。なお、小室を小さくするほど1つの小室に充填するイオン交換樹脂の量が少なくなり、イオン交換樹脂の流動が抑制されると共に、区画部材及び脱塩室の強度も大きくなるが、脱塩室の通水圧損が大きくなる。
【0044】
濃縮室の厚みは0.3〜1mm程度が好ましい。濃縮室内には20〜60メッシュ程度のスペーサが配置されるのが望ましい。
【0045】
イオン交換樹脂の粒径は、0.1〜1mmとくに0.2〜0.6mm程度が好ましい。このイオン交換樹脂は、小室の容積の100〜140%程度の量を小室に収容した後、イオン交換膜で両側から挟みつけ、イオン交換樹脂を小室内に緻密に充填するのが好ましい。
【0046】
小室内にイオン交換樹脂を充填して電気式脱イオン装置を組み立てる場合、小室内にイオン交換樹脂を充填し、両端に相対するイオン交換膜を設置後、原水を供給し内部イオン交換樹脂を膨潤させた後、小室を体積比が100〜102%程度になるように締め付けてもよい。
【0047】
また、濃縮室内にもイオン交換樹脂を充填することができる。濃縮室にイオン交換樹脂を充填することにより、電流が流れ易く、また、乱流効果も改善され、電流効率が向上する。濃縮室に配置されるスペーサの代わりに脱塩室と同様に区画部材で多数の小室を形成し、各小室にイオン交換樹脂を充填しても良い。
【0048】
なお、一般に、陰極室はアルカリ性を呈するため、通常陽極室を通過した酸性の陽極水が供給され、陰極室で中和し、一部純水になる。このため、陰極室の導電性は低下し局部的に電圧が上昇し、スケールが発生し易い。この状況を避けるため、陰極をメッシュ電極又は不織布状の電極を単独又は組み合わせた電極を使用することにより電極面積を増やし、電極面の電流密度を下げることによりスケールの発生を防止するのが好ましい。
【0049】
本発明の電気式脱イオン装置を運転する場合、濃縮水を循環し、循環水中のイオン濃度を給水の5〜40倍の範囲内に制御することが望ましい。この場合、濃縮水のスケール成分である硬度成分を電気的に分離排除し、循環水中のランゲリアインデックスをマイナスにすることが好ましい。硬度成分除去に弱酸性イオン交換樹脂を使用してもよい。
【0050】
【実施例】
以下、実施例1〜3及び比較例1,2について説明する。
【0051】
この実施例及び比較例で用いた電気式脱イオン装置は、図1〜4に示す構造の脱塩室を有し、濃縮室については上下方向に3本のリブを延設した構造のものである。
【0052】
脱塩室及び濃縮室の大きさは幅130mm、高さ400mmであり、脱塩室の厚みは5mm、濃縮室の厚みは2.5mmである。
【0053】
脱塩室の数は3、濃縮室の数は4であり、両者は図6の如く交互に配設されている。最も外側の濃縮室の両側(外側)に図6と同様に電極室が配置されている。
【0054】
脱塩室内の小室は、図示の通り正六角形であり、六角形の一辺の長さは16.1mmである。小室を形成する区画部材の材質は縦の壁部がポリプロピレン、斜めのメッシュ部がポリエステル製である。
【0055】
脱塩室の各小室には、それぞれアニオン交換樹脂とカチオン交換樹脂との混合物を充填した。両樹脂の含量に対するアニオン交換樹脂の割合は次の通りである。
比較例1 50%
実施例1 65%
実施例2 70%
実施例3 75%
比較例2 90%
【0056】
濃縮室にはカチオン交換樹脂とアニオン交換樹脂とを4:6の体積比で混合したものを充填し、電極室には活性炭を充填した。
【0057】
その他の運転条件は次の通りである。
被処理水 :市水を逆浸透膜分離処理した炭酸濃度18mgCO/L、シリカ濃度0.35mgSiO/L、導電率10μS/cmの水。
脱塩室通水量:190L/h
濃縮室通水量: 60L/h
電圧 :40V
電流 :4.4A
電流効率 :20%
【0058】
得られた処理水の水質を表1に示すと共に、電気式脱イオン装置からのCO及びNaのイオンリーク量の測定結果を図5に示す。表1及び図5の通り、アニオン交換樹脂の割合を60〜80%とすることにより、炭酸及びNaイオンがいずれも十分に除去される。
【0059】
【表1】

Figure 0003985494
【0060】
【発明の効果】
上記実施例及び比較例からも明らかな通り、本発明によると炭酸濃度の高い被処理水であっても十分に比抵抗の高い処理水を生産することができる。本発明によると、シリカも十分に除去することができる。
【図面の簡単な説明】
【図1】実施の形態に係る脱塩室の構成を示す分解斜視図である。
【図2】区画部材の要部斜視図である。
【図3】区画部材の分解斜視図である。
【図4】区画部材の通水状況を示す正面図である。
【図5】イオンリーク量(ppb)とアニオン交換樹脂の比率(%)との関係を示すグラフである。
【図6】電気式脱イオン装置の一般的な構成を示す分解斜視図である。
【符号の説明】
20 フレーム
21 区画部材
22 小室
23 イオン交換樹脂
24 アニオン交換膜
25 カチオン交換膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric deionization apparatus used in various industries such as semiconductors, liquid crystals, pharmaceuticals, and food industries, and in particular, to improve the specific resistance value of treated water and the removal rate of weak electrolyte anions, The present invention relates to an electric deionization apparatus capable of continuously producing pure water. The present invention also relates to a deionization method using this electric deionization apparatus.
[0002]
[Prior art]
An electrical deionization apparatus alternately arranges a plurality of cation exchange membranes and anion exchange membranes between electrodes (anode and cathode) to alternately form a demineralization chamber and a concentration chamber. It has a configuration filled with an ion exchange resin. In this electric deionization apparatus, while applying the voltage between the anode and the cathode, the treated water is allowed to flow into the desalting chamber, and the concentrated water is allowed to flow into the concentrating chamber to remove impurity ions in the treated water, Produces deionized water.
[0003]
FIG. 6 is an exploded view showing a basic configuration of the electric deionization apparatus.
[0004]
A cathode electrode plate 2 is disposed along the cathode-side end plate 1, and a frame-like cathode spacer 3 is superimposed on the peripheral edge of the cathode electrode plate 2. On the cathode spacer 3, a cation exchange membrane 4, a frame frame 5 for forming a desalting chamber, an anion exchange membrane 6 and a frame frame 7 for forming a concentration chamber are superposed in this order. A large number of the cation exchange membrane 4, the frame-like frame 5 for forming a desalting chamber, the anion exchange membrane 6, and the frame-like frame 7 for forming a concentration chamber are superposed as a unit. That is, the film 4, the frame 5, the film 6, and the frame 7 are laminated repeatedly in succession. An anode electrode plate 9 is overlaid on the final anion exchange membrane 6 via a frame-like anode spacer 8, and an anode side end plate 10 is overlaid thereon to form a laminate. This laminate is tightened with bolts or the like.
[0005]
An inner space of the desalination chamber frame 5 is a desalination chamber, and the desalination chamber is filled with an ion exchange resin 5R such as an ion exchange resin. The inside of the concentration chamber frame 7 is a concentration chamber. A mesh spacer or the like is disposed in the concentration chamber.
[0006]
In such an apparatus, a direct current is passed between the anode 9 and the cathode 2 and water to be treated (raw water) is passed through the water to be treated inflow line 11 into the desalting chamber, and the concentrated water is concentrated. Water is passed through the water inflow line 12 into the concentration chamber 8. The treated water that has flowed into the demineralization chamber flows down the packed bed of ion exchange resin. At that time, impurity ions in the treated water are removed to form deionized water, which flows out through the deionized water outflow line 13. To do.
[0007]
On the other hand, the concentrated water passed through the concentration chamber receives impurity ions moving through the ion exchange membranes 4 and 6 when flowing down the concentration chamber, and the concentrated water outflow line as concentrated water that has concentrated the impurity ions. 14 flows out. Electrode water is circulated through the electrode chambers via introduction lines 15 and 16 and extraction lines 17 and 18, respectively.
[0008]
Japanese Patent Publication No. 4-72567 discloses an electric deionization apparatus in which partition ribs are provided in the demineralization chamber in the vertical direction and the demineralization chamber is partitioned into small chambers that are long in the vertical direction. In this way, in the electric deionization apparatus in which the desalination chamber is divided into elongated chambers by ribs and each chamber is filled with an ion exchange resin, the demineralization chamber is locally biased from the inlet to the outlet of the desalination chamber. Channeling phenomenon in which water flows is prevented, and the ion exchange resin is prevented from being compressed or moved in the desalting chamber.
[0009]
In the electric deionization apparatus of Japanese Patent Publication No. 4-72567, since the desalting chamber is partitioned into vertically narrow and narrow chambers, the number of chambers is limited. That is, too many chambers cannot be formed. Moreover, since the flow of water in the left-right direction is blocked by the ribs, the contact efficiency between water and the ion exchange resin is poor. Furthermore, the ion exchange resin is compressed in the lower part of the small chamber, and there is a disadvantage in that there is a gap in the upper part and the filling rate of the ion exchange resin tends to be low.
[0010]
The present applicant has disclosed an electric deionization apparatus in Japanese Patent Application Laid-Open No. 2001-25647 that overcomes these various disadvantages, has high contact efficiency between water and ion exchange resin, and has high packing density such as ion exchange resin. is suggesting.
[0011]
In the electric deionization apparatus of the same number, a demineralization chamber is partitioned into a number of small chambers by a partition member, and each small chamber is filled with an ion exchange resin. At least a part of the partition members facing each of the small chambers is inclined with respect to the average water flow direction in the desalting chamber, and this inclined portion allows water to pass but does not allow ion exchange resin to pass. It has a structure. For this reason, at least a part of the water that has flowed into the desalting chamber flows in an oblique direction with respect to the average water flow direction, and flows in a distributed manner throughout the desalting chamber. Therefore, the contact efficiency between water and the ion exchange resin is improved, and the deionization characteristics are improved.
[0012]
By arranging a plurality of these chambers along the membrane surface in both the average water flow direction and the direction orthogonal thereto, contact between water and the ion exchange resin (for example, by arranging a large number in the vertical and horizontal directions) The efficiency is extremely high. In addition, the vertical height of each small chamber is reduced, and the ion exchange resin is not locally compressed. Therefore, no gap is generated in the small chamber, and the packing density of the ion exchange resin is high.
[0013]
The small chamber may have a hexagonal shape or a quadrangular shape projected onto the surface of the ion exchange membrane. In the case of a hexagon, it is preferable to arrange each chamber so that a pair of parallel sides is an average water flow direction. In the case of a quadrangle, each side is arranged so as to be inclined with respect to the average water flow direction.
[0014]
One small chamber may be filled with only one type of ion exchange resin having ion exchange characteristics, or a plurality of types of ion exchange resins having ion exchange characteristics may be filled. For example, an anion exchanger and an amphoteric ion exchange resin may be mixed and filled in one small chamber.
[0015]
[Problems to be solved by the invention]
Since the electric deionization apparatus moves ions in the water to be treated from the demineralization chamber to the concentration chamber based on the potential difference between the electrodes, it is difficult to remove weak electrolyte components such as carbonic acid and silica.
[0016]
For example, when city water is treated with a reverse osmosis membrane device and the permeated water is treated with an electric deionization device, deionized water having a specific resistance of about 10 MΩ · cm is obtained. However, when the carbonate concentration of the feed water is as high as 10 ppm or more, the specific resistance value decreases to 1 to 5 MΩ · cm. Therefore, in order to obtain treated water having a high specific resistance value, a decarboxylation device must be installed in front of the electrodeionization device.
[0017]
Moreover, according to the conventional electric deionization apparatus, the removal rate of silica is a low value of about 70 to 90%. Therefore, the regeneration frequency or replacement frequency of the polisher installed at the subsequent stage of the electric deionization device is increased.
[0018]
An object of the present invention is to provide an electric deionization apparatus and a deionization method capable of dramatically improving the removal rate of stable treated water and silica having a specific resistance value of 10 MΩ · cm or more.
[0019]
[Means for Solving the Problems]
The electric deionization apparatus of the present invention alternately forms a plurality of cation exchange membranes and anion exchange membranes between electrodes to alternately form a demineralization chamber and a concentration chamber, and ion exchange in the demineralization chamber An electric deionization apparatus filled with resin, allowing water to be treated to flow into the desalting chamber, and allowing concentrated water to flow into the concentrating chamber, wherein a partition member is disposed in the desalting chamber, A large number of chambers surrounded by the partition member and the cation exchange membrane and the anion exchange membrane are formed in the desalting chamber, each chamber is filled with an ion exchange resin, and the partition member facing each chamber At least a portion is inclined with respect to the average water flow direction in the desalination chamber, and at least the inclined portion of the partition member has a structure that allows water to pass but prevents passage of the ion exchange resin. In the electric deionization apparatus, the ion exchange tree Is a mixture containing an anion exchange resin and a cation exchange resin, the ratio of the anion exchange resin to the total amount of the anion exchange resin and the cation exchange resin is characterized in that 60 to 80% by volume.
[0020]
The deionization method of the present invention is characterized by deionizing water to be treated having a carbonic acid concentration of 10 mg CO 2 / L or more using the electrodeionization device of the present invention.
[0021]
The removal mechanism in the electric deionization apparatus for carbonic acid, which is a weak electrolyte, is considered as follows. Carbon dioxide (CO 2 ) of the water to be treated is converted into bicarbonate ions (CO 2 + OH → HCO 3 ) by an ionization reaction with hydroxide ions (OH ) in an electric deionization apparatus.
[0022]
The bicarbonate ions move in the desalting chamber, pass through the anion exchange membrane, and move to the concentration chamber. Therefore, it is important to remove carbonic acid first to promote the ionization reaction and secondly to improve the mobility of bicarbonate ions.
[0023]
In order to accelerate the ionization reaction of carbonic acid (production of bicarbonate ions), it is necessary to supply OH ions, which is caused by water dissociation (H 2 O → H + + OH ).
[0024]
The places where this water dissociation occurs are between ion exchange resins and between ion exchange resins and ion exchange membranes. Among these, hydrogen ions and hydroxide ions generated between the ion exchange resins are associated again in the desalting chamber, so that their lifetime is short. Therefore, OH ions generated between the ion exchange membrane and the ion exchange resin, particularly between the cation exchange membrane and the anion exchange resin, are effective as OH for ionization of carbonic acid. Therefore, for example, when the proportion of the anion exchange resin is increased from 60% to 70%, the contact ratio of the anion resin to the cation exchange membrane is increased by about 17%, and accordingly, the amount of OH ions generated is increased. As a result, the ionization reaction of carbonic acid is promoted. When the ratio of the anion exchange resin is increased to 80%, the amount of OH ions generated further increases, but the H + ions are decreased too much, so that the removability of Na + ions is lowered and the specific resistance of the treated water is deteriorated. To do.
[0025]
This ionized bicarbonate ion needs to be quickly moved to the concentration chamber. When the ratio of the anion exchange resin is increased from 60% to 70%, the ratio of movement through the anion exchange resin is increased about three times. As a result, the removal of carbonic acid is improved by improving the mobility of bicarbonate ions. However, since the proportion of the cation exchange resin is reduced, Na + leakage is caused and the specific resistance is deteriorated.
[0026]
Improving the anion removability in this way is inextricably linked to making the cation removability worse. Therefore, in a normal rib-type electrodeionization apparatus, the cation removal property is no longer good at the ratio of the anion exchange resin as in the present invention, and Na + leakage occurs. Therefore, in the present invention, the structure of the electric deionization apparatus disclosed in Japanese Patent Laid-Open No. 2001-25647, which has excellent deionization characteristics, is adopted as the electric deionization apparatus.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments will be described with reference to the drawings. 1 is an exploded perspective view showing a configuration of a desalination chamber according to an embodiment, FIG. 2 is a perspective view of a main part of a partition member, FIG. 3 is an exploded perspective view of the partition member, and FIG. FIG.
[0028]
The desalting chamber includes a rectangular frame 20, a partition member 21 that is preferably conductive and disposed in the frame 20, and an ion exchange resin filled in a small chamber 22 formed by the partition member 21. 23, and an anion exchange membrane 24 and a cation exchange membrane 25 arranged so as to sandwich the frame 20.
[0029]
The upper portion of the frame 20 has a water passage hole 26 for introducing treated water (raw water) and a water passage hole 27 for concentrated water (inflow side). A drain hole 29 on the discharge side is perforated. The raw water introduction water passage hole 26 and the demineralized water passage hole 28 communicate with the inside of the frame 20 through cutout water channels 26a and 28a, respectively.
[0030]
Although the water channel 26a is shown in FIG. 1 so as to communicate only with the upper left chamber, the water channel 26a is actually located above the frame 20 so that the raw water is evenly distributed to the left and right chambers. A plurality of water passage holes 26 communicate directly with the uppermost small chambers. Similarly, in FIG. 1, the water channel 28 a is illustrated so as to communicate only with the lower right small chamber, but in reality, a plurality of water channels 28 a are provided in the lower part of the frame 20, and the water hole 28 is formed at the lowermost part. Direct communication with each chamber.
[0031]
The partition member 21 according to this embodiment has a hexagonal honeycomb shape, and a large number of small chambers 22 are arranged vertically and horizontally. A pair of sides of each small chamber 22 is arranged in the longitudinal direction of the frame 20, that is, the vertical direction.
[0032]
The partition member 21 may be integrally formed in advance, or may be a combination of a plurality of members. For example, as shown in FIG. 3, the zigzag bent plates 30 are configured by connecting longitudinal surfaces 31 of each other. The bent plate 30 is provided with water-permeable oblique surfaces 32 and 33 that are connected to the longitudinal surface 31 at an angle of 120 °. For example, an adhesive can be used to connect the longitudinal surfaces 31 to each other. The bent plate 30 is made of a material that allows water to pass therethrough but does not allow ion exchange resin to pass therethrough, such as a woven fabric, a nonwoven fabric, a mesh, or a porous material. The bent plate 30 is preferably formed to have rigidity by a synthetic resin or metal having acid resistance and alkali resistance. The longitudinal surface 31 may or may not have water permeability.
[0033]
The partition member 21 may be fitted into the frame 20. Further, a water-permeable sheet or mesh may be stretched on one side of the frame 20, and a partition member may be bonded thereto.
[0034]
The entire structure of the electric deionization apparatus having the desalting chamber is the same as that shown in FIG. 6, and the water passages of the raw water, the concentrated water and the electrode water are the same.
[0035]
When water is passed through the electric deionizer to perform the desalting operation, the raw water that has flowed into the desalting chamber flows into the adjacent small chamber 22 through the partition member 21 surrounding the small chamber 22 as shown in FIG. In the meantime, it is subjected to deionization treatment. Finally, it reaches the lower part of the demineralization chamber, flows into the demineralized water extraction hole 28 through the water channel 28a, and is taken out of the electric deionizer as demineralized water.
[0036]
The average water flow direction in the desalination chamber is that from the top to the bottom the raw water inflow channel 26a is present at the top of the frame 20 and the desalted water extraction channel 28a is present at the bottom of the frame 20. It is in the vertical direction toward. Since the upper and lower portions of the small chambers are inclined with respect to the average water flow direction, the water to be treated is separated from the single small chamber 22 into the left and right small chambers 22 and flows down. For this reason, to-be-processed water comes to disperse | distribute into each small chamber 22 substantially equally, and the contact efficiency of to-be-processed water and ion exchange resin becomes favorable.
[0037]
In this desalting chamber, the small chamber 22 is relatively small, and the downward pressure applied to the ion exchange resin in each small chamber 22 due to its own weight and water pressure is small. Therefore, the ion exchange resin is not compressed in any of the small chambers 22, and the ion exchange resin is not locally consolidated in the lower part of the small chamber.
[0038]
The ion exchange resin filled in each chamber 22 is a mixture of an anion exchange resin and a cation exchange resin. The mixing ratio of the two is such that the ratio of the anion exchange resin to the total amount of the anion exchange resin and the cation exchange resin is 60 to 80% by volume.
[0039]
If the proportion of the anion exchange resin is less than 60% by volume, the amount of OH produced by the dissociation of water is insufficient, the ionization of carbonic acid to bicarbonate ions is insufficient, and the carbonic acid removal effect is reduced. On the other hand, when the ratio of the anion exchange resin is more than 80% by volume, the removal efficiency of cations such as Na + ions is deteriorated, and the concentration of Na + ions and the like in the treated water is increased. When the anion exchange resin is in the range of 60 to 80% by volume, preferably 65 to 75% by volume, carbonic acid and Na + ions are sufficiently removed, and ionization of silica, which is a weak acid, is promoted. The removal rate is also increased.
[0040]
According to the present invention, it is possible to produce treated water having a high specific resistance of 10 MΩ · cm or more from water to be treated having a carbonic acid concentration of 10 mg CO 2 / L or more.
[0041]
The ion exchange resin filled in the small chamber 22 is preferably only an anion exchange resin and a cation exchange resin, but a small amount of an II-type anion exchange resin may be mixed. The mixing ratio of the type II anion exchange resin is desirably 10% by volume or less of the whole anion exchange resin.
[0042]
1-4, the chamber is a hexagon, but may be a rectangle, for example, a rhombus. Further, the partition member may be a triangular lattice-shaped partition member forming a triangular chamber, or may be a partition member having a chamber having another shape.
[0043]
In electrodeionization apparatus of the present invention, the projected area to the ion exchange membrane surface of the chamber is 1 to 100 cm 2, especially 5~80Cm 2 especially 10 to 50 cm 2 is preferably about. The distance between the pair of anion exchange membranes and cation exchange membranes sandwiching the desalting chamber, that is, the thickness of the desalting chamber is preferably 1.5 to 15 mm, particularly about 3 to 10 mm. Note that the smaller the chamber, the smaller the amount of ion exchange resin filled in one chamber, and the flow of the ion exchange resin is suppressed, and the strength of the partition member and the desalting chamber is increased. Water pressure loss increases.
[0044]
The thickness of the concentration chamber is preferably about 0.3 to 1 mm. It is desirable that a spacer of about 20 to 60 mesh is disposed in the concentration chamber.
[0045]
The particle size of the ion exchange resin is preferably about 0.1 to 1 mm, particularly about 0.2 to 0.6 mm. It is preferable that the ion exchange resin is filled in the small chamber with an amount of about 100 to 140% of the volume of the small chamber, and is then sandwiched from both sides with an ion exchange membrane, and the ion exchange resin is densely filled into the small chamber.
[0046]
When assembling an electric deionizer by filling an ion exchange resin in the small chamber, fill the small chamber with the ion exchange resin, install ion exchange membranes opposite to both ends, supply raw water, and swell the internal ion exchange resin Then, the chamber may be tightened so that the volume ratio is about 100 to 102%.
[0047]
The concentration chamber can also be filled with an ion exchange resin. By filling the concentration chamber with the ion exchange resin, the current easily flows, the turbulence effect is improved, and the current efficiency is improved. Instead of the spacer disposed in the concentration chamber, a number of small chambers may be formed by partition members in the same manner as the desalting chamber, and each small chamber may be filled with an ion exchange resin.
[0048]
In general, since the cathode chamber exhibits alkalinity, acidic anodic water that has normally passed through the anode chamber is supplied, neutralized in the cathode chamber, and partially purified water. For this reason, the conductivity of the cathode chamber decreases, the voltage rises locally, and scale is likely to occur. In order to avoid this situation, it is preferable to prevent the occurrence of scale by increasing the electrode area by using an electrode in which the cathode is a mesh electrode or a non-woven electrode alone or in combination and decreasing the current density on the electrode surface.
[0049]
When operating the electric deionizer of the present invention, it is desirable to circulate the concentrated water and control the ion concentration in the circulating water within a range of 5 to 40 times the feed water. In this case, it is preferable to electrically separate and remove the hardness component, which is a scale component of the concentrated water, and to make the Langeria index in the circulating water negative. A weakly acidic ion exchange resin may be used for removing the hardness component.
[0050]
【Example】
Hereinafter, Examples 1 to 3 and Comparative Examples 1 and 2 will be described.
[0051]
The electric deionization apparatus used in this example and the comparative example has a demineralization chamber having the structure shown in FIGS. 1 to 4, and the concentration chamber has a structure in which three ribs are extended in the vertical direction. is there.
[0052]
The size of the desalting chamber and the concentration chamber is 130 mm wide and 400 mm high, the thickness of the desalting chamber is 5 mm, and the thickness of the concentration chamber is 2.5 mm.
[0053]
The number of desalting chambers is 3, and the number of concentrating chambers is 4. Both are arranged alternately as shown in FIG. Similar to FIG. 6, electrode chambers are arranged on both sides (outside) of the outermost concentration chamber.
[0054]
The small chamber in the desalting chamber is a regular hexagon as shown in the figure, and the length of one side of the hexagon is 16.1 mm. As for the material of the partition member forming the small chamber, the vertical wall portion is made of polypropylene, and the oblique mesh portion is made of polyester.
[0055]
Each chamber of the desalting chamber was filled with a mixture of anion exchange resin and cation exchange resin. The ratio of the anion exchange resin to the contents of both resins is as follows.
Comparative Example 1 50%
Example 1 65%
Example 2 70%
Example 3 75%
Comparative Example 2 90%
[0056]
The concentration chamber was filled with a mixture of cation exchange resin and anion exchange resin in a volume ratio of 4: 6, and the electrode chamber was filled with activated carbon.
[0057]
Other operating conditions are as follows.
Water to be treated: Water having a carbonic acid concentration of 18 mg CO 2 / L, a silica concentration of 0.35 mg SiO 2 / L, and a conductivity of 10 μS / cm, obtained by subjecting city water to reverse osmosis membrane separation treatment.
Desalination room water flow: 190L / h
Concentration chamber water flow: 60L / h
Voltage: 40V
Current: 4.4A
Current efficiency: 20%
[0058]
The quality of the obtained treated water is shown in Table 1, and the measurement results of the amount of ion leakage of CO 2 and Na + from the electric deionizer are shown in FIG. As shown in Table 1 and FIG. 5, by setting the ratio of the anion exchange resin to 60 to 80%, both carbonic acid and Na + ions are sufficiently removed.
[0059]
[Table 1]
Figure 0003985494
[0060]
【The invention's effect】
As is clear from the above Examples and Comparative Examples, according to the present invention, treated water having a sufficiently high specific resistance can be produced even with water to be treated having a high carbonic acid concentration. According to the present invention, silica can also be sufficiently removed.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a configuration of a desalting chamber according to an embodiment.
FIG. 2 is a perspective view of a main part of a partition member.
FIG. 3 is an exploded perspective view of a partition member.
FIG. 4 is a front view showing a water flow state of a partition member.
FIG. 5 is a graph showing the relationship between the amount of ion leak (ppb) and the ratio (%) of an anion exchange resin.
FIG. 6 is an exploded perspective view showing a general configuration of an electric deionization apparatus.
[Explanation of symbols]
20 Frame 21 Partition member 22 Chamber 23 Ion exchange resin 24 Anion exchange membrane 25 Cation exchange membrane

Claims (2)

電極同士の間に複数のカチオン交換膜とアニオン交換膜とを交互に配列して脱塩室と濃縮室とを交互に形成し、脱塩室にイオン交換樹脂を充填し、脱塩室に被処理水を通水し、濃縮室に濃縮水を通水するようにした電気式脱イオン装置であって、
該脱塩室内に区画部材が配置され、該区画部材と該カチオン交換膜及びアニオン交換膜とによって囲まれた多数の小室が該脱塩室内に形成されており、
各小室にそれぞれイオン交換樹脂が充填されており、
各小室に臨む区画部材の少なくとも一部は該脱塩室内の平均的な水の流れ方向に対し傾斜しており、
該区画部材の少なくとも傾斜した部分は、水を通過させるがイオン交換樹脂の通過を阻止する構造となっている電気式脱イオン装置において、
該イオン交換樹脂は、アニオン交換樹脂とカチオン交換樹脂とを含む混合物であり、該アニオン交換樹脂とカチオン交換樹脂との合量に対するアニオン交換樹脂の割合が60〜80体積%であることを特徴とする電気式脱イオン装置。
A plurality of cation exchange membranes and anion exchange membranes are alternately arranged between the electrodes to alternately form a desalting chamber and a concentrating chamber. An electrical deionization apparatus that passes treated water and passes concentrated water to the concentration chamber,
A partition member is disposed in the desalting chamber, and a plurality of chambers surrounded by the partition member, the cation exchange membrane and the anion exchange membrane are formed in the desalting chamber,
Each chamber is filled with ion exchange resin,
At least a part of the partition members facing each small chamber is inclined with respect to the average water flow direction in the desalination chamber,
In the electric deionization apparatus having a structure in which at least the inclined portion of the partition member allows water to pass but prevents passage of the ion exchange resin,
The ion exchange resin is a mixture containing an anion exchange resin and a cation exchange resin, and the ratio of the anion exchange resin to the total amount of the anion exchange resin and the cation exchange resin is 60 to 80% by volume. Electric deionization device.
水中の炭酸濃度が10mgCO/L以上の被処理水を請求項1に記載の電気脱イオン装置を用いて脱イオン処理することを特徴とする電気脱イオン方法。Electrodeionization method characterized in that carbon dioxide concentration in water is deionized using electrodeionization apparatus of claim 1 10mgCO 2 / L or more of the water to be treated.
JP2001325285A 2001-10-23 2001-10-23 Electric deionization apparatus and deionization method Expired - Fee Related JP3985494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325285A JP3985494B2 (en) 2001-10-23 2001-10-23 Electric deionization apparatus and deionization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325285A JP3985494B2 (en) 2001-10-23 2001-10-23 Electric deionization apparatus and deionization method

Publications (2)

Publication Number Publication Date
JP2003126862A JP2003126862A (en) 2003-05-07
JP3985494B2 true JP3985494B2 (en) 2007-10-03

Family

ID=19141878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325285A Expired - Fee Related JP3985494B2 (en) 2001-10-23 2001-10-23 Electric deionization apparatus and deionization method

Country Status (1)

Country Link
JP (1) JP3985494B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864891B2 (en) 2002-07-01 2007-01-10 栗田工業株式会社 Electric deionizer
JP4400218B2 (en) * 2004-01-09 2010-01-20 栗田工業株式会社 Electric deionization apparatus and deionization method
FR2900844B1 (en) * 2006-05-09 2008-08-01 Eurodia Ind Sa MEMBRANE EXCHANGE DEVICE, IN PARTICULAR ELECTRODIALYST, HAVING AT LEAST TWO COMPARTMENTS
WO2023228606A1 (en) * 2022-05-25 2023-11-30 オルガノ株式会社 Apparatus for producing electrodeionized water, and method for producing pure water
JP7374400B1 (en) 2022-05-25 2023-11-06 オルガノ株式会社 Electrodeionized water production equipment and pure water production method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2865389B2 (en) * 1990-07-10 1999-03-08 オルガノ株式会社 Electric deionized water production equipment and frame used for it
US5868915A (en) * 1996-09-23 1999-02-09 United States Filter Corporation Electrodeionization apparatus and method
JPH10272474A (en) * 1997-03-28 1998-10-13 Kurita Water Ind Ltd Electric deionization device
JP3389889B2 (en) * 1999-07-13 2003-03-24 栗田工業株式会社 Electric deionizer
JP3826690B2 (en) * 1999-08-11 2006-09-27 栗田工業株式会社 Electrodeionization device and pure water production device

Also Published As

Publication number Publication date
JP2003126862A (en) 2003-05-07

Similar Documents

Publication Publication Date Title
JP3864891B2 (en) Electric deionizer
JP3389889B2 (en) Electric deionizer
KR100405642B1 (en) An electrodeionization apparatus comprising sub-desalination chambers
US7520971B2 (en) Apparatus and method for electrodeionization
JP2865389B2 (en) Electric deionized water production equipment and frame used for it
JPH07236889A (en) Pure water making apparatus
JP5015990B2 (en) Electric deionized water production equipment
JPH08150393A (en) Production of deionized water by electrolytic deionization method
JP5145305B2 (en) Electric deionized water production equipment
JP4250922B2 (en) Ultrapure water production system
JP3985494B2 (en) Electric deionization apparatus and deionization method
WO2012108310A1 (en) Electric device for producing deionized water
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JP2009208046A (en) Apparatus for producing electrodeionization water
JP2009142724A (en) Electrical deionizer and deionized water producing method
JP2003145164A (en) Electric deionized water production apparatus and deionized water production method
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP3985497B2 (en) Electric deionizer
JP4599669B2 (en) Electrical deionizer
JP2001321773A (en) Apparatus and method for making electro-deionized water
JP4254224B2 (en) Electrodeionization equipment
JP6034736B2 (en) Electric deionized water production equipment
JP2002136971A (en) Electrodeionizing apparatus
JP2004073898A (en) Electro-deionizing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R150 Certificate of patent or registration of utility model

Ref document number: 3985494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140720

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees