JP3984189B2 - Fine particle dispersant, fine particle dispersion method, and electroless plating method on fine particles - Google Patents

Fine particle dispersant, fine particle dispersion method, and electroless plating method on fine particles Download PDF

Info

Publication number
JP3984189B2
JP3984189B2 JP2003150336A JP2003150336A JP3984189B2 JP 3984189 B2 JP3984189 B2 JP 3984189B2 JP 2003150336 A JP2003150336 A JP 2003150336A JP 2003150336 A JP2003150336 A JP 2003150336A JP 3984189 B2 JP3984189 B2 JP 3984189B2
Authority
JP
Japan
Prior art keywords
fine particles
concentration
glycine
fine particle
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003150336A
Other languages
Japanese (ja)
Other versions
JP2004353017A (en
Inventor
正雄 寺島
顕 戸田
淳 飯塚
直人 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meltex Inc
Original Assignee
Meltex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meltex Inc filed Critical Meltex Inc
Priority to JP2003150336A priority Critical patent/JP3984189B2/en
Publication of JP2004353017A publication Critical patent/JP2004353017A/en
Application granted granted Critical
Publication of JP3984189B2 publication Critical patent/JP3984189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、微粒子、特に水に不溶の微粒子を水溶液に分散させるための微粒子分散剤と、このような微粒子を水溶液に分散させる微粒子分散方法、および、上記の微粒子に良好な無電解めっきを行うための無電解めっき方法に関する。
【0002】
【従来の技術】
【特許文献1】
特開2002−88497号公報
【特許文献2】
特開平9−184077号公報
従来から有機質、無機質、あるいは、有機無機複合体からなる微粒子であって、水に不溶の微粒子は、一般成形品用の無電解めっき浴における分散性が悪く、表面に均一な表面処理を行うことが困難で、無めっき、不均一な析出皮膜、凝集等が生じるという問題があった。
これらを改善するために、水に不溶の微粒子を表面処理液や無電解めっき浴に分散する方法として、オリフィス収縮流、回転せん断流や超音波を用いた物理的分散方法が用いられている(特許文献1)。また、界面活性剤を使用した分散方法も提案されている(特許文献2)。
【0003】
【発明が解決しようとする課題】
しかしながら、上述のような物理的分散方法では、分散対象となる微粒子の材質や大きさ等により、使用する装置の改良や分散条件の変更等を必要とし、工程が煩雑であったり、装置コストの増大を来たすという問題があった。また、界面活性剤を使用した従来の分散方法では、十分な分散効果が得られず、特に粒径が1μm以下の微粒子の分散が不十分であるという問題があった。
本発明は、上述のような実情に鑑みてなされたものであり、水に不溶の微粒子を水溶液に分散させることができる微粒子分散剤と微粒子分散方法、および、水に不溶の微粒子に良好な無電解めっきを行うための無電解めっき方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
このような目的を達成するために、本発明は、水に不溶の微粒子を水溶液に分散させるための微粒子分散剤において、両性界面活性剤のアルキルジ(アミノエチル)グリシンとカチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドとを、含有比率が3:5000〜500:1の範囲内となるように含有するような構成とした。
【0005】
本発明は、水に不溶の微粒子を水溶液に分散させる微粒子分散方法において、微粒子を分散させるための水溶液に、上記の本発明の微粒子分散剤を、両性界面活性剤のアルキルジ(アミノエチル)グリシンの濃度が0.0015〜1.5g/Lの範囲となり、かつ、カチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドの濃度が0.003〜2.5g/Lの範囲となるように添加するような構成とした。
【0006】
本発明は、水に不溶の微粒子を水溶液に分散させる微粒子分散方法において、微粒子を分散させるための水溶液に、両性界面活性剤のアルキルジ(アミノエチル)グリシンを濃度が0.0015〜1.5g/Lとなる範囲で、カチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドを濃度が0.003〜2.5g/Lとなる範囲で、かつ、前記アルキルジ(アミノエチル)グリシンと前記ジメチルベンジルアルキルアンモニウムクロライドとの含有比率が3:5000〜500:1の範囲となるように含有させるような構成とした。
【0007】
本発明は、水に不溶の微粒子に表面処理を施した後、無電解めっきにより微粒子表面に皮膜を形成する無電解めっき方法において、微粒子の表面処理液、および、無電解めっき浴に、上記の本発明の微粒子分散剤を、両性界面活性剤のアルキルジ(アミノエチル)グリシンの濃度が0.0015〜1.5g/Lの範囲となり、かつ、カチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドの濃度が0.003〜2.5g/Lの範囲となるように添加するような構成とした。
【0008】
本発明は、水に不溶の微粒子に表面処理を施した後、無電解めっきにより微粒子表面に皮膜を形成する無電解めっき方法において、微粒子の表面処理液、および、無電解めっき浴に、両性界面活性剤のアルキルジ(アミノエチル)グリシンを濃度が0.0015〜1.5g/Lとなる範囲で、カチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドを濃度が0.003〜2.5g/Lとなる範囲で、かつ、前記アルキルジ(アミノエチル)グリシンと前記ジメチルベンジルアルキルアンモニウムクロライドとの含有比率が3:5000〜500:1の範囲となるように含有させるような構成とした。
【0009】
【発明の実施の形態】
次に、本発明の最適な実施形態について説明する。
(微粒子分散剤)
本発明の微粒子分散剤は、少なくともグリシン系の両性界面活性剤とベンジルアンモニウム・クロライド系のカチオン界面活性剤とを含有するものであり、上記の両性界面活性剤とカチオン界面活性剤は、両性界面活性剤のアルキルジ(アミノエチル)グリシンとカチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドとの含有比率が、3:5000〜500:1の範囲、好ましくは3:500〜50:1の範囲内となるように含有される。両性界面活性剤とカチオン界面活性剤の含有比率が上記の範囲から外れると、微粒子の攪拌分散性が不十分であったり、十分な分散状態が保持できないことになり好ましくない。
【0010】
本発明の微粒子分散剤に含有されるグリシン系の両性界面活性剤としては、例えば、下記の一般式(1)で表されるものが好ましい。
【化1】

Figure 0003984189
具体的には、アルキルジ(アミノエチル)グリシン、ナトリウムアルキルジ(アミノエチル)グリシン、塩酸アルキルジ(アミノエチル)グリシン、塩酸アルキルポリアミノエチレングリシン等を挙げることができる。
【0011】
