JP3982673B2 - Operation method of vacuum exhaust system - Google Patents

Operation method of vacuum exhaust system Download PDF

Info

Publication number
JP3982673B2
JP3982673B2 JP2001333772A JP2001333772A JP3982673B2 JP 3982673 B2 JP3982673 B2 JP 3982673B2 JP 2001333772 A JP2001333772 A JP 2001333772A JP 2001333772 A JP2001333772 A JP 2001333772A JP 3982673 B2 JP3982673 B2 JP 3982673B2
Authority
JP
Japan
Prior art keywords
vacuum
pump
main pump
exhaust
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001333772A
Other languages
Japanese (ja)
Other versions
JP2003139080A (en
Inventor
浩司 柴山
祐一 山下
孝彦 田島
充 矢作
純一 相川
幸雄 菅家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001333772A priority Critical patent/JP3982673B2/en
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to KR1020047002269A priority patent/KR100876318B1/en
Priority to CNB028157117A priority patent/CN100348865C/en
Priority to US10/486,189 priority patent/US20040173312A1/en
Priority to PCT/JP2002/009048 priority patent/WO2003023229A1/en
Priority to TW091120409A priority patent/TWI267581B/en
Publication of JP2003139080A publication Critical patent/JP2003139080A/en
Application granted granted Critical
Publication of JP3982673B2 publication Critical patent/JP3982673B2/en
Priority to US12/070,265 priority patent/US20080145238A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は真空排気装置の運転方法に関するものであり、更に詳しくは、主ポンプと排気ラインの逆止弁、および逆止弁に並列に取り付けられた補助ポンプからなる省エネ型真空排気装置を用いてスロー排気を行う方法に関するものである。
【0002】
【従来の技術】
半導体装置の製造工程において、真空チャンバーの排気に油回転真空ポンプを使用すると、
▲1▼ 使用されているガスの中には油と反応性の大きいガスがあり、反応生成物が
ポンプの回転不良を生じたり、油を劣化させたりする。
▲2▼ 油の蒸気が拡散、逆流して真空チャンバー内を汚染する。
▲3▼ 使用済みの油に砒素化合物、燐化合物等の毒性物質の含まれることが多く、産業廃棄物としての管理、処理に多くの工数と費用を要する。
などの問題があることから、油を使用しないドライ真空ポンプが広く採用されるようになっている。
【0003】
図2は、従来、半導体装置を製造する真空チャンバーに接続される真空排気装置2を示す代表的な配管図である。図2を参照して、真空チャンバー20と排気速度1000L/minのドライ真空ポンプ21とを繋ぐ排気管22に口径の大きいメインバルブ23を配し、メインバルブ23と並列に口径の小さいバイパスバルブ24を取り付け、真空チャンバー20の真空度を計測するための圧力計29を排気管22に取り付けたものである。そして、ドライ真空ポンプ21の吐出側の排気ライン25には呼称40A(口径40mm≒1.5インチ)のパイプが使用されている。この配管は、真空チャンバー20をドライ真空ポンプ21が有する大きい排気速度で一気に排気する場合に要する口径である。
【0004】
一般に半導体製造装置では真空チャンバー20内に存在する微粒子が舞い上がって真空チャンバー20内に装填されている半導体ウェーハ等に付着し不良品が生ずることがあるので、真空チャンバー20を大気圧から真空排気する場合には、メインバルブ23、バイパスバルブ24を閉じた状態でドライ真空ポンプ21を起動し、バイパスバルブ24を開くことによってスロー排気して、真空チャンバー20が所定の真空度に達したことを確認するか、または所定の排気時間が経過したことを確認した後、メインバルブ23を開く起動方法が採用されている。
【0005】
一方、ドライ真空ポンプは油回転真空ポンプと比較して消費電力が大であり、環境保護の観点からエネルギー消費を抑える必要があること、また半導体装置の製造コストの低減が要請されていることから、ドライ真空ポンプの消費電力を抑制することが望まれているが、これに対処するものとして、特開平6−129384号公報には、図3に示すように、真空チャンバー30に接続されたドライ真空ポンプ31の排気ライン35にバネの付勢によって閉となる制御弁32を設けると共に、制御弁32と並列に排気量の小さい補助ポンプ33を設け、真空チャンバー30の真空度に応じて、ドライ真空ポンプ31と補助ポンプ33とによって、または補助ポンプ33のみによって排気する真空排気装置3が開示されている。なお図3においては、ドライ真空ポンプ31は直動式ポンプとして示されており、そのシリンダー36内には図において左右に往復動するピストン37が設けられ、排気ライン35は吸着塔38を介して工場配管39に接続されている。
【0006】
この真空排気装置3の起動は次のようにして行われる。図3は排気開始の直後の状態を示し、制御弁32は開いている。すなわち、ドライ真空ポンプ31と補助ポンプ33が起動され、ドライ真空ポンプ31の吸入圧が大気圧と同じオーダーにあって排気ガス量が大であり、同時に駆動される補助ポンプ33によってもドライ真空ポンプ31の吐出部が大気圧以下にならない間は、排気ガスがバネの付勢に抗して制御弁32を開き、密度の十分に高いガスがドライ真空ポンプ31の排気ライン35と補助ポンプ33のラインとによって排気される。
【0007】
【発明が解決しようとする課題】
図2に示す真空排気装置2を用いて真空チャンバー20のスロー排気を行う場合には、バイパスバルブ24の設置のほか、真空チャンバー20の圧力に応じてメインバルブ23を開とする制御装置を必要とする。また、排気ライン25は大気圧からの排気を行うために、排気速度1000L/minのドライ真空ポンプ21については呼称40A(≒口径1.5インチ)のパイプが使用されるが、40Aのパイプは配管の施工に際し曲げ加工ができず、ラインを曲げる箇所ではパイプを溶接する配管工事が行われる。そして、溶接箇所にはリークテストも必要であるから、全体として配管の施工費は高くなる。
【0008】
そのほかのスロー排気を行う方法として、メインバルブ23、バイパスバルブ24に換えて、弁体の開度の制御が可能なバタフライ弁を設け、排気の初期には開度を小とし、真空チャンバー20の真空度の向上に応じて開度を大とする方法もあるが、この場合もバタフライ弁自体および弁体の開度制御装置が高額でありコストを上昇させる。また、図3に示した特開平6−129384号公報の真空排気装置において、排気開始時にドライ真空ポンプ31と補助ポンプ33とによって排気する起動方法も、真空チャンバー30内に微粒子が存在する場合には、微粒子が舞い上がって半導体ウェーハ等の汚染を招き易い。
【0009】
本発明は上述の問題に鑑みてなされ、スロー排気のための機器装置を設けることなくスロー排気を行い得る真空排気装置の運転方法を提供することを課題とする。
【0010】
【課題を解決するための手段】
上記の課題は、特許請求の範囲に記載された構成によって解決されるが、その解決手段を説明すれば次の如くである。
【0011】
請求項1に記載された運転方法は、真空容器に接続された容積移動型ドライ真空ポンプを主ポンプとし、この主ポンプの吐出側に接続され前記主ポンプから大気側へのガスの流れのみを許容する逆止弁と、前記主ポンプの吐出側に前記逆止弁に対して並列的に配置され、前記主ポンプよりも排気容量の小さい補助ポンプとを備えた真空排気装置によって前記真空容器を大気圧またはその近傍から排気するに際し、前記補助ポンプを最初に起動させ、前記真空容器が所定の真空度に達した後に前記主ポンプを起動させ、定常状態に入った後も前記主ポンプと前記補助ポンプを常時運転させることを特徴とする真空容器のスロー排気方法である。この方法によれば、まず補助ポンプのみを起動し主ポンプは起動しないので、例えば真空容器内に微粒子が存在している場合であっても微粒子は舞い上がらず、従って真空容器内の基板類に微粒子が付着して汚染するようなことはない。
【0012】
また、請求項2に記載された運転方法は、真空容器に接続された容積移動型ドライ真空ポンプを主ポンプとし、この主ポンプの吐出側に接続され前記主ポンプから大気側へのガスの流れのみを許容する逆止弁と、前記主ポンプの吐出側に前記逆止弁に対して並列的に配置され、前記主ポンプよりも排気容量の小さい補助ポンプとを備えた真空排気装置によって前記真空容器を大気圧またはその近傍から排気するに際し、前記補助ポンプを最初に起動させ、前記真空容器が所定の真空度に達する前に前記主ポンプを排気量の小さい低速回転で起動し、前記真空容器の真空度に応じて回転数を漸次増大させ、定常状態に入った後も前記主ポンプと前記補助ポンプを常時運転させることを特徴とする真空容器のスロー排気方法である。この方法によれば、請求項1の作用に加え、補助ポンプの負荷にならないように主ポンプを起動でき、主ポンプが定格運転に入るまでの時間を短縮することができる。
【0013】
【発明の実施の形態】
本発明の真空排気装置の運転方法は、上述したように、主ポンプの排気ラインに逆止弁が取り付けられており、逆止弁と並列に主ポンプより排気容量の小さい補助ポンプが取付けられた真空排気装置によって真空容器を大気圧またはその近傍から排気するに際し、補助ポンプを最初に起動し、真空容器が所定の真空度に達した後に主ポンプを起動する方法である。なお、上記のような構成の真空排気装置は、真空容器が十分に排気されて排ガス量が少なくなる定常運転時には逆止弁が閉じて補助ポンプのみによる排気が行われるので消費電力を低下させるという省エネ特性を有している。
【0014】
本発明における真空排気装置の主ポンプとしては、容積移動型ドライ真空ポンプとして分類されるルーツ型ポンプ、クロー型ポンプ、スクリュー型ポンプの内の何れか1基、または2基以上を直列に配置した組み合せが使用される。例えば、2基または3基のルーツ型ポンプを直列に配置したものであってもよい。また、補助ポンプとしては、消費電力が小さく移送効率のよいもの、圧縮工程において排気ガスの体積が減少する構造のものが好適であり、具体的には回転翼型(ゲ−デ型)ポンプ、ピストン型ポンプ、ダイアフラム型(メンブラン型)ポンプ、スクロール型ポンプがある。そして、補助ポンプの排気速度(L/min)は期待する真空排気装置の能力に応じて主ポンプの排気速度の数%から20%程度までの範囲内で適宜選択される。
【0015】
また逆止弁には、平板状弁体を例えばその上端部で軸支して弁胴に取り付け、平板状弁体の一方の面側の圧力が高くなると平板状弁体が他方の面側へ扉の様にスイングして開となり、一方の面側の圧力が低くなると平板状弁体が例えば自重で元の位置へ戻ることによって弁を閉じて逆流を阻止する逆止弁や、バネによって弁座へ向かう方向に付勢された弁体を有し、弁体の片側の圧力が高くなるとバネの付勢に抗して弁が開となり、片側の圧力が低くなるとバネの付勢によって弁体が弁座に押圧されることにより弁を閉じて逆流を阻止する逆止弁もあるが、逆止弁を開とするに要する圧力が低いこと、圧力の脈動に追随して正確に開閉すること等において優れたものであることが好ましい。従って本発明においては、弁胴内で浮動し得る球形弁体を有し、主ポンプの吐出部の一定以上の圧力で浮上して弁を開とし、それ以下の圧力では自重によって下方の弁座に着座して弁を閉とする逆止弁が好適に使用される。
【0016】
そして、真空容器を大気圧またはその近傍から排気するべく真空排気装置を起動するに際しては、先ず補助ポンプのみを起動し、真空容器が所定の真空度に達した後に、主ポンプを起動する。そして主ポンプを起動する時の真空度は104 Pa台程度の値に設定される。なお、補助ポンプを起動して得られる真空容器の真空度の計測は、起動されていない主ポンプの吸入側または吐出側の真空度の計測によって代替させることができる。
【0017】
【実施例】
次に、本発明の真空排気装置の運転方法について図面を参照し具体的に説明する。
【0018】
(実施例)
図1は真空チャンバー10に接続した真空排気装置1を概念的に示す配管図である。すなわち、真空排気装置1は、基板への成膜用の真空チャンバー10と主ポンプである排気速度1000L/minの多段型ルーツ真空ポンプ11を繋ぐ排気管12に口径の大きいメインバルブ13と真空度計測用の圧力計19を取り付け、多段型ルーツ真空ポンプ11の排気ライン15には逆止弁31を取り付けて、逆止弁31と並列に補助ポンプ14を配置したものである。補助ポンプ14には、排気速度が多段型ルーツ真空ポンプ11の10%である100L/minの回転翼型ドライポンプが使用されており、逆止弁31には、弁胴内で浮動し得る球形弁体を備え大気圧より約700Pa高い圧力で浮上して弁を開とし、それより低い圧力では自重によって下方の弁座に着座して弁を閉とするものが取り付けられている。そして、排気ライン15には、図2に示した従来の排気ライン25と同様、呼称40A(口径40mm≒1.5インチ)のパイプが使用されている。
【0019】
上記の真空排気装置1によって真空チャンバー10を大気圧から真空排気するに際しは、先ず補助ポンプ14を起動しメインバルブ13を開とすることによって排気を開始した。そして圧力計19によって真空チャンバー10の真空度が104 Paに達したことが確認された時点で主ポンプ11を起動しローター軸の回転数を3600rpmとして真空チャンバー10の真空度が1Paに達するまで排気した。このような起動方法を採用することにより、真空チャンバー10内における微粒子の舞い上がりを防ぐことができた。すなわち、大気圧からの排気に際し補助ポンプ14のみを起動することにより、従来のようにメインバルブ23と並列に口径の小さいバイパスバルブ24を設けなくともスロー排気が可能であった。また、真空度が1Paに達した後、続いて定常運転に入ったが、この時点では排気量が少なく逆止弁31が閉じて補助ポンプ14のみによる排気が行われることから、真空排気装置1の消費電力は低減され、騒音も抑制された。なお、図1の排気ライン15には呼称40Aのパイプを使用したが、補助ポンプ14による排気、それに続く主ポンプ11の排気においては排気量が少ないので、例えば呼称10A(口径10mm≒3/8 インチ)のパイプに置き換えることが可能であり、この口径のパイプは曲げ加工が可能であるから配管の施工費を低減させることができる。
【0020】
以上、本発明の真空排気装置の運転方法を実施例によって説明したが、勿論、本発明はこれに限られることなく、本発明の技術的思想に基づいて種々の変形が可能である。
【0021】
例えば本実施例においては、補助ポンプの排気によって真空チャンバーが所定の真空度に達した後の主ポンプの起動に際し、ローター軸を3600rpmで回転させたが、真空容器が所定の真空度に達する前に主ポンプをインバーター制御して回転数を排気量の小さい低回転数から真空容器の真空度に応じて漸次増大させるようにしてもよく、そのことによって主ポンプの起動時における急激な圧力変化を避け、補助ポンプの負荷にならないように主ポンプを起動することができる。
【0022】
また本実施例においては、半導体基板への成膜用の真空チャンバーの排気に本発明の真空排気装置の運転方法を適用する場合を例示したが、半導体基板を大気圧と真空系との間で搬入、搬出するためのロードロック室の排気にも同様に適用され得る。
また本実施例においては、半導体基板が装填された真空チャンバーを排気する場合を例示したが、勿論、液晶表示パネルやプラズマ表示パネル用のガラス基板が装填される真空チャンバーを排気する場合にも適用される。
【0023】
【発明の効果】
本発明の真空排気装置の運転方法は以上に説明したような形態で実施され、次に述べるような効果を奏する。
【0024】
請求項1の真空排気装置の運転方法によれば、主ポンプの排気ラインに逆止弁が取り付けられており、逆止弁と並列に主ポンプより排気容量の小さい補助ポンプが取付けられた真空排気装置によって真空容器を大気圧またはその近傍から排気するに際しての真空排気装置の運転方法において、補助ポンプを最初に起動し、真空容器が所定の真空度に達した後に主ポンプを起動するので、スロー排気のための機器装置を設けなくとも真空容器のスロー排気が可能であり、真空容器内に微粒子が存在するような場合にも微粒子は舞い上がらず真空容器内を汚染するようなことは発生しない。また、補助ポンプによるスロー排気の間、それに続く主ポンプの排気による定常運転の間は、排気量が少ないので主ポンプの排気ラインを曲げ加工の可能な口径の小さいパイプに変更することができ、排気ラインの施工費を低減することができる。
【0025】
請求項2の真空排気装置の運転方法によれば、真空容器が所定の真空度に達する前に主ポンプを排気量の小さい低い回転数で起動し、真空容器の真空度に応じて回転数を漸次増大させるので、補助ポンプの負荷にならないように主ポンプを起動でき、主ポンプが定格運転に入るまでの時間を短くし稼動率を向上させることができる。
【図面の簡単な説明】
【図1】真空チャンバーをスロー排気することが可能な実施例の真空排気装置の配管図である。
【図2】真空チャンバーをスロー排気するための従来の真空排気装置の配管図である。
【図3】消費電力を低減し得る従来の真空排気装置を示す図である。
【符号の説明】
1 真空排気装置
10 真空チャンバー
11 主ポンプ
12 排気管
13 メインバルブ
14 補助ポンプ
15 排気ライン
19 圧力計
31 逆止弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a vacuum exhaust device, and more specifically, by using an energy-saving vacuum exhaust device comprising a main pump, a check valve for an exhaust line, and an auxiliary pump attached in parallel to the check valve. The present invention relates to a method for performing slow exhaust .
[0002]
[Prior art]
In the semiconductor device manufacturing process, when an oil rotary vacuum pump is used to exhaust the vacuum chamber,
(1) Among the gases used, there are gases that are highly reactive with oil, and the reaction product causes poor rotation of the pump or degrades the oil.
(2) Oil vapor diffuses and flows backward to contaminate the vacuum chamber.
(3) Spent oil often contains toxic substances such as arsenic compounds and phosphorus compounds, which requires a lot of man-hours and costs for management and treatment as industrial waste.
As a result, dry vacuum pumps that do not use oil have been widely adopted.
[0003]
FIG. 2 is a typical piping diagram showing an evacuation apparatus 2 connected to a vacuum chamber for manufacturing a semiconductor device. Referring to FIG. 2, a main valve 23 having a large diameter is arranged in an exhaust pipe 22 that connects a vacuum chamber 20 and a dry vacuum pump 21 having an exhaust speed of 1000 L / min, and a bypass valve 24 having a small diameter in parallel with the main valve 23. And a pressure gauge 29 for measuring the degree of vacuum in the vacuum chamber 20 is attached to the exhaust pipe 22. A pipe having a name of 40A (a diameter of 40 mm≈1.5 inches) is used for the exhaust line 25 on the discharge side of the dry vacuum pump 21. This pipe has a diameter required when the vacuum chamber 20 is exhausted at a stretch at a high exhaust speed of the dry vacuum pump 21.
[0004]
In general, in a semiconductor manufacturing apparatus, fine particles present in the vacuum chamber 20 may rise and adhere to a semiconductor wafer or the like loaded in the vacuum chamber 20, resulting in a defective product. Therefore, the vacuum chamber 20 is evacuated from atmospheric pressure. In this case, the dry vacuum pump 21 is started with the main valve 23 and the bypass valve 24 closed, and slow exhaust is performed by opening the bypass valve 24 to confirm that the vacuum chamber 20 has reached a predetermined degree of vacuum. Alternatively, an activation method is employed in which the main valve 23 is opened after confirming that a predetermined exhaust time has elapsed.
[0005]
On the other hand, dry vacuum pumps consume more power than oil rotary vacuum pumps, and it is necessary to reduce energy consumption from the viewpoint of environmental protection, and there is a demand for reduction in semiconductor device manufacturing costs. In order to cope with this, it is desired to suppress the power consumption of the dry vacuum pump. Japanese Patent Laid-Open No. 6-129384 discloses a dry-type pump connected to a vacuum chamber 30 as shown in FIG. A control valve 32 that is closed by the bias of a spring is provided in the exhaust line 35 of the vacuum pump 31, and an auxiliary pump 33 having a small exhaust amount is provided in parallel with the control valve 32, and a dry pump is provided according to the degree of vacuum in the vacuum chamber 30. An evacuation apparatus 3 that evacuates with the vacuum pump 31 and the auxiliary pump 33 or with only the auxiliary pump 33 is disclosed. In FIG. 3, the dry vacuum pump 31 is shown as a direct-acting pump. A piston 37 that reciprocates left and right in the drawing is provided in the cylinder 36, and the exhaust line 35 is connected via an adsorption tower 38. It is connected to factory piping 39.
[0006]
The evacuation device 3 is activated as follows. FIG. 3 shows a state immediately after the start of exhaust, and the control valve 32 is open. That is, the dry vacuum pump 31 and the auxiliary pump 33 are activated, the suction pressure of the dry vacuum pump 31 is in the same order as the atmospheric pressure, the exhaust gas amount is large, and the dry vacuum pump is also driven by the auxiliary pump 33 that is driven simultaneously. As long as the discharge portion of 31 does not fall below atmospheric pressure, the exhaust gas opens the control valve 32 against the bias of the spring, and a sufficiently high density of gas flows between the exhaust line 35 of the dry vacuum pump 31 and the auxiliary pump 33. Exhausted by line.
[0007]
[Problems to be solved by the invention]
When performing slow exhaust of the vacuum chamber 20 using the vacuum exhaust device 2 shown in FIG. 2, in addition to the installation of the bypass valve 24, a control device that opens the main valve 23 according to the pressure of the vacuum chamber 20 is required. And Further, in order to exhaust from the atmospheric pressure, the exhaust line 25 uses a pipe having a name of 40 A (≈1.5 inch diameter) for the dry vacuum pump 21 having an exhaust speed of 1000 L / min. Bending work cannot be performed at the time of piping construction, and piping work for welding pipes is performed at the point where the line is bent. And since the leak test is also required for the welding location, the construction cost of the piping is high as a whole.
[0008]
As another method of performing slow exhaust, a butterfly valve capable of controlling the opening degree of the valve body is provided in place of the main valve 23 and the bypass valve 24, the opening degree is reduced at the initial stage of exhaust, and the vacuum chamber 20 There is also a method of increasing the opening according to the improvement in the degree of vacuum, but in this case as well, the butterfly valve itself and the valve body opening control device are expensive and increase the cost. Further, in the vacuum exhaust apparatus disclosed in Japanese Patent Laid-Open No. 6-129384 shown in FIG. 3, the starting method of exhausting by the dry vacuum pump 31 and the auxiliary pump 33 at the start of exhaust is also performed when fine particles are present in the vacuum chamber 30. Are likely to cause contamination of semiconductor wafers due to soaring of fine particles.
[0009]
This invention is made in view of the above-mentioned problem, and makes it a subject to provide the operating method of the vacuum exhaust apparatus which can perform slow exhaust, without providing the apparatus apparatus for slow exhaust.
[0010]
[Means for Solving the Problems]
The above problem can be solved by the configuration described in the claims. The means for solving the problem will be described as follows.
[0011]
The operation method described in claim 1 uses a displacement-moving dry vacuum pump connected to a vacuum vessel as a main pump, and is connected to a discharge side of the main pump, and only flows gas from the main pump to the atmosphere side. The vacuum vessel is provided by an evacuation device comprising a check valve that is allowed and an auxiliary pump that is arranged in parallel to the check valve on the discharge side of the main pump and has a smaller exhaust capacity than the main pump. When evacuating from or near atmospheric pressure, the auxiliary pump is started first, the main pump is started after the vacuum vessel reaches a predetermined vacuum degree, and the main pump and the A slow exhaust method of a vacuum vessel, characterized in that an auxiliary pump is always operated . According to this method, since only the auxiliary pump is started and the main pump is not started, for example, even when fine particles are present in the vacuum vessel, the fine particles do not rise, so that the fine particles are not applied to the substrates in the vacuum vessel. There is no such thing as contamination.
[0012]
Further, the operation method described in claim 2 is such that the volume transfer type dry vacuum pump connected to the vacuum vessel is a main pump, and the gas flow from the main pump to the atmosphere side is connected to the discharge side of the main pump. The vacuum exhaust system includes a check valve that allows only a non-return valve, and an auxiliary pump that is disposed in parallel to the check valve on the discharge side of the main pump and has a smaller exhaust capacity than the main pump. When evacuating the container from or near atmospheric pressure, the auxiliary pump is first activated, and the main pump is activated at a low speed with a small displacement before the vacuum container reaches a predetermined degree of vacuum. In this method, the main pump and the auxiliary pump are always operated even after the rotational speed is gradually increased in accordance with the degree of vacuum, and a steady state is entered . According to this method, in addition to the operation of the first aspect, the main pump can be started so as not to become a load of the auxiliary pump, and the time until the main pump enters the rated operation can be shortened.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Method of operating the vacuum exhaust system of the present invention, as described above, and check valve is mounted on the exhaust line of the main pump, attach a small auxiliary pump having an exhaust capacity than the main pump in parallel with the check valve Saishi in evacuating the vacuum vessel from the atmospheric pressure or near the evacuation device which is to start the auxiliary pump first is a method to start the main pump after the vacuum container has reached a predetermined degree of vacuum. Note that the vacuum exhaust apparatus having the above-described configuration reduces power consumption because the check valve is closed and exhaust is performed only by the auxiliary pump during steady operation when the vacuum vessel is sufficiently exhausted and the amount of exhaust gas is reduced. It has energy saving characteristics.
[0014]
As the main pump of the vacuum evacuation apparatus in the present invention, any one or two or more of roots type pumps, claw type pumps, and screw type pumps classified as displacement moving dry vacuum pumps are arranged in series. A combination is used. For example, two or three roots type pumps may be arranged in series. Further, as the auxiliary pump, those having low power consumption and good transfer efficiency, and those having a structure in which the volume of exhaust gas is reduced in the compression process are suitable. Specifically, a rotary blade type (Gade type) pump, There are piston type pumps, diaphragm type (membrane type) pumps, and scroll type pumps. The pumping speed (L / min) of the auxiliary pump is appropriately selected within a range from several percent to about 20% of the pumping speed of the main pump according to the expected capacity of the vacuum pumping apparatus.
[0015]
For the check valve, for example, a flat valve body is pivotally supported at its upper end and attached to the valve body, and when the pressure on one surface side of the flat valve body increases, the flat valve body moves to the other surface side. Swing and open like a door, and when the pressure on one side becomes low, the flat valve body closes the valve by returning to its original position by its own weight, etc. It has a valve body biased in the direction toward the seat. When the pressure on one side of the valve body increases, the valve opens against the bias of the spring, and when the pressure on one side decreases, the valve body is pressed by the spring. Although there is a check valve that closes the valve and prevents backflow by being pressed by the valve seat, the pressure required to open the check valve is low, and it opens and closes accurately following the pulsation of pressure Etc. are preferable. Therefore, the present invention has a spherical valve body that can float in the valve body, and floats at a pressure higher than a certain level in the discharge part of the main pump to open the valve. A check valve that sits on the valve and closes the valve is preferably used.
[0016]
Then, when starting the vacuum exhaust device to exhaust the vacuum vessel from or near atmospheric pressure, first, only the auxiliary pump is started, and after the vacuum vessel reaches a predetermined degree of vacuum, the main pump is started. The degree of vacuum when starting the main pump is set to a value on the order of 10 4 Pa. Note that the measurement of the degree of vacuum of the vacuum vessel obtained by starting the auxiliary pump can be replaced by the measurement of the degree of vacuum on the suction side or the discharge side of the main pump that has not been started.
[0017]
【Example】
Next, the operation method of the vacuum exhaust apparatus of the present invention will be specifically described with reference to the drawings.
[0018]
(Example)
FIG. 1 is a piping diagram conceptually showing an evacuation apparatus 1 connected to a vacuum chamber 10. That is, the vacuum evacuation apparatus 1 includes a main valve 13 having a large diameter and a degree of vacuum connected to an exhaust pipe 12 connecting a vacuum chamber 10 for film formation on a substrate and a multistage roots vacuum pump 11 having a pumping speed of 1000 L / min as a main pump. A pressure gauge 19 for measurement is attached, a check valve 31 is attached to the exhaust line 15 of the multistage roots vacuum pump 11, and the auxiliary pump 14 is arranged in parallel with the check valve 31. As the auxiliary pump 14, a rotary blade type dry pump having a pumping speed of 10 L / min, which is 10% of the multistage roots vacuum pump 11, is used. The check valve 31 has a spherical shape that can float in the valve body. A valve body is provided that floats at a pressure about 700 Pa higher than the atmospheric pressure to open the valve, and at a pressure lower than that, is attached to a lower valve seat by its own weight and closes the valve. As in the conventional exhaust line 25 shown in FIG. 2, a pipe having a name of 40A (diameter 40 mm≈1.5 inches) is used for the exhaust line 15.
[0019]
Hand upon to evacuate the vacuum chamber 10 from the atmospheric pressure by the vacuum exhaust device 1 described above, it was initiated evacuated by first starting the auxiliary pump 14 to the main valve 13 open. When the pressure gauge 19 confirms that the degree of vacuum in the vacuum chamber 10 has reached 10 4 Pa, the main pump 11 is started until the number of revolutions of the rotor shaft is 3600 rpm and the degree of vacuum in the vacuum chamber 10 reaches 1 Pa. Exhausted. By adopting such a starting method, it was possible to prevent the particles from flying up in the vacuum chamber 10. That is, by activating only the auxiliary pump 14 at the time of exhausting from the atmospheric pressure, the slow exhaust can be performed without providing the bypass valve 24 having a small diameter in parallel with the main valve 23 as in the prior art. Further, after the degree of vacuum reached 1 Pa, the operation continued to the steady state. At this time, the exhaust amount is small and the check valve 31 is closed, and the exhaust is performed only by the auxiliary pump 14. Power consumption was reduced and noise was also suppressed. 1 is used in the exhaust line 15 of FIG. 1, but the exhaust amount of the exhaust by the auxiliary pump 14 and the exhaust of the main pump 11 following the exhaust is small. For example, the name 10A (diameter 10 mm≈3 / 8) Inch) pipes can be replaced, and pipes of this diameter can be bent, so that the construction cost of piping can be reduced.
[0020]
The operation method of the vacuum evacuation device of the present invention has been described above with reference to the embodiments. Of course, the present invention is not limited to this, and various modifications can be made based on the technical idea of the present invention.
[0021]
For example, in this embodiment, when starting the main pump after the vacuum chamber reaches a predetermined degree of vacuum by exhausting the auxiliary pump, the rotor shaft was rotated at 3600 rpm, but before the vacuum vessel reached the predetermined degree of vacuum. Alternatively, the main pump may be controlled by an inverter so that the rotational speed is gradually increased from a low rotational speed with a small displacement according to the degree of vacuum of the vacuum vessel. The main pump can be started to avoid avoiding the load on the auxiliary pump.
[0022]
Further, in this embodiment, the case where the operating method of the vacuum exhaust apparatus of the present invention is applied to the exhaust of the vacuum chamber for film formation on the semiconductor substrate is illustrated, but the semiconductor substrate is placed between the atmospheric pressure and the vacuum system. The same can be applied to the exhaust of the load lock chamber for carrying in and out.
Further, in this embodiment, the case where the vacuum chamber loaded with the semiconductor substrate is evacuated is exemplified, but of course, the present invention is also applied to the case where the vacuum chamber loaded with a glass substrate for a liquid crystal display panel or a plasma display panel is evacuated. Is done.
[0023]
【The invention's effect】
The operation method of the vacuum exhaust apparatus of the present invention is carried out in the form as described above, and has the following effects.
[0024]
According to the operation method of the vacuum exhaust apparatus of claim 1, the check valve is attached to the exhaust line of the main pump, and the vacuum pump in which the auxiliary pump having a smaller exhaust capacity than the main pump is attached in parallel with the check valve. In the operation method of the vacuum evacuation device when the vacuum vessel is evacuated from or near the atmospheric pressure by the device, the auxiliary pump is started first, and the main pump is started after the vacuum vessel reaches a predetermined degree of vacuum. The vacuum vessel can be slowly evacuated without providing a device for evacuation, and even when fine particles are present in the vacuum vessel, the fine particles do not rise and the vacuum vessel is not contaminated. In addition, during the slow exhaust by the auxiliary pump, and during the subsequent steady operation by the exhaust of the main pump, since the amount of exhaust is small, the main pump exhaust line can be changed to a pipe with a small diameter that can be bent, The construction cost of the exhaust line can be reduced.
[0025]
According to the operation method of the vacuum exhaust device of claim 2, before the vacuum vessel reaches a predetermined vacuum level, the main pump is started at a low rotational speed with a small displacement, and the rotational speed is set according to the vacuum level of the vacuum container. Since it gradually increases, the main pump can be started so as not to become a load on the auxiliary pump, and the time until the main pump enters the rated operation can be shortened and the operating rate can be improved.
[Brief description of the drawings]
FIG. 1 is a piping diagram of an evacuation apparatus according to an embodiment that can evacuate a vacuum chamber slowly.
FIG. 2 is a piping diagram of a conventional evacuation apparatus for slow evacuation of a vacuum chamber.
FIG. 3 is a diagram showing a conventional vacuum exhaust apparatus that can reduce power consumption.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum exhaust apparatus 10 Vacuum chamber 11 Main pump 12 Exhaust pipe 13 Main valve 14 Auxiliary pump 15 Exhaust line 19 Pressure gauge 31 Check valve

Claims (2)

真空容器に接続された容積移動型ドライ真空ポンプを主ポンプとし、この主ポンプの吐出側に接続され前記主ポンプから大気側へのガスの流れのみを許容する逆止弁と、前記主ポンプの吐出側に前記逆止弁に対して並列的に配置され、前記主ポンプよりも排気容量の小さい補助ポンプとを備えた真空排気装置によって前記真空容器を大気圧またはその近傍から排気するに際し、前記補助ポンプを最初に起動させ、前記真空容器が所定の真空度に達した後に前記主ポンプを起動させ、定常状態に入った後も前記主ポンプと前記補助ポンプを常時運転させることを特徴とする真空容器のスロー排気方法。A displacement moving dry vacuum pump connected to a vacuum vessel is used as a main pump, and a check valve connected to the discharge side of the main pump and allowing only gas flow from the main pump to the atmosphere side; and When evacuating the vacuum vessel from atmospheric pressure or the vicinity thereof by a vacuum evacuation device that is arranged in parallel to the check valve on the discharge side and has an auxiliary pump having a smaller exhaust capacity than the main pump, The auxiliary pump is started first, the main pump is started after the vacuum vessel reaches a predetermined degree of vacuum, and the main pump and the auxiliary pump are always operated even after entering a steady state. Slow exhaust method of vacuum container. 真空容器に接続された容積移動型ドライ真空ポンプを主ポンプとし、この主ポンプの吐出側に接続され前記主ポンプから大気側へのガスの流れのみを許容する逆止弁と、前記主ポンプの吐出側に前記逆止弁に対して並列的に配置され、前記主ポンプよりも排気容量の小さい補助ポンプとを備えた真空排気装置によって前記真空容器を大気圧またはその近傍から排気するに際し、前記補助ポンプを最初に起動させ、前記真空容器が所定の真空度に達する前に前記主ポンプを排気量の小さい低速回転で起動し、前記真空容器の真空度に応じて回転数を漸次増大させ、定常状態に入った後も前記主ポンプと前記補助ポンプを常時運転させることを特徴とする真空容器のスロー排気方法。A displacement moving dry vacuum pump connected to a vacuum vessel is used as a main pump, and a check valve connected to the discharge side of the main pump and allowing only gas flow from the main pump to the atmosphere side; and When evacuating the vacuum vessel from atmospheric pressure or the vicinity thereof by a vacuum evacuation device that is arranged in parallel to the check valve on the discharge side and has an auxiliary pump having a smaller exhaust capacity than the main pump, Auxiliary pump is activated first, before the vacuum vessel reaches a predetermined degree of vacuum, the main pump is activated at a low rotational speed with a small displacement, and the rotational speed is gradually increased according to the degree of vacuum of the vacuum vessel , A slow evacuation method for a vacuum vessel, wherein the main pump and the auxiliary pump are always operated even after entering a steady state .
JP2001333772A 2001-09-06 2001-10-31 Operation method of vacuum exhaust system Expired - Fee Related JP3982673B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001333772A JP3982673B2 (en) 2001-10-31 2001-10-31 Operation method of vacuum exhaust system
CNB028157117A CN100348865C (en) 2001-09-06 2002-09-05 Vacuum exhaust appts. and drive method of vacuum appts.
US10/486,189 US20040173312A1 (en) 2001-09-06 2002-09-05 Vacuum exhaust apparatus and drive method of vacuum apparatus
PCT/JP2002/009048 WO2003023229A1 (en) 2001-09-06 2002-09-05 Vacuum pumping system and method of operating vacuum pumping system
KR1020047002269A KR100876318B1 (en) 2001-09-06 2002-09-05 Operation method of vacuum exhaust device and vacuum exhaust device
TW091120409A TWI267581B (en) 2001-09-06 2002-09-09 Vacuum exhaust device and method for operating such vacuum exhaust device
US12/070,265 US20080145238A1 (en) 2001-09-06 2008-02-15 Vacuum exhaust apparatus and drive method of vacuum exhaust apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333772A JP3982673B2 (en) 2001-10-31 2001-10-31 Operation method of vacuum exhaust system

Publications (2)

Publication Number Publication Date
JP2003139080A JP2003139080A (en) 2003-05-14
JP3982673B2 true JP3982673B2 (en) 2007-09-26

Family

ID=19148986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333772A Expired - Fee Related JP3982673B2 (en) 2001-09-06 2001-10-31 Operation method of vacuum exhaust system

Country Status (1)

Country Link
JP (1) JP3982673B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2407132A (en) * 2003-10-14 2005-04-20 Boc Group Plc Multiple vacuum pump system with additional pump for exhaust flow
JP4718302B2 (en) * 2005-11-04 2011-07-06 株式会社アルバック Vacuum exhaust device
TWI467092B (en) * 2008-09-10 2015-01-01 Ulvac Inc Vacuum pumping device
DE102012220442A1 (en) * 2012-11-09 2014-05-15 Oerlikon Leybold Vacuum Gmbh Vacuum pump system for evacuating a chamber and method for controlling a vacuum pump system
DE102015106279A1 (en) * 2015-04-23 2016-10-27 Mobilplan Industrie- Und Umwelttechnik Valve device and method for operating the valve device
JP7218706B2 (en) * 2019-10-18 2023-02-07 株式会社島津製作所 Evacuation device and method of starting the evacuation device

Also Published As

Publication number Publication date
JP2003139080A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
TWI267581B (en) Vacuum exhaust device and method for operating such vacuum exhaust device
CN1637283B (en) Vacuum pumping deivce for vacuum process chambers and method for processing vacuum pressure
JP3501524B2 (en) Vacuum exhaust system for processing equipment
JP2005330967A (en) Vacuum pump system for light gas
JP3982673B2 (en) Operation method of vacuum exhaust system
JPH10220373A (en) Control method and device for volumetric flow amount of vacuum pump
JP4180265B2 (en) Operation method of vacuum exhaust system
JP2004052759A (en) Vacuum pump system and its control method
WO2005078281A1 (en) Vacuum device
JP2008298006A (en) Control method for vacuum pump
JP2010058089A (en) Centrifuge
JP3494457B2 (en) Vacuum pump device
JP3906973B2 (en) Vacuum exhaust device
JP2001221186A (en) Axial flow vacuum pump and processor
JP2849255B2 (en) Exhaust system for manufacturing high performance semiconductor and control method thereof
JPS6385268A (en) Vacuum exhausting device
KR20070037880A (en) Vacuum exhausting apparatus
JPH11230034A (en) Evacuating system and its operating method
KR100992128B1 (en) Treatment system for liquid crystal display
JP2002174174A (en) Evacuator
JP2004270653A (en) Evacuation device
JP2002039061A (en) Vacuum system
JP2007049028A (en) Vacuum treatment apparatus
JPH0992589A (en) Vacuum apparatus and exhausting method
JPH01244194A (en) Evacuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3982673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees