JP3982931B2 - Micro parts alignment supply device - Google Patents

Micro parts alignment supply device Download PDF

Info

Publication number
JP3982931B2
JP3982931B2 JP35277398A JP35277398A JP3982931B2 JP 3982931 B2 JP3982931 B2 JP 3982931B2 JP 35277398 A JP35277398 A JP 35277398A JP 35277398 A JP35277398 A JP 35277398A JP 3982931 B2 JP3982931 B2 JP 3982931B2
Authority
JP
Japan
Prior art keywords
parts
component
conveyance path
feeder
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35277398A
Other languages
Japanese (ja)
Other versions
JP2000118682A (en
Inventor
茂樹 松下
正夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP35277398A priority Critical patent/JP3982931B2/en
Publication of JP2000118682A publication Critical patent/JP2000118682A/en
Application granted granted Critical
Publication of JP3982931B2 publication Critical patent/JP3982931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Feeding Of Articles To Conveyors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、概ね1mm3 以下の微小部品を整列供給する装置に関するものである。
【0002】
【従来の技術】
チップ状電子部品等の微小部品を整列供給する装置として、振動式パーツフィーダが数多く採用されている。しかしながら、概ね1mm3 以下の微小部品を整列供給する場合は、姿勢不良で不合格となる部品の割合が多くなるため、1台の振動式パーツフィーダでは、コンスタントな数量の部品を次工程へ供給するのが困難である。
【0003】
上記の問題に対して、複数の振動式パーツフィーダを組み合わせ、上流側のパーツフィーダで部品を整列搬送し、この整列搬送された部品を下流側のパーツフィーダで一定量に保ちながら次工程へ供給する微小部品の整列供給装置が一部で採用されている。この振動式パーツフィーダの組み合わせとしては、通常、上流側に部品を多く貯蔵できる振動式ボウルフィーダが採用され、下流側には部品の供給スピードを調節しやすい振動式直進フィーダが採用されている。
【0004】
【発明が解決しようとする課題】
上述した従来の振動式ボウルフィーダと振動式直進フィーダを組み合わせた微小部品整列供給装置は、各々のフィーダの振動方向、振動周波数、振幅が異なるため、部品の受け渡し部分の両者の搬送路の間に隙間を設ける必要があり、微小部品がこの隙間に詰まったり、引っ掛かったりする問題がある。これを防止するため、受け渡し部分の搬送路を上流側よりも下流側を低くして微小部品が乗り移り易くする方法や、上流側と下流側の搬送路を上下にオーバーラップさせる方法が考えられるが、受け渡し部分に生じる落差で、ボウルフィーダで整列された部品の姿勢が変化する問題がある。
【0005】
そこで、この発明の課題は、概ね1mm3 以下の微小部品を、部品詰まり等を生じさせることなくコンスタントに整列供給できる微小部品整列供給品装置を提供することである。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、この発明は、概ね1mm3 以下の微小部品を、搬送路に沿って補給する部品補給装置と、これらの微小部品が受け渡される直線状の搬送路を有する振動式直進フィーダとが配列され、前記微小部品を搬送しながら、姿勢を整列して排出端に供給する微小部品整列供給装置において、前記部品補給装置の搬送路から前記直進フィーダの搬送路への部品受け渡し部で、両者の搬送路の間に直進フィーダの搬送路側を低くした落差を設け、前記部品の姿勢を整列する手段を、前記直進フィーダの搬送路の途中に設けた構成を採用したのである。
【0007】
すなわち、コンスタントな数量の微小部品を次工程に供給するため、部品補給装置と振動式直進フィーダとを組み合わせ配列し、部品補給装置の搬送路から直進フィーダの搬送路への部品受け渡し部に落差を設けて、部品詰まり等を防止するとともに、下流側の直進フィーダの搬送路で部品の姿勢を整列させることにより、前記受け渡し部での搬送路間の落差で部品の姿勢が変化しても構わなくしたのである。前記部品補給装置としては、従来多用されている振動式ボウルフィーダのほかに、振動式直進フィーダやベルト式ホッパフィーダ等を採用することもできる。
【0008】
前記微小部品が、表裏対称の形状で、表裏面の向きを有する部品で、前記部品の姿勢を整列する手段の下流側に、前記部品の表裏面の向きを選別する手段を設けることにより、チップ抵抗器等、表裏面の向きを有する微小部品も整列供給することができる。
【0009】
前記排出端に搬送される余剰の微小部品を、前記直進フィーダの搬送路から排除する手段を設けることにより、前記上流側の部品補給装置を停止させることなく、一定量の微小部品を直進フィーダの搬送路に保持することができる。
【0010】
前記直進フィーダの搬送路の途中で、この搬送路から排除された微小部品を、戻し搬送する手段を設けることにより、直進フィーダの搬送路から排除される姿勢不良の部品や余剰の部品を、自動的に整列供給装置に再供給することができる。
【0011】
前記微小部品を戻し搬送する手段として、微小部品を管路に沿って圧縮エアで搬送するエア式部品搬送装置を採用することにより、軽い微小部品を速やかに戻し搬送することができる。
【0012】
前記管路の排出端に、戻し搬送される微小部品の速度を減速する手段を設けることにより、微小部品の着地時の損傷を防止することができる。
【0013】
前記部品補給装置および直進フィーダの各搬送路を、それぞれ複列に形成することにより、部品の整列供給量を大幅に増大させることができる。
【0014】
前記部品補給装置および直進フィーダを、防塵ボックスで覆うことにより、外部から侵入する埃等が原因となる部品詰まりや引っ掛かり等のトラブルを減少させることができる。
【0015】
前記防塵ボックス内をエアパージする手段を設けることにより、前記埃等によるトラブルを皆無にすることができる。
【0016】
前記部品補給装置の搬送路から直進フィーダの搬送路への部品受け渡し部で、部品補給装置の搬送路側を直進フィーダの搬送路の上に入り込ませ、両搬送路間にオーバーラップ部を設けることにより、この受け渡し部での部品詰まりや引っ掛かりをより効果的に防止することができる。
【0017】
【発明の実施の形態】
以下、図1乃至図12に基づき、この発明の実施形態を説明する。
【0018】
図1および図2は、微小部品整列供給装置の実施形態を示す。図1は正面図、図2は平面図である。この整列供給装置は、微小なチップ抵抗器1を整列供給するものであり、チップ抵抗器1が貯蔵されるボウル2がねじり振動され、チップ抵抗器1がボウル2内の螺旋状の搬送路に沿って搬送される振動式ボウルフィーダ3と、このボウルフィーダ3から搬送されたチップ抵抗器1を受け取り、直線状の搬送路を有するトラフ4を往復振動させ、チップ抵抗器1をこの搬送路に沿って搬送しながら整列供給する振動式直進フィーダ5と、後述する直進フィーダ5の搬送路途中の各部位で排除されたチップ抵抗器1をボウル2に戻すエア式部品搬送装置6とで基本的に構成されている。
【0019】
前記チップ抵抗器1は、図3に示すように、厚みと幅がほぼ等寸で、長さが幅の倍寸に形成され、表面側に抵抗体7が埋め込まれており、表裏対称の形状で、表裏面の向きを有する。
【0020】
前記トラフ4は、図4(a)、(b)に示すように、直線状の搬送路8が設けられ、搬送路8の左端で前記ボウル2の搬送路9から受け渡されるチップ抵抗器1を、この搬送路8に沿って搬送しながら整列し、右端の排出端10から次工程へ供給する。また、トラフ4には、搬送路8の途中で排除されたチップ抵抗器1が落下する溝11が、搬送路8に沿って設けられている。
【0021】
前記搬送路9と搬送路8の受け渡し部は、図5(a)、(b)に示すように、搬送路9を上側にしてオーバーラップされており、各搬送路8、9はV溝断面に形成されている。未整列のチップ抵抗器1は、搬送路8、9間の落差を利用して、詰まったり、引っ掛かったりすることなく、搬送路9から搬送路8へスムーズに乗り移る。
【0022】
前記トラフ4には種々の要素部品が取り付けられ、図6乃至図8に示すように、前記搬送路8は、各搬送部位で種々の断面形状に形成されている。以下に、図面に基づいて、搬送路8の断面形状と作用を上流側から順に説明する。
【0023】
図6(a)、(b)、(c)は、図5に示した受け渡し部に続く断面であり、トラフ4の傾斜面12に、2つのブロック要素13、14が取り付けられ、傾斜面12の下降側には前記溝11が形成されている。搬送路8aは、両ブロック要素13、14の上側接触境界線に沿ってV溝に形成され、ブロック要素13側のV溝深さは、チップ抵抗器1の幅と同一寸法になっている。
【0024】
図6(a)の断面では、ブロック要素13の上面にプレート要素15が重ねられ、V溝深さがチップ抵抗器1の各辺長よりも十分深く形成されている。(b)、(c)の断面では、要素部品14に搬送路8aに沿った貫通溝孔16が設けられ、トラフ4の傾斜面12には、この貫通溝孔16に沿った溝17と、(c)の断面で溝11に連なる溝18が設けられている。したがって、図9(a)に示すように、V溝の搬送路8aに沿って、幅方向や厚み方向を進行方向に向けて移動するチップ抵抗器1は、ブロック要素13の上端から溝11に落下するか、または貫通溝孔16から溝17、18を通って溝11に落下する。図9(b)に示すように、長さ方向を進行方向に向けたチップ抵抗器1のみが、次の図7(a)に示す断面側へ搬送される。
【0025】
図7(a)、(b)、(c)の各断面は、前記溝11の片側に段差部19が設けられている。図7(a)の断面では、この段差部19にブロック要素20が取り付けられ、このブロック要素20の上面には、図9(c)に示すように、前記V溝の搬送路8aに接続されたU溝の搬送路8bが形成されている。したがって、V溝搬送路8aのいずれかの底面に表裏面を接触させて搬送されてきたチップ抵抗器1は、このU溝搬送路8bの底中央に合流し、表裏面を上下に向けて搬送される。
【0026】
図7(b)、(c)の断面では、前記段差部19に2つのブロック要素21、22が取り付けられている。ブロック要素22の上側突起部23の上面は、図10(a)に示すように、すくい角が設けられ、この突起部23の上面とブロック要素21の側面で搬送路8cが形成されている。ブロック要素21は、ねじ24で高さ変更され、ブロック要素21に取り付けられたエアノズル26の高さ位置を調節できるようになっている。(c)の断面には、光電センサ25とエアノズル26が配置され、光電センサ25で裏向きと判定されたチップ抵抗器1は、エアノズル26で溝11に吹き落とされる。なお、光電センサ25とエアノズル26は2ヶ所に配置され、表裏面の向きの選別精度を向上させるようにしている。
【0027】
図8(a)、(b)、(c)の各断面には、薄板要素27を挟んでボルト28で結合された2つのブロック要素29、30が取り付けられている。図10(b)に示すように、薄板要素27の上端に形成された両ブロック要素29、30間の隙間が搬送路8dになっている。この搬送路8dの幅と深さは、チップ抵抗器1の幅と高さよりもわずかに大きく形成され、図8(b)、(c)の断面では、天板31で上端を覆われている。この天板31で覆われた搬送路8dの領域に、一定数量のチップ抵抗器1が表裏整列された状態で保持される。図8(a)の断面は、この領域の入口であり、この断面に、余剰のチップ抵抗器1を検出する光電センサ32と、図示はしないが、前記エアノズル26と同様のエアノズルが配置されている。
【0028】
図8(b)の断面の前記溝11には孔33が設けられ、この孔33を通して、前記エア式部品搬送装置6の管路34の供給端に圧縮エアのノズル35が挿入されている。ノズル35から圧縮エアを噴射することにより、管路34の供給端側が負圧となり、チップ抵抗器1が管路34内に吸い込まれる。管路34に吸い込まれたチップ抵抗器1は、前記圧縮エアで管路34に沿って排出端へ搬送される。
【0029】
前記エア式部品搬送装置6は、図11に示すように、チップ抵抗器1を戻し搬送する管路34と、管路34の排出端に接続された減速容器36とで構成されている。減速容器36の内周には、下方に開口する円筒状の案内面37が形成され、この案内面37の上端に、下方が開放されたリング状の周回路38が設けられている。この周回路38の接線方向に管路34の排出端が接続され、排出端から排出されるチップ抵抗器1は、周回路38でその直線運動を周回運動に変えられ、案内面37に沿って螺旋状に周回下降しながら前記ボウル2内に着地する。また、減速容器36の上端には通気孔39が設けられ、管路34の排出端から噴出する圧縮エアの一部が埃等とともに装置外へ放出されるようになっている。
【0030】
図12(a)、(b)は、図5に示した搬送路9と搬送路8の受け渡し部の変形例を示す。この変形例では、両搬送路8、9間にオーバーラップがなく、微小な隙間を挟んで搬送路8側をわずかに低くした落差が設けられている。この落差は0.01mm程度の微小な段差でも効果を発揮する。搬送路9を移動してくるチップ抵抗器1は、この落差を利用して搬送路8に乗り移る。図5および図12に示した各受け渡し部では、搬送路8、9の断面をいずれもV溝形状としたが、オーバーラップの有無に係わらず、U溝や台形溝等、種々の断面形状とすることができ、搬送路8と搬送路9の断面形状を異なるものとしてもよい。
【0031】
図13は、図1および図2に示した微小部品整列供給装置を、防塵ボックス40で覆った実施形態を示す。この防塵ボックス40には、エアパージ用のエア供給孔41と、チップ抵抗器1をボウル2に供給する投入口42が設けられ、この投入口42に蓋43が取り付けられている。エア供給孔41から供給されたエアは、整列供給装置の排出端に設けられた孔44から排出される。
【0032】
上述した各実施形態では、上流側の部品補給装置として振動式ボウルフィーダを用いたが、振動式直進フィーダやベルト式ホッパフィーダ等を採用することもできる。また、微小部品の戻し搬送には、実施形態のエア式部品搬送装置のほかに、振動式直進フィーダやベルトコンベア等を用いることもできる。
【0033】
【発明の効果】
以上のように、この発明の微小部品整列供給装置は、部品補給装置と振動式直進フィーダとを組み合わせ配列し、部品補給装置の搬送路から直進フィーダの搬送路への部品受け渡し部に落差を設けるとともに、下流側の直進フィーダの搬送路で部品の姿勢を整列させるようにしたので、概ね1mm3 以下の微小部品を、部品詰まり等を生じさせることなく、コンスタントに次工程へ整列供給することができる。なお、姿勢整列部を直進フィーダの直線状搬送路に設けたので、姿勢整列のために加工精度が要求される各部品要素を直線的な要素とすることができ、これらの各部品要素を高精度に加工することもできる。
【0034】
また、排出端に搬送される余剰の微小部品を、直進フィーダの搬送路から排除する手段を設けたので、上流側の部品補給装置を停止させることなく、連続的に一定量の微小部品を直進フィーダの搬送路に保持することができる。
【0035】
さらに、直進フィーダの搬送路の途中で、この搬送路から排除された微小部品を、戻し搬送する手段を設けたので、搬送路から排除される姿勢不良の部品や余剰の部品を、自動的に整列供給装置に再供給することができる。この微小部品を戻し搬送する手段として、微小部品を管路に沿って圧縮エアで搬送するエア式部品搬送装置を採用することにより、軽い微小部品を速やかに、かつ低コストで戻し搬送することができ、管路の排出端に、戻し搬送される微小部品の速度を減速する手段を設けることにより、微小部品の着地時の損傷を防止することができる。
【図面の簡単な説明】
【図1】微小部品整列供給装置の実施形態を示す正面図
【図2】図1の平面図
【図3】図1の整列供給装置で整列供給されるチップ抵抗器を示す外観斜視図
【図4】aは図1のトラフを示す平面図、bはその一部切欠き正面図
【図5】aは図4の要部拡大切欠き正面図、bはaのV−V線に沿った拡大断面図
【図6】a、b、cは、それぞれ図4のVIa −VIa 線、VIb −VIb 線、VIc −VIc 線に沿った拡大断面図
【図7】a、b、cは、それぞれ図4のVIIa−VIIa線、VIIb−VIIb線、VIIc−VIIc線に沿った拡大断面図
【図8】a、b、cは、それぞれ図4のVIIIa −VIIIa 線、VIIIb −VIIIb 線、VIIIc −VIIIc 線に沿った拡大断面図
【図9】a、bは、それぞれ図6(b)の要部拡大断面図、cは図7(a)の要部拡大断面図
【図10】aは図7(b)の要部拡大断面図、bは図8(a)の要部拡大断面図
【図11】図1のエア式部品搬送装置を示す一部省略縦断正面図
【図12】aは図5の受け渡し部の変形例を示す切欠き正面図、bはaのXII −XII 線に沿った拡大断面図
【図13】微小部品整列供給装置の他の実施形態を示す縦断正面図
【符号の説明】
1 チップ抵抗器
2 ボウル
3 ボウルフィーダ
4 トラフ
5 直進フィーダ
6 エア式部品搬送装置
7 抵抗体
8、8a、8b、8c、8d、9 搬送路
10 排出端
11 溝
12 傾斜面
13、14 ブロック要素
15 プレート要素
16 貫通溝孔
17、18 溝
19 段差部
20、21、22 ブロック要素
23 突起部
24 ねじ
25 光電センサ
26 エアノズル
27 薄板要素
28 ボルト
29、30 ブロック要素
31 天板
32 光電センサ
33 孔
34 管路
35 ノズル
36 減速容器
37 案内面
38 周回路
39 通気孔
40 防塵ボックス
41 エア供給孔
42 投入口
43 蓋
44 孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for aligning and supplying minute parts of approximately 1 mm 3 or less.
[0002]
[Prior art]
Many vibration-type parts feeders are used as devices for aligning and supplying minute parts such as chip-like electronic parts. However, when aligning and supplying minute parts of approximately 1 mm 3 or less, the proportion of parts that are rejected due to poor posture increases, so a single vibratory parts feeder supplies a constant quantity of parts to the next process. Difficult to do.
[0003]
Combining multiple vibratory parts feeders for the above problems, aligning and transporting parts with the upstream part feeder, and supplying the aligned parts to the next process while maintaining a constant amount with the downstream parts feeder In some cases, an apparatus for aligning and supplying micro parts is employed. As a combination of the vibratory parts feeder, a vibratory bowl feeder that can store many parts on the upstream side is usually adopted, and a vibratory linear feeder that easily adjusts the supply speed of the parts is adopted on the downstream side.
[0004]
[Problems to be solved by the invention]
The above-described conventional vibratory bowl feeder and vibratory linear feeder are combined in a micro-parts alignment and supply device that has different vibration directions, vibration frequencies, and amplitudes between the feeders. It is necessary to provide a gap, and there is a problem that minute parts are clogged or caught in the gap. In order to prevent this, a method of making the transfer path of the transfer part lower on the downstream side than on the upstream side to make it easy for microparts to transfer, and a method of overlapping the upstream and downstream transfer paths up and down can be considered. There is a problem in that the posture of the parts aligned by the bowl feeder changes due to a drop generated in the transfer portion.
[0005]
Accordingly, an object of the present invention is to provide an apparatus for aligning and supplying micro components capable of constantly aligning and supplying micro components of approximately 1 mm 3 or less without causing clogging of components or the like.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is a generally 1 mm 3 or less of the microcomponents, a component supply device for replenishing along the transport path, the vibration having a straight transporting path of these microcomponents is passed In the micro component alignment and supply device in which the linear feeder is arranged and supplies the discharge end with the posture aligned while conveying the micro components, the component from the transport path of the component replenishing device to the transport path of the linear feeder In the transfer section, a configuration is adopted in which a drop is provided between the two conveying paths so that the conveying path side of the linear feeder is lowered, and means for aligning the posture of the parts is provided in the middle of the conveying path of the linear feeder. .
[0007]
In other words, in order to supply a constant quantity of minute parts to the next process, a component replenishing device and a vibratory linear feeder are combined and arranged, and there is a drop in the component delivery section from the conveying path of the component replenishing device to the conveying path of the linear feeder. It is possible to prevent clogging of parts, etc., and by aligning the posture of the parts with the conveyance path of the downstream straight feeder, the posture of the parts may be changed due to the drop between the conveyance paths at the delivery unit. It was. As the component replenishing device, a vibration type linear feeder, a belt type hopper feeder, or the like can be adopted in addition to a vibration bowl feeder that has been widely used conventionally.
[0008]
By providing means for sorting the front and back direction of the component downstream of the means for aligning the posture of the component, the micro part is a part having a front and back symmetric shape in a shape that is front and back symmetric, It is possible to align and supply minute parts having front and back orientations such as resistors.
[0009]
By providing a means for removing excess minute parts conveyed to the discharge end from the conveying path of the linear feeder, a certain amount of minute parts can be removed from the linear feeder without stopping the upstream part supply device. It can be held in the transport path.
[0010]
By providing a means for returning and transporting the micro parts removed from the transport path in the middle of the transport path of the linear feeder, it is possible to automatically remove defective parts and excess parts excluded from the transport path of the straight feeder. Can be re-supplied to the aligning and feeding apparatus.
[0011]
By adopting an air-type component conveying device that conveys minute parts with compressed air along a pipeline as the means for returning and conveying the minute parts, light minute parts can be quickly returned and conveyed.
[0012]
By providing a means for reducing the speed of the returned micro parts at the discharge end of the pipeline, damage at the time of landing of the micro parts can be prevented.
[0013]
By forming the conveying paths of the component replenishing device and the linear feeder in double rows, the amount of parts to be aligned and supplied can be greatly increased.
[0014]
By covering the component supply device and the linear feeder with a dustproof box, troubles such as component clogging and catching caused by dust entering from the outside can be reduced.
[0015]
By providing a means for air purging the inside of the dustproof box, troubles due to the dust and the like can be eliminated.
[0016]
In the parts delivery part from the conveying path of the parts replenishing device to the conveying path of the linear feeder, the conveying path side of the component replenishing apparatus enters the conveying path of the linear feeder, and an overlap portion is provided between both conveying paths. In addition, it is possible to more effectively prevent clogging and catching of parts at the transfer section.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0018]
1 and 2 show an embodiment of a micropart alignment supply apparatus. 1 is a front view and FIG. 2 is a plan view. This alignment supply device aligns and supplies minute chip resistors 1, a bowl 2 in which the chip resistors 1 are stored is torsionally vibrated, and the chip resistors 1 are moved along a spiral conveyance path in the bowl 2. The vibratory bowl feeder 3 transported along the chip resistor 1 and the chip resistor 1 transported from the bowl feeder 3 are received, the trough 4 having a straight transport path is reciprocally vibrated, and the chip resistor 1 is moved to the transport path. Basically, a vibration type linear feeder 5 that supplies and aligns while conveying along, and an air-type component conveying device 6 that returns the chip resistor 1 that has been removed at each part in the middle of the conveyance path of the linear feeder 5 to be described later to the bowl 2. It is configured.
[0019]
As shown in FIG. 3, the chip resistor 1 has a thickness and a width that are approximately the same size, a length that is twice the width, a resistor 7 embedded in the surface side, and a symmetrical shape. And having a front and back orientation.
[0020]
As shown in FIGS. 4A and 4B, the trough 4 is provided with a linear conveyance path 8, and the chip resistor 1 delivered from the conveyance path 9 of the bowl 2 at the left end of the conveyance path 8. Are aligned while being conveyed along the conveying path 8 and supplied from the discharge end 10 at the right end to the next process. Further, the trough 4 is provided with a groove 11 along the conveyance path 8 in which the chip resistor 1 removed in the middle of the conveyance path 8 falls.
[0021]
As shown in FIGS. 5 (a) and 5 (b), the transfer section between the transport path 9 and the transport path 8 is overlapped with the transport path 9 on the upper side. Is formed. The unaligned chip resistors 1 smoothly transfer from the conveyance path 9 to the conveyance path 8 without being clogged or caught by using the drop between the conveyance paths 8 and 9.
[0022]
Various element parts are attached to the trough 4, and as shown in FIGS. 6 to 8, the transport path 8 is formed in various cross-sectional shapes at each transport site. Below, based on drawing, the cross-sectional shape and effect | action of the conveyance path 8 are demonstrated in order from an upstream.
[0023]
6 (a), 6 (b), and 6 (c) are cross-sections following the transfer section shown in FIG. 5. Two block elements 13 and 14 are attached to the inclined surface 12 of the trough 4, and the inclined surface 12 is shown. The groove 11 is formed on the descending side. The conveyance path 8 a is formed in a V-groove along the upper contact boundary line of both the block elements 13 and 14, and the V-groove depth on the block element 13 side is the same as the width of the chip resistor 1.
[0024]
In the cross section of FIG. 6A, the plate element 15 is superimposed on the upper surface of the block element 13, and the V-groove depth is formed sufficiently deeper than each side length of the chip resistor 1. In the cross sections of (b) and (c), the through hole 16 along the conveying path 8a is provided in the component part 14, and the inclined surface 12 of the trough 4 has a groove 17 along the through groove 16 and A groove 18 connected to the groove 11 in the cross section of (c) is provided. Therefore, as shown in FIG. 9A, the chip resistor 1 that moves in the traveling direction in the width direction or the thickness direction along the conveyance path 8a of the V-groove is moved from the upper end of the block element 13 to the groove 11. It falls or passes from the through-groove hole 16 through the grooves 17 and 18 to the groove 11. As shown in FIG. 9B, only the chip resistor 1 whose length direction is in the traveling direction is conveyed to the cross-sectional side shown in FIG. 7A.
[0025]
In each of the cross sections of FIGS. 7A, 7 </ b> B, and 7 </ b> C, a step portion 19 is provided on one side of the groove 11. In the cross section of FIG. 7A, a block element 20 is attached to the step portion 19, and the upper surface of the block element 20 is connected to the V-groove conveying path 8a as shown in FIG. 9C. A U-groove conveying path 8b is formed. Therefore, the chip resistor 1 that has been conveyed with the front and back surfaces in contact with any bottom surface of the V-groove conveyance path 8a merges with the bottom center of the U-groove conveyance path 8b, and conveys the front and back surfaces up and down. Is done.
[0026]
In the cross sections of FIGS. 7B and 7C, two block elements 21 and 22 are attached to the step portion 19. As shown in FIG. 10A, a rake angle is provided on the upper surface of the upper projection 23 of the block element 22, and a conveyance path 8 c is formed by the upper surface of the projection 23 and the side surface of the block element 21. The height of the block element 21 is changed by a screw 24 so that the height position of the air nozzle 26 attached to the block element 21 can be adjusted. The photoelectric sensor 25 and the air nozzle 26 are arranged in the cross section (c), and the chip resistor 1 determined to be facing backward by the photoelectric sensor 25 is blown off into the groove 11 by the air nozzle 26. The photoelectric sensor 25 and the air nozzle 26 are arranged at two locations so as to improve the sorting accuracy of the front and back surfaces.
[0027]
8A, 8B, and 8C are attached with two block elements 29 and 30 that are coupled with bolts 28 with the thin plate element 27 interposed therebetween. As shown in FIG. 10B, the gap between the block elements 29 and 30 formed at the upper end of the thin plate element 27 is a conveyance path 8d. The width and depth of the transport path 8d are formed to be slightly larger than the width and height of the chip resistor 1, and the upper end is covered with the top plate 31 in the cross sections of FIGS. 8 (b) and 8 (c). . A certain number of chip resistors 1 are held in a state where the front and back are aligned in the region of the conveyance path 8 d covered with the top plate 31. The cross section of FIG. 8A is an entrance of this region, and in this cross section, a photoelectric sensor 32 for detecting the excess chip resistor 1 and an air nozzle similar to the air nozzle 26 are arranged, although not shown. Yes.
[0028]
A hole 33 is provided in the groove 11 in the cross section of FIG. 8B, and a nozzle 35 of compressed air is inserted through the hole 33 into the supply end of the pipe 34 of the pneumatic component conveying device 6. By injecting compressed air from the nozzle 35, the supply end side of the pipe line 34 becomes negative pressure, and the chip resistor 1 is sucked into the pipe line 34. The chip resistor 1 sucked into the pipe line 34 is conveyed to the discharge end along the pipe line 34 by the compressed air.
[0029]
As shown in FIG. 11, the pneumatic component transfer device 6 includes a conduit 34 that returns and transports the chip resistor 1, and a deceleration container 36 that is connected to the discharge end of the conduit 34. A cylindrical guide surface 37 that opens downward is formed on the inner periphery of the deceleration container 36, and a ring-shaped peripheral circuit 38 that is open downward is provided at the upper end of the guide surface 37. The discharge end of the pipe line 34 is connected in the tangential direction of the peripheral circuit 38, and the chip resistor 1 discharged from the discharge end can be changed into a circular motion by the peripheral circuit 38 along the guide surface 37. Landing in the bowl 2 while descending spirally. A vent hole 39 is provided at the upper end of the deceleration container 36 so that a part of the compressed air ejected from the discharge end of the pipe line 34 is discharged out of the apparatus together with dust and the like.
[0030]
FIGS. 12A and 12B show a modification of the transfer section of the conveyance path 9 and the conveyance path 8 shown in FIG. In this modification, there is no overlap between the transport paths 8 and 9, and a drop is provided in which the transport path 8 side is slightly lowered across a minute gap. This drop is effective even with a minute step of about 0.01 mm. The chip resistor 1 moving along the conveyance path 9 transfers to the conveyance path 8 using this drop. 5 and 12, each of the cross sections of the transport paths 8 and 9 has a V-groove shape, but it has various cross-sectional shapes such as a U-groove and a trapezoidal groove regardless of whether there is an overlap. The cross-sectional shapes of the conveyance path 8 and the conveyance path 9 may be different.
[0031]
FIG. 13 shows an embodiment in which the microcomponent alignment and supply apparatus shown in FIGS. 1 and 2 is covered with a dustproof box 40. The dustproof box 40 is provided with an air supply hole 41 for air purge and a charging port 42 for supplying the chip resistor 1 to the bowl 2, and a lid 43 is attached to the charging port 42. The air supplied from the air supply hole 41 is discharged from a hole 44 provided at the discharge end of the alignment supply device.
[0032]
In each of the above-described embodiments, the vibratory bowl feeder is used as the upstream component supply device, but a vibratory linear feeder, a belt-type hopper feeder, or the like can also be employed. In addition to the pneumatic component conveying device of the embodiment, a vibration-type linear feeder, a belt conveyor, or the like can be used for returning and conveying the minute components.
[0033]
【The invention's effect】
As described above, the micro component alignment and supply device according to the present invention has the component replenishment device and the vibration type linear feeder in combination, and provides a drop in the component delivery portion from the conveyance path of the component replenishment device to the conveyance path of the linear feeder. At the same time, the postures of the parts are aligned in the conveyance path of the downstream straight feeder, so that it is possible to constantly supply minute parts of approximately 1 mm 3 or less to the next process without causing clogging of parts. it can. In addition, since the posture alignment unit is provided in the linear conveyance path of the linear feeder, each component element that requires machining accuracy for posture alignment can be made a linear element. It can also be processed with high accuracy.
[0034]
In addition, since there is a means to exclude excess micro parts transported to the discharge end from the transport path of the linear feeder, a certain amount of micro parts can be continuously moved straight without stopping the upstream part supply device. It can be held in the transport path of the feeder.
[0035]
In addition, since there is a means for returning and transporting the micro parts removed from the transport path in the middle of the transport path of the linear feeder, parts with poor posture and surplus parts removed from the transport path are automatically It can be re-supplied to the alignment supply device. As a means for returning and transporting these micro parts, a light micro part can be returned and transported quickly and at low cost by adopting an air type part transport device that transports the micro part with compressed air along the pipeline. In addition, by providing a means for reducing the speed of the returned micro parts at the discharge end of the pipeline, damage at the time of landing of the micro parts can be prevented.
[Brief description of the drawings]
FIG. 1 is a front view showing an embodiment of a micropart alignment supply device. FIG. 2 is a plan view of FIG. 1. FIG. 3 is an external perspective view showing chip resistors aligned and supplied by the alignment supply device of FIG. 4 is a plan view showing the trough of FIG. 1, b is a partially cutaway front view of the trough, FIG. 5a is an enlarged cutaway front view of the main part of FIG. 4, and b is along the VV line of a. Enlarged cross-sectional view [Fig. 6] a, b, and c are enlarged cross-sectional views taken along lines VIa-VIa, VIb-VIb, and VIc-VIc in FIG. 4, respectively. [Fig. FIG. 8 is an enlarged cross-sectional view taken along lines VIIa-VIIa, VIIb-VIIb, and VIIc-VIIc in FIG. FIG. 9 is an enlarged cross-sectional view of the main part of FIG. 6 (b), and c is an enlarged cross-sectional view of the main part of FIG. 7 (a). 7 (b) main part enlarged sectional view 8 is an enlarged cross-sectional view of a main part of FIG. 8A. FIG. 11 is a partially omitted vertical front view showing the pneumatic component conveying apparatus of FIG. 1. FIG. 12A is a cutaway view showing a modification of the delivery part of FIG. FIG. 13 is an enlarged cross-sectional view taken along line XII-XII in FIG. 13a. FIG. 13 is a longitudinal front view showing another embodiment of the micro-component alignment and supply apparatus.
DESCRIPTION OF SYMBOLS 1 Chip resistor 2 Bowl 3 Bowl feeder 4 Trough 5 Straight advance feeder 6 Pneumatic component conveyance apparatus 7 Resistors 8, 8a, 8b, 8c, 8d, 9 Conveyance path 10 Discharge end 11 Groove 12 Inclined surface 13, 14 Block element 15 Plate element 16 Through groove hole 17, 18 Groove 19 Stepped part 20, 21, 22 Block element 23 Projection part 24 Screw 25 Photoelectric sensor 26 Air nozzle 27 Thin plate element 28 Bolt 29, 30 Block element 31 Top plate 32 Photoelectric sensor 33 Hole 34 Tube Passage 35 Nozzle 36 Deceleration container 37 Guide surface 38 Circumferential circuit 39 Vent hole 40 Dust-proof box 41 Air supply hole 42 Input port 43 Lid 44 hole

Claims (4)

厚みと幅がほぼ等寸で、長さが幅の倍寸に形成され、表裏対称の形状で、表裏面の向きを有する概ね1mm以下の微小部品を、搬送路に沿って補給する部品補給装置と、これらの微小部品が受け渡される直線状の搬送路を有する振動式直進フィーダとが配列され、前記微小部品を搬送しながら、姿勢を整列して排出端に供給する微小部品整列供給装置において、前記部品補給装置の搬送路から前記直進フィーダの搬送路への部品受け渡し部で、両者の搬送路の間に直進フィーダの搬送路側を低くした落差を設け、前記部品の姿勢を整列する手段を、前記直進フィーダの搬送路の途中に設け、この部品の姿勢を整列する手段の下流側に、前記部品の表裏面の向きを選別する手段を設けて、前記直進フィーダの搬送路の途中で、この搬送路から排除された微小部品を、戻し搬送する手段を設け、この微小部品を戻し搬送する手段を、前記微小部品が排除される溝に孔を設け、この孔に接続された管路の供給端に圧縮エアのノズルを挿入し、このノズルから圧縮エアを噴射することにより管路の供給端を負圧とし、前記溝に排除された微小部品を管路内に吸い込んで、吸い込んだ微小部品を管路に沿って前記圧縮エアで搬送するエア式部品搬送装置とし、前記管路の排出端に、前記戻し搬送される微小部品の速度を減速する減速手段を設け、この減速手段を、前記管路の排出端が接線方向に接続されるリング状の周回路が設けられ、この周回路の下方に開口する円筒状の案内面が形成されて、前記周回路で前記微小部品の直線運動を周回運動に変え、前記案内面に沿って螺旋状に周回下降させて着地させる減速容器としたことを特徴とする微小部品整列供給装置。The thickness and width approximately equal dimensions, are formed on the fold dimensions of the width dimension thereof, in the form of front and rear symmetrical parts a generally 1 mm 3 or less of microcomponents having the direction of the front and back surfaces, to replenish along the conveying path replenishing A micro-component alignment and supply device in which an apparatus and a vibration type linearly-feeding feeder having a linear conveyance path through which these micro components are transferred are arranged, and the posture is aligned and supplied to the discharge end while conveying the micro components Means for aligning the postures of the components by providing a drop between the conveying paths of the component replenishing device and the conveying path of the linear feeder between the conveying paths of the component replenishing device. and it provided in the middle of the transport path of the linear feeder, downstream of the means for aligning the orientation of the component, provided with a means for selecting the orientation of the front and back surfaces of the part, in the middle of the conveyance path of the linear feeder From this transport path A means for returning and transporting the microparts removed is provided, and a means for returning and transporting the microparts is compressed in the supply end of the pipe connected to the hole by providing a hole in the groove where the microparts are excluded. By inserting a nozzle of air and injecting compressed air from this nozzle, the supply end of the pipeline is made negative pressure, the minute parts excluded in the groove are sucked into the duct, and the sucked minute parts are sucked into the duct And a decelerating means for decelerating the speed of the microparts to be returned and conveyed at the discharge end of the pipeline, and this decelerating means is connected to the outlet of the pipeline. A ring-shaped peripheral circuit whose discharge end is connected in a tangential direction is provided, and a cylindrical guide surface that opens below the peripheral circuit is formed. In the peripheral circuit, the linear motion of the minute part is turned into a circular motion. Change, spiral down along the guide surface Microcomponent aligning and feeding device is characterized in that the reduction vessel to land by. 前記部品補給装置および直進フィーダが、防塵ボックスで覆われた請求項に記載の微小部品整列供給装置。The micro component alignment and supply device according to claim 1 , wherein the component replenishing device and the linear feeder are covered with a dust-proof box. 前記防塵ボックス内をエアパージする手段が設けられた請求項に記載の微小部品整列供給装置。The micropart alignment supply apparatus according to claim 2 , wherein means for purging the inside of the dustproof box is provided. 前記部品補給装置の搬送路から前記直進フィーダの搬送路への部品受け渡し部で、部品補給装置の搬送路側が直進フィーダの搬送路の上に入り込み、両搬送路間にオーバーラップ部が設けられた請求項1乃至3のいずれかに記載の微小部品整列供給装置。In the parts delivery section from the conveyance path of the parts supply device to the conveyance path of the linear feeder, the conveyance path side of the component supply apparatus enters the conveyance path of the linear feeder, and an overlap portion is provided between both conveyance paths. The micropart alignment supply apparatus according to any one of claims 1 to 3 .
JP35277398A 1998-08-11 1998-12-11 Micro parts alignment supply device Expired - Lifetime JP3982931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35277398A JP3982931B2 (en) 1998-08-11 1998-12-11 Micro parts alignment supply device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-227297 1998-08-11
JP22729798 1998-08-11
JP35277398A JP3982931B2 (en) 1998-08-11 1998-12-11 Micro parts alignment supply device

Publications (2)

Publication Number Publication Date
JP2000118682A JP2000118682A (en) 2000-04-25
JP3982931B2 true JP3982931B2 (en) 2007-09-26

Family

ID=26527596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35277398A Expired - Lifetime JP3982931B2 (en) 1998-08-11 1998-12-11 Micro parts alignment supply device

Country Status (1)

Country Link
JP (1) JP3982931B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525114B2 (en) * 2004-03-11 2010-08-18 シンフォニアテクノロジー株式会社 Parts feeder
KR20200115093A (en) * 2019-03-29 2020-10-07 신포니아 테크놀로지 가부시끼가이샤 Parts feeder and air jet device for parts feeder

Also Published As

Publication number Publication date
JP2000118682A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
KR101741371B1 (en) Circular conveying apparatus
JP2003206019A (en) Vibrating type parts supplying device
TW201607866A (en) Vibration parts feeder
JP3982931B2 (en) Micro parts alignment supply device
EP2923776A1 (en) Parts feeder and method for manufacturing slide fastener
JP4187623B2 (en) Parts conveyor
JP2010131519A (en) Screw classifying device
JP3929284B2 (en) Parts alignment supply device
US5027835A (en) Apparatus for pneumatic transportation of particulate material such as tobacco
JPH06115667A (en) Parts supplying device
JP3417899B2 (en) Chip component supply device
JP3982962B2 (en) Vibrating parts alignment device
JP2003040439A (en) Vibration type part supplier
JP2000053248A (en) Air type part carrier and vibration type part supplier
JP2002002944A (en) Device for supplying minute parts
JPWO2019138480A1 (en) Parts supply device
JPH07187371A (en) Tablet carrying device
JP3546476B2 (en) Parts feeder
JP2003104538A (en) Article aligning and conveying device
JP2023019207A (en) Vibration type component supply device
JP2001002242A (en) Electronic parts aligning and feeding device
JP7140967B2 (en) Vibration transfer device
JP2017024905A (en) Vibration-type part conveyance device
JP3916441B2 (en) Vibrating parts feeder
JP2562118Y2 (en) Chip-shaped circuit component supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150