また、本発明の微粒子分散剤に含有されるベンジルアンモニウム・クロライド系のカチオン界面活性剤としては、例えば、下記の一般式(2)で表されるものが好ましい。
【化2】
Figure 0003984189
具体的には、ジメチルベンジルアルキルアンモニウムクロライド、テトラデシルジメチルベンジルアルキルアンモニウムクロライド、オクタデシルジメチルベンジルアルキルアンモニウムクロライド等を挙げることができる。
【0012】
上述のような本発明の微粒子分散剤は、水に不溶の微粒子を水溶液に分散させるものであり、対象となる微粒子に特に制限はなく、例えば、アクリル樹脂、スチレン樹脂、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、ポリエステル樹脂等の樹脂微粒子、活性炭、カーボンファイバー、カーボンナノチューブ、フラーレン、ダイヤモンド等の炭素原子からなる微粒子、金属微粒子、金属酸化物微粒子、金属窒化物微粒子、ケイ素系の化合物からなるセラミックス微粒子、半導体チップのような有機無機複合微粒子を挙げることができ、微粒子の平均粒径は1nm〜5mmの範囲である。
尚、水に不溶の微粒子を分散させる水溶液とは、水を含む任意の水溶液であり、分散対象である微粒子に応じて適宜決まるものであり、特に制限はない。
【0013】
(微粒子分散方法)
本発明の微粒子分散方法は、水に不溶の微粒子を水溶液に分散させる方法であり、上述の本発明の微粒子分散剤を、両性界面活性剤のアルキルジ(アミノエチル)グリシンの濃度が0.0015〜1.5g/Lの範囲となり、かつ、カチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドの濃度が0.003〜2.5g/Lの範囲となるように、微粒子を分散させる水溶液に添加するものである。
【0014】
また、本発明の微粒子分散方法は、水に不溶の微粒子を水溶液に分散させる方法であり、両性界面活性剤のアルキルジ(アミノエチル)グリシンの濃度が0.0015〜1.5g/Lの範囲となり、かつ、カチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドの濃度が0.003〜2.5g/Lの範囲となるように、少なくともグリシン系の両性界面活性剤とベンジルアンモニウム・クロライド系のカチオン界面活性剤とを、微粒子を分散させる水溶液に含有させるものである。
【0015】
本発明の微粒子分散方法では、微粒子を分散させるための水溶液に含有させる両性界面活性剤とカチオン界面活性剤の各濃度が上記の範囲から外れると、微粒子の攪拌分散性が不十分であったり、十分な分散状態が保持できないことになり好ましくない。水溶液に両性界面活性剤とカチオン界面活性剤を含有させる工程は、水溶液に微粒子を投入する工程の前後いずれであってもよい。また、微粒子の分散時に機械的攪拌、あるいは、超音波分散等を併用してもよい。
本発明の微粒子分散方法において、本発明の微粒子分散剤を使用せず、個別にグリシン系の両性界面活性剤とベンジルアンモニウム・クロライド系のカチオン界面活性剤とを水溶液に含有させる場合も、使用する両性界面活性剤、カチオン界面活性剤は、上述の本発明の微粒子分散剤に使用するものとして例示したものが好ましい。
【0016】
本発明の微粒子分散方法において分散対象となる微粒子は、水に不溶で水溶液に分散させることが困難な微粒子であれば特に制限はなく、例えば、上述の本発明の微粒子分散剤の説明で挙げたような微粒子であり、その平均粒径は1nm〜5mmの範囲である。
尚、水に不溶の微粒子を分散させる水溶液とは、水を含む任意の水溶液であり、分散対象である微粒子に応じて適宜決まるものであり、特に制限はない。
【0017】
(微粒子への無電解めっき法)
本発明の微粒子への無電解めっき法は、両性界面活性剤のアルキルジ(アミノエチル)グリシンの濃度が0.0015〜1.5g/Lの範囲となり、かつ、カチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドの濃度が0.003〜2.5g/Lの範囲となるように上述の本発明の微粒子分散剤を添加した表面処理液、および、無電解めっき浴を使用して、水に不溶の微粒子に表面処理を施した後、無電解めっきにより微粒子表面に皮膜を形成するものである。
【0018】
また、本発明の微粒子への無電解めっき法は、両性界面活性剤のアルキルジ(アミノエチル)グリシンの濃度が0.0015〜1.5g/Lの範囲となり、かつ、カチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドの濃度が0.003〜2.5g/Lの範囲となるように少なくともグリシン系の両性界面活性剤とベンジルアンモニウム・クロライド系のカチオン界面活性剤とを含有させた表面処理液、および、無電解めっき浴を使用して、水に不溶の微粒子に表面処理を施した後、無電解めっきにより微粒子表面に皮膜を形成するものである。
【0019】
本発明における表面処理液とは、脱脂液、表面調整液、触媒付与液等である。また、本発明における無電解めっき浴とは、無電解ニッケルめっき浴、無電解銅めっき浴、、無電解錫めっき浴、無電解金めっき浴、無電解銀めっき浴、および、それらの置換型めっき浴等を挙げることができる。
【0020】
本発明の無電解めっき方法において、表面処理液や無電解めっき浴に含有させる両性界面活性剤とカチオン界面活性剤の各濃度が上記の範囲から外れると、微粒子の攪拌分散性が不十分であったり、十分な分散状態が保持できないことになり好ましくない。尚、表面処理液や無電解めっき浴に両性界面活性剤とカチオン界面活性剤を含有させる工程は、これらの水溶液に微粒子を投入する工程の前後いずれであってもよい。また、微粒子の分散時に機械的攪拌、あるいは、超音波分散等を併用してもよい。
【0021】
本発明の無電解めっき方法において、本発明の微粒子分散剤を使用せず、個別にグリシン系の両性界面活性剤とベンジルアンモニウム・クロライド系のカチオン界面活性剤とを表面処理液や無電解めっき浴に含有させる場合も、使用する両性界面活性剤、カチオン界面活性剤は、上述の本発明の微粒子分散剤に使用するものとして例示したものが好ましい。
本発明において無電解めっきにより皮膜を形成する対象となる微粒子は、水に不溶で、従来から無電解めっきによる皮膜形成が困難な微粒子であり、特に制限はなく、例えば、上述の本発明の微粒子分散剤の説明で挙げたような微粒子であり、その平均粒径は1nm〜5mmの範囲である。
【0022】
【実施例】
次に、実施例を示して本発明を更に詳細に説明する。
[実施例1]
グリシン系の両性界面活性剤として、日本油脂(株)製ニッサンアノンLGを準備し、また、ベンジルアンモニウム・クロライド系のカチオン界面活性剤として、日本油脂(株)製カチオンF2−50Eを準備した。これらの界面活性剤を、両性界面活性剤のアルキルジ(アミノエチル)グリシンとカチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドとの含有比率が、3:5となるように混合して、本発明の微粒子分散剤を得た。
【0023】
次に、水に上記の微粒子分散剤を、両性界面活性剤のアルキルジ(アミノエチル)グリシンの濃度が0.15g/Lで、かつ、カチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドの濃度が0.25g/Lとなるように添加して得た水溶液に、下記の表1に示される5種の微粒子を投入して分散状態を観察した。
比較として、同じ5種の微粒子を微粒子分散剤を添加していない水に投入して分散状態を観察した。
【0024】
【表1】
Figure 0003984189
表1に示されるように、本発明の微粒子分散剤を使用した微粒子分散方法では、5種の微粒子がいずれも均一に分散したことが確認された。
【0025】
[実施例2]
グリシン系の両性界面活性剤として、日本油脂(株)製ニッサンアノンLG(以下、本実施例では「LG」と記す)を準備し、また、ベンジルアンモニウム・クロライド系のカチオン界面活性剤として、日本油脂(株)製カチオンF2−50E(以下、本実施例では「F2−50E」と記す)を準備した。次いで、LGのアルキルジ(アミノエチル)グリシンの濃度、および、F2−50Eのジメチルベンジルアルキルアンモニウムクロライドの濃度が下記の表2に示される濃度となるように水に含有させて18種の水溶液(試料1〜18)を得た。これらの各水溶液(1000mL)に平均粒径8μmのアクリル樹脂微粒子(積水化学工業(株)製MBX−8)を0.1g投入して攪拌したときの分散性、および、攪拌後1時間静置した後の分散の保持性を下記の評価基準で評価して、結果を下記の表2に示した。
【0026】
(分散性の評価基準)
◎:微粒子投入後攪拌により均一に分散する
○:微粒子投入後攪拌により均一に分散するが、液面に浮遊している微粒子が若干存在する
×:攪拌しても分散せず液面に微粒子が浮遊している
(保持性の評価基準)
◎:微粒子が均一に分散した状態が保持されている
○:微粒子の一部に沈降あるいは液面への浮遊が生じている
×:微粒子は沈降または液面への浮遊により完全に分離している
【0027】
【表2】
Figure 0003984189
【0028】
表2に示されるように、LGのアルキルジ(アミノエチル)グリシンの濃度が0.0015〜1.5g/Lの範囲内で、かつ、F2−50Eのジメチルベンジルアルキルアンモニウムクロライドの濃度が0.003〜2.5g/Lの範囲内にある試料1〜14は、アクリル樹脂微粒子の分散性および保持性が良好なことが確認された。
【0029】
[実施例3]
無電解めっきにより皮膜を形成する対象となる微粒子として、平均粒径8μmのアクリル樹脂微粒子(積水化学工業(株)製MBX−8)を準備した。
また、グリシン系の両性界面活性剤として、日本油脂(株)製ニッサンアノンLGを準備し、また、ベンジルアンモニウム・クロライド系のカチオン界面活性剤として、日本油脂(株)製カチオンF2−50Eを準備した。これらの界面活性剤を、ニッサンアノンLGのアルキルジ(アミノエチル)グリシン濃度とカチオンF2−50Eのジメチルベンジルアルキルアンモニウムクロライド濃度が同等となるように混合して、本発明の微粒子分散剤を得た。
【0030】
次に、市販のアルカリ脱脂液(メルテックス(株)製メルクリーナーITO−170)に、上記の微粒子分散剤を、ニッサンアノンLGのアルキルジ(アミノエチル)グリシン濃度が0.5g/Lで、かつ、カチオンF2−50Eのジメチルベンジルアルキルアンモニウムクロライド濃度が0.5g/Lとなるように添加した。このアルカリ脱脂液1000mLに上記のアクリル樹脂微粒子0.1gを投入し分散させて脱脂処理(30分間)を施し、水洗した。
次いで、濃度45g/Lの水酸化カリウム水溶液に、上記の微粒子分散剤を、ニッサンアノンLGのアルキルジ(アミノエチル)グリシン濃度が0.5g/Lで、かつ、カチオンF2−50Eのジメチルベンジルアルキルアンモニウムクロライド濃度が0.5g/Lとなるように添加して脱脂液を得た。この脱脂液1000mLに上記の脱脂処理後のアクリル樹脂微粒子0.1gを投入し分散させて再度脱脂処理(30分間)を施し、水洗した。
【0031】
次に、市販の表面調整剤(メルテックス(株)製メルプレートコンディショナー1101)に、上記の微粒子分散剤を、ニッサンアノンLGのアルキルジ(アミノエチル)グリシン濃度が0.5g/Lで、かつ、カチオンF2−50Eのジメチルベンジルアルキルアンモニウムクロライド濃度が0.5g/Lとなるように添加した。この表面調整剤1000mLに、脱脂処理済みのアクリル樹脂微粒子0.1gを投入し分散させて表面調整処理(30分間)を施し、水洗した。
次いで、市販のパラジウム触媒液(メルテックス(株)製メルプレートアクチベーター7331)に、上記の微粒子分散剤を、ニッサンアノンLGのアルキルジ(アミノエチル)グリシン濃度が0.5g/Lで、かつ、カチオンF2−50Eのジメチルベンジルアルキルアンモニウムクロライド濃度が0.5g/Lとなるように添加した。このパラジウム触媒液1000mLに、上記の表面調整済みのアクリル樹脂微粒子0.1gを投入し分散させて触媒付与処理(30分間)を施した。
【0032】
その後、市販の自己触媒型の無電解ニッケルめっき液(メルテックス(株)製メルプレートNi−867)に、上記の微粒子分散剤を、ニッサンアノンLGのアルキルジ(アミノエチル)グリシン濃度が0.5g/Lで、かつ、カチオンF2−50Eのジメチルベンジルアルキルアンモニウムクロライド濃度が0.5g/Lとなるように添加して無電解ニッケルめっき浴とした。この無電解ニッケルめっき浴(45℃)に、上記の触媒付与処理を施したアクリル樹脂微粒子0.1gを投入し分散させて無電解ニッケルめっきを行った。
【0033】
上述のように無電解ニッケルめっきを施したアクリル樹脂微粒子の表面には、ニッケルめっき皮膜が均一に形成されていることが確認された。
また、上述の脱脂液(2種)、表面調整剤、パラジウム触媒液、および、無電解ニッケルめっき液に、本発明の微粒子分散剤を使用せず、グリシン系の両性界面活性剤である日本油脂(株)製ニッサンアノンLGと、ベンジルアンモニウム・クロライド系のカチオン界面活性剤である日本油脂(株)製カチオンF2−50Eとを、ニッサンアノンLGのアルキルジ(アミノエチル)グリシン濃度が0.5g/Lで、かつ、カチオンF2−50Eのジメチルベンジルアルキルアンモニウムクロライド濃度が0.5g/Lとなるように別個に含有させた場合も、アクリル樹脂微粒子の表面にニッケルめっき皮膜を均一に形成できることを確認した。
【0034】
尚、上述の脱脂液(2種)、表面調整剤、パラジウム触媒液、および、無電解ニッケルめっき液のいずれも、本発明の微粒子分散剤を添加しない場合、アクリル樹脂微粒子は液面に浮遊した状態で、所望の処理を施すことができず、無めっき、不均一な析出皮膜、凝集等が生じた。
【0035】
[比較例1]
グリシン系ではない両性界面活性剤として、日本油脂(株)製BL、日本油脂(株)製GLM−RBL、日本油脂(株)製BDF−R、日本油脂(株)製BFの4種を準備し、また、ベンジルアンモニウム・クロライド系ではないカチオン界面活性剤として、日本油脂(株)製SAを準備した。そして、水に両性界面活性剤濃度が0.5g/Lとなり、カチオン界面活性剤濃度が0.5g/Lとなるように混合して、4種の水溶液を得た。この水溶液に平均粒径8μmのアクリル樹脂微粒子(積水化学工業(株)製MBX−8)を投入して分散状態を観察した。しかし、いずれもアクリル樹脂微粒子が水面に浮遊して、均一な分散は得られなかった。
【0036】
[比較例2]
グリシン系ではない両性界面活性剤として、日本油脂(株)製BLを準備し、また、ベンジルアンモニウム・クロライド系ではないカチオン界面活性剤として、日本油脂(株)製SA、日本油脂(株)製ABの2種を準備した。そして、水に両性界面活性剤濃度が0.5g/Lとなり、カチオン界面活性剤濃度が0.5g/Lとなるように混合して、2種の水溶液を得た。この水溶液に平均粒径8μmのアクリル樹脂微粒子(積水化学工業(株)製MBX−8)を投入して分散状態を観察した。しかし、いずれもアクリル樹脂微粒子が水面に浮遊して、均一な分散は得られなかった。
【0037】
【発明の効果】
以上詳述したように、本発明によれば微粒子分散剤が、両性界面活性剤のアルキルジ(アミノエチル)グリシンとカチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドとが所定の比率となるようにグリシン系の両性界面活性剤とベンジルアンモニウム・クロライド系のカチオン界面活性剤とを少なくとも含有するので、この微粒子分散剤を所定の濃度で水溶液に添加することにより、あるいは、水溶液に、両性界面活性剤のアルキルジ(アミノエチル)グリシンとカチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドとが所定の濃度となるように両性界面活性剤とカチオン界面活性剤とを少なくとも含有させることにより、水に不溶の微粒子を水溶液に分散させることができ、無電解めっき法に用いる表面処理液や無電解めっき浴においても同様に、水に不溶の微粒子を分散させることができ、このような微粒子の表面に均一なめっき皮膜を形成することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a fine particle dispersant for dispersing fine particles, particularly fine particles insoluble in water, in an aqueous solution, a fine particle dispersion method for dispersing such fine particles in an aqueous solution, and good electroless plating on the fine particles. The present invention relates to an electroless plating method.
[0002]
[Prior art]
[Patent Document 1]
JP 2002-88497 A [Patent Document 2]
JP, 9-184077, A Conventionally, fine particles made of organic, inorganic, or organic-inorganic composites, and water-insoluble fine particles are poorly dispersible in electroless plating baths for general molded products, and are on the surface. There is a problem that it is difficult to perform a uniform surface treatment, and non-plating, non-uniform deposition film, aggregation, and the like occur.
In order to improve these, as a method of dispersing fine particles insoluble in water in a surface treatment solution or an electroless plating bath, a physical dispersion method using an orifice contraction flow, a rotational shear flow or ultrasonic waves is used ( Patent Document 1). A dispersion method using a surfactant has also been proposed (Patent Document 2).
[0003]
[Problems to be solved by the invention]
However, in the physical dispersion method as described above, depending on the material and size of the fine particles to be dispersed, it is necessary to improve the apparatus to be used, change the dispersion conditions, etc. There was a problem of increasing. Further, the conventional dispersion method using a surfactant has a problem that a sufficient dispersion effect cannot be obtained, and in particular, dispersion of fine particles having a particle diameter of 1 μm or less is insufficient.
The present invention has been made in view of the above-described circumstances, and a fine particle dispersant and a fine particle dispersion method that can disperse water-insoluble fine particles in an aqueous solution. It aims at providing the electroless-plating method for performing electroplating.
[0004]
[Means for Solving the Problems]
In order to achieve such an object, the present invention relates to an amphoteric surfactant alkyldi (aminoethyl) glycine and a cationic surfactant dimethylbenzyl in a fine particle dispersant for dispersing water-insoluble fine particles in an aqueous solution. It was set as the structure which contains alkyl ammonium chloride so that a content ratio may exist in the range of 3: 5000-500: 1 .
[0005]
The present invention provides a fine particle dispersion method in which fine particles insoluble in water are dispersed in an aqueous solution. The fine particle dispersant of the present invention described above is added to an aqueous solution for dispersing fine particles of an alkyldi (aminoethyl) glycine as an amphoteric surfactant. The composition is added so that the concentration is in the range of 0.0015 to 1.5 g / L and the concentration of the dimethylbenzylalkylammonium chloride cationic surfactant is in the range of 0.003 to 2.5 g / L. It was.
[0006]
The present invention relates to a method for dispersing fine particles in which fine particles insoluble in water are dispersed in an aqueous solution. In the aqueous solution for dispersing fine particles, an amphoteric surfactant alkyldi (aminoethyl) glycine has a concentration of 0.0015 to 1.5 g / L is a cationic surfactant dimethylbenzylalkylammonium chloride at a concentration of 0.003 to 2.5 g / L, and the alkyldi (aminoethyl) glycine and the dimethylbenzylalkylammonium chloride It was set as the structure which is made to contain so that it may become the range of 3: 5000-500: 1 .
[0007]
The present invention provides an electroless plating method in which a film is formed on the surface of fine particles by electroless plating after surface treatment is performed on fine particles insoluble in water. In the fine particle dispersant of the present invention, the concentration of the amphoteric surfactant alkyldi (aminoethyl) glycine is in the range of 0.0015 to 1.5 g / L, and the concentration of the cationic surfactant dimethylbenzylalkylammonium chloride is It was set as the structure added so that it may become the range of 0.003-2.5 g / L.
[0008]
The present invention relates to an electroless plating method in which a film is formed on the surface of fine particles by electroless plating after surface treatment is performed on fine particles insoluble in water. The concentration of the alkyldi (aminoethyl) glycine as the activator is within a range of 0.0015 to 1.5 g / L, and the concentration of the dimethylbenzylalkylammonium chloride as a cationic surfactant is within a range of 0.003 to 2.5 g / L. The composition was such that the content of the alkyldi (aminoethyl) glycine and the dimethylbenzylalkylammonium chloride was within a range of 3: 5000 to 500: 1 .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, an optimal embodiment of the present invention will be described.
(Fine particle dispersant)
The fine particle dispersant of the present invention contains at least a glycine-based amphoteric surfactant and a benzylammonium chloride-based cationic surfactant. The amphoteric surfactant and the cationic surfactant described above are amphoteric interfaces. The content ratio of the activator alkyldi (aminoethyl) glycine and the cationic surfactant dimethylbenzylalkylammonium chloride is in the range of 3: 5000 to 500: 1, preferably in the range of 3: 500 to 50: 1. Contained. If the content ratio of the amphoteric surfactant and the cationic surfactant is out of the above range, the stirring dispersibility of the fine particles is insufficient or a sufficient dispersion state cannot be maintained, which is not preferable.
[0010]
As the glycine-based amphoteric surfactant contained in the fine particle dispersant of the present invention, for example, those represented by the following general formula (1) are preferable.
[Chemical 1]
Figure 0003984189
Specific examples include alkyl di (aminoethyl) glycine, sodium alkyl di (aminoethyl) glycine, alkyl di (aminoethyl) glycine hydrochloride, alkyl polyaminoethylene glycine hydrochloride, and the like.
[0011]
In addition, as the benzylammonium chloride cationic surfactant contained in the fine particle dispersant of the present invention, for example, those represented by the following general formula (2) are preferable.
[Chemical 2]
Figure 0003984189
Specific examples include dimethylbenzylalkylammonium chloride, tetradecyldimethylbenzylalkylammonium chloride, octadecyldimethylbenzylalkylammonium chloride, and the like.
[0012]
The fine particle dispersant of the present invention as described above is for dispersing fine particles insoluble in water in an aqueous solution, and there is no particular limitation on the fine particles to be treated. For example, acrylic resin, styrene resin, epoxy resin, polyimide resin, Resin fine particles such as phenol resin and polyester resin, fine particles composed of carbon atoms such as activated carbon, carbon fiber, carbon nanotube, fullerene and diamond, metal fine particles, metal oxide fine particles, metal nitride fine particles, ceramic fine particles composed of silicon compounds Organic inorganic composite fine particles such as semiconductor chips can be mentioned, and the average particle size of the fine particles is in the range of 1 nm to 5 mm.
The aqueous solution in which fine particles insoluble in water are dispersed is an arbitrary aqueous solution containing water and is appropriately determined according to the fine particles to be dispersed, and is not particularly limited.
[0013]
(Fine particle dispersion method)
The fine particle dispersion method of the present invention is a method of dispersing fine particles insoluble in water in an aqueous solution, and the concentration of the alkyldi (aminoethyl) glycine as the amphoteric surfactant is from 0.0015 to It is added to an aqueous solution in which fine particles are dispersed so that the concentration of dimethylbenzylalkylammonium chloride as a cationic surfactant is in the range of 0.003 to 2.5 g / L in the range of 1.5 g / L. is there.
[0014]
The fine particle dispersion method of the present invention is a method in which fine particles insoluble in water are dispersed in an aqueous solution, and the concentration of the amphoteric surfactant alkyldi (aminoethyl) glycine is in the range of 0.0015 to 1.5 g / L. And at least glycine-based amphoteric surfactant and benzylammonium chloride-based cationic surfactant so that the concentration of dimethylbenzylalkylammonium chloride as the cationic surfactant is in the range of 0.003 to 2.5 g / L. An agent is contained in an aqueous solution in which fine particles are dispersed.
[0015]
In the fine particle dispersion method of the present invention, when each concentration of the amphoteric surfactant and the cationic surfactant contained in the aqueous solution for dispersing the fine particles is out of the above range, the fine particles are not sufficiently stirred and dispersed. This is not preferable because a sufficient dispersion state cannot be maintained. The step of adding the amphoteric surfactant and the cationic surfactant to the aqueous solution may be either before or after the step of adding the fine particles to the aqueous solution. Further, mechanical stirring or ultrasonic dispersion may be used in combination when dispersing the fine particles.
In the method for dispersing fine particles of the present invention, the fine particle dispersant of the present invention is not used, and the glycine-based amphoteric surfactant and the benzylammonium chloride-based cationic surfactant are separately contained in an aqueous solution. As the amphoteric surfactant and the cationic surfactant, those exemplified as those used in the fine particle dispersant of the present invention described above are preferable.
[0016]
The fine particles to be dispersed in the fine particle dispersion method of the present invention are not particularly limited as long as they are insoluble in water and difficult to disperse in an aqueous solution. For example, the fine particles are exemplified in the description of the fine particle dispersant of the present invention described above. The average particle size is in the range of 1 nm to 5 mm.
The aqueous solution in which fine particles insoluble in water are dispersed is an arbitrary aqueous solution containing water and is appropriately determined according to the fine particles to be dispersed, and is not particularly limited.
[0017]
(Electroless plating on fine particles)
In the electroless plating method for fine particles of the present invention, the concentration of the amphoteric surfactant alkyldi (aminoethyl) glycine is in the range of 0.0015 to 1.5 g / L, and the cationic surfactant dimethylbenzylalkylammonium. Fine particles insoluble in water using the surface treatment liquid to which the above-described fine particle dispersant of the present invention is added so that the chloride concentration is in the range of 0.003 to 2.5 g / L, and an electroless plating bath. After the surface treatment is performed, a film is formed on the surface of the fine particles by electroless plating.
[0018]
In addition, the electroless plating method on the fine particles of the present invention is such that the concentration of the amphoteric surfactant alkyldi (aminoethyl) glycine is in the range of 0.0015 to 1.5 g / L and the cationic surfactant dimethylbenzyl. A surface treatment liquid containing at least a glycine-based amphoteric surfactant and a benzylammonium chloride-based cationic surfactant so that the concentration of the alkylammonium chloride is in the range of 0.003 to 2.5 g / L; and Then, a surface treatment is performed on fine particles insoluble in water using an electroless plating bath, and then a film is formed on the surface of the fine particles by electroless plating.
[0019]
The surface treatment liquid in the present invention is a degreasing liquid, a surface conditioning liquid, a catalyst imparting liquid, or the like. In addition, the electroless plating bath in the present invention is an electroless nickel plating bath, an electroless copper plating bath, an electroless tin plating bath, an electroless gold plating bath, an electroless silver plating bath, and substitutional plating thereof. A bath etc. can be mentioned.
[0020]
In the electroless plating method of the present invention, if each concentration of the amphoteric surfactant and the cationic surfactant contained in the surface treatment solution or the electroless plating bath is out of the above range, the stirring and dispersibility of the fine particles is insufficient. Or a sufficiently dispersed state cannot be maintained. The step of adding the amphoteric surfactant and the cationic surfactant to the surface treatment solution or the electroless plating bath may be either before or after the step of adding fine particles to these aqueous solutions. Further, mechanical stirring or ultrasonic dispersion may be used in combination when dispersing the fine particles.
[0021]
In the electroless plating method of the present invention, the glycine-based amphoteric surfactant and the benzylammonium chloride-based cationic surfactant are separately applied to the surface treatment solution and the electroless plating bath without using the fine particle dispersant of the present invention. Also when it is contained in the surfactant, the amphoteric surfactant and the cationic surfactant used are preferably those exemplified as those used in the fine particle dispersant of the present invention.
In the present invention, the fine particles that are targets for forming a film by electroless plating are fine particles that are insoluble in water and conventionally difficult to form a film by electroless plating. For example, the fine particles of the present invention described above are not particularly limited. Fine particles as mentioned in the description of the dispersant, and the average particle diameter is in the range of 1 nm to 5 mm.
[0022]
【Example】
Next, an Example is shown and this invention is demonstrated further in detail.
[Example 1]
Nippon Oil & Fats Nissan Anon LG was prepared as a glycine-based amphoteric surfactant, and Nippon Oil &Fats' cation F2-50E was prepared as a benzylammonium chloride-based cationic surfactant. These surfactants are mixed so that the content ratio of the amphoteric surfactant alkyldi (aminoethyl) glycine and the cationic surfactant dimethylbenzylalkylammonium chloride is 3: 5 to obtain the fine particles of the present invention. A dispersant was obtained.
[0023]
Next, the fine particle dispersant described above in water, the concentration of the amphoteric surfactant alkyldi (aminoethyl) glycine is 0.15 g / L, and the concentration of the cationic surfactant dimethylbenzylalkylammonium chloride is 0.00. Five types of fine particles shown in Table 1 below were added to an aqueous solution obtained by adding to 25 g / L, and the dispersion state was observed.
As a comparison, the same five kinds of fine particles were put into water to which no fine particle dispersant was added, and the dispersion state was observed.
[0024]
[Table 1]
Figure 0003984189
As shown in Table 1, in the fine particle dispersion method using the fine particle dispersant of the present invention, it was confirmed that all five kinds of fine particles were uniformly dispersed.
[0025]
[Example 2]
Nissan Anon LG (hereinafter referred to as “LG” in the present example) manufactured by Nippon Oil & Fats Co., Ltd. was prepared as a glycine-based amphoteric surfactant, and as a benzylammonium chloride-based cationic surfactant, Japan A cation F2-50E (hereinafter referred to as “F2-50E” in this example) was prepared. Next, 18 concentrations of LG (diethylamino) glycine in LG and dimethylbenzylalkylammonium chloride in F2-50E were contained in water so that the concentrations were as shown in Table 2 below. 1-18) were obtained. Dispersibility when 0.1 g of acrylic resin fine particles (MBX-8 manufactured by Sekisui Chemical Co., Ltd.) having an average particle diameter of 8 μm was added to each aqueous solution (1000 mL) and stirred, and allowed to stand for 1 hour after stirring. The dispersion retention after the evaluation was evaluated according to the following evaluation criteria, and the results are shown in Table 2 below.
[0026]
(Evaluation criteria for dispersibility)
◎: Dispersed uniformly by stirring after the introduction of fine particles ○: Dispersed uniformly by stirring after the introduction of fine particles, but there are some fine particles floating on the liquid surface ×: Fine particles are not dispersed even after stirring. Floating (retention criteria)
A: The state in which the fine particles are uniformly dispersed is maintained. ○: A part of the fine particles are settled or floated on the liquid surface. X: The fine particles are completely separated by sedimentation or floating on the liquid surface. [0027]
[Table 2]
Figure 0003984189
[0028]
As shown in Table 2, the concentration of LG's alkyldi (aminoethyl) glycine is in the range of 0.0015 to 1.5 g / L, and the concentration of F2-50E's dimethylbenzylalkylammonium chloride is 0.003. It was confirmed that Samples 1 to 14 in the range of ˜2.5 g / L had good dispersibility and retention of the acrylic resin fine particles.
[0029]
[Example 3]
Acrylic resin fine particles (MBX-8 manufactured by Sekisui Chemical Co., Ltd.) having an average particle size of 8 μm were prepared as fine particles to be coated with a film by electroless plating.
Also, Nippon Oil & Fats Nissan Anon LG was prepared as a glycine-based amphoteric surfactant, and Nippon Oil & Fats Cation F2-50E was prepared as a benzylammonium chloride-based cationic surfactant. did. These surfactants were mixed so that the alkyl di (aminoethyl) glycine concentration of Nissan Anon LG and the dimethylbenzylalkylammonium chloride concentration of the cation F2-50E were equivalent to obtain the fine particle dispersant of the present invention.
[0030]
Next, the above-mentioned fine particle dispersant is added to a commercially available alkaline degreasing solution (Melcleans Inc. Mel Cleaner ITO-170), the alkyldi (aminoethyl) glycine concentration of Nissan Anon LG is 0.5 g / L, and The dimethylbenzylalkylammonium chloride concentration of cation F2-50E was added to 0.5 g / L. Into 1000 mL of this alkaline degreasing solution, 0.1 g of the above-mentioned acrylic resin fine particles were added and dispersed, subjected to degreasing treatment (30 minutes), and washed with water.
Next, the fine particle dispersant is added to an aqueous solution of potassium hydroxide having a concentration of 45 g / L, and dimethylbenzylalkylammonium having an alkyldi (aminoethyl) glycine concentration of Nissan Anon LG of 0.5 g / L and a cation F2-50E. A degreasing solution was obtained by adding the chloride concentration to 0.5 g / L. The degreased solution 1000 mL was charged with 0.1 g of the acrylic resin fine particles after the above degreasing treatment, dispersed, again subjected to a degreasing treatment (30 minutes), and washed with water.
[0031]
Next, the above-mentioned fine particle dispersant is added to a commercially available surface conditioner (Meltex Co., Ltd. Melplate Conditioner 1101), the alkyldi (aminoethyl) glycine concentration of Nissan Anon LG is 0.5 g / L, and Cation F2-50E was added so that the dimethylbenzylalkylammonium chloride concentration was 0.5 g / L. In 1000 mL of the surface conditioner, 0.1 g of degreased acrylic resin fine particles was added and dispersed, subjected to a surface condition (30 minutes), and washed with water.
Subsequently, the above-mentioned fine particle dispersant was added to a commercially available palladium catalyst solution (Melplate Activator 7331 manufactured by Meltex Co., Ltd.) with an alkyldi (aminoethyl) glycine concentration of Nissan Anon LG of 0.5 g / L, and Cation F2-50E was added so that the dimethylbenzylalkylammonium chloride concentration was 0.5 g / L. In 1000 mL of this palladium catalyst solution, 0.1 g of the above-adjusted acrylic resin fine particles were added and dispersed, and a catalyst application treatment (30 minutes) was performed.
[0032]
Thereafter, the above-mentioned fine particle dispersant was added to a commercially available autocatalytic electroless nickel plating solution (Melplate Ni-867 manufactured by Meltex Co., Ltd.), and the alkyldi (aminoethyl) glycine concentration of Nissan Anon LG was 0.5 g. The electroless nickel plating bath was added so that the dimethylbenzylalkylammonium chloride concentration of the cation F2-50E was 0.5 g / L. In this electroless nickel plating bath (45 ° C.), 0.1 g of the acrylic resin fine particles subjected to the above-described catalyst application treatment were introduced and dispersed to perform electroless nickel plating.
[0033]
As described above, it was confirmed that a nickel plating film was uniformly formed on the surface of the acrylic resin fine particles subjected to electroless nickel plating.
In addition, the above-mentioned degreasing liquid (2 types), surface conditioner, palladium catalyst liquid, and electroless nickel plating liquid do not use the fine particle dispersant of the present invention, and are a glycine-based amphoteric surfactant. Nissan Anon LG Co., Ltd. and Nippon Oil & Fats Co., Ltd., Cationic F2-50E, which is a benzylammonium chloride cationic surfactant, have an alkyldi (aminoethyl) glycine concentration of 0.5 g / Confirm that the nickel plating film can be uniformly formed on the surface of the acrylic resin fine particles even when the dimethylbenzylalkylammonium chloride concentration of the cation F2-50E is 0.5 g / L. did.
[0034]
In addition, when none of the above-described degreasing liquid (two types), the surface conditioner, the palladium catalyst liquid, and the electroless nickel plating liquid is added with the fine particle dispersant of the present invention, the acrylic resin fine particles float on the liquid surface. In this state, the desired treatment could not be performed, resulting in no plating, non-uniform deposition film, aggregation, and the like.
[0035]
[Comparative Example 1]
As amphoteric surfactants that are not glycine-based, four types of BL manufactured by Nippon Oil & Fat Co., Ltd., GLM-RBL manufactured by Nippon Oil & Fat Co., Ltd., BDF-R manufactured by Nippon Oil & Fat Co., Ltd., and BF manufactured by Nippon Oil & Fat Co., Ltd. are prepared. In addition, SA manufactured by NOF Corporation was prepared as a cationic surfactant that is not benzylammonium chloride. And it mixed so that an amphoteric surfactant density | concentration might be 0.5 g / L and a cationic surfactant density | concentration might be 0.5 g / L, and four types of aqueous solution was obtained. Acrylic resin fine particles having an average particle diameter of 8 μm (MBX-8 manufactured by Sekisui Chemical Co., Ltd.) were added to this aqueous solution, and the dispersion state was observed. However, in all cases, the acrylic resin fine particles floated on the water surface, and uniform dispersion could not be obtained.
[0036]
[Comparative Example 2]
BL manufactured by Nippon Oil & Fats Co., Ltd. is prepared as an amphoteric surfactant that is not glycine-based, and SA manufactured by Nippon Oil & Fats Co., Ltd. Two types of AB were prepared. And it mixed so that an amphoteric surfactant density | concentration might be set to 0.5 g / L and a cationic surfactant density | concentration might be 0.5 g / L, and two types of aqueous solution was obtained. Acrylic resin fine particles having an average particle diameter of 8 μm (MBX-8 manufactured by Sekisui Chemical Co., Ltd.) were added to this aqueous solution, and the dispersion state was observed. However, in all cases, the acrylic resin fine particles floated on the water surface, and uniform dispersion could not be obtained.
[0037]
【The invention's effect】
As described above in detail, according to the present invention, the fine particle dispersant is a glycine-based dispersant such that the amphoteric surfactant alkyldi (aminoethyl) glycine and the cationic surfactant dimethylbenzylalkylammonium chloride have a predetermined ratio. The amphoteric surfactant and benzylammonium chloride cationic surfactant are contained at least, so that the fine particle dispersant can be added to the aqueous solution at a predetermined concentration, or can be added to the aqueous solution. By containing at least an amphoteric surfactant and a cationic surfactant so that (aminoethyl) glycine and the cationic surfactant dimethylbenzylalkylammonium chloride have a predetermined concentration, fine particles insoluble in water are added to the aqueous solution. Can be dispersed and used for electroless plating method Similarly in terms treatment liquid and the electroless plating bath, water can be dispersed fine particles of insoluble, it is possible to form a uniform plated film on the surface of such particles.

Claims (5)

水に不溶の微粒子を水溶液に分散させるための微粒子分散剤において、
両性界面活性剤のアルキルジ(アミノエチル)グリシンとカチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドとを、含有比率が3:5000〜500:1の範囲内となるように含有することを特徴とする微粒子分散剤。
In a fine particle dispersant for dispersing fine particles insoluble in water in an aqueous solution,
Fine particles comprising an amphoteric surfactant alkyldi (aminoethyl) glycine and a cationic surfactant dimethylbenzylalkylammonium chloride so that the content ratio is within a range of 3: 5000 to 500: 1. Dispersant.
水に不溶の微粒子を水溶液に分散させる微粒子分散方法において、
微粒子を分散させるための水溶液に、請求項1に記載の微粒子分散剤を、両性界面活性剤のアルキルジ(アミノエチル)グリシンの濃度が0.0015〜1.5g/Lの範囲となり、かつ、カチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドの濃度が0.003〜2.5g/Lの範囲となるように添加することを特徴とする微粒子分散方法。
In a fine particle dispersion method of dispersing fine particles insoluble in water in an aqueous solution,
The fine particle dispersant according to claim 1 is added to an aqueous solution for dispersing fine particles, the concentration of the alkyldi (aminoethyl) glycine as the amphoteric surfactant is in the range of 0.0015 to 1.5 g / L, and the cation A fine particle dispersion method comprising adding a surfactant such that the concentration of dimethylbenzylalkylammonium chloride in a range of 0.003 to 2.5 g / L.
水に不溶の微粒子を水溶液に分散させる微粒子分散方法において、
微粒子を分散させるための水溶液に、両性界面活性剤のアルキルジ(アミノエチル)グリシンを濃度が0.0015〜1.5g/Lとなる範囲で、カチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドを濃度が0.003〜2.5g/Lとなる範囲で、かつ、前記アルキルジ(アミノエチル)グリシンと前記ジメチルベンジルアルキルアンモニウムクロライドとの含有比率が3:5000〜500:1の範囲となるように含有させることを特徴とする微粒子分散方法。
In a fine particle dispersion method of dispersing fine particles insoluble in water in an aqueous solution,
In the aqueous solution for dispersing the fine particles, the concentration of amphoteric surfactant alkyldi (aminoethyl) glycine is 0.0015 to 1.5 g / L, and the concentration of cationic surfactant dimethylbenzylalkylammonium chloride is In a range of 0.003 to 2.5 g / L, the content ratio of the alkyldi (aminoethyl) glycine and the dimethylbenzylalkylammonium chloride is included in a range of 3: 5000 to 500: 1 . A method for dispersing fine particles.
水に不溶の微粒子に表面処理を施した後、無電解めっきにより微粒子表面に皮膜を形成する無電解めっき方法において、
微粒子の表面処理液、および、無電解めっき浴に、請求項1に記載の微粒子分散剤を、両性界面活性剤のアルキルジ(アミノエチル)グリシンの濃度が0.0015〜1.5g/Lの範囲となり、かつ、カチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドの濃度が0.003〜2.5g/Lの範囲となるように添加することを特徴とする無電解めっき方法。
In the electroless plating method of forming a film on the surface of fine particles by electroless plating after surface treatment of fine particles insoluble in water,
The fine particle dispersant according to claim 1 is added to a fine particle surface treatment solution and an electroless plating bath, and the concentration of the amphoteric surfactant alkyldi (aminoethyl) glycine is in the range of 0.0015 to 1.5 g / L. And adding so that the concentration of dimethylbenzylalkylammonium chloride as a cationic surfactant is in the range of 0.003 to 2.5 g / L.
水に不溶の微粒子に表面処理を施した後、無電解めっきにより微粒子表面に皮膜を形成する無電解めっき方法において、
微粒子の表面処理液、および、無電解めっき浴に、両性界面活性剤のアルキルジ(アミノエチル)グリシンを濃度が0.0015〜1.5g/Lとなる範囲で、カチオン界面活性剤のジメチルベンジルアルキルアンモニウムクロライドを濃度が0.003〜2.5g/Lとなる範囲で、かつ、前記アルキルジ(アミノエチル)グリシンと前記ジメチルベンジルアルキルアンモニウムクロライドとの含有比率が3:5000〜500:1の範囲となるように含有させることを特徴とする無電解めっき方法。
In the electroless plating method of forming a film on the surface of fine particles by electroless plating after surface treatment of fine particles insoluble in water,
Dimethylbenzyl alkyl, a cationic surfactant, in a surface treatment solution for fine particles and an electroless plating bath in a range where the concentration of the amphoteric surfactant alkyldi (aminoethyl) glycine is 0.0015 to 1.5 g / L. The concentration of ammonium chloride is in the range of 0.003 to 2.5 g / L, and the content ratio of the alkyldi (aminoethyl) glycine and the dimethylbenzylalkylammonium chloride is in the range of 3: 5000 to 500: 1. electroless plating method characterized by the inclusion so that.
JP2003150336A 2003-05-28 2003-05-28 Fine particle dispersant, fine particle dispersion method, and electroless plating method on fine particles Expired - Lifetime JP3984189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003150336A JP3984189B2 (en) 2003-05-28 2003-05-28 Fine particle dispersant, fine particle dispersion method, and electroless plating method on fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150336A JP3984189B2 (en) 2003-05-28 2003-05-28 Fine particle dispersant, fine particle dispersion method, and electroless plating method on fine particles

Publications (2)

Publication Number Publication Date
JP2004353017A JP2004353017A (en) 2004-12-16
JP3984189B2 true JP3984189B2 (en) 2007-10-03

Family

ID=34046165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150336A Expired - Lifetime JP3984189B2 (en) 2003-05-28 2003-05-28 Fine particle dispersant, fine particle dispersion method, and electroless plating method on fine particles

Country Status (1)

Country Link
JP (1) JP3984189B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028845A (en) * 2011-07-29 2013-02-07 Nicca Chemical Co Ltd Dispersing agent for electroless composite plating liquid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052604A1 (en) * 2009-10-26 2011-05-05 独立行政法人産業技術総合研究所 Photoresponsive ionic organic compound, production method therefor, and photoresponsive carbon nanotube dispersant comprising said ionic organic compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028845A (en) * 2011-07-29 2013-02-07 Nicca Chemical Co Ltd Dispersing agent for electroless composite plating liquid

Also Published As

Publication number Publication date
JP2004353017A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
TWI322793B (en) Functionalized magnetizable microspheres and preparation thereof
JP4564963B2 (en) Improved electroless nickel composite plating bath
CA1063966A (en) Electroplating method
US20060073335A1 (en) Conductive electrolessly plated powder and method for making same
US4716059A (en) Composites of metal with carbon fluoride and method of preparation
EP0343836A1 (en) Particulate material useful in an electroconductive body and method of making such particles
JP4139312B2 (en) Electrolytic plating method
JP3984189B2 (en) Fine particle dispersant, fine particle dispersion method, and electroless plating method on fine particles
JPS60175549A (en) Catalytic method and system
CN106676613A (en) Dispersion method for ceramic particles in process of metal material surface composite plating
JP2004131801A (en) Conductive electroless plating powder and method for manufacturing the same
US4043878A (en) Electroplating method
JP3905013B2 (en) Conductive electroless plating powder and manufacturing method thereof
WO2021239722A2 (en) Improved electrodeposition
JPH01290776A (en) Composite plating method
JP3858971B2 (en) Electroless plating method for fine particles
JP3210096B2 (en) Nickel alloy plated powder and method for producing the same
CN107916415A (en) The preparation method of graphene phosphatization nickel composite deposite and the coating being prepared
JP3175458B2 (en) Method of forming composite plating film for coil spring
RU2088689C1 (en) METHOD OF PREPARING electrolyte for applying metal-based composite coatings
CN109136894B (en) Environment-friendly multi-element alloy autocatalytic plating process
JPH0581919A (en) Electric conductive powder and manufacture thereof
Karthikeyan et al. Characterization of electrolessly deposited nickel-phosphorous-silicon carbide composite coatings
WO2023084803A1 (en) Non-cyanide electrolytic gold plating solution
WO2020217738A1 (en) Eutectoid plating solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150