JP3982064B2 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
JP3982064B2
JP3982064B2 JP17351298A JP17351298A JP3982064B2 JP 3982064 B2 JP3982064 B2 JP 3982064B2 JP 17351298 A JP17351298 A JP 17351298A JP 17351298 A JP17351298 A JP 17351298A JP 3982064 B2 JP3982064 B2 JP 3982064B2
Authority
JP
Japan
Prior art keywords
seat side
air conditioning
air
conditioning unit
electric heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17351298A
Other languages
English (en)
Other versions
JP2000006649A (ja
Inventor
梅林  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP17351298A priority Critical patent/JP3982064B2/ja
Publication of JP2000006649A publication Critical patent/JP2000006649A/ja
Application granted granted Critical
Publication of JP3982064B2 publication Critical patent/JP3982064B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は前席側空調ユニットと後席側空調ユニットとを備える車両用空調装置において、前後の空調ユニットにそれぞれ、温水等を熱源とする暖房用熱交換器の他に、補助暖房熱源として複数本の電気発熱体を備え、この電気発熱体の通電本数を自動制御する制御装置に関する。
【0002】
【従来の技術】
近年、車両エンジンの高効率化に伴い、エンジン暖機後においても車両エンジンの冷却水(温水)温度が従前に比して低めの温度となる傾向にある。そのため、エンジン冷却水からの廃熱を利用して車室内の暖房を行う温水式空調装置においては、暖房能力不足が課題になっている。
【0003】
そこで、特開平9−20129号公報等に見られるごとく、温水式の暖房用熱交換器に電気発熱体を組み合せ、温水温度が低いときには電気発熱体に通電して、電気発熱体の発熱により暖房空気を加熱することにより、暖房能力の不足を解消するものが提案されている。
ところで、1ボックス車やミニバン車のように、前後方向に長い車室空間を有する車両では、前席側、後席側にそれぞれ空調ユニットを配置して、車室内の前後両側で乗員の欲する温熱感が得られるようにして、空調フィーリングの向上を図っている。
【0004】
【発明が解決しようとする課題】
このように、前席側、後席側にそれぞれ空調ユニットを配置する車両において、暖房能力向上のために、前席側空調ユニットのみに大容量の電気発熱体を配置すると、後席側空調ユニットのフット吹出空気温度が前席側空調ユニットのフット吹出空気温度より大幅に低くなってしまうので、車室内前後の室温差が拡大する。従って、暖房時に後席側の快適性が損なわれる。
【0005】
これに加え、後席側では室温の上昇がゆるやかであるので、暖房開始後、前席側に比べて風量レベルの最大状態が長期間継続されるので、送風騒音が耳障りであり、静粛性も損なわれる。
本発明は上記点に鑑みてなされたもので、前席側空調ユニットと後席側空調ユニットとを備える車両用空調装置において、前席側および後席側双方の暖房時空調フィーリングを向上することを目的とする。
【0006】
また、本発明では、前後の空調ユニットにそれぞれ、補助暖房熱源として複数本の電気発熱体を配備するに際して、前後の空調ユニットの電気発熱体による消費電力の抑制を図ることを他の目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明では、前席側空調ユニット(20)および後席側空調ユニット(40)にそれぞれ備えられ、補助暖房熱源として作用する複数本の電気発熱体(68a〜68c、69a〜69c)と、
車室内の前席側の暖房負荷と後席側の暖房負荷の差を判定する判定手段(S220)と、
前席側空調ユニット(20)内の電気発熱体(68a〜68c)の通電本数、および後席側空調ユニット(40)内の電気発熱体(69a〜69c)の通電本数を暖房負荷の差に応じて切り替える発熱体制御手段(S300)とを備え、
前席側の暖房負荷が後席側の暖房負荷よりも大きいときは発熱体制御手段(S300)により、前席側空調ユニット(20)内の電気発熱体(68a〜68c)の通電本数を後席側空調ユニット(40)内の電気発熱体(69a〜69c)の通電本数よりも多くし、かつ、前記暖房負荷の差の増加に応じて前席側空調ユニット(20)内の電気発熱体(68a〜68c)の通電本数を多くするとともに後席側空調ユニット(40)内の電気発熱体(69a〜69c)の通電本数を減らし、
一方、後席側の暖房負荷が前席側の暖房負荷よりも大きいときは発熱体制御手段(S300)により、後席側空調ユニット(40)内の電気発熱体(69a〜69c)の通電本数を前席側空調ユニット(20)内の電気発熱体(68a〜68c)の通電本数よりも多くし、かつ、暖房負荷の差の増加に応じて後席側空調ユニット(40)内の電気発熱体(69a〜69c)の通電本数を多くするとともに前席側空調ユニット(20)内の電気発熱体(68a〜68c)の通電本数を減らすことを特徴としている。
【0008】
これによると、車室内の前後の暖房負荷の差に応じて、前後の空調ユニット(20、40)内の電気発熱体の通電本数を決定するから、車室の前後の領域を同時に暖房する場合に、前後の電気発熱体による補助暖房能力を暖房負荷に対応して適切に制御できる。従って、車室の前後の領域を両方とも電気発熱体を用いて、均一な温熱感でもって良好に暖房できる。
【0009】
また、前後の電気発熱体による補助暖房能力を暖房負荷に対応して制御するから、前後の空調ユニット(20、40)の風量レベルを暖房負荷に対応して制御する場合に、前後の空調ユニット(20、40)の風量レベルが同様の変化となる。従って、車室前後の片側のユニットのみで、風量レベルの最大状態が長期間継続されて静粛性が損なわれるといった不具合も発生しない。
更に、前後の電気発熱体のうち、暖房負荷が大きい側の電気発熱体の通電本数を暖房負荷の差の増加に応じて多くし、一方、暖房負荷が小さい側の電気発熱体の通電本数を減らしているから、前後の電気発熱体の合計通電本数を抑えて、電気発熱体全体の消費電力を抑えることができる。
【0010】
上記した暖房負荷の差は具体的には、請求項2に記載のごとく前席側の目標吹出空気温度(TAO(Fr))と前記後席側の目標吹出空気温度(TAO(Rr))との差(ΔTAO)に基づいて行うことができる。
また、請求項3に記載のごとく車室内の前席側の室温(Tr(Fr))と車室内の後席側の室温(Tr(Rr))との差(ΔTr)に基づいて、暖房負荷の差を判定してもよい。
【0011】
請求項4記載の発明では、上記した両空調ユニット(20、40)内の電気発熱体(68a〜68c、69a〜69c)の合計設置本数Nに対して、両空調ユニット(20、40)内の電気発熱体の合計通電本数nが
n=1/2Nの関係となるように、両空調ユニット(20、40)内の電気発熱体の通電本数を段階的に切り替えることを特徴としている。
【0012】
これによると、両空調ユニット(20、40)内の電気発熱体の合計通電本数nが常に電気発熱体合計設置本数Nの1/2となり、電気発熱体全体の消費電力の最大値を片側の空調ユニット内の電気発熱体の最大値以内に抑えることができ、車載バッテリの過放電防止に有利である。
請求項5記載の発明では、前席側空調ユニット(20)および後席側空調ユニット(40)にそれぞれ設けられ、暖房用熱交換器(28、47)による加熱量を調整して車室内への吹出空気温度を調整する温度調整手段(27、49)と、
前席側空調ユニット(20)および後席側空調ユニット(40)のいずれか一方のみが作動するときは、その一方の作動する側の空調ユニットにおける温度調整手段(27、49)の作動位置に応じて電気発熱体(68a〜68c、69a〜69c)の通電本数を決定する制御手段(S320、S330)とを備え、
この制御手段(S320、S330)は、温度調整手段(27、49)の作動位置が吹出空気温度の高温側位置に移行するに応じて電気発熱体(68a〜68c、69a〜69c)の通電本数を多くすることを特徴としている。
【0013】
これによると、両空調ユニットの一方のみが作動するときにおいても、その一方の作動する側の空調ユニットにおける温度調整手段(27、49)の作動位置に応じて、電気発熱体の通電本数を適切に決定できる
【0014】
なお、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
【0015】
【発明の実施の形態】
以下、本発明の実施形態を図に基づいて説明する。
(第1実施形態)
図1、図2は、ワンボックス型のRV車10に、前席側空調ユニット20および後席側空調ユニット40を配置した配置レイアウトを例示する。車両10は車室11内の前後方向に3列の座席12を有しており、前後方向に長い車室空間を形成している。
【0016】
前席側空調ユニット20は、車室内の最前部の計器盤13の内側部に配設されて、車室内前席側の領域を空調するものであって、図3に示すごとき構成になっている。図3において、前席側空調ユニット20は、大別して、送風機部21と、熱交換器部22とから構成されている。なお、送風機部21は計器盤13の内側部の助手席前方側に配置され、熱交換器部22は計器盤13の内側部で、車両左右方向の略中央位置に配置される。
【0017】
送風機部21は内気と外気を切替導入する内外気切替箱23と、遠心式の送風ファン24とを有し、送風ファン24はモータ24aにより回転駆動される。熱交換器部22は空調空気を冷却する冷房用熱交換器として冷凍サイクルの蒸発器25をケース26内に配置している。ここで、冷凍サイクルは図示しない周知の構成であり、車両エンジンにて駆動される圧縮機と、この圧縮機からの吐出ガス冷媒を凝縮する凝縮器と、この凝縮器で凝縮された冷媒を貯留して冷媒の気液を分離する受液器と、この受液器からの液冷媒を減圧する温度式膨張弁(減圧手段)とを備えている。
【0018】
そして、上記した冷凍サイクルには、後述の図4に示す後席側空調ユニット40の蒸発器(冷房用熱交換器)46が上記した前席側空調ユニット20の蒸発器25と並列に接続されている。
次に、熱交換器部22において、蒸発器25の空気下流側には、エアミックスドア27およびヒータコア28が配置されている。ここで、ヒータコア28は車両エンジンからの温水(冷却水)により空調空気を加熱する温水式の暖房用熱交換器であって、このヒータコア28の側方には蒸発器25を通過した冷風を流すバイパス路29が並列に形成されている。
【0019】
ヒータコア28の上流側の部位には平板状のエアミックスドア(温度調整手段)27が回動可能に配置され、このエアミックスドア27の回動位置(開度)の選択により、ヒータコア28を通過して加熱される温風とバイパス路29を通過する冷風との風量割合を調整して吹出空気温度を調整する。27´はエアミックスドア27がバイパス路29を全閉し、ヒータコア28への空気路を全開する最大暖房状態(エアミックスドア27の開度SW=100%)を示している。ヒータコア28の下流側には、この温風と冷風とを混合する冷温風混合室30が配置されている。
【0020】
そして、ケース26の下流端には、デフロスタ吹出開口部31、フェイス吹出開口部32およびフット吹出開口部33が開口しており、これらの開口部31〜〜33は3つの吹出モードドア34〜36により切替開閉される。また、各開口部31〜33を通過した空調空気は、図示しないデフロスタ吹出口、フェイス吹出口およびフット吹出口から、それぞれ車両窓ガラスの内面、前席側乗員の頭部、足元部に向けて吹き出される。
【0021】
次に、後席側空調ユニット40は図1、2に示すように車室内の後席(2番目、3番目の座席12)側に配設されて、後席側の領域を空調するものであって、より具体的には、本例によると、後席側空調ユニット40は車室内最後列の座席12の右側方部に配置されている。
後席側空調ユニット40の具体的構成は例えば、図4に示すごときものであり、後席側空調ユニット40は、大別して、車両前方側に配置された送風機部41と、車両後方側に配置された熱交換器部42とから構成されている。送風機部41は、車室11内の空気(内気)のみを吸入して送風する遠心式の送風ファン43と、スクロールケーシング44とを備えており、送風ファン43はファン駆動用モータ43aにより回転駆動される。そして、ファン43が回転することにより、吸込空気をスクロールケーシング44から熱交換器部42へ向かって送風する。
【0022】
送風機部41の空気流れ下流側には、上記した熱交換器部42のケース45が連結されており、この熱交換器部42のケース45内において下方側部位には前席側空調ユニット20の冷凍サイクルから分岐された冷媒を蒸発させる蒸発器(冷房用熱交換器)46を収容している。この蒸発器46は略長方形の薄型形状であり、略水平方向に配置されて、その熱交換部を空気が下方から上方へと通過する。
【0023】
そして、蒸発器46の空気流れ下流側、すなわち、蒸発器46の上方側にヒータコア47が配設されている。このヒータコア47も、車両エンジンからの温水により空気を加熱する温水式の暖房用熱交換器であって、蒸発器46の上方側において水平に配置してある。このヒータコア47の熱交換部も、空気が下方から上方へと通過するようになっている。なお、前後の両空調ユニット20、40のヒータコア28、47は基本的には同一構成であり、後述の図5により詳述する。
【0024】
ヒータコア47の側方には、ヒータコア47をバイパスして冷風を流すためのバイパス路48が形成してあり、ヒータコア47の下方部にはスライド式のエアミックスドア(温度調整手段)49が配置してある。このエアミックスドア49は平板状の形状であり、そして、略水平方向Aにスライド可能に構成されている。このエアミックスドア49が略水平方向Aへスライドすることにより、ヒータコア47を通過して加熱される温風とバイパス路48を通過する冷風との風量割合を調整して吹出空気温度を調整する。
【0025】
ヒータコア47の上側には、後席側のフェイス吹出開口部50および後席側のフット吹出開口部51が開口している。フェイス吹出開口部50は図示しない後席側フェイスダクトを介して後席側の上方部に空気を吹き出すものであり、また、フット吹出開口部51は図示しない後席側フットダクトを介して後席側の乗員足元部に空気を吹き出すものである。
【0026】
上記両開口部50、51の下側部にはスライド式の吹出モードドア52が配置してある。この吹出モードドア52は略水平方向Bへスライドすることにより、両開口部50、51を切替開閉する。
図5は、上述した前後の空調ユニット20、40のヒータコア(車両暖房用熱交換器)28、47の正面図であって、このヒータコア28、47は、温水入口側タンク60と、温水出口側タンク61と、この両タンク60、61の間に設けられた熱交換用コア部62とを有している。
【0027】
温水入口側タンク60には、後述の図7に示す水冷式の車両エンジン70からの温水(エンジン冷却水)が流入する入口パイプ63が設けられ、温水出口側タンク61には温水を外部へ流出させ、エンジン70側に還流させる出口パイプ64が設けられている。
各タンク60、61はそれぞれタンク本体部60a、61aと、このタンク本体部60a、61aの開口端面を閉じるシートメタル60b、61bとからなる周知のタンク構造である。そして、シートメタル60b、61bには偏平状のチューブ挿入穴(図示せず)が多数個、図5の左右方向に並んで形成されている。熱交換用コア部62は暖房用空気の流れ方向(図5の紙面垂直方向)に対して平行な偏平状に形成された偏平チューブ65を多数個図5の左右方向に並列配置している。この多数個の偏平チューブ65内を温水は図5の下側から上側への一方向に流れる。そして、この多数個の偏平チューブ65相互の間に波形状に成形されたコルゲートフィン(フィン部材)66を配置し接合している。
【0028】
偏平チューブ65の両端開口部はシートメタル60b、61bのチューブ挿入穴内にそれぞれ挿通され、接合される。また、コア部62の最外側(図5の左右両端部)のコルゲートフィン66のさらに外側にはサイドプレート67、67が配設され、このサイドプレート67、67は最外側のコルゲートフィン66およびタンク60、61に接合される。
【0029】
さらに、熱交換用コア部62の一部の部位に、偏平チューブ65の代わりに、3本の電気発熱体68a、68b、68c(69a、69b、69c)を設置している。この電気発熱体は温水温度の低温時に補助暖房熱源としての役割を果たすものであって、符号68a、68b、68cは、前席側ヒータコア28の電気発熱体を示し、符号69a、69b、69cは後席側ヒータコア47の電気発熱体を示している。
【0030】
図5の例では、熱交換用コア部62の3箇所に上記電気発熱体を等間隔で、左右対称位置に設置している。上記電気発熱体68a〜68c(69a〜69c)の具体的構成を図6により説明すると、熱交換用コア部62のうち、電気発熱体68a〜68c(69a〜69c)が設置される部位では、隣接するコルゲートフィン66の折り曲げ頂部に金属製保持板100を接合する。この保持板100は、所定間隔を開けたU状形状に折り曲げ成形され、そして、その閉塞端部がヒータコアへの空気送風方向Cの上流側に位置するように配置されている。
【0031】
そして、この保持板100の2枚の平板部101、102の所定間隔内に各電気発熱体68a〜68c(69a〜69c)を組み付ける構造となっている。
なお、ヒータコア28、47の各部品および保持板100はいずれもアルミニウムからなり、一体ろう付けにて接合され、このろう付け後に各電気発熱体を上記金属製保持板100内に組み付ける。
【0032】
電気発熱体68a〜68c(69a〜69c)は、板状の発熱体素子103と、この発熱体素子103の表裏両面に配置された細長の平板状の電極板104、105との3層サンドウイッチ構造を電気絶縁材106で被覆した構造になっており、この電極板104、105を介して外部回路に発熱体素子103が電気的に接続される。そして、発熱体素子103は所定の設定温度(キューリ点)にて抵抗値が急増する正の抵抗温度特性を有する抵抗体材料(例えば、チタン酸バリウム)からなるPTCヒータ素子である。また、前後のヒータコア28、47の合計6本の電気発熱体68a〜68c(69a〜69c)は車載電源(図7に示すバッテリ79)に対して電気的に並列接続される。
【0033】
図7は電気発熱体を一体化した温水式の両ヒータコア28、47を含む車両温水回路および電気制御部の概略ブロックを示している。水冷式の車両エンジン70の温水回路71には車両エンジン70により回転駆動される温水ポンプ72が配置されており、この温水ポンプ72の作動により温水(エンジン冷却水)が温水回路71を循環する。
【0034】
温水回路71において、車両エンジン70で加熱された温水は、前席側温水弁73を介して前席側ヒータコア28に流入する。ここで、温水弁73は、サーボモータ等の電気アクチュエータにより開閉制御される。また、温水回路71において、後席側温水弁74および後席側ヒータコア47が前席側温水弁73および前席側ヒータコア28と並列に設けられている。
【0035】
次に、空調装置の電気制御系を説明すると、空調用電子制御装置75はマイクロコンピュータ等から構成されるものであり、予め設定されたプログラムに基づいて所定の演算処理を行って電気発熱体68a〜68c、69a〜69c等への通電を制御する。電子制御装置75の出力信号はリレー76a〜76cおよびリレー77a〜77cに加えられ、このリレー76a〜76cおよびリレー77a〜77cによって各電気発熱体68a〜68c、69a〜69cへの通電が独立に断続されるようになっている。
【0036】
また、電子制御装置75には車両エンジン70の運転を断続するイグニッションスイッチ78を介して車載バッテリ79から電源が供給される。
一方、電子制御装置75には次の各種センサ類および空調操作パネルからの信号が入力される。すなわち、センサ類としては、外気温Tamを検出する外気温センサ80、車室内前席側の内気温Tr(Fr)を検出する前席側内気温センサ81、車室内後席側の内気温Tr(Rr)を検出する後席側内気温センサ82、車室内へ入射される日射量Tsを検出する日射センサ83、水冷式車両エンジン70の温水温度を検出する水温センサ84、前席側蒸発器25の冷却温度(具体的には、蒸発器吹出空気温度)Te(Fr)を検出する前席側蒸発器温度センサ85、および後席側蒸発器46の冷却温度(具体的には、蒸発器吹出空気温度)Te(Rr)を検出する後席側蒸発器温度センサ86が備えられている。なお、日射センサ83を前席側および後席側で共通とせずに、それぞれ独立に設けてもよい。
【0037】
前席側空調操作パネル87には手動操作式の前席側温度設定器88が備えられ、また、後席側空調操作パネル89には手動操作式の後席側温度設定器90が備えられ、それぞれ、乗員により設定された前席側設定温度Tset(Fr)および後席側設定温度Tset(Rr)が電子制御装置75に入力される。なお、両操作パネル87、89からは、設定温度の他に、周知のごとく内外気導入の切替、風量切替、吹出モードの切替等の手動操作信号が電子制御装置75に入力される。
【0038】
電子制御装置75は、前述のリレー76a〜77cの他に、前後のファン駆動用モータ24a、43a、前席側エアミックスドア27の駆動用アクチュエータ27a、後席側エアミックスドア49の駆動用アクチュエータ49a、前後の温水弁73、74の駆動用アクチュエータ等を制御する。
次に、上記構成において作動を説明する。電気発熱体68a〜68c、69a〜69cへの通電制御を説明する前に、まず、最初に、各機能部品による空調作動の概要を説明する。車室内前後の暖房を行うときには、前後の空調ユニット20、40の送風ファン24、43を作動させるとともに、温水弁73、74を開弁させる。送風ファン24、43の作動によって、前後のヒータコア28、47の偏平チューブ65とコルゲートフィン66との間の空隙部を暖房用空気が通過する。
【0039】
一方、車両用エンジン70の温水ポンプ72の作動によりエンジン70からの温水が温水弁73、74を介して前後のヒータコア28、47の入口パイプ63より温水入口側タンク60内に流入する。そして、温水は、入口側タンク60にて多数本の偏平チューブ65に分配され、この偏平チューブ65を並列に流れる間にコルゲートフィン66を介して暖房用空気に放熱する。多数本の偏平チューブ65を通過した温水は温水出口側タンク61に流入し、ここで集合され、出口パイプ64から温水はヒータコア外部へ流出し、エンジン70側に還流する。
【0040】
一方、暖房時において、温水温度が低くて、電気発熱体68a〜68c、69a〜69cの発熱による補助熱源を必要とするときは、リレー76a〜77cのうち、発熱の必要な電気発熱体に対応するリレーをオンして、その電気発熱体に車載バッテリ79の電圧を印加する。これにより、リレーを介して発熱の必要な電気発熱体が通電され発熱する。
【0041】
電気発熱体の発熱は両側のコルゲートフィン66に伝導されて、このコルゲートフィン66から暖房用空気に放熱される。従って、温水の低温時でも暖房空気を速やかに加熱して即効暖房を行うことができる。
ここで、電気発熱体68a〜68c、69a〜69cの発熱体素子103は所定のキューリ点(例えば、150°C)にて抵抗値が急増する正の抵抗温度特性を有するPTC素子であるから、周知のごとく、その発熱温度をキューリ点に自己制御する自己温度制御機能を備えている。
【0042】
次に、本発明の特徴とする電気発熱体の通電制御の具体例を図8のフローチャートに基づいて説明する。図8の制御ルーチンは、車両エンジン70のイグニッションスイッチ78が投入されるとスタートし、ステップS200にて各種センサ、スイッチ類からの信号読み込みを行う。次のステップS210にて、車室内の前席側領域およひ後席側領域を、それぞれ前席側設定温度Tset(Fr)および後席側設定温度Tset(Rr)に維持するために必要な前席側目標吹出空気温度TAO(Fr)、後席側目標吹出空気温度TAO(Rr)を算出する。この前後の目標吹出空気温度TAO(Fr)、TAO(Rr)は、予めROMに記憶されている下記数式1、2に基づいて算出する。
【0043】
【数1】
TAO(Fr)=Kset (Fr)×Tset (Fr)−Kr (Fr)×Tr (Fr)−Kam(Fr)×Tam
−Ks (Fr)×Ts +C(Fr)−Tc(Fr)+fFr(ΔTset )−Kw ×Tw
【0044】
【数2】
TAO(Rr)=Kset (Rr)×Tset (Rr)−Kr (Rr)×Tr (Rr)−Kam(Rr)×Tam
−Ks (Rr)×Ts +C(Rr)−Tc(Rr)+fRr(ΔTset )
なお、上記数式1、2において、Frは前席側であることを表し、Rrは後席側であることを表している。そして、前述の図7と同一符号は同一内容を表している。また、Tcは冷凍サイクルの圧縮機のオン時とオフ時の補正を行うための補正係数であり、ΔTset は前席側設定温度Tset(Fr)と後席側設定温度Tset(Rr)との温度差である。さらに、Kset 、Kr 、Kam、Ks 、Kw はすべてゲインで、Cは補正用の定数である。
【0045】
次に、ステップS220に進み、上記した前後の目標吹出空気温度TAO(Fr)、TAO(Rr)の温度差ΔTAO(=TAO(Fr)−TAO(Rr))を算出する。次に、ステップS230にて、上記した前後の目標吹出空気温度TAO(Fr)、TAO(Rr)に基づいて、予めROMに記憶されている下記数式3、4により前後のエアミックスドア27、49の開度SW(Fr)、SW(Rr)を算出する。
【0046】
【数3】
SW(Fr)=〔(TAO(Fr)−Te(Fr) )/(Tw −Te(Fr) )〕×100
【0047】
【数4】
SW(Rr)=〔(TAO(Rr)−Te(Rr) )/(Tw −Te(Rr) )〕×100
なお、上記数式3、4においても、前述の図7と同一符号は同一内容を表している。
次に、ステップS240に進み、温水温度Tw の判定基準値f(Tw)=1かどうか判定する。ここで、判定基準値f(Tw)は図9(a)に示すように、温水温度Tw が所定温度(図示の例では、ヒステリシス幅を持つ70°Cないしは80°C)以下のとき1となり、所定温度を越えると0となる。この判定基準値f(Tw)は、温水熱源のヒータコア28、47による暖房能力が不足する温水低温域で1となり、ヒータコア28、47による暖房能力が十分である温水高温域で0となるように、上記所定温度を設定している。
【0048】
従って、温水温度Tw が上記所定温度を越える高い温度のときは、ステップS240の判定がNOとなり、ステップS200に戻る。これに対し、温水温度Tw が上記所定温度以下であるときは、次のステップS250に進み、外気温Tamの判定基準値f(Tam) =1かどうか判定する。この判定基準値f(Tam) は図9(b)に示すように、外気温Tamが所定温度(図示の例では、ヒステリシス幅を持つ10°Cないしは15°C)以下のとき1となり、所定温度を越えると0となる。この判定基準値f(Tam) は、電気発熱体による補助熱源を必要とする外気温低温域で1となり、電気発熱体による補助熱源を必要としない外気温高温域で0となるように上記所定温度を設定している。
【0049】
従って、外気温Tamが上記所定温度を越える高い温度のときは、ステップS250の判定がNOとなり、ステップS200に戻る。これに対し、外気温Tamが上記所定温度以下であるときは、次のステップS260に進み、前席側空調ユニット20の送風ファン24が作動(ON)しているか判定する。
前席側送風ファン24が作動(ON)しているときは、次のステップS270に進み、後席側空調ユニット40の送風ファン43が作動(ON)しているか判定する。後席側送風ファン43が作動(ON)しているときは、次のステップS280に進み、前席側エアミックスドア27の開度SW(Fr)の判定基準値f(SW(Fr))=1かどうか判定する。同様に、次のステップS290では、後席側エアミックスドア49の開度SW(Rr)の判定基準値f(SW(Rr))=1かどうか判定する。
【0050】
この判定基準値f(SW(Fr))およびf(SW(Rr))は、図9(c)に示すように、エアミックスドア開度SWが所定開度(図示の例では、ヒステリシス幅を持つ80%ないしは90%)以下のとき0となり、所定開度を越えると1となる。ここで、この判定基準値f(SW)はエアミックスドア開度SWが最大暖房状態(開度SW=100%)に近い状態にあるとき1となり、エアミックスドア開度SWが最大暖房近傍の状態にないとき0となるように、上記所定開度を設定している。
【0051】
そして、ステップS280、S290でともに、判定基準値が1であるとき、すなわち、前後の空調ユニット20、40がともに最大暖房近傍の状態にあるときは、次のステップS300に進み、前後の空調ユニット20、40のヒータコア28、47の電気発熱体68a〜68c、69a〜69cの通電本数を決定する。
【0052】
すなわち、ステップS300においては、上述のステップS220で算出された、前後の目標吹出空気温度の温度差ΔTAO(=TAO(Fr)−TAO(Rr))に基づいて図9(d)のように電気発熱体68a〜68c、69a〜69cの通電本数を決定する。つまり、温度差ΔTAOが10°Cより大きいときは、目標吹出空気温度の高い側の電気発熱体を3本(最多本数)とも同時に通電して、目標吹出空気温度の高い側の空調ユニットにおいて、電気発熱体による補助暖房能力を最大限発揮して暖房能力の確保を図る。
【0053】
これに対して、目標吹出空気温度が10°C以上低い側の空調ユニットでは、電気発熱体への通電を0本としている。
そして、10°C>ΔTAO>0°Cのときは、目標吹出空気温度の高い側の電気発熱体の通電本数を2本とし、目標吹出空気温度の低い側の電気発熱体の通電を1本とする。
【0054】
このように、前後の目標吹出空気温度差ΔTAOに応じて、前後の電気発熱体の通電本数を切替制御することにより、温水低温時においても、車室内の前後の室温を乗員により設定された前後の設定温度に近づけるよう良好に制御できる。しかも、上記通電本数の切替制御は、車載電源バッテリ79の過放電を防止するためにも有利である。すなわち、前後の電気発熱体68a〜68c、69a〜69cの合計設置本数N(本例では6本)に対して、前後の両空調ユニット20、40内の電気発熱体の合計通電本数nが常に、1/2N(本例では3本)となるように、電気発熱体の通電本数を切り替えているから、温度差ΔTAOが10°Cより大きいときは車載電源バッテリ79の限られた電源容量を目標吹出空気温度の高い側の空調ユニットの補助暖房熱源に集中的に有効利用して、車載電源バッテリ79の過放電を効果的に防止できる。
【0055】
因みに、電気発熱体の1本当たりの電力消費が300Wであるとすると、本例の制御によると、電気発熱体全体の電力消費を常に900Wに抑えることができる。
なお、目標吹出空気温度が10°C以上低い側の空調ユニットで、電気発熱体への通電を0本としても、温水を熱源とした暖房は可能であり、また、車室11内の前後の領域は1つの空間として繋がっているので、目標吹出空気温度の低い側の領域において、室温が極端に低下する恐れはない。
【0056】
ここで、車載電源バッテリ79の過放電をより確実に防止するため、バッテリ79の充電状態(例えば、バッテリ79の充電電圧)を検出し、バッテリ79の充電状態を判定して、電気発熱体の合計通電本数の上限を定めるようにしてもよい。
次に、上述のステップS260において、前席側送風ファン24が作動していないときは、ステップS310に進み、後席側送風ファン43が作動(ON)しているか判定する。後席側送風ファン43も作動(ON)していないときは、ステップS200に戻る。これに反し、後席側送風ファン43が作動(ON)しているときは、次のステップS320に進み、後席側エアミックスドア49の開度SW(Rr)に従って、後席側電気発熱体69a〜69cの通電本数を図9(e)のように決定する。
【0057】
すなわち、後席側エアミックスドア49の開度SW(Rr)が80%より小さいときは、電気発熱体による補助熱源を必要としない領域(温度制御域)であるので、後席側電気発熱体69a〜69cの通電本数を常に0本とする。これに反し、後席側エアミックスドア49の開度SW(Rr)が110%より大きいときは、電気発熱体による補助熱源を最大にする必要な領域であるので、後席側電気発熱体69a〜69cの通電本数を最多本数(3本)としている。そして、上記ドア開度SW(Rr)が80%と110%との間で増減する伴って、後席側電気発熱体69a〜69cの通電本数を0本と3本との間で増減させている。
【0058】
これにより、後席側空調ユニット40のみの作動時に、後席側エアミックスドア開度SW(Rr)の変化に基づいて、後席側電気発熱体69a〜69cの通電本数を、必要な補助暖房能力に応じて適切に決定できる。
また、上述のステップS270において、後席側送風ファン43が作動していないときは、ステップS330に進み、前席側エアミックスドア27の開度SW(Fr)に従って、前席側電気発熱体68a〜68cの通電本数を図9(e)のように決定する。この通電本数の具体的な決定方法は、上述の後席側電気発熱体69a〜69cの場合と同一であるので、説明は省略する。
【0059】
これにより、前席側空調ユニット20のみの作動時においても、前席側エアミックスドア開度SW(Fr)の変化に基づいて、前席側電気発熱体68a〜68cの通電本数を、必要な補助暖房能力に応じて適切に決定できる。
また、上述のステップS280、S290で判定基準値が1でないとき(前後の空調ユニット20、40がともに最大暖房近傍の状態にないとき)は、ステップS200に戻る。
【0060】
ここで、図8の各ステップと各請求項における機能実現手段との対応関係について説明すると、前席側目標吹出空気温度TAO(Fr)を算出する前席側算出手段、および後席側目標吹出空気温度TAO(Rr)を算出する後席側算出手段は、ステップS210により構成される。
そして、前席側の目標吹出空気温度TAO(Fr)と後席側の目標吹出空気温度TAO(Rr)との差ΔTAOに基づいて、車室内前後の暖房負荷の差を判定する判定手段はステップS220により構成される。
【0061】
また、前席側空調ユニット20内の電気発熱体68a〜68cの通電本数、および後席側空調ユニット40内の電気発熱体69a〜69cの通電本数を車室内前後の暖房負荷の差に応じて切り替える発熱体制御手段はステップS300により構成される。
前後の空調ユニット20、40のいずれか一方のみが作動するときは、その一方の作動する側の空調ユニットにおけるエアミックスドア開度SW(Fr)、SW(Rr)に応じて電気発熱体の通電本数を決定する制御手段はステップS320、S330により構成される。
【0062】
次に、図10は本実施形態における前後の空調ユニット20、40の送風ファン24、43の風量と、水温(Tw)との制御特性を示すもので、図10の縦軸は送風ファン24、43の駆動用モータ24a、43aへの印加電圧レベルであり、図中、縦軸の「31」は印加電圧レベルの最高値、すなわち、モータ回転数(風量)の最高レベルを示している。また、図中、縦軸の「1」は印加電圧レベルの最低値で、モータ回転数(風量)の最低レベルである。
【0063】
図10の制御特性によると、前席側電気発熱体68a〜68cまたは後席側電気発熱体69a〜69cの通電本数が0から1、2、3本と増加するにつれて、電気発熱体による補助暖房能力を増大できることに着目して、前後の送風ファン24、43のモータ印加電圧レベルが0から1に移行するとき、すなわち、送風ファン24、43が始動するときの水温Twを電気発熱体通電本数の増加とともに引き下げている。具体的には、電気発熱体通電本数=0本のとき、ファン始動時水温Tw=35°C→電気発熱体通電本数=3本のとき、ファン始動時水温Tw=26°Cに引き下げている。
【0064】
同様に、前後の送風ファン24、43のモータ印加電圧レベルが最高の31に到達する水温Twも電気発熱体通電本数の増加とともに引き下げている。具体的には、電気発熱体通電本数=0本のとき、ファン最高速度時水温Tw=65°C→電気発熱体通電本数=3本のとき、ファン最高速度時水温Tw=56°Cに引き下げている。
【0065】
このように、電気発熱体通電本数の増加とともに、ファン始動時水温およびファン最高速度時水温を引き下げることにより、エンジン始動後、水温が上昇する過程において、より低温側から送風ファン24、43の作動を開始できる。その結果、エンジン始動後、短時間で車室内を快適温度に到達でき、空調フィーリングを向上できる。
【0066】
(第2実施形態)
図11は第2実施形態であり、第1実施形態による図10の風量制御の例では、水温Twが所定温度、例えば、35°Cに上昇するまでは、送風ファン24、43を停止して、車室内への冷風の吹出を防止するようにしているが、第2実施形態では図11に示すごとく、水温Twが所定温度、例えば、35°Cに上昇するまでは前席側の空調ユニット20において、送風ファン24のモータ印加電圧レベルを最低レベル「1」に固定するとともに吹出口モードをデフロスタモードに固定して、送風ファン24による最小量の風をデフロスタ吹出口のみから吹き出している。このとき、前席側の空調ユニット20における前席側電気発熱体68a〜68cの通電本数は図8のステップS330により決定される。
【0067】
(第3実施形態)
図12は第3実施形態であり、前席側空調ユニット20において、内外気吸入モードとして外気モードが選択されているときは、車速が高くなると、送風ファン24の停止時でも車両走行動圧(ラム圧)により外気がケース26内の通路に流入する。従って、図10に示すように、水温Twが所定温度、例えば、35°Cに上昇するまでの低水温時にラム圧により外気が流入すると、低温空気が車室内へ吹き出すという不具合が生じることになる。
【0068】
そこで、第3実施形態では上記の点に鑑みて、前席側空調ユニット20の送風ファン24が低水温のために停止している状態において、内外気吸入モードが外気モードであり、かつ、車速が所定速度(例えば、40km/h)以上であるときは、前席側の空調ユニット20における前席側電気発熱体68a〜68cに強制的に通電して、低温空気の車室内への吹出を確実に防止するようにしてもよい。
【0069】
(他の実施形態)
なお、上記の実施形態では、前席側の目標吹出空気温度TAO(Fr)と後席側の目標吹出空気温度TAO(Rr)との差ΔTAOに基づいて、前後の暖房負荷の差を判定しているが、室温(内気温)は暖房負荷に大きな影響を与える環境因子であるので、車室内の前席側の室温Tr(Fr)と後席側の室温Tr(Rr)との差ΔTrに基づいて、暖房負荷の差を判定するようにしてもよい。
【0070】
また、車室内の前席側の暖房負荷(TAO(Fr)、Tr(Fr)等)、および後席側の暖房負荷(TAO(Rr)、Tr(Rr)等)をそれぞれ算出し、前席側空調ユニット20内の電気発熱体68a〜68cの通電本数を前席側の暖房負荷に応じて決定するとともに、後席側空調ユニット40内の電気発熱体69a〜69cの通電本数を後席側の暖房負荷に応じて決定してもよい。
【0071】
また、ヒータコア28、47に循環する熱源流体としては、温水に限らず、エンジンオイル等の油類であってもよいことはもちろんである。
また、ヒータコア28、47に電気発熱体68a〜68c、69a〜69cを一体化する場合に、この電気発熱体の設置形態を図5の形態に限らず、ヒータコアの仕様の変化等に対応して種々変更し得ることはもちろんである。
【0072】
また、上記の実施形態では、ヒータコア28、47に複数の電気発熱体68a〜68c、69a〜69cを一体化する場合について説明したが、ケース26、45内においてヒータコア28、47の前後等に複数の電気発熱体を別途独立に設置してもよい。
また、送風ファン24、43の風量制御は、駆動用モータ24a、43aの印加電圧レベルを変化させる方式に限らず、駆動用モータ24a、43aに加えるパルス出力電圧のパルス幅を変調させる、パルス幅変調(PWM)方式を用いることもできる。
【0073】
また、車室内への吹き出し空気温度を調整する温度調整手段として、温風と冷風との風量割合を調整して吹出空気温度を調整するエアミックスドア27、49を用いる場合について説明したが、温水弁73、74として、ヒータコア28、47への温水流量を連続的に調整できるタイプのものを用い、この温水弁73、74による温水流量の調整によって吹出空気温度を調整するようにしてもよい。
【図面の簡単な説明】
【図1】本発明を適用する、前席側空調ユニットおよび後席側空調ユニットを配置した車両の概略平面配置図である。
【図2】図1の車両の概略側面配置図である。
【図3】図1の前席側空調ユニットの通風系を例示する概略断面図である。
【図4】図1の後席側空調ユニットの通風系を例示する概略断面図である。
【図5】本発明における電気発熱体を一体化したヒータコアの正面図である。
【図6】図5のヒータコアにおける電気発熱体部分の拡大斜視図である。
【図7】本発明の第1実施形態におけるヒータコアを含む温水回路と電気制御系統を含む全体システム図である。
【図8】本発明の第1実施形態における電気制御のフローチャートである。
【図9】本発明の第1実施形態における電気制御特性図である。
【図10】本発明の第1実施形態における水温と風量との関係を示す制御特性図である。
【図11】本発明の第2実施形態における風量制御特性図である。
【図12】本発明の第3実施形態における電気発熱体通電制御のフローチャートである。
【符号の説明】
20…前席側空調ユニット、40…後席側空調ユニット、
27、49…エアミックスドア、28、47…ヒータコア、
68a〜68c、69a〜69c…電気発熱体。

Claims (5)

  1. 車室内の前席側に配置され、かつ、暖房用熱交換器(28)を少なくとも内蔵し、前席側を空調する前席側空調ユニット(20)と、
    車室内の後席側に配置され、かつ、暖房用熱交換器(47)を少なくとも内蔵し、後席側を空調する後席側空調ユニット(40)とを備える車両用空調装置において、
    前記前席側空調ユニット(20)および前記後席側空調ユニット(40)にそれぞれ備えられ、補助暖房熱源として作用する複数本の電気発熱体(68a〜68c、69a〜69c)と、
    車室内の前席側の暖房負荷と後席側の暖房負荷の差を判定する判定手段(S220)と、 前記前席側空調ユニット(20)内の電気発熱体(68a〜68c)の通電本数、および前記後席側空調ユニット(40)内の電気発熱体(69a〜69c)の通電本数を前記暖房負荷の差に応じて切り替える発熱体制御手段(S300)とを備え、
    前記前席側の暖房負荷が前記後席側の暖房負荷よりも大きいときは前記発熱体制御手段(S300)により、前記前席側空調ユニット(20)内の電気発熱体(68a〜68c)の通電本数を前記後席側空調ユニット(40)内の電気発熱体(69a〜69c)の通電本数よりも多くし、かつ、前記暖房負荷の差の増加に応じて前記前席側空調ユニット(20)内の電気発熱体(68a〜68c)の通電本数を多くするとともに前記後席側空調ユニット(40)内の電気発熱体(69a〜69c)の通電本数を減らし、
    一方、前記後席側の暖房負荷が前記前席側の暖房負荷よりも大きいときは前記発熱体制御手段(S300)により、前記後席側空調ユニット(40)内の電気発熱体(69a〜69c)の通電本数を前記前席側空調ユニット(20)内の電気発熱体(68a〜68c)の通電本数よりも多くし、かつ、前記暖房負荷の差の増加に応じて前記後席側空調ユニット(40)内の電気発熱体(69a〜69c)の通電本数を多くするとともに前記前席側空調ユニット(20)内の電気発熱体(68a〜68c)の通電本数を減らすことを特徴とする車両用空調装置。
  2. 前記前席側空調ユニット(20)から車室内の前席側へ吹き出す吹出空気の目標吹出空気温度(TAO(Fr))を算出する前席側算出手段(S210)と、
    前記後席側空調ユニット(40)から車室内の後席側へ吹き出す吹出空気の目標吹出空気温度(TAO(Rr))を算出する後席側算出手段(S210)とを備え、
    前記前席側の目標吹出空気温度(TAO(Fr))と前記後席側の目標吹出空気温度(TAO(Rr))との差(ΔTAO)に基づいて、前記暖房負荷の差を判定することを特徴とする請求項1に記載の車両用空調装置。
  3. 車室内の前席側の室温(Tr(Fr))を検出する前席側室温検出手段(81)と、
    車室内の後席側の室温(Tr(Rr))を検出する後席側室温検出手段(82)とを備え、
    前記前席側の室温(Tr(Fr))と前記後席側の室温(Tr(Rr))との差(ΔTr)に基づいて、前記暖房負荷の差を判定することを特徴とする請求項1に記載の車両用空調装置。
  4. 前記両空調ユニット(20、40)内の電気発熱体(68a〜68c、69a〜69c)の合計設置本数Nに対して、前記両空調ユニット(20、40)内の電気発熱体の合計通電本数nがn=1/2Nの関係となるように、前記両空調ユニット(20、40)内の電気発熱体の通電本数を段階的に切り替えることを特徴とする請求項1ないし3のいずれか1つに記載の車両用空調装置。
  5. 前記前席側空調ユニット(20)および前記後席側空調ユニット(40)にそれぞれ設けられ、前記暖房用熱交換器(28、47)による加熱量を調整して車室内への吹出空気温度を調整する温度調整手段(27、49)と、
    前記前席側空調ユニット(20)および前記後席側空調ユニット(40)のいずれか一方のみが作動するときは、その一方の作動する側の空調ユニットにおける前記温度調整手段(27、49)の作動位置に応じて前記電気発熱体(68a〜68c、69a〜69c)の通電本数を決定する制御手段(S320、S330)とを備え、
    前記制御手段(S320、S330)は、前記温度調整手段(27、49)の作動位置が前記吹出空気温度の高温側位置に移行するに応じて前記電気発熱体(68a〜68c、69a〜69c)の通電本数を多くすることを特徴とする請求項1ないし4のいずれか1つに記載の車両用空調装置。
JP17351298A 1998-06-19 1998-06-19 車両用空調装置 Expired - Lifetime JP3982064B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17351298A JP3982064B2 (ja) 1998-06-19 1998-06-19 車両用空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17351298A JP3982064B2 (ja) 1998-06-19 1998-06-19 車両用空調装置

Publications (2)

Publication Number Publication Date
JP2000006649A JP2000006649A (ja) 2000-01-11
JP3982064B2 true JP3982064B2 (ja) 2007-09-26

Family

ID=15961910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17351298A Expired - Lifetime JP3982064B2 (ja) 1998-06-19 1998-06-19 車両用空調装置

Country Status (1)

Country Link
JP (1) JP3982064B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10014021C2 (de) * 2000-03-22 2002-02-21 Webasto Thermosysteme Gmbh Heizsystem zum Beheizen des Innenraums eines Kraftfahrzeugs
KR100443969B1 (ko) * 2002-07-02 2004-08-12 기아자동차주식회사 디젤 자동차내의 보조히터 제어장치
KR20040009835A (ko) * 2002-07-26 2004-01-31 위니아만도 주식회사 더블 히터를 적용하는 차량의 난방장치
EP1516761A1 (de) * 2003-09-22 2005-03-23 catem GmbH & Co.KG Elektrische Heizvorrichtung mit integriertem Temperatursensor
KR100578577B1 (ko) 2004-07-03 2006-05-12 기아자동차주식회사 피티씨 히터의 열수 제어 방법
KR100680369B1 (ko) 2005-11-25 2007-02-08 현대자동차주식회사 차량용 피티시 히터의 다단 제어 시스템 및 그의 방법
JP2010132080A (ja) * 2008-12-03 2010-06-17 Denso Corp ヒータユニット
JP5960458B2 (ja) * 2012-03-19 2016-08-02 株式会社日本クライメイトシステムズ 車両用空調装置

Also Published As

Publication number Publication date
JP2000006649A (ja) 2000-01-11

Similar Documents

Publication Publication Date Title
JP3807072B2 (ja) 車両用空調装置
JP3985365B2 (ja) 車両用空調装置
JP2005059797A (ja) 車両用空調装置
US6078024A (en) Air conditioning apparatus having electric heating member integrated with heating heat exchanger
JP2008155860A (ja) 車両用空調装置
JPH09240257A (ja) 車両用空調装置
JP2000142095A (ja) 車両用空調装置
JP3791234B2 (ja) ハイブリッド車用空調装置。
JP3480074B2 (ja) 空調装置
JP3982064B2 (ja) 車両用空調装置
JP5098948B2 (ja) 車両用空調装置
JP5195702B2 (ja) 車両用空調装置
JP3799777B2 (ja) 車両用空気調和装置
JP3858373B2 (ja) 車両用空調装置
JP3633072B2 (ja) 車両用空調装置
JP3840781B2 (ja) 車両用空調装置
JP4066508B2 (ja) 車両用空調装置
JP3915218B2 (ja) 車両用空調装置
JP3750291B2 (ja) 車両用空気調和装置
JP3483647B2 (ja) 電気自動車用空調装置
JP4251062B2 (ja) ハイブリッド自動車用空調装置
JP2000264038A (ja) 車両用空調装置
JP2011068153A (ja) 車両用空調装置
JPH10264646A (ja) 車両用空気調和装置
JP5381549B2 (ja) 車両用空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150