JP3985215B2 - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor Download PDF

Info

Publication number
JP3985215B2
JP3985215B2 JP2001293525A JP2001293525A JP3985215B2 JP 3985215 B2 JP3985215 B2 JP 3985215B2 JP 2001293525 A JP2001293525 A JP 2001293525A JP 2001293525 A JP2001293525 A JP 2001293525A JP 3985215 B2 JP3985215 B2 JP 3985215B2
Authority
JP
Japan
Prior art keywords
axis
weight body
lead electrode
pattern
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001293525A
Other languages
Japanese (ja)
Other versions
JP2003101033A (en
Inventor
正勝 斎藤
茂徳 田中
由夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001293525A priority Critical patent/JP3985215B2/en
Publication of JP2003101033A publication Critical patent/JP2003101033A/en
Application granted granted Critical
Publication of JP3985215B2 publication Critical patent/JP3985215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Pressure Sensors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は可撓部に形成したピエゾ抵抗素子の抵抗変化を検出する3軸の半導体型加速度センサーに関する。
【0002】
【従来の技術】
従来の3軸の半導体型加速度センサーとしては、例えば、特開昭63−266359に記載されているものがあり、Si単結晶基板の薄肉部から成る互いに直交する2対の梁構造の可撓部を有し、Si単結晶基板の厚肉部から成る中央の重錘体と周辺の固定部とは該可撓部で接続され、X軸方向とZ軸方向とを同一の梁上に、また、Y軸方向をこれと直交する他の梁上に形成したピエゾ抵抗素子で検出するように、該梁上には各軸4のピエゾ抵抗素子が形成されてなる基本構造が示されている。同従来例では引き出し電極や外部との電極接続端子の配置については記載されていないが、従来の引き出し電極のパターン幅は一定で、その配線抵抗については考慮されていなかった。従来の考え方で、上記従来の3軸加速度センサー構造に引き出し電極や外部接続端子を配置した場合の全体構造例を図7に、図8に図7のXおよびZ軸の点線枠部の拡大図、また図9にはZ−Z軸方向の一部の断面図を示す。以下に、小型で高性能な3軸加速度センサーの実現には、引き出し電極の抵抗値や外部接続端子の配置も重要なポイントであることを説明する。
【0003】
まず、全体構造について説明する。これはSi単結晶基板の厚肉部から成る中央重錘体2とそれを取り囲むように配置した固定部1と、該重錘体2および固定部1とを連結するSi単結晶基板の薄肉部より成る2対の互いに直交する梁状の可撓部3a、3b、3c、3dと該可撓部上の2つの方向(XとY)及び該可撓部に垂直な方向(Z)に対応するように設けられた各軸4のピエゾ抵抗素子11〜34とから構成される。
【0004】
また、図8、9より、該ピエゾ抵抗素子の上にはSiOやSiNなどの薄膜から成る保護膜41が形成され、その上にピエゾ抵抗素子の両端にスルーホール40aを介して接続されたアルミニウムなどの金属薄膜からなる引き出し電極40が形成され、該引出し電極群は、周辺の固定部1上に設けた外部電極端子42群につながって成る構造をしている。
【0005】
この従来例は、3軸の加速度を検出するが、その検出原理は、中央の重錘体2が加速度による力を受けて変位したときの可撓部のたわみを該可撓部に形成されたピエゾ抵抗素子11〜34の抵抗値変化として検出することで3軸方向の加速度を検出するものである。その原理を図を用いて詳しく説明する。
【0006】
図10および11を用いて加速度の検出原理を説明する。X方向とY方向とは同じなので、これらの図では、代表してX方向とZ方向とを示す。図10(a)は、X方向の加速度による可撓部3a、3cの変形の様子を模式的に示す断面図で、ピエゾ抵抗素子Rx1、Rx3には引っ張り応力が、Rx2、Rx4には圧縮応力が加わり、この時、ピエゾ抵抗素子Rx1、Rx3及びRx2、Rx4の抵抗値はそれぞれ増加および減少する。また、図11に、各軸のブリッジの組み方および検出回路を示す。図10(a)において、X方向の加速度により重錘体にFxの力を受けた時、ピエゾ抵抗Rx1およびRx3はその値が増加し、Rx2およびRx4は減少するが、この変化により図11(a)に示す検出回路により、X方向には電圧が出力されるが、Z方向の電圧は、X方向とブリッジの抵抗の接続が異なるために各々の抵抗値の増減は相殺され電圧は零である。逆に、図10(b)に示したようにZ方向の加速度によりFzの力を受けた時には、ピエゾ抵抗Rz1およびRz4はその値が増加し、Rz2およびRz3は減少するが、この変化により図11(b)に示す検出回路により、Z方向には電圧が出力されるが、X方向の電圧は、Z方向とブリッジの抵抗の接続が異なるために各々の抵抗値の増減は相殺され電圧は零である。このようにして3軸の加速度を検出できる。
【0007】
【発明の解決しようとする課題】
上述したように、ピエゾ抵抗型加速度センサーはブリッジ回路の非平衡電圧を検出するものであるが、実際のブリッジ回路には、ピエゾ抵抗以外に、図7で説明した引き出し電極パターン40の抵抗も入ってくる。各軸4のピエゾ抵抗素子は同一パターン形状に設計されると同じように、一般に各軸の引き出し電極パターン40も1対の梁毎に点対称あるいは線対称となるパターン形状に設計され、該引き出し電極の各部の同一パターン形状部分の抵抗値もほぼ等しくなるため、以下の説明では、それぞれの引き出し電極の各部のパターン部分には同じ符号を付し、その抵抗値も同じ記号で表記することにする。
【0008】
まず、図7において、X軸の2つの梁上にあるピエゾ抵抗素子11、12と13、14の引き出し電極パターン40をそれぞれ4分割し、40ax、40bx、40cx、440dxと同一の符号を付し、それぞれに対応する抵抗値もRax、Rbx、Rcx、Rdxと同一の記号で表す。同様に、Y軸の引き出し電極パターン40を40ay、40by、40cy、40dyと4分割しその各部の抵抗値をRay、Rby、Rcy、Rdy、また、Z軸の引き出し電極パターン40を40az、40bz、40cz、40dzと4分割しその各部の抵抗値をRaz、Rbz、Rcz、Rdzとする。ここで、
40bx、40by、40bzは、各軸2つの梁の中央にあって、2つのピエゾ抵抗素子(例えば、X軸は11と12および13と14)を接続するそれぞれX軸、Y軸およびZ軸の引き出し電極パターン40の一部分、
40ax、40ay、40azは、固定部1上に配置した外部電極端子42から各軸の梁中央の引き出し電極パターン部分40bx、40by、40bzに接続されるまでのそれぞれX軸、Y軸およびZ軸の引き出し電極パターン40の一部分、
40cx、40cy、40czは、固定部1上に配置した外部電極端子42から、固定部1側に位置する各軸のピエゾ抵抗素子(例えばX軸はピエゾ抵抗素子11および14)の固定部側の接続部までを繋ぐそれぞれX軸、Y軸およびZ軸の引き出し電極パターン40の一部分、
40dxは、X軸の中央重錘体部2側に位置するX軸の2つのピエゾ抵抗素子12および13の接続部から、それぞれ中央重錘体2と梁3b上および中央重錘体2と梁3d上を通って固定部1上に配置した外部接続端子42まで繋がる引き出し電極パターン40の一部分、
40dyは、中央重錘体部2側に位置するY軸の2つのピエゾ抵抗素子22、23の接続部から、中央重錘体2とそれぞれ梁3dおよび3b上を通って、固定部1上に配置した外部接続端子42まで繋がる引き出し電極パターン40の一部分、
40dzは、中央重錘体部2側に位置するZ軸の2つのピエゾ抵抗素子32、33の接続部から中央重錘体2と梁3dおよび3b上を通って、固定部1上に配置した外部接続端子42まで繋がる引き出し電極パターン40の一部分、
を指している。以下、X軸とY軸は同様であるのでX軸とZ軸で代表して説明する。これらの引き出し電極パターン40の4分割した各部の配線抵抗値を考慮してブリッジ回路を書き直すと図12のようになる。同図(a)はX軸、(b)はZ軸の検出回路を示している。
【0009】
まず、X軸について見ると、引き出し電極パターンの抵抗値Rax、Rbx、Rcx、Rdxが加わっても、4のピエゾ抵抗は初期値としては同じ値に設計されているため、ブリッジの結線の仕方から全体の抵抗バランスは保たれ、零点出力には影響しないことがわかる。Y軸についても同様である。次に、Z軸について見ると、先に図11で検出原理を説明したようにZ軸では結線の仕方がXおよびY軸とは異なるため、図12(b)より明らかなように、RczとRdzが入れ替わってブリッジ回路の中に入ってしまう。
【0010】
したがって、このRczとRdzの値によっては、零点出力に影響することがわかる。上述の定義から、Rczは固定部1側のピエゾ抵抗素子31、34から外部接続端子42までの引き出し電極パターン40czの抵抗値、また、Rdzは、中央重錘体2側のピエゾ抵抗素子32、33の引き出し電極パターン40dzの抵抗値である。つまり、40czの長さは40dzに比べて非常に短く、したがって、抵抗値も小さい。例えば、引き出し電極パターンに0.3μmぐらいのアルミ薄膜を使った場合、Rczが1Ω弱、Rdzが5Ωほどにもなり、かなり差が大きく、このときには、零点出力は、ピエゾ抵抗値をいくつに設定するかで異なるが、数mVにもなってしまう。零点出力の仕様も5mV以下といった値が要求されるようになってきており、この引き出し電極の抵抗値の零点出力への影響が無視できなくなってきた。また、加速度センサーのニーズとしても、一層の小型、高感度なものが要求されてきており、これに応えるには、梁幅をできるだけ狭く、かつ長くすることが必要で、その為には引き出し電極もできるだけ微細なパターンとなっていかざるを得ない。つまり、小型化、高感度化への要求に対しては、引き出し電極の抵抗値が大きくなり零点出力も大きくなっていく傾向にある。
【0011】
したがって、従来は、チップサイズが大きく引き出し電極のパターン幅も広かったため問題にならなかった引き出し電極の抵抗値の非平衡によるZ軸の零点出力が、小型化、高感度化の要求によって大きな課題となってきた。本発明は、このような事情に鑑みてなされたものであり、零点出力電圧の小さい、小型・高感度な半導体3軸加速度センサーを提供することを目的とする。
【0012】
【課題を解決するための手段】
本願第1の発明は、少なくともZ軸の引き出し電極に関して、重錘体部側に配置されたピエゾ抵抗素子に接続され、一旦重錘体部に引き出された後、梁上を通って周辺の固定部の外部接続端子に接続される引き出し電極パターンにおいて、梁上の引き出し電極パターン部分を除いた部分、すなわち重錘体部にある引き出し電極パターン部分と固定部にある引き出し電極パターン部分のパターン幅を梁上の引き出し電極パターン部分より2倍以上、好ましくは4倍以上に広く取ることで、当該引き出し電極全体の抵抗値がほぼ梁上の引き出し電極パターン部分で決まるようにし、かつ固定部側に配置されたピエゾ抵抗素子から外部接続端子までをつなぐ引出し電極の抵抗値を、上述の重錘体部側にあるピエゾ抵抗素子に接続される引き出し電極の梁上のパターン部分の抵抗値に略等しくしたことである。このように本発明では抵抗値を調整する方法として、パターン形状で行ったが、他に引き出し電極の厚さを変える方法も考えられるが、その場合には、各部の引き出し電極の厚さを変える必要があり、電極薄膜の形成、フォトエッチング工程を複数回繰り返すことになり製造プロセスが複雑になってしまい好ましくない。
【0013】
本願第2の発明は、本願第1の発明において、固定部側に配置されたピエゾ抵抗素子から外部接続端子までをつなぐ引出し電極形状について、その幅は上述の重錘体部側のピエゾ抵抗素子に接続される引き出し電極の梁上のパターン幅より細く、必要に応じて複数回の折り返しを持つ形状を有し、当該電極パターン部分の抵抗値を重錘体部側のピエゾ抵抗素子に接続される引き出し電極の梁上のパターン部分の抵抗値に略等しくしたことである。
【0014】
本願第3の発明は、本願第1および第2の発明において、1対の梁上に配置されたX軸(またはY軸)とZ軸の重錘体部側に位置する合計4のピエゾ抵抗素子に接続され、重錘体部上に引き出された4本の引き出し電極パターンは、Y軸(またはX軸)の2方向に2本づつ分けて引き出すようにし、X軸(またはY軸)およびZ軸は梁幅方向に均等な位置に配置したことである。
【0015】
【作用】
第1の発明によれば、重錘体部側に配置されたピエゾ抵抗素子に接続され、一旦重錘体部に引き出された後、梁上を通って周辺の固定部の外部接続端子に接続される引き出し電極パターン形状および固定部側に配置されたピエゾ抵抗素子から外部接続端子までをつなぐ引出し電極パターン形状について、最も検出感度に配慮した設計をしなければならない梁形状を基準にして、両者のパターン形状を決定できるようになり容易に高感度で低零点出力を達成できる効果がある。すなわち、長さが大幅に異なる両者の抵抗値を略等しくするために、加速度センサーとして最も重要な特性パラメータである検出感度を犠牲にせず、またチップサイズを大きくすることなしに容易に零点出力を小さく出来る効果がある。
【0016】
第2の発明によれば、固定部側に配置されたピエゾ抵抗素子から外部接続端子までをつなぐ引出し電極パターンの幅を梁上の電極パターン幅より細くし、必要に応じて複数回の折り返しを持つ形状とすることによって、梁長さを長くしても引き出し電極パターンの抵抗バランスを簡単に取ることが可能となり、第1の発明よりチップサイズをキープしたまま零点出力を一層低減できる、あるいはより小型でも高感度で零点出力を低減できる効果がある。また、外部接続端子のレイアウトの自由度をあげる事ができ、例えば零点出力を小さいまま、外部接続端子をチップの2辺にまとめることも可能である。
【0017】
第3の発明によれば、1対の梁上にX軸(またはY軸)とZ軸の2つの検出軸を配置しても、梁幅を狭く出来るため零点出力を小さくし、かつ小型で高感度化し易いという効果がある。
【0018】
【発明の実施の形態】
以下、本発明を実施例を用いて詳細に説明する。
【0019】
第1の発明になる実施例を図1に示す。本実施例は、図6で説明した従来例の3軸の基本構造に本発明を適用した例である。従来技術の3軸の半導体型加速度センサーとは、Z軸の中央重錘体部側の引き出し電極の外部接続端子の配置が異なっている。図1ではわかり易くするため、図6と同一部分は同じ符号で示した。上記したように基本構造は、中央重錘体2とそれを取り囲むように配置した固定部1と、該重錘体2および固定部1とを連結するSi単結晶基板の薄肉部よりなる梁状の可撓部3a、3b、3c、3dと該可撓部上の2つの方向(XとY)及び該可撓部に垂直な方向(Z)に対応するように設けられた各軸4のピエゾ抵抗素子群11〜34とから構成される。ピエゾ抵抗素子群から外部接続端子へのXおよびY軸の引き出し電極40は、重錘体部2を中心とする点対称な形状でそのパターン幅は一定とし、Z軸の引き出し電極に本発明を適用し各部の抵抗値を考慮したパターン設計とした。すなわち、X軸とY軸に関しては、従来例同様に2つの梁方向の各部の電極パターンは形状が等しいのでその抵抗値も同じく、零点出力電圧には影響しない。
【0020】
Z軸について詳細に説明する。Z軸のピエゾ抵抗素子11と外部接続端子42を接続する引き出し電極パターンを40cz、ピエゾ抵抗素子11と12および13と14とを接続する引き出し電極パターンを40bz、外部接続端子42と梁中央部の電極パターン40bzとを接続する電極パターンを40az、ピエゾ抵抗素子12と13の重錘体側接続部に繋がる引き出し電極パターンを40dzとし、引き出し電極40dzは、Z軸の検出軸がある梁3c、3bを通って固定部1上の外部接続端子42まで引き出した。図12で説明したように、電極パターン40czと40dzとの抵抗値が等しくないと零点出力に影響する。本実施例では、電極パターン40czと40dzは、後述の製造方法で述べるようなパターン形状とすることによって、その抵抗値を略同等にでき、零点出力は実用上問題無いレベルまで小さく抑える事ができた。
【0021】
次に本実施例の製造方法について説明する。図2は、主要工程を説明するためのX−X方向断面の一部を示している。なお、本製造プロセスの説明においては、可撓部3の厚さを高精度に制御できるようにSOIウェーハを用いた例で説明する。SOIとはSilicon On Inshulatorのことであり、N型のSiを使った。SOIウェーハとは図2に符号をつけたように、Siのベース基板60、Si活性層である表面のSOI層80および両者の間にあり、エッチングストッパーーとして使われるSiO層70とで構成されたSi半導体基板である。それぞれの厚さとしては、例えば、高感度な加速度センサー用としては、ベース基板は500〜625μm、SiOは1μmそしてSOI層は10μm前後としている。
【0022】
製造プロセスの最初は、まず、SOI層80の表面に、フォトレジストあるいは熱酸化SiO膜などをマスクとして所定形状のパターンを作り、イオン打ち込みなどの不純物拡散工程によってボロンを拡散したピエゾ抵抗体11、12を作る(図2(a))。表面不純物濃度としては、温度特性および感度の両方の観点から、約2x1018付近を選んだ。
【0023】
次にピエゾ抵抗体11、12の保護を目的として、保護膜41を作製する(図2(b))。保護膜41としては、一般に半導体で使われているSiOとPSG(Phosphorous Silicated Glass)の多層膜を使い可動イオンのゲッタリング効果を持たせている。SiOとPSGの2層膜の代わりにSiOとSiNの2層膜を使ってもよい。保護膜41の厚さは、できるだけ薄くして応力を小さくした方が高感度化の点では好ましく、0.3〜0.5μmとした。
【0024】
次にピエゾ抵抗体11、12の両端部上の保護膜41に電極接続用のスルーホール40aをフッ酸を主体にした湿式エッチングにより形成した(図2(c))。
【0025】
次に、電極配線を作るために、まずスパッタによりアルミニウム合金(アルミニウム、銅、Siなどが主組成)を成膜する。厚さは、0.3〜0.5μmほどとしたが、この厚さもできるだけ応力は小さい方が好ましく薄い方が良い。フォトエッチングにより引き出し電極40を形成した(図2(d))。この時に、XおよびY軸の引き出し電極は、従来例と同様に各部のパターン幅は全て一定とし、形状は重錘体部2を中心とする点対称とした。これによって引き出し電極の各部の電極40ax、40bx、40cx、40dxおよび40ay、40by、40cy、40dyは2つの梁方向で略同一とでき、零点出力への影響はでない。一方Z軸の引き出し電極については、重錘体部2側に配置したピエゾ抵抗素子32、33からの引き出し電極40dzは、重錘体部上および固定部上の電極パターン部分の幅を、梁上の電極パターン部分の幅の略5倍とし、梁上の電極パターン幅はXおよびY軸と同じとした。また、固定部側に配置したピエゾ抵抗素子31、34の引き出し電極40czの幅および長さを上記引き出し電極40dzの梁上の電極パターン部分とほぼ同じとした。
【0026】
次に、図2には表現できないが、図2(a)に示したSOI層800をドライエッチング法等によりエッチングして、図1に示したSOI層800への貫通パターン5を形成する。
【0027】
次に裏面のベース基板60に、両面アライナー装置を用いて表面のピエゾ抵抗素子11、12や上記SOI層800への貫通パターン5等との位置をあわせて重錘体2および固定部1の形状にフォトレジストマスクを形成し、ドライエッチング法でSiベース基板60をエッチングし、更にエッチングストッパーのSiO層70を湿式エッチングで除去した(図2(e))。この工程で可撓部3a、3b、3c、3dが形成されるが、エッチングストッパーのSiO層70を除去せず残した方が、全体の応力バランスをとるのに良い場合もあり、エッチングストッパーのSiO層70を一部残す方法も適用可能である。その後に、ウェーハ上に形成した多数の加速度センサー素子をダイサー等を用い、チップ切断し、パッケージ等の組み立て工程を経て、加速度センサーを完成させた。
【0028】
このように本実施例では、電極パターン40dzについては、重錘体部上および固定部上のパターン部分の幅を梁上のパターン幅の約5倍ほどとし、また、電極パターン40czに関しては、その幅および長さを電極パターン40dzの梁上のパターン部分の幅および長さと略同じにしたことによって、両者の抵抗値をほぼ同じにでき、抵抗の非平衡分による零点出力電圧は0.5mV以下と十分に小さい値を得ることができた。電極パターン40dzの抵抗値を下げるには、アルミニウム薄膜の厚さを変える方法も考えられるが、その場合には、アルミニウム薄膜の成膜およびフォトエッチングの工程を複数回繰り返すことになり、製造プロセスが長くなってしまい好ましくない。
【0029】
次に第2および第3の発明になる実施例を図3、図4および図5に示す。本実施例は、第1の発明に成る実施例の図1と同じ基本構造に第2の発明を適用したもので、図3は第2および第3の発明になる実施例を示す正面図、図4は図3のXおよびZ軸の外部接続端子近傍の拡大図で第2の発明を説明するための図、また図5は同じく図3のXおよびZ軸の1つの梁部の拡大図で、第2の発明を説明するための図であり、図1と同一部分は同符号を付した。
【0030】
最初に第2の発明について図3、図4および図5により説明する。第1の発明の説明同様に零点出力についてはZ軸が問題であるから、以下の説明ではZ軸に絞って述べる。重錘体側のピエゾ抵抗素子32、33からの引き出し電極40dzはY軸の梁3d、3b上を通って固定部1上の外部接続端子42に接続した。この引き出し電極40dzの形状に関しては、重錘体部1および固定部2上の電極パターン部分は、Y軸の梁上の電極パターン部分より最小で約3倍と広くしてあり、該引き出し電極40dzの抵抗値はほとんど梁上のパターン部分の抵抗値で決まるようにした。また、固定部側のピエゾ抵抗素子31、34の引き出し電極40czの幅は梁上の電極パターン部分の幅の約70%とし、かつ3回の折り返しを設けた形状とすることによって、その抵抗値を引き出し電極40dzの梁上のパターン部分の抵抗値と略同等にでき、かつ外部接続端子は上記ピエゾ抵抗素子31、34に最も近接して配置することができた。つまり、引き出し電極40dzと40czの抵抗値の差が最も大きくなる外部接続端子42のレイアウトであっても両者の抵抗値をほぼ揃えることができ、したがって抵抗値の非平衡に起因する零点出力分は0.5mV未満とほとんど無視し得るほど小さく出来た。また、本発明の変形として、固定部側の引き出し電極40czを上記のような形状にした上、更にその先の幅を梁上の電極パターン部分の幅の10倍以上のように十分に広いパターンとすることで、外部接続端子の配置を任意の位置に配置することが可能となる効果がある。例えば、図3ではチップの4辺に合計18の外部接続端子を配置したが、零点出力電圧を悪化させずに2辺にまとめることも可能である。その一例を図6に示す。引き出し電極のパターン形状については、上記で十分説明したので、同図では省略した。本例では、Y軸の合計8をXおよびZ軸方向に割り振り、左右9づつ外部接続端子42を配置した。
【0031】
次に第3の発明について図3により説明する。本実施例では、X軸およびZ軸の梁3c上の重錘体部側に位置するピエゾ抵抗素子12、32からの2本の引き出し電極40はY軸の梁3d上を通って固定部側に引き出し、また、X軸およびZ軸の梁3d上のピエゾ抵抗素子13、33からの2本の引き出し電極40はY軸の梁3b上を通って固定部側の外部接続端子42まで引き出したもので、外部接続端子数は、XおよびZ軸方向にはそれぞれ4、Y軸方向にはそれぞれ5を配置した。また、XおよびZ軸は梁3a、3cの幅方向に均等な位置に配置し梁幅を狭くし易い構造とした。従来X軸とY軸とは、互いに一方の梁のねじれが特性に影響することから、図7の従来例に示したように両者は梁の幅方向の中心に配置されていた。しかし、本実施例のようにX軸は梁幅の中心よりも端部よりに、Y軸は梁幅の中心に配置した構造とした場合でも、感度向上のため梁幅を200μm以下ぐらいに狭くした場合、XおよびY軸の検出感度および他軸感度等の特性に大きな差はなく、逆に梁幅を狭く設計しやすく感度的には有利なことがわかった。なお、XおよびZ軸の重錘体部上の引き出し電極40dxおよび40dzを同一の梁3b、3d方向に引き出したが、図7に示した従来例のように、X軸とZ軸とを別々に分けても良い。
【0032】
更に本実施例によると以下のような付随効果もある。XおよびY軸の引き出し電極40についても、Z軸の引き出し電極40と同様に、それらの抵抗値はほぼ梁上の電極パターン部分で決まるように設計した。これによって、各軸の同一の配置にあるピエゾ抵抗素子に接続される引き出し電極の各部での電圧降下がほぼ等しい、すなわちピエゾ抵抗素子に印加される実効的な駆動電圧を全てのピエゾ抵抗素子で略同等にできた。また、上記X、YおよびZ軸の引き出し電極は重錘体部2および固定部1の梁近傍のパターン面積を大きくしており放熱効果を改善する効果がある。したがって、本実施例では、これらの付随効果により通電変動などの安定性を従来より改善できる効果があった。
【0033】
【発明の効果】
以上、本発明によれば、小型、高感度で零点出力電圧の小さい3軸の半導体型加速度センサーを容易に製造できる。
【図面の簡単な説明】
【図1】本発明になる第1の実施例を示す正面図。
【図2】本発明になる加速度センサーの製造方法を示す工程断面図。
【図3】本発明になる第2および第3の実施例を示す正面図。
【図4】図2のXおよびZ軸の外部接続端子近傍の拡大図。
【図5】図2のXおよびZ軸の梁び一部の拡大図。
【図6】第2の発明の他の実施例である外部接続端子の配置を示す正面図
【図7】従来の半導体加速度センサーの構造を示す正面図。
【図8】図5のXおよびZ軸の一方の梁部の拡大正面図。
【図9】図6のZ軸の断面図。
【図10】従来の半導体加速度センサーのXおよびZ軸方向に加速度が加わった場合の状態を示す断面図。
【図11】従来の加速度センサーのブリッジ回路図。
【図12】3軸加速度センサーの引き出し電極の抵抗分を考慮した実際のブリッジ回路図。
【符号の説明】
1 固定部、2 重錘体、3 可撓部、40 引出し電極、41 保護膜、
42 電極端子、11 12 13 14 21 22 23 24 31 32 33 34 ピエゾ抵抗素子、3a〜3d 可撓部、
5 SOI層800にエッチングで設けた貫通パターン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a triaxial semiconductor acceleration sensor that detects a change in resistance of a piezoresistive element formed in a flexible portion.
[0002]
[Prior art]
As a conventional triaxial semiconductor type acceleration sensor, for example, there is one described in JP-A-63-266359, which is a flexible part of two pairs of beam structures which are made of a thin part of a Si single crystal substrate and are orthogonal to each other. The central weight body consisting of the thick part of the Si single crystal substrate and the peripheral fixed part are connected by the flexible part, and the X-axis direction and the Z-axis direction are on the same beam, , as detected by piezoresistive element formed on the other beam perpendicular to this Y-axis direction, is on the beams are basic structure piezoresistive element is formed for each axis 4 Ke is shown . In the conventional example, the arrangement of the lead electrode and the external electrode connection terminal is not described, but the pattern width of the conventional lead electrode is constant and the wiring resistance is not considered. FIG. 7 shows an example of the overall structure in the case where lead electrodes and external connection terminals are arranged in the conventional three-axis acceleration sensor structure in the conventional concept, and FIG. 8 is an enlarged view of the dotted line frame portion of the X and Z axes in FIG. FIG. 9 is a partial cross-sectional view in the ZZ axis direction. Hereinafter, it will be described that the resistance value of the extraction electrode and the arrangement of the external connection terminals are also important points for realizing a small and high-performance three-axis acceleration sensor.
[0003]
First, the overall structure will be described. This consists of a central weight body 2 composed of a thick portion of the Si single crystal substrate, a fixed portion 1 arranged so as to surround it, and a thin portion of the Si single crystal substrate connecting the weight body 2 and the fixed portion 1. Corresponding to two pairs of beam-like flexible portions 3a, 3b, 3c, and 3d, and two directions (X and Y) on the flexible portion and a direction (Z) perpendicular to the flexible portion. It provided so as to composed piezoresistors 11-34 Metropolitan of each axis 4 Ke.
[0004]
8 and 9, a protective film 41 made of a thin film such as SiO 2 or SiN is formed on the piezoresistive element, and connected to both ends of the piezoresistive element via through holes 40a. A lead electrode 40 made of a metal thin film such as aluminum is formed, and the lead electrode group has a structure connected to a group of external electrode terminals 42 provided on the peripheral fixing portion 1.
[0005]
In this conventional example, triaxial acceleration is detected, but the principle of detection is that the deflection of the flexible part is formed in the flexible part when the central weight body 2 is displaced under the force of acceleration. By detecting the change in resistance value of the piezoresistive elements 11 to 34, the acceleration in the triaxial direction is detected. The principle will be described in detail with reference to the drawings.
[0006]
The acceleration detection principle will be described with reference to FIGS. Since the X direction and the Y direction are the same, in these drawings, the X direction and the Z direction are representatively shown. FIG. 10A is a cross-sectional view schematically showing the deformation of the flexible portions 3a and 3c due to the acceleration in the X direction. Tensile stress is applied to the piezoresistive elements Rx1 and Rx3, and compressive stress is applied to the Rx2 and Rx4. At this time, the resistance values of the piezoresistive elements Rx1, Rx3 and Rx2, Rx4 increase and decrease, respectively. FIG. 11 shows how to assemble the bridges for each axis and the detection circuit. In FIG. 10A, when Fx force is applied to the weight body by the acceleration in the X direction, the values of the piezoresistors Rx1 and Rx3 increase and the values of Rx2 and Rx4 decrease. The detection circuit shown in a) outputs a voltage in the X direction. However, since the voltage in the Z direction is different from the connection in the X direction and the resistance of the bridge, the increase and decrease in each resistance value is offset and the voltage is zero. is there. On the contrary, as shown in FIG. 10B, when Fz force is received by the acceleration in the Z direction, the values of the piezoresistors Rz1 and Rz4 increase and the values of Rz2 and Rz3 decrease. 11 (b) outputs a voltage in the Z direction. However, since the voltage in the X direction is different from the connection in the Z direction and the resistance of the bridge, the increase and decrease in each resistance value is canceled out. Zero. In this way, triaxial acceleration can be detected.
[0007]
[Problem to be Solved by the Invention]
As described above, the piezoresistive acceleration sensor detects the unbalanced voltage of the bridge circuit. In addition to the piezoresistor, the actual bridge circuit also includes the resistance of the extraction electrode pattern 40 described in FIG. Come. Piezoresistive elements of each shaft 4 Ke is designed in the same way, generally the extraction electrode pattern 40 is also point symmetric or line-symmetric to each beam of a pair of each axis pattern shape when it is designed in the same pattern, the Since the resistance value of the same pattern shape portion of each part of the extraction electrode is also substantially equal, in the following description, the pattern part of each part of each extraction electrode is denoted by the same symbol, and the resistance value is also expressed by the same symbol. To.
[0008]
First, in FIG. 7, the lead electrode patterns 40 of the piezoresistive elements 11, 12, 13, and 14 on the two X-axis beams are divided into four parts, and the same reference numerals as 40 ax, 40 bx, 40 cx, and 440 dx are given. The corresponding resistance values are also represented by the same symbols as Rax, Rbx, Rcx, and Rdx. Similarly, the Y-axis lead electrode pattern 40 is divided into four parts, 40ay, 40by, 40cy, and 40dy, and the resistance values of the respective parts are set to Ray, Rby, Rcy, Rdy, and the Z-axis lead electrode pattern 40 is set to 40az, 40bz, It is divided into 40 cz and 40 dz, and the resistance value of each part is defined as Raz, Rbz, Rcz, and Rdz. here,
40bx, 40by, and 40bz are located at the center of the two beams on each axis, and connect the two piezoresistive elements (for example, the X axis is 11 and 12, and 13 and 14), respectively. A portion of the extraction electrode pattern 40;
Reference numerals 40ax, 40ay, and 40az denote X-axis, Y-axis, and Z-axis, respectively, from the external electrode terminal 42 arranged on the fixed portion 1 to connection to the lead electrode pattern portions 40bx, 40by, and 40bz at the center of the beam of each axis. A portion of the extraction electrode pattern 40;
40cx, 40cy, and 40cz are provided on the fixed portion side of the piezoresistive elements (for example, the X-axis is the piezoresistive elements 11 and 14) located on the fixed portion 1 side from the external electrode terminal 42 arranged on the fixed portion 1. A part of the X-axis, Y-axis, and Z-axis lead electrode patterns 40 each connecting up to the connection part,
40dx is connected to the central weight body 2 and the beam 3b and the central weight body 2 and the beam from the connection portion of the two piezoresistive elements 12 and 13 of the X axis located on the central weight body portion 2 side of the X axis. A part of the lead electrode pattern 40 connected to the external connection terminal 42 arranged on the fixed portion 1 through 3d,
40dy passes from the connecting portion of the two Y-axis piezoresistive elements 22 and 23 located on the central weight body 2 side through the central weight body 2 and the beams 3d and 3b, respectively, onto the fixed portion 1 A part of the lead electrode pattern 40 connected to the arranged external connection terminal 42,
40dz is arranged on the fixed part 1 through the central weight body 2 and the beams 3d and 3b from the connection part of the two Z-axis piezoresistive elements 32 and 33 located on the central weight body part 2 side. A part of the lead electrode pattern 40 connected to the external connection terminal 42;
Pointing. Hereinafter, since the X-axis and the Y-axis are the same, the X-axis and the Z-axis will be representatively described. When the bridge circuit is rewritten in consideration of the wiring resistance value of each part of the lead electrode pattern 40 divided into four parts, the result is as shown in FIG. FIG. 4A shows the X-axis detection circuit, and FIG. 4B shows the Z-axis detection circuit.
[0009]
First, looking at the X-axis, the resistance value Rax lead electrode pattern, Rbx, RCX, even subjected to any Rdx, 4 for piezoresistive Ke is designed to the same value as the initial value, the connection of the bridge manner From this, it can be seen that the overall resistance balance is maintained and the zero point output is not affected. The same applies to the Y axis. Next, looking at the Z-axis, as described above with reference to FIG. 11, the Z-axis is connected differently from the X- and Y-axes. Therefore, as is clear from FIG. Rdz is replaced and enters the bridge circuit.
[0010]
Therefore, it can be seen that the values of Rcz and Rdz affect the zero point output. From the above definition, Rcz is the resistance value of the lead electrode pattern 40 cz from the piezoresistive elements 31, 34 on the fixed part 1 side to the external connection terminal 42, and Rdz is the piezoresistive element 32 on the central weight body 2 side, This is the resistance value of 33 lead electrode patterns 40dz. That is, the length of 40 cz is much shorter than 40 dz, and therefore the resistance value is also small. For example, when an aluminum thin film of about 0.3 μm is used for the lead electrode pattern, Rcz is less than 1Ω and Rdz is about 5Ω, so the difference is quite large. At this time, the zero point output sets the piezoresistance value to any number Although it differs depending on whether or not, it becomes several mV. The value of the zero point output is also required to be a value of 5 mV or less, and the influence of the resistance value of the lead electrode on the zero point output cannot be ignored. In addition, the needs for acceleration sensors are also required to be smaller and more sensitive. To meet this demand, it is necessary to make the beam width as narrow and long as possible. However, the pattern must be as fine as possible. In other words, the resistance value of the extraction electrode tends to increase and the zero point output tends to increase in response to the demand for downsizing and high sensitivity.
[0011]
Therefore, the Z-axis zero point output due to the unbalance of the resistance value of the extraction electrode, which was not a problem because the chip size was large and the width of the extraction electrode pattern was wide, has been a major problem due to the demand for miniaturization and high sensitivity. It has become. The present invention has been made in view of such circumstances, and an object thereof is to provide a small and highly sensitive semiconductor triaxial acceleration sensor with a low zero point output voltage.
[0012]
[Means for Solving the Problems]
The first invention of the present application is connected to a piezoresistive element arranged on the weight body side at least with respect to the Z-axis lead electrode, and once pulled out to the weight body part, the periphery is fixed through the beam. In the lead electrode pattern connected to the external connection terminal of the part, the pattern width of the lead electrode pattern part in the weight part and the part of the lead electrode pattern part in the fixed part, excluding the lead electrode pattern part on the beam, By placing the lead electrode pattern part on the beam twice or more, preferably four times or more widely, the resistance value of the whole lead electrode is determined by the lead electrode pattern part on the beam, and arranged on the fixed part side. The resistance value of the extraction electrode connecting the piezoresistive element to the external connection terminal is set to the extraction electrode connected to the piezoresistive element on the weight body side. It is that in which substantially equal to the resistance value of the pattern portion on the beam. As described above, in the present invention, the resistance value is adjusted by the pattern shape, but other methods of changing the thickness of the extraction electrode are conceivable. In that case, the thickness of the extraction electrode of each part is changed. This is not preferable because the formation of the electrode thin film and the photoetching process are repeated a plurality of times, which complicates the manufacturing process.
[0013]
The second invention of the present application is the above-described piezoresistive element on the side of the weight body, with respect to the shape of the lead electrode connecting the piezoresistive element arranged on the fixed part side to the external connection terminal in the first invention of the present application. It has a shape that is narrower than the pattern width on the beam of the extraction electrode connected to the electrode and has multiple folds as necessary, and the resistance value of the electrode pattern part is connected to the piezoresistive element on the weight body side. This is that the resistance value of the pattern portion on the beam of the extraction electrode to be made approximately equal.
[0014]
The third invention of the present application is a total of four piezos positioned on the weight part side of the X-axis (or Y-axis) and Z-axis arranged on a pair of beams in the first and second inventions of the present application. The four lead electrode patterns connected to the resistance element and drawn on the weight body part are drawn in two directions in two directions of the Y axis (or X axis), and the X axis (or Y axis) The Z axis is arranged at an equal position in the beam width direction.
[0015]
[Action]
According to the first invention, it is connected to the piezoresistive element arranged on the weight body side, once pulled out to the weight body section, and then connected to the external connection terminal of the peripheral fixed section through the beam. The extracted electrode pattern shape and the extracted electrode pattern shape that connects the piezoresistive element arranged on the fixed part side to the external connection terminal are both based on the beam shape that must be designed with the highest sensitivity in mind. This makes it possible to determine the pattern shape and easily achieve high sensitivity and low zero output. In other words, in order to make the resistance values of the two greatly different lengths substantially equal, the zero sensitivity output can be easily achieved without sacrificing the detection sensitivity, which is the most important characteristic parameter as an acceleration sensor, and without increasing the chip size. There is an effect that can be reduced.
[0016]
According to the second invention, the width of the lead electrode pattern connecting the piezoresistive element arranged on the fixed part side to the external connection terminal is made narrower than the electrode pattern width on the beam, and the folding is performed a plurality of times as necessary. By having the shape, it becomes possible to easily balance the resistance of the lead electrode pattern even if the beam length is long, and the zero point output can be further reduced while keeping the chip size than the first invention, or more Even if it is compact, it has the effect of reducing the zero output with high sensitivity. In addition, the degree of freedom in layout of the external connection terminals can be increased. For example, the external connection terminals can be combined on the two sides of the chip while the zero output is small.
[0017]
According to the third invention, even if two detection axes of the X axis (or Y axis) and the Z axis are arranged on a pair of beams, the beam width can be reduced, so that the zero point output is reduced and the size is reduced. There is an effect that the sensitivity is easily increased.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to examples.
[0019]
An embodiment according to the first invention is shown in FIG. The present embodiment is an example in which the present invention is applied to the three-axis basic structure of the conventional example described in FIG. The arrangement of the external connection terminals of the lead electrodes on the central weight body side of the Z axis is different from that of the conventional triaxial semiconductor type acceleration sensor. In FIG. 1, the same parts as those in FIG. As described above, the basic structure is a beam-like shape composed of the central weight body 2 and the fixing portion 1 disposed so as to surround the central weight body 2 and the thin portion of the Si single crystal substrate that connects the weight body 2 and the fixing portion 1. flexible portion 3a of, 3b, 3c, 2 two directions on 3d and the movable flexure (X and Y) and movable flexure axes 4 Quai provided so as to correspond to the direction (Z) perpendicular to the Piezoresistive element groups 11 to 34. The X- and Y-axis lead electrodes 40 from the piezoresistive element group to the external connection terminal have a point-symmetric shape with the weight body 2 as the center, the pattern width is constant, and the present invention is applied to the Z-axis lead electrode. The pattern design was applied in consideration of the resistance value of each part. That is, with respect to the X-axis and the Y-axis, the electrode patterns at the respective portions in the two beam directions are the same in shape as in the conventional example, so that their resistance values also do not affect the zero-point output voltage.
[0020]
The Z axis will be described in detail. The lead electrode pattern for connecting the Z-axis piezoresistive element 11 and the external connection terminal 42 is 40 cz, the lead electrode pattern for connecting the piezoresistive elements 11 and 12 and 13 and 14 is 40 bz, and the external connection terminal 42 and the central part of the beam The electrode pattern for connecting the electrode pattern 40bz is 40az, the lead electrode pattern connected to the weight-side connecting portion of the piezoresistive elements 12 and 13 is 40dz, and the lead electrode 40dz has beams 3c and 3b with the Z-axis detection axis. It was pulled out to the external connection terminal 42 on the fixed part 1 through. As described with reference to FIG. 12, if the resistance values of the electrode patterns 40cz and 40dz are not equal, the zero point output is affected. In the present embodiment, the electrode patterns 40cz and 40dz can have substantially the same resistance value by having a pattern shape as described in the manufacturing method described later, and the zero point output can be suppressed to a level where there is no practical problem. It was.
[0021]
Next, the manufacturing method of a present Example is demonstrated. FIG. 2 shows a part of a cross section in the XX direction for explaining the main process. In the description of this manufacturing process, an example using an SOI wafer will be described so that the thickness of the flexible portion 3 can be controlled with high accuracy. SOI is Silicon On Insulator, and N-type Si was used. As shown in FIG. 2, the SOI wafer is composed of a Si base substrate 60, a surface SOI layer 80 which is a Si active layer, and a SiO 2 layer 70 used as an etching stopper between them. Si semiconductor substrate. As thicknesses, for example, for a high-sensitivity acceleration sensor, the base substrate is 500 to 625 μm, the SiO 2 is 1 μm, and the SOI layer is about 10 μm.
[0022]
At the beginning of the manufacturing process, first, a piezoresistor 11 in which a predetermined pattern is formed on the surface of the SOI layer 80 using a photoresist or a thermally oxidized SiO 2 film as a mask and boron is diffused by an impurity diffusion process such as ion implantation. , 12 (FIG. 2A). As the surface impurity concentration, about 2 × 10 18 was selected from the viewpoint of both temperature characteristics and sensitivity.
[0023]
Next, a protective film 41 is formed for the purpose of protecting the piezoresistors 11 and 12 (FIG. 2B). As the protective film 41, a multilayer film of SiO 2 and PSG (Phosphorus Silicated Glass) generally used in semiconductors is used to give a gettering effect of mobile ions. A double-layer film of SiO 2 and SiN may be used instead of the double-layer film of SiO 2 and PSG. The thickness of the protective film 41 is preferably as thin as possible to reduce the stress in terms of increasing sensitivity, and is set to 0.3 to 0.5 μm.
[0024]
Next, through holes 40a for electrode connection were formed in the protective film 41 on both ends of the piezoresistors 11 and 12 by wet etching mainly using hydrofluoric acid (FIG. 2C).
[0025]
Next, in order to make electrode wiring, first, an aluminum alloy (aluminum, copper, Si or the like is the main composition) is formed by sputtering. Although the thickness is about 0.3 to 0.5 μm, it is preferable that the thickness is as small as possible, and it is preferable that the thickness is as thin as possible. A lead electrode 40 was formed by photoetching (FIG. 2D). At this time, as in the conventional example, the X and Y-axis extraction electrodes had the same pattern width at each part, and the shape was point-symmetric about the weight body 2. As a result, the electrodes 40ax, 40bx, 40cx, 40dx and 40ay, 40by, 40cy, 40dy of each part of the extraction electrode can be made substantially the same in the two beam directions, and the zero point output is not affected. On the other hand, with respect to the Z-axis lead electrode, the lead electrode 40dz from the piezoresistive elements 32 and 33 arranged on the weight body 2 side has the width of the electrode pattern portion on the weight body portion and the fixed portion on the beam. The electrode pattern width on the beam was approximately the same as the X and Y axes. In addition, the width and length of the extraction electrode 40cz of the piezoresistive elements 31 and 34 arranged on the fixed portion side are made substantially the same as the electrode pattern portion on the beam of the extraction electrode 40dz.
[0026]
Next, although not shown in FIG. 2, the SOI layer 800 shown in FIG. 2A is etched by a dry etching method or the like to form the penetrating pattern 5 to the SOI layer 800 shown in FIG.
[0027]
Next, the shape of the weight body 2 and the fixing portion 1 is adjusted to the base substrate 60 on the back surface by aligning the positions of the piezoresistive elements 11 and 12 on the front surface and the penetrating pattern 5 to the SOI layer 800 using a double-side aligner. A photoresist mask was formed on the Si base substrate 60 by dry etching, and the SiO 2 layer 70 as an etching stopper was removed by wet etching (FIG. 2E). In this step, the flexible portions 3a, 3b, 3c, and 3d are formed. However, it may be better to leave the SiO 2 layer 70 of the etching stopper without removing the etching stopper. A method of leaving a part of the SiO 2 layer 70 is also applicable. After that, a number of acceleration sensor elements formed on the wafer were cut into chips using a dicer or the like, and an acceleration sensor was completed through an assembly process such as a package.
[0028]
As described above, in the present embodiment, for the electrode pattern 40dz, the width of the pattern portion on the weight body portion and the fixed portion is about five times the pattern width on the beam, and for the electrode pattern 40cz, By making the width and length substantially the same as the width and length of the pattern portion on the beam of the electrode pattern 40dz, both resistance values can be made substantially the same, and the zero point output voltage due to the resistance non-equilibrium is 0.5 mV or less. And a sufficiently small value could be obtained. In order to lower the resistance value of the electrode pattern 40dz, a method of changing the thickness of the aluminum thin film is conceivable. However, in this case, the film forming process of the aluminum thin film and the photoetching process are repeated a plurality of times. It becomes long and is not preferable.
[0029]
Next, FIGS. 3, 4 and 5 show the second and third embodiments. In this embodiment, the second invention is applied to the same basic structure as in FIG. 1 of the embodiment according to the first invention, and FIG. 3 is a front view showing an embodiment according to the second and third inventions. 4 is an enlarged view of the vicinity of the X and Z axis external connection terminals of FIG. 3 for explaining the second invention, and FIG. 5 is an enlarged view of one beam portion of the X and Z axes of FIG. FIG. 7 is a diagram for explaining the second invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals.
[0030]
First, the second invention will be described with reference to FIGS. 3, 4 and 5. FIG. As in the description of the first invention, the Z-axis is a problem with respect to the zero point output, so the following description will focus on the Z-axis. The lead electrodes 40dz from the piezoresistive elements 32, 33 on the weight body side are connected to the external connection terminals 42 on the fixed portion 1 through the Y-axis beams 3d, 3b. Regarding the shape of the lead electrode 40dz, the electrode pattern portions on the weight body portion 1 and the fixed portion 2 are at least about three times wider than the electrode pattern portions on the Y-axis beam, and the lead electrode 40dz The resistance value was determined almost by the resistance value of the pattern part on the beam. Further, the width of the lead electrode 40cz of the piezoresistive elements 31 and 34 on the fixed part side is set to about 70% of the width of the electrode pattern portion on the beam, and the resistance value is obtained by providing a shape with three turns. Can be made substantially equal to the resistance value of the pattern portion on the beam of the extraction electrode 40dz, and the external connection terminal can be arranged closest to the piezoresistive elements 31 and 34. That is, even in the layout of the external connection terminal 42 in which the difference between the resistance values of the lead electrodes 40dz and 40cz is the largest, the resistance values of the two can be substantially equalized. Therefore, the zero point output due to the resistance value imbalance is It was made small enough to be negligible at less than 0.5 mV. Further, as a modification of the present invention, the extraction electrode 40cz on the fixed portion side is shaped as described above, and the width beyond that is sufficiently wide so that it is more than 10 times the width of the electrode pattern portion on the beam. By doing so, there is an effect that the external connection terminals can be arranged at arbitrary positions. For example, although disposed external connection terminals in total 18 Ke the four sides of the chip in FIG. 3, it is also possible to combine the two sides without deteriorating the zero point output voltage. An example is shown in FIG. Since the pattern shape of the extraction electrode has been sufficiently described above, it is omitted in the figure. In the present example, allocates eight Ke of the Y-axis in the X and Z-axis direction, and arranged left and right 9 Ke increments external connection terminal 42.
[0031]
Next, a third invention will be described with reference to FIG. In this embodiment, two lead electrodes 40 from the piezoresistive elements 12 and 32 located on the weight body side on the X-axis and Z-axis beam 3c pass on the Y-axis beam 3d and are on the fixed portion side. The two lead electrodes 40 from the piezoresistive elements 13 and 33 on the X-axis and Z-axis beam 3d are drawn to the external connection terminal 42 on the fixed portion side through the Y-axis beam 3b. but, the number of external connection terminals, respectively to the X and Z-axis directions 4 Ke, respectively 5 Ke in the Y-axis direction is arranged. Further, the X and Z axes are arranged at equal positions in the width direction of the beams 3a and 3c so that the beam width can be easily reduced. In the conventional X-axis and Y-axis, the twist of one beam affects the characteristics of each other. Therefore, as shown in the conventional example of FIG. 7, both are arranged at the center in the width direction of the beam. However, even when the X-axis is arranged closer to the end than the center of the beam width and the Y-axis is arranged at the center of the beam width as in this embodiment, the beam width is narrowed to about 200 μm or less in order to improve sensitivity. In this case, it has been found that there is no significant difference in characteristics such as the detection sensitivity of the X and Y axes and the sensitivity of other axes, and conversely, it is easy to design the beam width narrowly and is advantageous in terms of sensitivity. The lead electrodes 40dx and 40dz on the weight body portions of the X and Z axes are drawn in the same beams 3b and 3d directions, but the X axis and the Z axis are separated as in the conventional example shown in FIG. It may be divided into
[0032]
Furthermore, according to this embodiment, there are the following incidental effects. The X- and Y-axis lead electrodes 40 were designed so that their resistance values were determined almost by the electrode pattern portion on the beam, similarly to the Z-axis lead electrodes 40. As a result, the voltage drop at each part of the extraction electrode connected to the piezoresistive elements in the same arrangement on each axis is substantially equal, that is, the effective drive voltage applied to the piezoresistive elements is the same for all piezoresistive elements. It was made almost equivalent. Further, the X, Y, and Z-axis lead electrodes increase the pattern area in the vicinity of the beams of the weight part 2 and the fixed part 1 and have the effect of improving the heat dissipation effect. Therefore, in this embodiment, there is an effect that the stability such as the energization fluctuation can be improved as compared with the related art due to these incidental effects.
[0033]
【The invention's effect】
As described above, according to the present invention, it is possible to easily manufacture a small-sized, high-sensitivity triaxial semiconductor type acceleration sensor with a low zero point output voltage.
[Brief description of the drawings]
FIG. 1 is a front view showing a first embodiment according to the present invention.
FIG. 2 is a process sectional view showing a method for manufacturing an acceleration sensor according to the present invention.
FIG. 3 is a front view showing second and third embodiments according to the present invention.
4 is an enlarged view of the vicinity of an external connection terminal on the X and Z axes in FIG. 2;
FIG. 5 is an enlarged view of a part of the X- and Z-axis beams in FIG. 2;
6 is a front view showing the arrangement of external connection terminals according to another embodiment of the second invention. FIG. 7 is a front view showing the structure of a conventional semiconductor acceleration sensor.
8 is an enlarged front view of one beam portion of the X and Z axes in FIG. 5;
9 is a cross-sectional view taken along the Z axis in FIG.
FIG. 10 is a cross-sectional view showing a state when acceleration is applied in the X and Z axis directions of a conventional semiconductor acceleration sensor.
FIG. 11 is a bridge circuit diagram of a conventional acceleration sensor.
FIG. 12 is an actual bridge circuit diagram in consideration of the resistance of the lead electrode of the three-axis acceleration sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fixed part, 2 weight body, 3 flexible part, 40 extraction electrode, 41 protective film,
42 electrode terminal, 11 12 13 14 21 22 23 24 31 32 33 34 piezoresistive element, 3a-3d flexible part,
5 Penetration pattern provided by etching in SOI layer 800

Claims (3)

Si単結晶基板の厚肉部から成る中央重錘体部と、該重錘体部を取り囲むように配置した固定部と、該重錘体部と固定部とを連結するSi単結晶基板の薄肉部から成るダイヤフラム状または複数対の梁状の可撓部と、該可撓部上にある2つの直交する検出軸(XとY軸)および該可撓部に垂直な1つの検出軸(Z軸)に対応して、該可撓部上に設置した各軸それぞれ4のピエゾ抵抗素子群とからなり、該各軸4のピエゾ抵抗素子はブリッジ検出回路を構成するように薄膜の引き出し電極で接続されてなる半導体加速度センサーであって、少なくともZ軸方向のピエゾ抵抗素子の引き出し電極について、
a)重錘体部側に配置されたピエゾ抵抗素子に接続される引き出し電極の重錘体部および固定部上のパターン部分の幅は梁上の該引き出し電極パターン部分よりも2倍以上の幅を有し、
かつ、
b)固定部側に配置されたピエゾ抵抗素子から外部接続端子までを繋ぐ引き出し電極の抵抗値を上記重錘体部側のピエゾ抵抗素子に接続される引き出し電極の梁上のパターン部分の抵抗値に略等しくした、
ことを特徴とする半導体加速度センサー。
A central weight body portion composed of a thick portion of the Si single crystal substrate, a fixed portion disposed so as to surround the weight body portion, and a thin wall of the Si single crystal substrate connecting the weight body portion and the fixed portion. Diaphragm-like or multiple pairs of beam-like flexible parts, two orthogonal detection axes (X and Y axes) on the flexible part, and one detection axis (Z) perpendicular to the flexible part corresponding to the axis), it consists of a piezo-resistive element group of each axis 4 Ke which is placed on a movable flexure, drawer thin as piezoresistive elements of the respective shaft 4 Ke constitute a bridge detection circuit A semiconductor acceleration sensor connected by an electrode, and at least a lead electrode of a piezoresistive element in the Z-axis direction,
a) The width of the weight portion of the lead electrode connected to the piezoresistive element arranged on the weight portion side and the pattern portion on the fixed portion is twice or more the width of the lead electrode pattern portion on the beam Have
And,
b) The resistance value of the lead electrode connected from the piezoresistive element arranged on the fixed portion side to the external connection terminal is the resistance value of the pattern portion on the beam of the lead electrode connected to the piezoresistive element on the weight body side. Approximately equal to
A semiconductor acceleration sensor.
請求項1項記載の半導体加速度センサーであって、固定部側に配置されたピエゾ抵抗素子から外部接続端子までつなぐ引き出し電極に関して、そのパターン幅は重錘体部側に配置されたピエゾ抵抗素子に接続される引き出し電極の梁上のパターン幅よりも細く、必要に応じて複数回の折り返し形状を有し、当該電極パターン部分の抵抗値が上記重錘体部側に配置されたピエゾ抵抗素子に接続される引き出し電極の梁上のパターン部分の抵抗値に略等しいことを特徴とする半導体加速度センサー。2. The semiconductor acceleration sensor according to claim 1, wherein the pattern width of the lead electrode connected from the piezoresistive element arranged on the fixed part side to the external connection terminal is the same as that of the piezoresistive element arranged on the weight body part side. A piezoresistive element that is narrower than the pattern width on the beam of the lead electrode to be connected, has a folded shape multiple times as necessary, and the resistance value of the electrode pattern portion is arranged on the weight body side. A semiconductor acceleration sensor characterized by being approximately equal to a resistance value of a pattern portion on a beam of a connected extraction electrode. 請求項1項および2項記載の半導体加速度センサーであって、1対の梁上に配置されたX軸(またはY軸)とZ軸の重錘体部側に位置する合計4のピエゾ抵抗素子の引き出し電極をY軸(またはX軸)の2つの方向に2本づつに分けて引き出し、X軸(またはY軸)およびZ軸を梁の幅方向に均等な位置に配置したことを特徴とする半導体加速度センサー。A semiconductor acceleration sensor according to claim 1 and second items, wherein a pair of the deployed X-axis on the beam (or Y-axis) and the piezoresistive total 4 Ke located to the weight body portion side of the Z axis The element extraction electrode is divided into two in the two directions of the Y axis (or X axis), and the X axis (or Y axis) and the Z axis are arranged at equal positions in the width direction of the beam. A semiconductor acceleration sensor.
JP2001293525A 2001-09-26 2001-09-26 Semiconductor acceleration sensor Expired - Fee Related JP3985215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293525A JP3985215B2 (en) 2001-09-26 2001-09-26 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293525A JP3985215B2 (en) 2001-09-26 2001-09-26 Semiconductor acceleration sensor

Publications (2)

Publication Number Publication Date
JP2003101033A JP2003101033A (en) 2003-04-04
JP3985215B2 true JP3985215B2 (en) 2007-10-03

Family

ID=19115294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293525A Expired - Fee Related JP3985215B2 (en) 2001-09-26 2001-09-26 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JP3985215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058594A1 (en) 2008-11-20 2010-05-27 旭化成エレクトロニクス株式会社 Physical quantity measurement device and physical quantity measurement method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095998A1 (en) 2004-03-31 2005-10-13 National Institute Of Advanced Industrial Science And Technology Method of measuring lateral sensitivity of sensor for detecting acceleration, and acceleration measuring method
JP5137229B2 (en) 2004-08-12 2013-02-06 旭化成エレクトロニクス株式会社 Accelerometer
CN101356442B (en) 2006-01-05 2012-02-01 旭化成电子材料元件株式会社 Acceleration measuring device
EP2543961B1 (en) 2007-05-24 2014-12-24 Asahi Kasei EMD Corporation Physical amount measuring device and physical amount measuring method
JP5093070B2 (en) * 2008-11-21 2012-12-05 大日本印刷株式会社 Acceleration sensor and semiconductor device using the same
JP5823089B2 (en) 2009-04-07 2015-11-25 大日本印刷株式会社 Sensor device and manufacturing method thereof
JP4803313B2 (en) * 2010-09-30 2011-10-26 大日本印刷株式会社 Sensor device and manufacturing method thereof
JP6123849B2 (en) * 2015-06-26 2017-05-10 大日本印刷株式会社 Semiconductor acceleration sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058594A1 (en) 2008-11-20 2010-05-27 旭化成エレクトロニクス株式会社 Physical quantity measurement device and physical quantity measurement method
US8768649B2 (en) 2008-11-20 2014-07-01 Asahi Kasei Microdevices Corporation Physical amount measuring device and physical amount measuring method

Also Published As

Publication number Publication date
JP2003101033A (en) 2003-04-04

Similar Documents

Publication Publication Date Title
KR100656698B1 (en) Semiconductor acceleration sensor
US20040025591A1 (en) Accleration sensor
EP1868000B1 (en) Acceleration sensor
US6662659B2 (en) Acceleration sensor
KR101001775B1 (en) Acceleration sensor
JP3985215B2 (en) Semiconductor acceleration sensor
JP3985214B2 (en) Semiconductor acceleration sensor
US6763719B2 (en) Acceleration sensor
US20030057447A1 (en) Acceleration sensor
JP2007309654A (en) Acceleration sensor and manufacturing method therefor
JP2004109114A (en) Semiconductor multiaxial acceleration sensor
JP2008032704A (en) Semiconductor acceleration sensor
EP1655611A2 (en) Piezoresistive acceleration sensor with reduced temperature offset
JP5336617B2 (en) Semiconductor acceleration sensor
JP2006098323A (en) Semiconductor-type three-axis acceleration sensor
JP3642054B2 (en) Piezoresistive 3-axis acceleration sensor
JP5093070B2 (en) Acceleration sensor and semiconductor device using the same
WO2010146818A1 (en) Three-dimensional acceleration sensor
JP5401820B2 (en) Sensor
JP5146097B2 (en) MEMS
JP4466344B2 (en) Acceleration sensor
TWI291027B (en) Acceleration sensor
JP2008309667A (en) Triaxial acceleration sensor
JP2010032389A (en) Physical quantity sensor and manufacturing method therefor
JPH08160067A (en) Acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees