JP2008032704A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor Download PDF

Info

Publication number
JP2008032704A
JP2008032704A JP2007177211A JP2007177211A JP2008032704A JP 2008032704 A JP2008032704 A JP 2008032704A JP 2007177211 A JP2007177211 A JP 2007177211A JP 2007177211 A JP2007177211 A JP 2007177211A JP 2008032704 A JP2008032704 A JP 2008032704A
Authority
JP
Japan
Prior art keywords
axis
outer frame
resistance element
weight
resistance elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007177211A
Other languages
Japanese (ja)
Inventor
Kenji Kato
健二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2007177211A priority Critical patent/JP2008032704A/en
Publication of JP2008032704A publication Critical patent/JP2008032704A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor acceleration sensor enhancing the detection accuracy of acceleration by suppressing a cross-axis sensitivity even if processing dispersion occurs in the semiconductor acceleration sensor during its manufacture. <P>SOLUTION: The semiconductor acceleration sensor includes an outer frame, a weight portion formed in the center of the outer frame, and at least one pair of flexible portions connecting the weight portion to the outer frame. In the paired flexible portions, one flexible portion is arranged in the direction of the other flexible portion extending from the outer frame to the weight portion. The paired flexible portions include a plurality of first axial resistance elements detecting a first axial acceleration component and a plurality of second axial resistance elements detecting a second axial acceleration component in the second axial direction perpendicular to that of the first axial resistance elements. The number of the second axial resistance elements is equal to that of the first axial resistance elements. The first axial resistance elements are arranged point- or line-symmetrically about the center of the weight portion. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車や航空機等の輸送機器や携帯端末等に搭載され、互いに直交するX軸、Y軸、Z軸からなる3軸の加速度を検出する半導体加速度センサに関する。   The present invention relates to a semiconductor acceleration sensor that is mounted on a transportation device such as an automobile or an aircraft, a portable terminal, and the like and detects acceleration in three axes including an X axis, a Y axis, and a Z axis that are orthogonal to each other.

従来の3軸の加速度を検出する半導体加速度センサは、シリコンからなる外枠部の中心部に厚肉の重錘部を配置し、該重錘部の中心である錘中心で、互いに直交するX軸およびY軸を幅方向の中心線として外枠部と重錘部とを接続する一対のX軸可撓部および一対のY軸可撓部を設け、Y軸方向の加速度成分を検出するために、Y軸可撓部の一方の中心線上の外枠部側に第1のY軸抵抗素子を、重錘部側に第2のY軸抵抗素子を、他方の中心線上の重錘部側に第3のY軸抵抗素子を、外枠部側に第4のY軸抵抗素子を1列に並べて配置すると共に、X軸およびZ軸方向の加速度成分を検出するために、X軸可撓部の一方の外枠部側に第1のX軸抵抗素子および第1のZ軸抵抗素子を、重錘部側に第2のX軸抵抗素子および第2のZ軸抵抗素子を、他方の重錘部側に第3のX軸抵抗素子および第3のZ軸抵抗素子を、外枠部側に第4のX軸抵抗素子および第4のZ軸抵抗素子を配置し、これら第1ないし第4のX軸抵抗素子と、第1ないし第4のZ軸抵抗素子とをそれぞれ中心線の両側に1列に並べ、各X軸抵抗素子、各Y軸抵抗素子、各Z軸抵抗素子によりそれぞれブリッジ回路を構成してX軸、Y軸、Z軸方向の加速度成分を検出している(例えば、特許文献1参照。)。
特開2003−279592号公報(第2頁段落0002−0004、第4頁段落0022−0024、第1図、第7図)
A conventional semiconductor acceleration sensor that detects triaxial acceleration has a thick weight portion disposed at the center of an outer frame portion made of silicon, and X is orthogonal to each other at the weight center that is the center of the weight portion. A pair of X-axis flexible portions and a pair of Y-axis flexible portions that connect the outer frame portion and the weight portion with the shaft and the Y-axis as the center line in the width direction are provided, and an acceleration component in the Y-axis direction is detected The first Y-axis resistance element on the outer frame part side on one center line of the Y-axis flexible part, the second Y-axis resistance element on the weight part side, and the weight part side on the other center line In order to detect the acceleration components in the X-axis and Z-axis directions, the third Y-axis resistance elements are arranged in a row on the outer frame side, and the fourth Y-axis resistance elements are arranged in a row. The first X-axis resistance element and the first Z-axis resistance element on one outer frame side of the part, and the second X-axis resistance element and the second Z-axis resistance element on the weight side The third X-axis resistance element and the third Z-axis resistance element are arranged on the other weight side, and the fourth X-axis resistance element and the fourth Z-axis resistance element are arranged on the outer frame side, and these The first to fourth X-axis resistance elements and the first to fourth Z-axis resistance elements are arranged in a line on both sides of the center line, and each X-axis resistance element, each Y-axis resistance element, each Z-axis Each of the resistive elements forms a bridge circuit to detect acceleration components in the X-axis, Y-axis, and Z-axis directions (see, for example, Patent Document 1).
JP 2003-279582 A (paragraphs 0002-0004 on the second page, paragraphs 0022-0024 on the fourth page, FIGS. 1 and 7)

しかしながら、上述した従来の技術においては、X軸可撓部に、第1ないし第4のX軸抵抗素子と、第1ないし第4のZ軸抵抗素子とをそれぞれ中心線の両側に1列に並べて配置しているため、Y軸方向だけに加速度が印加された場合に、各Y軸抵抗素子により構成されたホイーストンブリッジ回路(以下、単にブリッジ回路という。)からの出力されるY軸方向成分の他に、そのY軸方向の加速度により捻られるX軸可撓部に配置された各Z軸抵抗素子により構成されたブリッジ回路からもZ軸方向成が出力される、いわゆる他軸感度(Y軸方向成分に対するZ方向成分の比をいう。)が発生し、本来検出されるはずのない他軸感度によるZ軸方向成分の影響を受けてベクトル方向の誤差等が生じ、加速度の検出精度が低下するという問題がある。   However, in the conventional technique described above, the first to fourth X-axis resistance elements and the first to fourth Z-axis resistance elements are arranged in one row on both sides of the center line in the X-axis flexible portion. Since they are arranged side by side, when acceleration is applied only in the Y-axis direction, the Y-axis direction output from a Wheatstone bridge circuit (hereinafter simply referred to as a bridge circuit) configured by each Y-axis resistance element In addition to the component, the so-called other-axis sensitivity (in which the Z-axis direction is output from the bridge circuit constituted by each Z-axis resistance element disposed in the X-axis flexible portion twisted by the acceleration in the Y-axis direction) This is the ratio of the Z-direction component to the Y-axis direction component.), And an error in the vector direction occurs due to the influence of the Z-axis direction component due to the sensitivity of the other axis that should not be detected. The problem of falling A.

以下に、上記の他軸感度による問題点について説明する。
図12は従来の半導体加速度センサの上面を示す説明図、図13は図12のA−A断面を示す説明図、図14は従来の可撓部の上面を示す説明図である。
図12、図13において、1は半導体加速度センサであり、後述する半導体ウェハ11を個片に分割して形成される。
Hereinafter, the problem due to the other-axis sensitivity will be described.
12 is an explanatory view showing the upper surface of a conventional semiconductor acceleration sensor, FIG. 13 is an explanatory view showing the AA cross section of FIG. 12, and FIG. 14 is an explanatory view showing the upper surface of a conventional flexible part.
12 and 13, reference numeral 1 denotes a semiconductor acceleration sensor, which is formed by dividing a semiconductor wafer 11 described later into individual pieces.

2は半導体加速度センサ1の外枠部であり、シリコン(Si)により形成された平面視が正方形の枠状部材である。
3は重錘部であり、外枠部2の中心部に配置されたシリコンからなる厚肉の正方形部材であって、その厚さは図13に示すように外枠部2の厚さより僅かに薄く形成され、その各辺は図12に示すように外枠部2の内側の各辺とそれぞれ平行に配置されている。
Reference numeral 2 denotes an outer frame portion of the semiconductor acceleration sensor 1, which is a frame-shaped member that is formed of silicon (Si) and has a square shape in plan view.
Reference numeral 3 denotes a weight portion, which is a thick square member made of silicon and disposed at the center of the outer frame portion 2, and its thickness is slightly smaller than the thickness of the outer frame portion 2 as shown in FIG. As shown in FIG. 12, each side is formed thin and is arranged in parallel with each side inside the outer frame portion 2.

また、半導体加速度センサ1の上面1aには、重錘部3の上面1aの幾何学的な中心である錘中心Woを通り重錘部3の一辺およびその対辺に直交するX軸5、および錘中心WoでX軸5に直交するY軸6が設定されている。
7a、7bは一対のX軸可撓部であり、X軸5を図14に示す幅方向の中心線として、外枠部2と重錘部3との間を接続するシリコンからなる厚さの薄い可撓性を有する梁部材であって、重錘部3をその可撓性により揺動自在に支持する機能を有している。
Further, on the upper surface 1a of the semiconductor acceleration sensor 1, an X axis 5 passing through the weight center Wo, which is the geometric center of the upper surface 1a of the weight portion 3, and orthogonal to one side of the weight portion 3 and its opposite side, and a weight A Y axis 6 perpendicular to the X axis 5 is set at the center Wo.
Reference numerals 7a and 7b denote a pair of X-axis flexible portions having a thickness made of silicon that connects the outer frame portion 2 and the weight portion 3 with the X-axis 5 serving as a center line in the width direction shown in FIG. It is a thin beam member, and has a function of supporting the weight part 3 in a swingable manner by its flexibility.

7c、7dは一対のY軸可撓部であり、Y軸6を幅方向の中心線として、X軸可撓部7a、7bと同様に形成された梁部材であって、X軸可撓部7a、7bと同様の機能を有している。
9は抵抗素子であり、シリコンで形成された可撓部7のそれぞれの表層に不純物を注入拡散させて形成されたピエゾ抵抗素子であって、重錘部3が揺動したときに比較的大きな応力が発生する箇所である外枠部2および重錘部3との付け根の近傍に形成されており、4つの抵抗素子9を組合せて構成されるブリッジ回路により可撓部7の変位を電位差に変換して加速度成分として検出する機能を有している。
Reference numerals 7c and 7d denote a pair of Y-axis flexible parts, which are beam members formed in the same manner as the X-axis flexible parts 7a and 7b with the Y-axis 6 as the center line in the width direction. It has the same function as 7a and 7b.
Reference numeral 9 denotes a resistance element, which is a piezoresistive element formed by injecting and diffusing impurities into each surface layer of the flexible portion 7 made of silicon, and is relatively large when the weight portion 3 swings. It is formed in the vicinity of the base of the outer frame portion 2 and the weight portion 3 where stress is generated, and the displacement of the flexible portion 7 is changed to a potential difference by a bridge circuit configured by combining four resistance elements 9. It has a function of converting and detecting it as an acceleration component.

以下の説明において、各軸の抵抗素子9を区別するときは、X軸方向の加速度成分を検出するためのブリッジ回路を構成する4つの抵抗素子9を、第1のX軸抵抗素子Rx1、第2のX軸抵抗素子Rx2、第3のX軸抵抗素子Rx3、第4のX軸抵抗素子Rx4という。
また、Y軸方向の加速度成分を検出するためのブリッジ回路を構成する4つの抵抗素子9を、第1のY軸抵抗素子Ry1、第2のY軸抵抗素子Ry2、第3のY軸抵抗素子Ry3、第4のY軸抵抗素子Ry4という。
In the following description, when distinguishing the resistance elements 9 of each axis, the four resistance elements 9 constituting the bridge circuit for detecting the acceleration component in the X-axis direction are referred to as the first X-axis resistance element Rx1, the second 2 X-axis resistance elements Rx2, a third X-axis resistance element Rx3, and a fourth X-axis resistance element Rx4.
In addition, the four resistance elements 9 constituting the bridge circuit for detecting the acceleration component in the Y-axis direction include the first Y-axis resistance element Ry1, the second Y-axis resistance element Ry2, and the third Y-axis resistance element. Ry3 and fourth Y-axis resistance element Ry4.

更に、X軸5およびY軸6にそれぞれ直交する方向、つまりX軸5およびY軸6により形成される面(上面1aと同義)の鉛直方向であるZ軸方向の加速度成分を検出するめのブリッジ回路を構成する4つの抵抗素子9を、第1のZ軸抵抗素子Rz1、第2のZ軸抵抗素子Rz2、第3のZ軸抵抗素子Rz3、第4のZ軸抵抗素子Rz4という。
なお、Z軸抵抗素子Rzを図示する場合には区別のために網掛けを付して示す。
Further, a bridge for detecting an acceleration component in the Z-axis direction that is a direction perpendicular to the X-axis 5 and the Y-axis 6, that is, a vertical direction of a surface (synonymous with the upper surface 1 a) formed by the X-axis 5 and the Y-axis 6. The four resistance elements 9 constituting the circuit are referred to as a first Z-axis resistance element Rz1, a second Z-axis resistance element Rz2, a third Z-axis resistance element Rz3, and a fourth Z-axis resistance element Rz4.
In the case where the Z-axis resistance element Rz is illustrated, the Z-axis resistance element Rz is indicated by shading for distinction.

これら第1ないし第4のX軸抵抗素子Rx、第1ないし第4のY軸抵抗素子Ry、第1ないし第4のZ軸抵抗素子Rzは図12に示すように配置される。
すなわち、X軸可撓部7a、7bの一方のX軸可撓部7aには、その外枠部2側に第1のX軸抵抗素子Rx1が、重錘部3側に第2のX軸抵抗素子Rx2が、他方のX軸可撓部7bには、その重錘部3側に第3のX軸抵抗素子Rx3が、外枠部2側に第4のX軸抵抗素子Rx4が配置され、各X軸抵抗素子Rxは幅方向の中心線であるX軸5上に1列に並べて配置されている。
These first to fourth X-axis resistance elements Rx, first to fourth Y-axis resistance elements Ry, and first to fourth Z-axis resistance elements Rz are arranged as shown in FIG.
That is, one X-axis flexible portion 7a of the X-axis flexible portions 7a and 7b has a first X-axis resistance element Rx1 on the outer frame portion 2 side and a second X-axis on the weight portion 3 side. In the other X-axis flexible part 7b, the resistance element Rx2 is arranged with a third X-axis resistance element Rx3 on the weight part 3 side and a fourth X-axis resistance element Rx4 on the outer frame part 2 side. The X-axis resistance elements Rx are arranged in a line on the X-axis 5 that is the center line in the width direction.

また、Y軸可撓部7c、7dの一方のY軸可撓部7cには、図14に示すように、その外枠部2側に第1のY軸抵抗素子Ry1と第1のZ軸抵抗素子Rz1が、重錘部3側に第2のY軸抵抗素子Ry2と第2のZ軸抵抗素子Rz2が、他方のY軸可撓部7dには、その重錘部3側に第3のY軸抵抗素子Ry3と第3のZ軸抵抗素子Rz3が、外枠部2側に第4のY軸抵抗素子Ry4と第4のZ軸抵抗素子Rz4が、幅方向の中心線であるY軸6を挟んで中心線からZ軸抵抗素子Rz、Y軸抵抗素子Ryのぞれぞれの中心までの幅方向の距離B(隔置距離Bという。)離して対向配置されている。   Further, one Y-axis flexible portion 7c of the Y-axis flexible portions 7c and 7d has a first Y-axis resistance element Ry1 and a first Z-axis on the outer frame portion 2 side as shown in FIG. The resistor element Rz1 has a second Y-axis resistor element Ry2 and a second Z-axis resistor element Rz2 on the weight part 3 side, and the other Y-axis flexible part 7d has a third part on the weight part 3 side. The Y-axis resistance element Ry3 and the third Z-axis resistance element Rz3 are arranged on the outer frame portion 2 side, and the fourth Y-axis resistance element Ry4 and the fourth Z-axis resistance element Rz4 are center lines in the width direction. A distance B in the width direction (referred to as a separation distance B) from the center line to the center of each of the Z-axis resistance element Rz and the Y-axis resistance element Ry is arranged opposite to each other with the axis 6 interposed therebetween.

各可撓部7に配置されている抵抗素子9は、図14に示すように、両側の抵抗素子9の片端から、可撓部7の付け根まで、つまり可撓部7と外枠部2との境界まで、または可撓部7と重錘部3との境界までの長さ方向の距離C(付け根距離Cという。付け根距離Cは0〜20μm程度)離して形成されている。
このように配置された半導体加速度センサ1にZ軸方向の加速度が印加された場合は、図15に示すように、重錘部3はZ軸方向に平行移動し、外枠部2側に配置された第1のZ軸抵抗素子Rz1および第4のZ軸抵抗素子Rz4には引張応力が、重錘部3側に配置された第2のZ軸抵抗素子Rz2および第3のZ軸抵抗素子Rz3には圧縮応力が作用し、ぞれぞれの応力状態に応じて各Z軸抵抗素子Rzの抵抗値が変化する。
As shown in FIG. 14, the resistance elements 9 arranged in each flexible portion 7 are from one end of the resistance elements 9 on both sides to the base of the flexible portion 7, that is, the flexible portion 7 and the outer frame portion 2. A distance C in the length direction to the boundary of the flexible portion 7 and the weight portion 3 (referred to as a root distance C, which is about 0 to 20 μm).
When acceleration in the Z-axis direction is applied to the semiconductor acceleration sensor 1 arranged in this way, the weight 3 moves parallel to the Z-axis direction and is arranged on the outer frame 2 side as shown in FIG. Tensile stress is applied to the first Z-axis resistance element Rz1 and the fourth Z-axis resistance element Rz4, and the second Z-axis resistance element Rz2 and the third Z-axis resistance element arranged on the weight 3 side. Compressive stress acts on Rz3, and the resistance value of each Z-axis resistance element Rz changes according to each stress state.

このとき、図16(a)に示すように、第1のZ軸抵抗素子Rz1と第2のZ軸抵抗素子Rz2との間に電源電圧(Vdd)が接続され、第3のZ軸抵抗素子Rz3と第4のZ軸抵抗素子Rz4との間にアース(Vss)が接続されたブリッジ回路の、第1のZ軸抵抗素子Rz1と第3のZ軸抵抗素子Rz3との間の電圧V1と、第2のZ軸抵抗素子Rz2と第4のZ軸抵抗素子Rz4との間の電圧V2とが応力により変化した抵抗値に応じて変化し、その電圧差がZ軸方向の加速度成分として検出される。逆方向の加速度が印加された場合は、上記の応力状態が逆になり、逆向きの加速度成分が検出される。   At this time, as shown in FIG. 16A, the power supply voltage (Vdd) is connected between the first Z-axis resistance element Rz1 and the second Z-axis resistance element Rz2, and the third Z-axis resistance element The voltage V1 between the first Z-axis resistance element Rz1 and the third Z-axis resistance element Rz3 in the bridge circuit in which the ground (Vss) is connected between the Rz3 and the fourth Z-axis resistance element Rz4. The voltage V2 between the second Z-axis resistance element Rz2 and the fourth Z-axis resistance element Rz4 changes according to the resistance value changed by the stress, and the voltage difference is detected as an acceleration component in the Z-axis direction. Is done. When an acceleration in the reverse direction is applied, the above stress state is reversed and an acceleration component in the reverse direction is detected.

X軸方向の加速度が印加された場合は、図17に示すように、重錘部3はX軸方向の加速度により回動し、外枠部2側に配置された第1のX軸抵抗素子Rx1および重錘部3側に第3のX軸抵抗素子Rx3には引張応力が、重錘部3側に配置された第2のX軸抵抗素子Rx2および外枠部2側に配置された第4のX軸抵抗素子Rx4には圧縮応力が作用し、ぞれぞれの応力状態に応じて各X軸抵抗素子Rxの抵抗値が変化する。   When the acceleration in the X-axis direction is applied, as shown in FIG. 17, the weight portion 3 is rotated by the acceleration in the X-axis direction, and the first X-axis resistance element arranged on the outer frame portion 2 side. Tensile stress is applied to the third X-axis resistance element Rx3 on the Rx1 and weight part 3 side, and the second X-axis resistance element Rx2 and the outer frame part 2 side on the weight part 3 side. Compressive stress acts on the four X-axis resistance elements Rx4, and the resistance value of each X-axis resistance element Rx changes in accordance with each stress state.

このとき、図16(b)に示すように、第1のX軸抵抗素子Rx1と第2のX軸抵抗素子Rx2との間に電源電圧(Vdd)が接続され、第4のX軸抵抗素子Rx4と第3のX軸抵抗素子Rx3との間にアース(Vss)が接続されたブリッジ回路の、第1のX軸抵抗素子Rx1と第4のX軸抵抗素子Rx4との間の電圧V1と、第2のX軸抵抗素子Rx2と第3のX軸抵抗素子Rx3との間のV2とが応力により変化した抵抗値に応じて変化し、その電圧差がX軸方向の加速度成分として検出される。逆方向の加速度が印加された場合は、上記の応力状態が逆になり、逆向きの加速度成分が検出される。   At this time, as shown in FIG. 16B, the power supply voltage (Vdd) is connected between the first X-axis resistance element Rx1 and the second X-axis resistance element Rx2, and the fourth X-axis resistance element The voltage V1 between the first X-axis resistance element Rx1 and the fourth X-axis resistance element Rx4 in the bridge circuit in which the ground (Vss) is connected between the Rx4 and the third X-axis resistance element Rx3, V2 between the second X-axis resistance element Rx2 and the third X-axis resistance element Rx3 changes according to the resistance value changed by the stress, and the voltage difference is detected as an acceleration component in the X-axis direction. The When an acceleration in the reverse direction is applied, the above stress state is reversed and an acceleration component in the reverse direction is detected.

Y軸方向の加速度が印加されたときも、X軸方向の場合と同様である。
このX軸方向に加速度が印加された場合には、重錘部3の回動に伴ってY軸可撓部7c、7dが捻られ、そのY軸可撓部7c、7dに中心線から隔置距離B離して配置されている各Z軸抵抗素子Rzには捻り応力が作用し、ブリッジ回路の回路構成の相違、つまり第3および第4のZ軸抵抗素子Rz3、Rz4と、第3および第4のY軸抵抗素子Ry3、Ry4の配置の相違に基づいて他軸感度が発生する。
When acceleration in the Y-axis direction is applied, it is the same as in the X-axis direction.
When acceleration is applied in the X-axis direction, the Y-axis flexible parts 7c and 7d are twisted with the rotation of the weight part 3, and the Y-axis flexible parts 7c and 7d are separated from the center line. A torsional stress acts on each Z-axis resistance element Rz arranged at a distance B, and the difference in the circuit configuration of the bridge circuit, that is, the third and fourth Z-axis resistance elements Rz3 and Rz4, Other-axis sensitivity is generated based on the difference in arrangement of the fourth Y-axis resistance elements Ry3 and Ry4.

このときの他軸感度の発生の様子を知るために、発明者は、図12に示す半導体加速度センサ1をモデル化して有限要素法を用いたシミュレーション計算を行った。図18にそのシミュレーション結果に示す。
図18は、X軸方向に1Gの加速度を印加した場合のZ軸方向成分のシミュレーション計算結果である。
In order to know how the other-axis sensitivity is generated at this time, the inventor performed a simulation calculation using the finite element method by modeling the semiconductor acceleration sensor 1 shown in FIG. FIG. 18 shows the simulation result.
FIG. 18 is a simulation calculation result of the Z-axis direction component when 1 G acceleration is applied in the X-axis direction.

図18において、横軸は図14に示す隔置距離B、縦軸はZ軸方向成分とX軸方向成分との比(Z/X)をパーセントで示したものである。
計算に用いた半導体加速度センサ1のモデルの主要諸元は、隔置距離Bは2、6、12μmの3水準、可撓部7の長さ370μm、幅86μm、厚さ6.5μm、重錘部3の厚さ340μm、重さ2.4mg、抵抗素子9の長さ45μm、幅3μm、付け根距離C=10μmである。
In FIG. 18, the horizontal axis indicates the separation distance B shown in FIG. 14, and the vertical axis indicates the ratio (Z / X) between the Z-axis direction component and the X-axis direction component in percent.
The main specifications of the model of the semiconductor acceleration sensor 1 used for the calculation are the three levels of the separation distance B of 2, 6, and 12 μm, the length of the flexible portion 7 of 370 μm, the width of 86 μm, the thickness of 6.5 μm, and the weight The thickness of the portion 3 is 340 μm, the weight is 2.4 mg, the length of the resistance element 9 is 45 μm, the width is 3 μm, and the root distance C is 10 μm.

図18(a)に示すように、隔置距離Bが大きくなるほど他軸感度が高くなり、例えば抵抗素子9間の間隔を4μm(隔置距離B=2μm)、つまりY軸抵抗素子RyとZ軸抵抗素子Rzとの対向する辺の間の間隔を1μmにしたとしても、0.5%程度の他軸感度が発生することが判る。
図18(b)は、上記と同じ半導体加速度センサ1の重錘部3の形成工程において、重錘部3の形成位置がレジストマスクの位置ずれによってX軸方向(図12において上方)に15μmずれたと仮定した場合のシミュレーション結果である。
As shown in FIG. 18A, the other axis sensitivity increases as the separation distance B increases. For example, the interval between the resistance elements 9 is 4 μm (separation distance B = 2 μm), that is, the Y-axis resistance elements Ry and Z It can be seen that even if the distance between the sides facing the axial resistance element Rz is 1 μm, the other-axis sensitivity of about 0.5% occurs.
FIG. 18B shows the same process for forming the weight 3 of the semiconductor acceleration sensor 1 as described above, and the position of the weight 3 is shifted by 15 μm in the X-axis direction (upward in FIG. 12) due to the displacement of the resist mask. It is a simulation result when it is assumed that.

この場合も、隔置距離Bが大きくなるほど他軸感度が高くなり、隔置距離Bを2μmにしたとしても、3%より大きい他軸感度が発生することが判る。
このことは、Z軸抵抗素子Rzを、X軸抵抗素子RxとともにX軸可撓部7a、7bに形成した場合も同様である。
つまり、従来の半導体加速度センサのように、X軸可撓部に、第1ないし第4のX軸抵抗素子と、第1ないし第4のZ軸抵抗素子とをそれぞれ中心線の両側に1列に並べて配置すると、製造上の加工バラツキにより隔置距離Bや重錘部の形成位置にずれが生じた場合には、高い他軸感度が発生しやすくなり、X軸方向成分と同時に本来出力されない他軸感度によるZ軸方向成分が出力され、加速度の検出精度が低下するという問題がある。
Also in this case, it can be seen that the other-axis sensitivity increases as the separation distance B increases, and even if the separation distance B is set to 2 μm, the other-axis sensitivity greater than 3% is generated.
This is the same when the Z-axis resistance element Rz is formed in the X-axis flexible portions 7a and 7b together with the X-axis resistance element Rx.
That is, like the conventional semiconductor acceleration sensor, the first to fourth X-axis resistance elements and the first to fourth Z-axis resistance elements are arranged in one row on both sides of the center line in the X-axis flexible portion. If the separation distance B and the position where the weight part is formed are displaced due to manufacturing variations in manufacturing, high other-axis sensitivity is likely to occur and is not output simultaneously with the X-axis direction component. There is a problem that the Z-axis direction component due to the sensitivity of the other axis is output, and the detection accuracy of the acceleration is lowered.

本発明は、上記の問題点を解決するためになされたもので、半導体加速度センサに製造上の加工バラツキが生じたとしても他軸感度を抑制して加速度の検出精度を向上させる手段を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides means for suppressing acceleration in other axes and improving acceleration detection accuracy even when manufacturing variations occur in a semiconductor acceleration sensor. For the purpose.

本発明は、上記課題を解決するために、外枠部と、該外枠部の中心部に配置された重錘部と、該重錘部の中心である錘中心で、互いに直交するX軸およびY軸と、X軸方向の加速度成分を検出する第1ないし第4のX軸抵抗素子と、Y軸方向の加速度成分を検出する第1ないし第4のY軸抵抗素子と、前記X軸およびY軸にそれぞれ直交するZ軸方向の加速度成分を検出する第1ないし第4のZ軸抵抗素子と、前記X軸およびY軸を幅方向の中心線として、前記外枠部と重錘部とを接続する一対のX軸可撓部および一対のY軸可撓部とを備え、前記X軸可撓部の、一方の前記外枠部側に第1のX軸抵抗素子を、前記重錘部側に第2のX軸抵抗素子を、他方の前記重錘部側に第3のX軸抵抗素子を、前記外枠部側に第4のX軸抵抗素子を配置し、前記Y軸可撓部の、一方の前記外枠部側に第1のY軸抵抗素子を、前記重錘部側に第2のY軸抵抗素子を、他方の前記重錘部側に第3のY軸抵抗素子を、前記外枠部側に第4のY軸抵抗素子を配置した半導体加速度センサであって、前記X軸可撓部およびY軸可撓部のいずれか一対の可撓部に配置された第1ないし第4の抵抗素子と、前記第1ないし第4のZ軸抵抗素子とを、それぞれ中心線を挟んで幅方向に対向配置し、前記第1および第2のZ軸抵抗素子と、前記第3および第4のZ軸抵抗素子とを、前記錘中心を対称点として、点対称に配置したことを特徴とする。   In order to solve the above-described problems, the present invention provides an outer frame portion, a weight portion disposed at the center portion of the outer frame portion, and a weight center that is the center of the weight portion, and the X axes orthogonal to each other. The first to fourth X-axis resistance elements for detecting the acceleration component in the X-axis direction, the first to fourth Y-axis resistance elements for detecting the acceleration component in the Y-axis direction, and the X-axis. First to fourth Z-axis resistance elements that detect acceleration components in the Z-axis direction orthogonal to the Y-axis and the outer frame portion and the weight portion with the X-axis and the Y-axis as the center line in the width direction. A pair of X-axis flexible portions and a pair of Y-axis flexible portions, and the first X-axis resistance element is disposed on one side of the outer frame portion of the X-axis flexible portion. A second X-axis resistance element is disposed on the weight side, a third X-axis resistance element is disposed on the other weight side, and a fourth X-axis resistance element is disposed on the outer frame side. The Y-axis flexible portion has a first Y-axis resistance element on one outer frame side, a second Y-axis resistance element on the weight side, and a third on the other weight side. The Y-axis resistive element is a semiconductor acceleration sensor in which a fourth Y-axis resistive element is arranged on the outer frame side, and is a pair of flexible parts of the X-axis flexible part and the Y-axis flexible part 1st to 4th resistance elements and 1st to 4th Z-axis resistance elements arranged in the width direction across a center line, respectively, and the first and second Z axes The resistor element and the third and fourth Z-axis resistor elements are arranged symmetrically with respect to the center of the weight as a symmetric point.

これにより、本発明は、半導体加速度センサに製造上の加工バラツキが生じたとしても、加工バラツキを吸収して隔置距離Bに関わらず他軸感度を一定に保つことができると共に他軸感度を抑制することができ、半導体加速度センサの加速度の検出精度を向上させることができるという効果が得られる。   As a result, the present invention can absorb the machining variation and maintain the other-axis sensitivity constant regardless of the separation distance B even if the semiconductor acceleration sensor has a machining variation in manufacturing. This can be suppressed, and the effect that the acceleration detection accuracy of the semiconductor acceleration sensor can be improved is obtained.

以下に、図面を参照して本発明による半導体加速度センサの実施例について説明する。   Embodiments of a semiconductor acceleration sensor according to the present invention will be described below with reference to the drawings.

図1は実施例1の半導体加速度センサの上面を示す説明図である。
なお、上記従来技術と同様の部分は、同一の符号を付してその説明を省略する。
図1に示す本実施例の各抵抗素子9の配置は、X軸可撓部7a、7bには、図10に示したと同様に、各X軸抵抗素子Rxは幅方向の中心線(X軸5)上に1列に並べて配置される。
FIG. 1 is an explanatory view showing the upper surface of the semiconductor acceleration sensor of the first embodiment.
In addition, the same part as the said prior art attaches | subjects the same code | symbol, and abbreviate | omits the description.
In the arrangement of each resistance element 9 of this embodiment shown in FIG. 1, each X-axis resistance element Rx is placed in the X-axis flexible portions 7a and 7b as shown in FIG. 5) Arranged in a row on top.

Y軸可撓部7c、7dには、その一方のY軸可撓部7cの外枠部2側に第1のY軸抵抗素子Ry1と第1のZ軸抵抗素子Rz1が、重錘部3側に第2のY軸抵抗素子Ry2と第2のZ軸抵抗素子Rz2が、幅方向の中心線(Y軸6)を挟んで中心線から隔置距離B離して対向配置される。
他方のY軸可撓部7dに配置される第3および第4のY軸抵抗素子Ry3、Ry4並びに第3および第4のZ軸抵抗素子Rz3、Rz4と、Y軸可撓部7cに配置した第1および第2のY軸抵抗素子Ry1、Ry2並びに第1および第2のZ軸抵抗素子Rz1、Rz2とは、重錘部3の錘中心Woを対称点として点対象に配置される。
The Y-axis flexible parts 7c and 7d include a first Y-axis resistance element Ry1 and a first Z-axis resistance element Rz1 on the outer frame part 2 side of one Y-axis flexible part 7c. On the side, the second Y-axis resistance element Ry2 and the second Z-axis resistance element Rz2 are disposed to face each other with a separation distance B from the center line across the center line (Y axis 6) in the width direction.
The third and fourth Y-axis resistance elements Ry3 and Ry4 and the third and fourth Z-axis resistance elements Rz3 and Rz4 arranged in the other Y-axis flexible part 7d and the Y-axis flexible part 7c The first and second Y-axis resistance elements Ry1 and Ry2 and the first and second Z-axis resistance elements Rz1 and Rz2 are arranged as point objects with the weight center Wo of the weight portion 3 as a symmetry point.

つまり、Y軸可撓部7dの重錘部3側には、中心線の図1において上側(X軸可撓部7a側)を第3のZ軸抵抗素子Rz3とし、下側(X軸可撓部7b側)を第3のY軸抵抗素子Ry3として中心線から隔置距離B離して対向配置され、外枠部2側には、中心線の上側を第4のZ軸抵抗素子Rz4とし、下側を第4のY軸抵抗素子Ry4として中心線から隔置距離B離して対向配置されている。   In other words, on the weight 3 side of the Y-axis flexible portion 7d, the upper side (X-axis flexible portion 7a side) in FIG. 1 of the center line is the third Z-axis resistance element Rz3, and the lower side (X-axis possible) The flexible part 7b side) is arranged as a third Y-axis resistance element Ry3 and is spaced apart from the center line by a separation distance B, and on the outer frame part 2 side, the upper side of the center line is a fourth Z-axis resistance element Rz4. The lower side is a fourth Y-axis resistance element Ry4, and is opposed to the center line at a separation distance B.

抵抗素子9を上記のように配置した本実施例の半導体加速度センサ1における他軸感度のシミュレーション計算の結果を図2に示す。
本計算においては、第1ないし第4のZ軸抵抗素子Rzと、第1ないし第4のY軸抵抗素子Ryの配置を本実施例の配置とした以外は、上記図18と同じ計算条件、主要諸元である。
FIG. 2 shows the result of the simulation calculation of the other-axis sensitivity in the semiconductor acceleration sensor 1 of this example in which the resistance element 9 is arranged as described above.
In this calculation, the same calculation conditions as those in FIG. 18 except that the arrangement of the first to fourth Z-axis resistance elements Rz and the first to fourth Y-axis resistance elements Ry are the arrangement of this embodiment. The main specifications.

また、図2における縦軸、横軸は図18の場合と同様である。
図2(a)に示すように、本実施例の抵抗素子9の配置においては、重錘部3の位置ずれがないときは、隔置距離Bが変化しても、その他軸感度は、ほぼ「0」で一定であり、図2(b)に示すように、重錘部3の形成位置がX軸方向に15μmずれたとしても、隔置距離Bに関わらず、他軸感度は3%以下で一定になることが判る。
Also, the vertical and horizontal axes in FIG. 2 are the same as in FIG.
As shown in FIG. 2A, in the arrangement of the resistance element 9 of the present embodiment, when there is no displacement of the weight portion 3, even if the separation distance B is changed, the other axis sensitivity is almost equal. Even if the formation position of the weight portion 3 is deviated by 15 μm in the X-axis direction as shown in FIG. 2B, the sensitivity of the other axis is 3% regardless of the separation distance B. It turns out that it becomes constant below.

上記の半導体加速度センサ1の製造方法について、図3にPで示す工程に従って、以下に説明する。
P1、シリコンからなる半導体ウェハ11を準備する。
P2、半導体ウェハ11の上面11aに、フォトリソグラフィにより抵抗素子9の形成領域に開口部を有するレジストマスクを形成し、所定の不純物を注入して半導体ウェハ11の表層に抵抗素子9を形成する。
A method for manufacturing the semiconductor acceleration sensor 1 will be described below according to a process indicated by P in FIG.
A semiconductor wafer 11 made of P1 and silicon is prepared.
P2. On the upper surface 11a of the semiconductor wafer 11, a resist mask having an opening in the formation region of the resistance element 9 is formed by photolithography, and a predetermined impurity is implanted to form the resistance element 9 on the surface layer of the semiconductor wafer 11.

そして、前記のレジストマスクを除去し、配置が変更された各抵抗素子9を組合せて図14に示すブリッジ回路を形成するための図示しない配線パターンを形成する。
P3、フォトリソグラフィにより半導体ウェハ11の上面11aの外枠部2、可撓部7、重錘部3の形成領域を覆うレジストマスクを形成し、異方性エッチング等により半導体ウェハ11をエッチングして、可撓部7の厚さ以上に掘り込み、外枠部2、可撓部7、重錘部3の上面パターン12を形成する。
Then, the resist mask is removed, and the resistance elements 9 whose arrangement is changed are combined to form a wiring pattern (not shown) for forming the bridge circuit shown in FIG.
P3, a resist mask is formed by photolithography to cover the formation region of the outer frame portion 2, the flexible portion 7, and the weight portion 3 of the upper surface 11a of the semiconductor wafer 11, and the semiconductor wafer 11 is etched by anisotropic etching or the like The upper surface pattern 12 of the outer frame part 2, the flexible part 7, and the weight part 3 is formed by digging more than the thickness of the flexible part 7.

P4、工程P3で形成したレジストマスクを除去し、半導体ウェハ11を反転させ、半導体ウェハ11の裏面11bにフォトリソグラフィにより、外枠部2の内側の領域を露出させたレジストマスクを形成し、異方性エッチング等により半導体ウェハ11の裏面11bをエッチングして重錘部3の厚さを所定の厚さに形成する。
次いで、フォトリソグラフィにより重錘部3の形成領域を覆うレジストマスクを形成し、外枠部2の内側と重錘部3との間を更にエッチングして、裏面パターンを上面パターン12に貫通させ、可撓部7を所定の厚さにエッチングして可撓部7を形成する。
The resist mask formed in P4 and Step P3 is removed, the semiconductor wafer 11 is inverted, and a resist mask exposing the inner region of the outer frame portion 2 is formed on the back surface 11b of the semiconductor wafer 11 by photolithography. The back surface 11b of the semiconductor wafer 11 is etched by isotropic etching or the like to form the weight portion 3 to a predetermined thickness.
Next, a resist mask that covers the formation region of the weight portion 3 is formed by photolithography, and further etching is performed between the inside of the outer frame portion 2 and the weight portion 3 so that the back surface pattern penetrates the upper surface pattern 12. The flexible part 7 is formed by etching the flexible part 7 to a predetermined thickness.

そして、レジストマスクの除去後に、図示しないダイシングブレードにより、半導体ウェハ11を個片に分割して外枠部2の外形形状を形成し、本実施例の半導体加速度センサ1を製造する。
上記のように、本実施例のZ軸抵抗素子Rzの配置を用いれば、Y軸可撓部7c、7dに捻れが生じても、ブリッジ回路における各Z軸抵抗素子Rzの抵抗のバランスが保たれ、隔置距離Bのバラツキや、重錘部3の形成工程における上面パターン12と裏面パターンとの位置ずれ等による重錘部3の形成位置に位置ずれが生じた場合においても、隔置距離Bの大小に関わらず、他軸感度を3%以下に抑制することが可能になり、加速度の検出精度を向上させた半導体加速度センサ1を得ることができる。
Then, after removing the resist mask, the semiconductor wafer 11 is divided into pieces by a dicing blade (not shown) to form the outer shape of the outer frame portion 2, and the semiconductor acceleration sensor 1 of this embodiment is manufactured.
As described above, if the arrangement of the Z-axis resistance element Rz of the present embodiment is used, the balance of the resistance of each Z-axis resistance element Rz in the bridge circuit is maintained even if the Y-axis flexible portions 7c and 7d are twisted. Even in the case where the position of the weight 3 is displaced due to variations in the distance B, the displacement of the upper surface pattern 12 and the back surface pattern in the process of forming the weight 3, the separation distance Regardless of the size of B, the sensitivity of other axes can be suppressed to 3% or less, and the semiconductor acceleration sensor 1 with improved acceleration detection accuracy can be obtained.

また、抵抗素子9の隔置距離Bに依存せずに、他軸感度を一定に保つ特性が得られるので、他の特性要因、例えば感度や温度特性等を考慮して抵抗素子9の形成位置を決定することが可能になる。
更に、本実施例の半導体加速度センサ1の製造工程においては、特別な工程設備を導入することなく、各抵抗素子9を接続してブリッジ回路を構成する配線パターンのみを変更すれば、工程設備をそのまま用いて製造効率を悪化させることなく他軸感度を抑制した半導体加速度センサ1を製造することができる。
In addition, since the characteristic of maintaining the other-axis sensitivity constant can be obtained without depending on the separation distance B of the resistance element 9, the position where the resistance element 9 is formed in consideration of other characteristic factors such as sensitivity and temperature characteristics. Can be determined.
Furthermore, in the manufacturing process of the semiconductor acceleration sensor 1 of the present embodiment, if only the wiring pattern constituting the bridge circuit is changed by connecting each resistance element 9 without introducing special process equipment, the process equipment can be changed. It is possible to manufacture the semiconductor acceleration sensor 1 which is used as it is and suppresses the other-axis sensitivity without deteriorating the manufacturing efficiency.

なお、本実施例では、Z軸抵抗素子Rzを一対のY軸可撓部7c、7dに形成する場合を例に説明したが、Z軸抵抗素子Rzを一対のX軸可撓部7a、7bに形成する場合も同様である。
以上説明したように、本実施例では、X軸可撓部およびY軸可撓部のいずれか一対の可撓部、例えばY軸可撓部に配置された第1ないし第4のY軸抵抗素子Ryと、第1ないし第4のZ軸抵抗素子Rzとを、それぞれ中心線を挟んで幅方向に対向配置し、第1および第2のZ軸抵抗素子Rzと、第3および第4のZ軸抵抗素子Rzとを錘中心Woを対称点として点対称に配置したことによって、半導体加速度センサに製造上の加工バラツキが生じたとしても、加工バラツキを吸収して隔置距離Bに関わらず他軸感度を一定に保つことができると共に他軸感度を抑制することができ、半導体加速度センサの加速度の検出精度を向上させることができる。
In the present embodiment, the case where the Z-axis resistance element Rz is formed in the pair of Y-axis flexible portions 7c and 7d has been described as an example. However, the Z-axis resistance element Rz is configured as the pair of X-axis flexible portions 7a and 7b. The same applies to the case of forming the film.
As described above, in this embodiment, the first to fourth Y-axis resistors arranged in any one of the X-axis flexible part and the Y-axis flexible part, for example, the Y-axis flexible part. The element Ry and the first to fourth Z-axis resistance elements Rz are arranged to face each other across the center line in the width direction, and the first and second Z-axis resistance elements Rz, the third and fourth By arranging the Z-axis resistance element Rz symmetrically with respect to the weight center Wo as a symmetry point, even if manufacturing variations occur in the semiconductor acceleration sensor, the variations are absorbed regardless of the separation distance B. The other-axis sensitivity can be kept constant and the other-axis sensitivity can be suppressed, and the acceleration detection accuracy of the semiconductor acceleration sensor can be improved.

図4は実施例2の半導体加速度センサの上面を示す説明図である。
なお、上記実施例1と同様の部分は、同一の符号を付してその説明を省略する。
図4に示す本実施例の各抵抗素子9の配置は、X軸可撓部7a、7bには、上記実施例1と同様に、各X軸抵抗素子Rxは幅方向の中心線(X軸5)上に1列に並べて配置される。
FIG. 4 is an explanatory view showing the upper surface of the semiconductor acceleration sensor of the second embodiment.
In addition, the same part as the said Example 1 attaches | subjects the same code | symbol, and abbreviate | omits the description.
4 is arranged in the X-axis flexible portions 7a and 7b in the same manner as in the first embodiment, each X-axis resistance element Rx has a center line in the width direction (X-axis). 5) Arranged in a row on top.

Y軸可撓部7c、7dには、その一方のY軸可撓部7cに、第1および第2のY軸抵抗素子Ry1、Ry2と、第1および第2のZ軸抵抗素子Rz1、Rz2とが、それぞれ中心線(Y軸6)を挟んで幅方向に対向させて交互に配置され、他方のY軸可撓部7dに配置される第3および第4のY軸抵抗素子Ry3、Ry4と、第3および第4のZ軸抵抗素子Rz3、Rz4とが、それぞれ中心線を挟んで幅方向に対向させて交互に配置されている。   The Y-axis flexible portions 7c and 7d are connected to one Y-axis flexible portion 7c of the first and second Y-axis resistance elements Ry1 and Ry2 and the first and second Z-axis resistance elements Rz1 and Rz2. Are arranged alternately opposite to each other across the center line (Y-axis 6) in the width direction, and third and fourth Y-axis resistance elements Ry3 and Ry4 arranged in the other Y-axis flexible portion 7d. The third and fourth Z-axis resistance elements Rz3 and Rz4 are alternately arranged to face each other across the center line in the width direction.

つまり、Y軸可撓部7cの外枠部2側には、中心線の図4において上側(X軸可撓部7a側)を第1のY軸抵抗素子Ry1とし、下側(X軸可撓部7b側)を第1のZ軸抵抗素子Rz1として中心線から隔置距離B離して対向配置され、重錘部3側には、中心線の上側を第2のZ軸抵抗素子Rz2とし、下側を第2のY軸抵抗素子Ry2として中心線から隔置距離B離して対向配置されている。   That is, on the outer frame portion 2 side of the Y-axis flexible portion 7c, the upper side (X-axis flexible portion 7a side) in FIG. 4 of the center line is the first Y-axis resistance element Ry1, and the lower side (X-axis possible) The flexible portion 7b side) is disposed as a first Z-axis resistance element Rz1 opposite to the center line at a separation distance B, and on the weight part 3 side, the upper side of the center line is defined as a second Z-axis resistance element Rz2. The lower side is a second Y-axis resistance element Ry2 and is opposed to the center line at a separation distance B.

また、Y軸可撓部7dの重錘部3側には、中心線の上側を第3のZ軸抵抗素子Rz3とし、下側を第3のY軸抵抗素子Ry3として中心線から隔置距離B離して対向配置され、外枠部2側には、中心線の上側を第4のY軸抵抗素子Ry4とし、下側を第4のZ軸抵抗素子Rz4として中心線から隔置距離B離して対向配置されている。
すなわち、本実施例の抵抗素子9の配置は、Y軸可撓部7a、7bにそれぞれY軸抵抗素子RyとZ軸抵抗素子Rzとを交互に配置すると共に、Y軸可撓部7dに配置される第3および第4のY軸抵抗素子Ry3、Ry4並びに第3および第4のZ軸抵抗素子Rz3、Rz4と、Y軸可撓部7cに配置した第1および第2のY軸抵抗素子Ry1、Ry2並びに第1および第2のZ軸抵抗素子Rz1、Rz2とは、中心線であるY軸6に重錘部3の錘中心Woで直交するX軸5を対称線として線対象に配置されている。
Further, on the weight part 3 side of the Y-axis flexible part 7d, the upper side of the center line is the third Z-axis resistance element Rz3, and the lower side is the third Y-axis resistance element Ry3, which is a distance from the center line. B is opposed to each other, and on the outer frame portion 2 side, the upper side of the center line is the fourth Y-axis resistance element Ry4 and the lower side is the fourth Z-axis resistance element Rz4, which is separated from the center line by a separation distance B. Are opposed to each other.
That is, the arrangement of the resistance element 9 of the present embodiment is such that the Y-axis flexible elements Ry and the Z-axis resistance elements Rz are alternately arranged on the Y-axis flexible parts 7a and 7b, respectively, and arranged on the Y-axis flexible part 7d. Third and fourth Y-axis resistance elements Ry3, Ry4, third and fourth Z-axis resistance elements Rz3, Rz4, and first and second Y-axis resistance elements arranged in the Y-axis flexible portion 7c Ry1 and Ry2 and the first and second Z-axis resistance elements Rz1 and Rz2 are arranged on a line object with the X axis 5 orthogonal to the center axis Y axis 6 at the weight center Wo of the weight portion 3 as a symmetry line Has been.

抵抗素子9を上記のように配置した本実施例の半導体加速度センサ1における他軸感度のシミュレーション計算の結果を図5に示す。
本計算においては、第1ないし第4のZ軸抵抗素子Rzと、第1ないし第4のY軸抵抗素子Ryの配置を本実施例の配置とした以外は、上記図18と同じ計算条件、主要諸元である。
FIG. 5 shows the result of the simulation calculation of the other-axis sensitivity in the semiconductor acceleration sensor 1 of the present example in which the resistance element 9 is arranged as described above.
In this calculation, the same calculation conditions as those in FIG. 18 except that the arrangement of the first to fourth Z-axis resistance elements Rz and the first to fourth Y-axis resistance elements Ry are the arrangement of this embodiment. The main specifications.

また、図5における縦軸、横軸は図18の場合と同様である。
図5(a)、(b)に示すように、本実施例の抵抗素子9の配置においても、上記実施例1と同様に、重錘部3の位置ずれがないときは、隔置距離Bが変化しても、その他軸感度は、ほぼ「0」で一定であり、重錘部3の形成位置がX軸方向に15μmずれたとしても、隔置距離Bに関わらず他軸感度は3%以下で一定となる。
Also, the vertical and horizontal axes in FIG. 5 are the same as those in FIG.
As shown in FIGS. 5A and 5B, in the arrangement of the resistance element 9 of the present embodiment, as in the first embodiment, when the weight portion 3 is not displaced, the separation distance B The other-axis sensitivity is approximately “0” even when the change is made, and the other-axis sensitivity is 3 irrespective of the separation distance B even if the formation position of the weight portion 3 is shifted by 15 μm in the X-axis direction. It becomes constant at% or less.

本実施例の製造方法は、上記実施例1の製造工程と同様であるので、その説明を省略する。この場合に工程P2において、本実施例の配置に変更された各抵抗素子9を組合せてブリッジ回路を形成するための配線パターンが形成される。
このように、抵抗素子の配置を、X軸可撓部およびY軸可撓部のいずれか一対の可撓部、例えばY軸可撓部の一方に配置された第1および第2のY軸抵抗素子Ryと、第1および第2のZ軸抵抗素子Rzとを、それぞれ中心線を挟んで幅方向に対向させて交互に配置し、第1および第2のZ軸抵抗素子Rzと、第3および第4のZ軸抵抗素子Rzとを錘中心Woで直交するX軸を対称線として線対称に配置したことによっても、上記実施例1と同様の効果を得ることができる。
Since the manufacturing method of the present embodiment is the same as the manufacturing process of the first embodiment, description thereof is omitted. In this case, in step P2, a wiring pattern for forming a bridge circuit is formed by combining the resistance elements 9 changed to the arrangement of the present embodiment.
In this way, the resistive element is arranged such that the first and second Y axes arranged on one of the pair of flexible parts of the X axis flexible part and the Y axis flexible part, for example, one of the Y axis flexible parts. The resistance element Ry and the first and second Z-axis resistance elements Rz are alternately arranged to face each other in the width direction across the center line, and the first and second Z-axis resistance elements Rz, The same effects as those of the first embodiment can also be obtained by arranging the third and fourth Z-axis resistance elements Rz in line symmetry with the X axis orthogonal to the weight center Wo as the symmetry line.

なお、本実施例においては、それぞれのY軸可撓部7c、7dに交互に配置したY軸抵抗素子RyとZ軸抵抗素子Rzとを錘中心Woで直交するX軸5を対称線として線対称に配置するとして説明したが、図6に示すように、交互に配置したY軸抵抗素子RyとZ軸抵抗素子Rzとを錘中心Woを対称点として点対称に配置するようにしても、上記と同様の効果を得ることができる。   In this embodiment, the Y-axis resistance element Ry and the Z-axis resistance element Rz alternately arranged in the Y-axis flexible portions 7c and 7d are lined with the X axis 5 orthogonal to the weight center Wo as a symmetry line. Although described as being arranged symmetrically, as shown in FIG. 6, alternately arranged Y-axis resistor elements Ry and Z-axis resistor elements Rz may be arranged point-symmetrically with respect to the weight center Wo. The same effect as described above can be obtained.

図7は実施例3の半導体加速度センサの上面を示す説明図である。
なお、上記実施例1と同様の部分は、同一の符号を付してその説明を省略する。
図7に示す本実施例の各抵抗素子9の配置は、X軸可撓部7a、7bには、上記実施例1と同様に、各X軸抵抗素子Rxは幅方向の中心線(X軸5)上に1列に並べて配置される。
FIG. 7 is an explanatory view showing the upper surface of the semiconductor acceleration sensor of the third embodiment.
In addition, the same part as the said Example 1 attaches | subjects the same code | symbol, and abbreviate | omits the description.
In the arrangement of the resistance elements 9 of this embodiment shown in FIG. 7, the X-axis flexible portions 7a and 7b are arranged in the width direction center line (X-axis) as in the first embodiment. 5) Arranged in a row on top.

Y軸可撓部7c、7dには、その一方のY軸可撓部7cの外枠部2側に第1のZ軸抵抗素子Rz1が、重錘部3側に第2のZ軸抵抗素子Rz2が、他方のY軸可撓部7dの重錘部3側に第3のZ軸抵抗素子Rz3が、外枠部2側に第4のZ軸抵抗素子Rz4が配置され、第1ないし第4のZ軸抵抗素子Rzは幅方向の中心線であるY軸6上に1列に並べて配置されている。   The Y-axis flexible parts 7c and 7d include a first Z-axis resistance element Rz1 on the outer frame part 2 side of one Y-axis flexible part 7c and a second Z-axis resistance element on the weight part 3 side. Rz2 is arranged such that the third Z-axis resistance element Rz3 is arranged on the weight part 3 side of the other Y-axis flexible part 7d, and the fourth Z-axis resistance element Rz4 is arranged on the outer frame part 2 side. The four Z-axis resistance elements Rz are arranged in a line on the Y-axis 6 which is the center line in the width direction.

また、Y軸可撓部7c、7dには、中心線上に1列に並べて配置された第1ないし第4のZ軸抵抗素子Rzの図7において上側(X軸可撓部7a側)に第1ないし第4のY軸抵抗素子Ryが、それぞれ幅方向に対向して1列に並べて配置されている。
つまり、本実施例の抵抗素子9の配置は、Y軸可撓部7c、7dの中心線上に第1ないし第4のZ軸抵抗素子Rzを並べて配置し、これに第1ないし第4のY軸抵抗素子Ryをそれぞれ幅方向に対向配置し、Y軸可撓部7dに配置される第3および第4のY軸抵抗素子Ry3、Ry4と、Y軸可撓部7cに配置した第1および第2のY軸抵抗素子Ry1、Ry2とが、Y軸6に重錘部3の錘中心Woで直交するX軸5を対称線として線対象に配置されている。
Further, the Y-axis flexible portions 7c and 7d are arranged on the upper side (X-axis flexible portion 7a side) in FIG. 7 of the first to fourth Z-axis resistance elements Rz arranged in a line on the center line. The first to fourth Y-axis resistance elements Ry are arranged in a row so as to face each other in the width direction.
That is, the arrangement of the resistance element 9 of the present embodiment is such that the first to fourth Z-axis resistance elements Rz are arranged side by side on the center line of the Y-axis flexible portions 7c and 7d, and the first to fourth Y-axis are arranged on this. The axial resistance elements Ry are arranged opposite to each other in the width direction, and the third and fourth Y-axis resistance elements Ry3 and Ry4 arranged in the Y-axis flexible part 7d and the first and the second Y-axis flexible parts 7c arranged in the Y-axis flexible part 7c The second Y-axis resistance elements Ry1 and Ry2 are arranged on the line object with the X axis 5 orthogonal to the Y axis 6 at the weight center Wo of the weight portion 3 as a symmetric line.

Z軸抵抗素子Rzを上記のように中心線上に1列に並べて配置すれば、Y軸可撓部7c、7dに捻れ応力が発生しても第1ないし第4のZ軸抵抗素子Rzに生ずる捻れ応力の応力状態が同じになり、図18に示した他軸感度を参照すれば、その隔置距離Bが「0」のときに相当する他軸感度、つまり重錘部3の位置ずれがないときは他軸感度は、ほぼ「0」で、重錘部3の位置ずれが15μmのときは他軸感度は3%以下で一定になる。   If the Z-axis resistance elements Rz are arranged in a line on the center line as described above, even if a torsional stress is generated in the Y-axis flexible portions 7c and 7d, they are generated in the first to fourth Z-axis resistance elements Rz. If the stress state of the torsional stress is the same and the other-axis sensitivity shown in FIG. 18 is referred to, the other-axis sensitivity corresponding to the distance B being “0”, that is, the displacement of the weight portion 3 is When there is no other axis sensitivity, the sensitivity of the other axis is almost “0”.

本実施例の製造方法は、上記実施例1の製造工程と同様であるので、その説明を省略する。この場合に工程P2において、本実施例の配置に変更された各抵抗素子9を組合せてブリッジ回路を形成するための配線パターンが形成される。
このように、抵抗素子の配置を、X軸可撓部およびY軸可撓部のいずれか一対の可撓部、例えばY軸可撓部の中心線上に第1ないし第4のZ軸抵抗素子Rzを1列に並べて配置し、第1および第2のY軸抵抗素子Ryと、第3および第4のY軸抵抗素子Ryとを錘中心Woで直交するX軸を対称線として線対称に配置したことによっても、上記実施例1と同様の効果を得ることができる。
Since the manufacturing method of the present embodiment is the same as the manufacturing process of the first embodiment, description thereof is omitted. In this case, in step P2, a wiring pattern for forming a bridge circuit is formed by combining the resistance elements 9 changed to the arrangement of the present embodiment.
Thus, the first to fourth Z-axis resistance elements are arranged on the center line of any one of the X-axis flexible part and the Y-axis flexible part, for example, the Y-axis flexible part. Rz is arranged in a line, and the first and second Y-axis resistance elements Ry and the third and fourth Y-axis resistance elements Ry are symmetrical with respect to the X axis perpendicular to the weight center Wo. The same effects as those of the first embodiment can be obtained also by the arrangement.

なお、本実施例においては、それぞれのY軸可撓部7c、7dに配置したY軸抵抗素子Ryを錘中心Woで直交するX軸5を対称線として線対称に配置するとして説明したが、線対称の配置は前記に限らず、図7とは逆に、つまり各Z軸抵抗素子Rzの下側に1列に並べて配置しても、図8に示すようにZ軸抵抗素子Rzに対して上側、下側に交互に配置しても、図8とは逆に交互に配置してもよい。このように配置しても上記と同様の効果を得ることができる。   In the present embodiment, the Y-axis resistance elements Ry arranged in the respective Y-axis flexible portions 7c and 7d have been described as being arranged symmetrically with the X axis 5 orthogonal to the weight center Wo as the symmetry line. The line-symmetrical arrangement is not limited to the above, and contrary to FIG. 7, that is, even if arranged in a line below each Z-axis resistance element Rz, as shown in FIG. Alternatively, they may be alternately arranged on the upper side and the lower side, or may be alternately arranged on the contrary to FIG. Even if it arrange | positions in this way, the effect similar to the above can be acquired.

また、図9に示すように、Y軸抵抗素子Ryを、錘中心Woを対称点として点対称に配置するようにしても、図9とは逆の点対象に配置しても、上記と同様の効果を得ることができる。
上記各実施例においては、各軸の抵抗素子は、可撓部と外枠部との境界、または可撓部と重錘部との境界から0〜20μm程度の付け根距離Cを離して形成するとして説明したが、その一方または両方を外枠部および/もしくは重錘部上に延在させるようにしてもよい。
Also, as shown in FIG. 9, the Y-axis resistance element Ry may be arranged point-symmetrically with the weight center Wo as the symmetric point, or may be arranged on a point object opposite to that shown in FIG. The effect of can be obtained.
In each of the above embodiments, the resistance element of each axis is formed with a root distance C of about 0 to 20 μm away from the boundary between the flexible part and the outer frame part or the boundary between the flexible part and the weight part. However, one or both of them may be extended on the outer frame portion and / or the weight portion.

図10は実施例4の半導体加速度センサの上面図を示す説明図である。
なお、上記実施例1と同様の部分は、同一の符号を付してその説明を省略する。
図10に示す本実施例の各抵抗素子9の配置は、X軸可撓部7a、7bには、上記実施例1と同様に、各X軸抵抗素子Rxは幅方向の中心線(X軸5)上に1列に並べて配置される。
FIG. 10 is an explanatory view showing a top view of the semiconductor acceleration sensor of the fourth embodiment.
In addition, the same part as the said Example 1 attaches | subjects the same code | symbol, and abbreviate | omits the description.
In the arrangement of each resistance element 9 of this embodiment shown in FIG. 10, each X-axis resistance element Rx is placed in the X-axis flexible portions 7a and 7b in the same manner as in the first embodiment. 5) Arranged in a row on top.

Y軸可撓部7c、7dには、その一方のY軸可撓部7cの外枠部2側から重錘部3側に向かって第1のY軸抵抗素子Ry1、第1のZ軸抵抗素子Rz1、第2のZ軸抵抗素子Rz2、第2のY軸抵抗素子Ry2の順に配置され、他方のY軸可撓部7dの重錘部3側から外枠部2側に向かって第3のY軸抵抗素子Ry3、第3のZ軸抵抗素子、第4のZ軸抵抗素子、第4のY軸抵抗素子の順に配列され、第1ないし第4のY軸抵抗素子Ry及び第1ないし第4のZ軸抵抗素子Rzは全て幅方向の中心線であるY軸6上に一直線状に並べて配列されている。
つまり、本実施例の抵抗素子9の配置は、Y軸可撓部7c、7dの中心線上に第1ないし第4のY軸抵抗素子Ry及び第1ないし第4のZ軸抵抗素子Rzを1列に並べて配置されており、第1のY軸抵抗素子Ry1および第1のZ軸抵抗素子Rz1、第2のY軸抵抗素子Ry2および第2のZ軸抵抗素子Rz2、第3のY軸抵抗素子Ry3および第3のZ軸抵抗素子Rz3、第4のY軸抵抗素子Ry4および第4のZ軸抵抗素子Rz4がそれぞれ中心線上で対向するように形成されている。さらに、本実施例の抵抗素子9は、Y軸可撓部7cに配置されるそれぞれの抵抗素子が第1のY軸抵抗素子Ry1、第1のZ軸抵抗素子Rz1、第2のZ軸抵抗素子Rz2、第2のY軸抵抗素子Ry2の順で配置され、Y軸可撓部7dに配置されるそれぞれの抵抗素子が第3のY軸抵抗素子Ry3、第3のZ軸抵抗素子Rz3、第4のZ軸抵抗素子Rz4、第4のY軸抵抗素子Ry4の順で配置されるため、Y軸6に重錘部3の錘中心Woで直交するX軸5を対称線として線対象、かつ錘中心Woについて点対象に配置されている。
The Y-axis flexible portions 7c and 7d include a first Y-axis resistance element Ry1 and a first Z-axis resistance from the outer frame portion 2 side to the weight portion 3 side of one Y-axis flexible portion 7c. The element Rz1, the second Z-axis resistance element Rz2, and the second Y-axis resistance element Ry2 are arranged in this order, and the third Y-axis flexible part 7d is moved from the weight part 3 side toward the outer frame part 2 side. Y-axis resistance element Ry3, third Z-axis resistance element, fourth Z-axis resistance element, and fourth Y-axis resistance element are arranged in this order, and first to fourth Y-axis resistance elements Ry and first to The fourth Z-axis resistance elements Rz are all arranged in a straight line on the Y axis 6 that is the center line in the width direction.
That is, the arrangement of the resistance element 9 of the present embodiment is such that the first to fourth Y-axis resistance elements Ry and the first to fourth Z-axis resistance elements Rz are 1 on the center line of the Y-axis flexible portions 7c and 7d. The first Y-axis resistance element Ry1, the first Z-axis resistance element Rz1, the second Y-axis resistance element Ry2, the second Z-axis resistance element Rz2, and the third Y-axis resistance are arranged in a row. The element Ry3, the third Z-axis resistance element Rz3, the fourth Y-axis resistance element Ry4, and the fourth Z-axis resistance element Rz4 are formed so as to face each other on the center line. Further, in the resistance element 9 of the present embodiment, the respective resistance elements arranged in the Y-axis flexible portion 7c are the first Y-axis resistance element Ry1, the first Z-axis resistance element Rz1, and the second Z-axis resistance. The element Rz2 and the second Y-axis resistance element Ry2 are arranged in this order, and the respective resistance elements arranged in the Y-axis flexible part 7d are the third Y-axis resistance element Ry3, the third Z-axis resistance element Rz3, Since the fourth Z-axis resistance element Rz4 and the fourth Y-axis resistance element Ry4 are arranged in this order, the X-axis 5 orthogonal to the Y-axis 6 at the weight center Wo of the weight part 3 is a line object, The weight center Wo is arranged as a point object.

このようにY軸抵抗素子Ry、Z軸抵抗素子Rzを全て可撓部の幅の中心線(X軸5)上に配置することにより、例えばX軸方向へ加速度が印加された場合においてもY軸抵抗素子Ry,Z軸抵抗素子Rzは可撓部の中心線から離れている場合に比べて受ける応力が少なくなるため、他軸感度を向上させることができる。 Thus, by arranging all of the Y-axis resistance element Ry and the Z-axis resistance element Rz on the center line (X-axis 5) of the width of the flexible portion, for example, even when acceleration is applied in the X-axis direction, Y Since the axial resistance element Ry and the Z-axis resistance element Rz receive less stress than when they are separated from the center line of the flexible portion, it is possible to improve the sensitivity of other axes.

図11は、図10のY軸可撓部7cの拡大図であって、第1のY軸抵抗素子Ry1、第2のY軸抵抗素子Ry2、第1のZ軸抵抗素子Rz1、第2のZ軸抵抗素子Rz2の具体的な配置例を示したものである。 FIG. 11 is an enlarged view of the Y-axis flexible portion 7c of FIG. 10, and includes a first Y-axis resistance element Ry1, a second Y-axis resistance element Ry2, a first Z-axis resistance element Rz1, and a second A specific arrangement example of the Z-axis resistance element Rz2 is shown.

Y軸可撓部7cに配置される第1のY軸抵抗素子Ry1、第2のY軸抵抗素子Ry2、第1のZ軸抵抗素子Rz1、第2のZ軸抵抗素子Rz2はそれぞれY軸可撓部7cの重錘部から外枠部に向かう方向の長さの半分の点であって、重錘部から外枠部に向かう方向に垂直な線について線対象に配置されている。
また、可撓部の端部とY軸抵抗素子Ryとの距離aは0〜50μm、可撓部の端部とZ軸抵抗素子Rzとの距離bは40〜180μmに設定される。
The first Y-axis resistance element Ry1, the second Y-axis resistance element Ry2, the first Z-axis resistance element Rz1, and the second Z-axis resistance element Rz2 arranged in the Y-axis flexible portion 7c are each Y-axis possible. A point that is a half of the length in the direction from the weight part to the outer frame part of the flexure part 7c and is perpendicular to the direction from the weight part to the outer frame part is arranged as a line object.
The distance a between the end of the flexible part and the Y-axis resistance element Ry is set to 0 to 50 μm, and the distance b between the end of the flexible part and the Z-axis resistance element Rz is set to 40 to 180 μm.

可撓部は端部に近いほど応力が大きくなり、また、図11における可撓部端部とY軸抵抗素子Ry及びZ軸抵抗素子Rzとの距離がa=bである場合に加速度を検知したときはZ軸の出力電流がY軸の出力電流よりも大きくなる。このように各出力電流がばらつく場合にはそれらを揃えるためにアンプ等を配置して調節することが必要な場合が出てくる。本実施例では、上述のように配置することによって、Z軸方向の応力を抑え、Z軸の出力電流とY軸の出力電流の差を縮めることができる。これによって、前述の場合のような各軸の出力電流を調整するためのアンプ等を配置、調整することが不要となり、より容易に各軸の出力電流を調整することができる。 The closer to the end of the flexible part, the greater the stress, and the acceleration is detected when the distance between the end of the flexible part and the Y-axis resistance element Ry and the Z-axis resistance element Rz in FIG. 11 is a = b. In this case, the Z-axis output current becomes larger than the Y-axis output current. When the output currents vary as described above, it may be necessary to arrange and adjust an amplifier or the like in order to make them uniform. In this embodiment, by arranging as described above, the stress in the Z-axis direction can be suppressed, and the difference between the Z-axis output current and the Y-axis output current can be reduced. As a result, it is not necessary to arrange and adjust an amplifier or the like for adjusting the output current of each axis as described above, and the output current of each axis can be adjusted more easily.

本実施例の製造方法は、上記実施例1の製造工程と同様であるので、その説明を省略する。この場合に工程P2において、本実施例の配置に変更された悪抵抗素子9を組み合わせてブリッジ回路を形成するための配線パターンが形成される。
このように、抵抗素子の配置を、X軸可撓部およびY軸可撓部のいずれか一対の可撓部、例えばY軸可撓部の中心線上に第1ないし第4のX軸抵抗素子RxまたはY軸抵抗素子および第1ないし第4のZ軸抵抗素子Rzを1列に並べて配置し、第1ないし第4のX軸抵抗素子RxまたはY軸抵抗素子RyとZ軸抵抗素子Rzとを対向配置させることによって、各軸の出力調整を容易なものとするとともに他軸感度を向上させることができる。
Since the manufacturing method of the present embodiment is the same as the manufacturing process of the first embodiment, description thereof is omitted. In this case, in step P2, a wiring pattern for forming a bridge circuit is formed by combining the evil resistance elements 9 changed to the arrangement of the present embodiment.
In this way, the resistive elements are arranged in any one of the X-axis flexible part and the Y-axis flexible part, for example, the first to fourth X-axis resistive elements on the center line of the Y-axis flexible part. Rx or Y-axis resistance elements and first to fourth Z-axis resistance elements Rz are arranged in a line, and first to fourth X-axis resistance elements Rx or Y-axis resistance elements Ry and Z-axis resistance elements Rz are arranged. By arranging them to face each other, it is possible to easily adjust the output of each axis and improve the sensitivity of other axes.

実施例1の半導体加速度センサの上面を示す説明図Explanatory drawing which shows the upper surface of the semiconductor acceleration sensor of Example 1. FIG. 実施例1の他軸感度のシミュレーション結果を示すグラフThe graph which shows the simulation result of the other-axis sensitivity of Example 1 実施例1の半導体加速度センサの製造方法を示す説明図Explanatory drawing which shows the manufacturing method of the semiconductor acceleration sensor of Example 1. FIG. 実施例2の半導体加速度センサの上面を示す説明図Explanatory drawing which shows the upper surface of the semiconductor acceleration sensor of Example 2. FIG. 実施例2の他軸感度のシミュレーション結果を示すグラフThe graph which shows the simulation result of the other-axis sensitivity of Example 2 実施例2の半導体加速度センサの他の形態を示す説明図Explanatory drawing which shows the other form of the semiconductor acceleration sensor of Example 2. 実施例3の半導体加速度センサの上面を示す説明図Explanatory drawing which shows the upper surface of the semiconductor acceleration sensor of Example 3. 実施例3の半導体加速度センサの他の形態を示す説明図Explanatory drawing which shows the other form of the semiconductor acceleration sensor of Example 3. FIG. 実施例3の半導体加速度センサの他の形態を示す説明図Explanatory drawing which shows the other form of the semiconductor acceleration sensor of Example 3. FIG. 実施例4の半導体加速度センサの上面を示す説明図Explanatory drawing which shows the upper surface of the semiconductor acceleration sensor of Example 4. FIG. 実施例4の半導体加速度センサのY軸方向の可撓部の拡大図The enlarged view of the flexible part of the Y-axis direction of the semiconductor acceleration sensor of Example 4. 従来の半導体加速度センサの上面を示す説明図Explanatory drawing showing the top surface of a conventional semiconductor acceleration sensor 図10のA−A断面を示す説明図Explanatory drawing which shows the AA cross section of FIG. 従来の可撓部の上面を示す説明図Explanatory drawing which shows the upper surface of the conventional flexible part Z軸方向の加速度の検出状態を示す説明図Explanatory drawing which shows the detection state of the acceleration of a Z-axis direction ブリッジ回路を示す説明図Explanatory drawing showing a bridge circuit X軸方向の加速度の検出状態を示す説明図Explanatory drawing which shows the detection state of the acceleration of a X-axis direction 従来の他軸感度のシミュレーション結果を示すグラフGraph showing simulation results of conventional other axis sensitivity

符号の説明Explanation of symbols

1 半導体加速度センサ
1a、11a 上面
2 外枠部
3 重錘部
5 X軸
6 Y軸
7 可撓部
7a、7b X軸可撓部
7c、7d Y軸可撓部
9 抵抗素子
Rx X軸抵抗素子
Rx1〜Rx4 第1〜第4のX軸抵抗素子
Ry Y軸抵抗素子
Ry1〜Ry4 第1〜第4のY軸抵抗素子
Rz Z軸抵抗素子
Rz1〜Rz4 第1〜第4のZ軸抵抗素子
11 半導体ウェハ
11b 裏面
12 上面パターン
DESCRIPTION OF SYMBOLS 1 Semiconductor acceleration sensor 1a, 11a Upper surface 2 Outer frame part 3 Weight part 5 X-axis 6 Y-axis 7 Flexible part 7a, 7b X-axis flexible part 7c, 7d Y-axis flexible part 9 Resistance element Rx X-axis resistance element Rx1 to Rx4 First to fourth X-axis resistance elements Ry Y-axis resistance elements Ry1 to Ry4 First to fourth Y-axis resistance elements Rz Z-axis resistance elements Rz1 to Rz4 First to fourth Z-axis resistance elements 11 Semiconductor wafer 11b Back surface 12 Upper surface pattern

Claims (13)

外枠部と、該外枠部の中心部に配置された重錘部と、該重錘部の中心である錘中心で、互いに直交するX軸およびY軸と、X軸方向の加速度成分を検出する第1ないし第4のX軸抵抗素子と、Y軸方向の加速度成分を検出する第1ないし第4のY軸抵抗素子と、前記X軸およびY軸にそれぞれ直交するZ軸方向の加速度成分を検出する第1ないし第4のZ軸抵抗素子と、前記X軸およびY軸を幅方向の中心線として、前記外枠部と重錘部とを接続する一対のX軸可撓部および一対のY軸可撓部とを備え、
前記X軸可撓部の、一方の前記外枠部側に第1のX軸抵抗素子を、前記重錘部側に第2のX軸抵抗素子を、他方の前記重錘部側に第3のX軸抵抗素子を、前記外枠部側に第4のX軸抵抗素子を配置し、前記Y軸可撓部の、一方の前記外枠部側に第1のY軸抵抗素子を、前記重錘部側に第2のY軸抵抗素子を、他方の前記重錘部側に第3のY軸抵抗素子を、前記外枠部側に第4のY軸抵抗素子を配置した半導体加速度センサであって、
前記X軸可撓部およびY軸可撓部のいずれか一対の可撓部に配置された第1ないし第4の抵抗素子と、前記第1ないし第4のZ軸抵抗素子とを、それぞれ中心線を挟んで幅方向に対向配置し、
前記第1および第2のZ軸抵抗素子と、前記第3および第4のZ軸抵抗素子とを、前記錘中心を対称点として、点対称に配置したことを特徴とする半導体加速度センサ。
An acceleration component in the X-axis direction and the X-axis and Y-axis orthogonal to each other at the outer frame portion, the weight portion arranged at the center portion of the outer frame portion, and the weight center that is the center of the weight portion. First to fourth X-axis resistance elements to be detected, first to fourth Y-axis resistance elements to detect an acceleration component in the Y-axis direction, and acceleration in the Z-axis direction orthogonal to the X-axis and Y-axis, respectively. A first to fourth Z-axis resistance element for detecting a component, and a pair of X-axis flexible portions that connect the outer frame portion and the weight portion with the X-axis and the Y-axis as centerlines in the width direction; and A pair of Y-axis flexible parts,
The X-axis flexible portion has a first X-axis resistance element on one outer frame side, a second X-axis resistance element on the weight side, and a third X-axis resistance element on the other weight side. The X-axis resistive element, the fourth X-axis resistive element on the outer frame side, the first Y-axis resistive element on one outer frame side of the Y-axis flexible part, A semiconductor acceleration sensor in which a second Y-axis resistance element is disposed on the weight side, a third Y-axis resistance element is disposed on the other weight side, and a fourth Y-axis resistance element is disposed on the outer frame side. Because
The first to fourth resistance elements arranged in any one of the X-axis flexible part and the Y-axis flexible part and the first to fourth Z-axis resistance elements are respectively centered. Arranged across the line in the width direction,
A semiconductor acceleration sensor characterized in that the first and second Z-axis resistive elements and the third and fourth Z-axis resistive elements are arranged point-symmetrically with respect to the center of the weight.
外枠部と、該外枠部の中心部に配置された重錘部と、該重錘部の中心である錘中心で、互いに直交するX軸およびY軸と、X軸方向の加速度成分を検出する第1ないし第4のX軸抵抗素子と、Y軸方向の加速度成分を検出する第1ないし第4のY軸抵抗素子と、前記X軸およびY軸にそれぞれ直交するZ軸方向の加速度成分を検出する第1ないし第4のZ軸抵抗素子と、前記X軸およびY軸を幅方向の中心線として、前記外枠部と重錘部とを接続する一対のX軸可撓部および一対のY軸可撓部とを備え、
前記X軸可撓部の、一方の前記外枠部側に第1のX軸抵抗素子を、前記重錘部側に第2のX軸抵抗素子を、他方の前記重錘部側に第3のX軸抵抗素子を、前記外枠部側に第4のX軸抵抗素子を配置し、前記Y軸可撓部の、一方の前記外枠部側に第1のY軸抵抗素子を、前記重錘部側に第2のY軸抵抗素子を、他方の前記重錘部側に第3のY軸抵抗素子を、前記外枠部側に第4のY軸抵抗素子を配置した半導体加速度センサであって、
前記X軸可撓部およびY軸可撓部のいずれか一対の可撓部の一方に配置された第1および第2の抵抗素子と、前記第1および第2のZ軸抵抗素子とを、それぞれ中心線を挟んで幅方向に対向させて交互に配置すると共に、他方に配置された第3および第4の抵抗素子と、前記第3および第4のZ軸抵抗素子とを、それぞれ中心線を挟んで幅方向に対向させて交互に配置したことを特徴とする半導体加速度センサ。
An acceleration component in the X-axis direction and the X-axis and Y-axis orthogonal to each other at the outer frame portion, the weight portion arranged at the center portion of the outer frame portion, and the weight center that is the center of the weight portion. First to fourth X-axis resistance elements to be detected, first to fourth Y-axis resistance elements to detect an acceleration component in the Y-axis direction, and acceleration in the Z-axis direction orthogonal to the X-axis and Y-axis, respectively. A first to fourth Z-axis resistance element for detecting a component, and a pair of X-axis flexible portions that connect the outer frame portion and the weight portion with the X-axis and the Y-axis as centerlines in the width direction; and A pair of Y-axis flexible parts,
The X-axis flexible portion has a first X-axis resistance element on one outer frame side, a second X-axis resistance element on the weight side, and a third X-axis resistance element on the other weight side. The X-axis resistive element, the fourth X-axis resistive element on the outer frame side, the first Y-axis resistive element on one outer frame side of the Y-axis flexible part, A semiconductor acceleration sensor in which a second Y-axis resistance element is disposed on the weight side, a third Y-axis resistance element is disposed on the other weight side, and a fourth Y-axis resistance element is disposed on the outer frame side. Because
The first and second resistance elements disposed on one of the pair of flexible parts of the X-axis flexible part and the Y-axis flexible part, and the first and second Z-axis resistive elements, The center lines are alternately arranged opposite to each other across the width of the center line, and the third and fourth resistance elements disposed on the other side and the third and fourth Z-axis resistance elements are respectively center lines. A semiconductor acceleration sensor characterized in that it is alternately arranged so as to face each other across the width.
請求項2において、
前記第1および第2のZ軸抵抗素子と、前記第3および第4のZ軸抵抗素子とを、前記Z軸抵抗素子を配置した当該軸に直交する軸を対称線として、線対称に配置したことを特徴とする半導体加速度センサ。
In claim 2,
The first and second Z-axis resistance elements and the third and fourth Z-axis resistance elements are arranged symmetrically with respect to an axis perpendicular to the axis where the Z-axis resistance element is arranged as a symmetry line. A semiconductor acceleration sensor characterized by that.
請求項2において、
前記第1および第2のZ軸抵抗素子と、前記第3および第4のZ軸抵抗素子とを、前記錘中心を対称点として、点対称に配置したことを特徴とする半導体加速度センサ。
In claim 2,
A semiconductor acceleration sensor characterized in that the first and second Z-axis resistive elements and the third and fourth Z-axis resistive elements are arranged point-symmetrically with respect to the center of the weight.
外枠部と、該外枠部の中心部に配置された重錘部と、該重錘部の中心である錘中心で、互いに直交するX軸およびY軸と、X軸方向の加速度成分を検出する第1ないし第4のX軸抵抗素子と、Y軸方向の加速度成分を検出する第1ないし第4のY軸抵抗素子と、前記X軸およびY軸にそれぞれ直交するZ軸方向の加速度成分を検出する第1ないし第4のZ軸抵抗素子と、前記X軸およびY軸を幅方向の中心線として、前記外枠部と重錘部とを接続する一対のX軸可撓部および一対のY軸可撓部とを備え、
前記X軸可撓部の、一方の前記外枠部側に第1のX軸抵抗素子を、前記重錘部側に第2のX軸抵抗素子を、他方の前記重錘部側に第3のX軸抵抗素子を、前記外枠部側に第4のX軸抵抗素子を配置し、前記Y軸可撓部の、一方の前記外枠部側に第1のY軸抵抗素子を、前記重錘部側に第2のY軸抵抗素子を、他方の前記重錘部側に第3のY軸抵抗素子を、前記外枠部側に第4のY軸抵抗素子を配置した半導体加速度センサであって、
前記X軸可撓部およびY軸可撓部のいずれか一対の可撓部に配置された第1ないし第4の抵抗素子と、前記第1ないし第4のZ軸抵抗素子とを、それぞれ幅方向に対向配置し、
前記第1ないし第4のZ軸抵抗素子を、当該軸の軸上に1列に配置したことを特徴とする半導体加速度センサ。
An acceleration component in the X-axis direction and the X-axis and Y-axis orthogonal to each other at the outer frame portion, the weight portion arranged at the center portion of the outer frame portion, and the weight center that is the center of the weight portion. First to fourth X-axis resistance elements to be detected, first to fourth Y-axis resistance elements to detect an acceleration component in the Y-axis direction, and acceleration in the Z-axis direction orthogonal to the X-axis and Y-axis, respectively. A first to fourth Z-axis resistance element for detecting a component, and a pair of X-axis flexible portions that connect the outer frame portion and the weight portion with the X-axis and the Y-axis as centerlines in the width direction; and A pair of Y-axis flexible parts,
The X-axis flexible portion has a first X-axis resistance element on one outer frame side, a second X-axis resistance element on the weight side, and a third X-axis resistance element on the other weight side. The X-axis resistive element, the fourth X-axis resistive element on the outer frame side, the first Y-axis resistive element on one outer frame side of the Y-axis flexible part, A semiconductor acceleration sensor in which a second Y-axis resistance element is disposed on the weight side, a third Y-axis resistance element is disposed on the other weight side, and a fourth Y-axis resistance element is disposed on the outer frame side. Because
The first to fourth resistance elements disposed in any one of the pair of flexible parts of the X-axis flexible part and the Y-axis flexible part, and the first to fourth Z-axis resistive elements have a width, respectively. In the opposite direction,
A semiconductor acceleration sensor, wherein the first to fourth Z-axis resistance elements are arranged in a line on the axis of the axis.
請求項5において、
前記第1および第2の抵抗素子と、前記第3および第4の抵抗素子とを、前記当該軸に直交する軸を対称線として、線対称に配置したことを特徴とする半導体加速度センサ。
In claim 5,
A semiconductor acceleration sensor, wherein the first and second resistance elements and the third and fourth resistance elements are arranged symmetrically with respect to an axis perpendicular to the axis as a symmetry line.
請求項5において、
前記第1および第2の抵抗素子と、前記第3および第4の抵抗素子とを、前記錘中心を対称点として、点対称に配置したことを特徴とする半導体加速度センサ。
In claim 5,
A semiconductor acceleration sensor characterized in that the first and second resistance elements and the third and fourth resistance elements are arranged point-symmetrically with respect to the weight center.
外枠部と、該外枠部の中心部に配置された重錘部と、該外枠部と該重錘部とを接続する少なくとも一対の可撓部を有する半導体加速度センサであって、
前記一対の可撓部は、一の該可撓部の前記外枠部と前記重錘部との延在方向に他の該可撓部が配置され、第1の軸方向の加速度成分を検出する複数の第1の軸抵抗素子と、前記第1の軸方向に直交する第2の軸方向の加速度成分を検出する該第1の軸抵抗素子と同数の第2の軸抵抗素子とを有し、
前記複数の第1の軸抵抗素子は、前記重錘部の中心に対して点対称に前記一対の可撓部に配置されることを特徴とする半導体加速度センサ。
A semiconductor acceleration sensor having an outer frame portion, a weight portion disposed at a center portion of the outer frame portion, and at least a pair of flexible portions connecting the outer frame portion and the weight portion,
In the pair of flexible portions, the other flexible portion is disposed in the extending direction of the outer frame portion and the weight portion of the one flexible portion, and detects an acceleration component in the first axial direction. A plurality of first axial resistance elements, and the same number of second axial resistance elements as the first axial resistance elements for detecting an acceleration component in a second axial direction orthogonal to the first axial direction. And
The plurality of first axial resistance elements are arranged in the pair of flexible portions in point symmetry with respect to the center of the weight portion.
請求項8において、
前記第1の軸抵抗素子と同数の前記第2の軸抵抗素子は、前記重錘部の中心に対して点対称に前記一対の可撓部に配置されることを特徴とする半導体加速度センサ。
In claim 8,
The same number of the second axial resistance elements as the first axial resistance elements are arranged in the pair of flexible portions in point symmetry with respect to the center of the weight portion.
請求項9において、
前記第1の軸抵抗素子と前記第2の軸抵抗素子は、同一直線上にそれぞれ配置されることを特徴とする半導体加速度センサ
In claim 9,
The semiconductor acceleration sensor, wherein the first axial resistance element and the second axial resistance element are arranged on the same straight line.
外枠部と、該外枠部の中心部に配置された重錘部と、該外枠部と該重錘部とを接続する少なくとも一対の可撓部を有する半導体加速度センサであって、
前記一対の可撓部は、一の該可撓部の前記外枠部と前記重錘部との延在方向に他の該可撓部が配置され、第1の軸方向の加速度成分を検出する複数の第1の軸抵抗素子と、前記第1の軸方向に直交する第2の軸方向の加速度成分を検出する該第1の軸抵抗素子と同数の第2の軸抵抗素子とを有し、
前記複数の第1の軸抵抗素子は、前記重錘部の中心に対して線対称に前記一対の可撓部に配置されることを特徴とする半導体加速度センサ。
A semiconductor acceleration sensor having an outer frame portion, a weight portion disposed at a center portion of the outer frame portion, and at least a pair of flexible portions connecting the outer frame portion and the weight portion,
In the pair of flexible portions, the other flexible portion is disposed in the extending direction of the outer frame portion and the weight portion of the one flexible portion, and detects an acceleration component in the first axial direction. A plurality of first axial resistance elements, and the same number of second axial resistance elements as the first axial resistance elements for detecting an acceleration component in a second axial direction orthogonal to the first axial direction. And
The plurality of first axial resistance elements are arranged in the pair of flexible portions in line symmetry with respect to the center of the weight portion.
請求項11において、
前記第1の軸抵抗素子と同数の前記第2の軸抵抗素子は、前記重錘部の中心に対して線対称に前記一対の可撓部に配置されることを特徴とする半導体加速度センサ。
In claim 11,
The same number of the second axial resistance elements as the first axial resistance elements are disposed in the pair of flexible portions in line symmetry with respect to the center of the weight portion.
請求項12において、
前記第1の軸抵抗素子と前記第2の軸抵抗素子は、同一直線上にそれぞれは位置されることを特徴とする半導体加速度センサ。
In claim 12,
The semiconductor acceleration sensor according to claim 1, wherein the first axial resistance element and the second axial resistance element are respectively positioned on the same straight line.
JP2007177211A 2006-07-05 2007-07-05 Semiconductor acceleration sensor Pending JP2008032704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177211A JP2008032704A (en) 2006-07-05 2007-07-05 Semiconductor acceleration sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006185895 2006-07-05
JP2007177211A JP2008032704A (en) 2006-07-05 2007-07-05 Semiconductor acceleration sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012006577A Division JP5336617B2 (en) 2006-07-05 2012-01-16 Semiconductor acceleration sensor

Publications (1)

Publication Number Publication Date
JP2008032704A true JP2008032704A (en) 2008-02-14

Family

ID=39122261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177211A Pending JP2008032704A (en) 2006-07-05 2007-07-05 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JP2008032704A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257869A (en) * 2008-04-15 2009-11-05 Dainippon Printing Co Ltd Physical quantity sensor and its manufacturing method
JP2010032389A (en) * 2008-07-29 2010-02-12 Dainippon Printing Co Ltd Physical quantity sensor and manufacturing method therefor
US20120255358A1 (en) * 2010-06-25 2012-10-11 Panasonic Corporation Acceleration sensor
JP5345134B2 (en) * 2008-03-27 2013-11-20 京セラ株式会社 Acceleration sensor element and acceleration sensor device
CN114395219A (en) * 2022-01-17 2022-04-26 南通中集能源装备有限公司 Hydrogen storage bottle, liquid epoxy resin system wound by wet method and preparation method thereof
US11788885B2 (en) 2021-02-26 2023-10-17 Advantest Corporation Test apparatus, test method, and computer-readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269263A (en) * 1990-03-19 1991-11-29 Fujikura Ltd Semiconductor acceleration sensor
JPH04279868A (en) * 1991-03-08 1992-10-05 Tokai Rika Co Ltd Three-dimensional acceleration sensor
JP2003232803A (en) * 2002-02-12 2003-08-22 Hitachi Metals Ltd Semiconductor type acceleration sensor
WO2005062060A1 (en) * 2003-12-24 2005-07-07 Hitachi Metals, Ltd. Semiconductor type 3-axis acceleration sensor
JP2006105617A (en) * 2004-09-30 2006-04-20 Mitsumi Electric Co Ltd Triaxial acceleration sensor and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269263A (en) * 1990-03-19 1991-11-29 Fujikura Ltd Semiconductor acceleration sensor
JPH04279868A (en) * 1991-03-08 1992-10-05 Tokai Rika Co Ltd Three-dimensional acceleration sensor
JP2003232803A (en) * 2002-02-12 2003-08-22 Hitachi Metals Ltd Semiconductor type acceleration sensor
WO2005062060A1 (en) * 2003-12-24 2005-07-07 Hitachi Metals, Ltd. Semiconductor type 3-axis acceleration sensor
JP2006105617A (en) * 2004-09-30 2006-04-20 Mitsumi Electric Co Ltd Triaxial acceleration sensor and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345134B2 (en) * 2008-03-27 2013-11-20 京セラ株式会社 Acceleration sensor element and acceleration sensor device
JP2009257869A (en) * 2008-04-15 2009-11-05 Dainippon Printing Co Ltd Physical quantity sensor and its manufacturing method
JP2010032389A (en) * 2008-07-29 2010-02-12 Dainippon Printing Co Ltd Physical quantity sensor and manufacturing method therefor
US20120255358A1 (en) * 2010-06-25 2012-10-11 Panasonic Corporation Acceleration sensor
US11788885B2 (en) 2021-02-26 2023-10-17 Advantest Corporation Test apparatus, test method, and computer-readable storage medium
CN114395219A (en) * 2022-01-17 2022-04-26 南通中集能源装备有限公司 Hydrogen storage bottle, liquid epoxy resin system wound by wet method and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2008032704A (en) Semiconductor acceleration sensor
JP3956999B2 (en) Acceleration sensor
US20040025591A1 (en) Accleration sensor
JP2575939B2 (en) Semiconductor acceleration sensor
JP5336617B2 (en) Semiconductor acceleration sensor
JP2003232803A (en) Semiconductor type acceleration sensor
KR20170107379A (en) Magnetic sensor and method of manufacturing the same
JP4431475B2 (en) Semiconductor type 3-axis acceleration sensor
JP5186885B2 (en) Mask pattern correction method and acceleration sensor and angular velocity sensor manufacturing method using the same
US6763719B2 (en) Acceleration sensor
US20030057447A1 (en) Acceleration sensor
JP3985214B2 (en) Semiconductor acceleration sensor
JP2004177357A (en) Semiconductor acceleration sensor
JP3985215B2 (en) Semiconductor acceleration sensor
JP2004109114A (en) Semiconductor multiaxial acceleration sensor
JP2008107257A (en) Acceleration sensor
JP2007003211A (en) Acceleration sensor and its output correction method
JP2006098323A (en) Semiconductor-type three-axis acceleration sensor
JP5093070B2 (en) Acceleration sensor and semiconductor device using the same
US20170089941A1 (en) Sensor
JP2003279592A (en) Piezo-resistive triaxial acceleration sensor
JP2010032389A (en) Physical quantity sensor and manufacturing method therefor
JP2009154215A (en) Method of manufacturing mems device
JP2013145163A (en) Semiconductor pressure sensor and method for manufacturing the same
JP5146097B2 (en) MEMS

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306