JP3980570B2 - Waste heat recovery device - Google Patents

Waste heat recovery device Download PDF

Info

Publication number
JP3980570B2
JP3980570B2 JP2004134171A JP2004134171A JP3980570B2 JP 3980570 B2 JP3980570 B2 JP 3980570B2 JP 2004134171 A JP2004134171 A JP 2004134171A JP 2004134171 A JP2004134171 A JP 2004134171A JP 3980570 B2 JP3980570 B2 JP 3980570B2
Authority
JP
Japan
Prior art keywords
temperature
exhaust heat
heat recovery
fluid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004134171A
Other languages
Japanese (ja)
Other versions
JP2005315513A (en
Inventor
浩 市川
貴幸 小池
恵二 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP2004134171A priority Critical patent/JP3980570B2/en
Publication of JP2005315513A publication Critical patent/JP2005315513A/en
Application granted granted Critical
Publication of JP3980570B2 publication Critical patent/JP3980570B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、発電装置等の外部装置の排熱を回収し、その熱を再利用する排熱回収装置に関する。
The present invention relates to an exhaust heat recovery device that recovers exhaust heat of an external device such as a power generation device and reuses the heat.

エンジンの回転力を用いて発電する発電システムにおいて、水冷式エンジンでは発熱を冷却水に吸収させ、高温化した冷却水をラジエター等で放熱させた後、再びエンジンの冷却に使用されている。ラジエターに代え、排熱を吸収する排熱回収装置を設置すれば、エンジンの排熱が持つ熱エネルギを有効に利用することができる。   In a power generation system that generates power using the rotational force of an engine, in a water-cooled engine, heat is absorbed by the cooling water, and the high-temperature cooling water is radiated by a radiator or the like and then used again to cool the engine. If a waste heat recovery device that absorbs waste heat is installed instead of the radiator, the heat energy of the exhaust heat of the engine can be used effectively.

このような排熱回収に関する先行特許文献には次のようなものがある。
特開2003−282108号公報 特開2003−42539号公報 特許文献1には、燃料電池の熱を冷却配管により取り出し、熱交換器で排熱回収を行い貯湯タンクに貯めることが開示されている。冷却配管及び排熱回収配管には循環ポンプを用いた水を循環させている。
Prior patent documents relating to such exhaust heat recovery include the following.
JP 2003-282108 A Japanese Patent Laid-Open No. 2003-42539 discloses that the heat of a fuel cell is taken out by a cooling pipe, exhaust heat is recovered by a heat exchanger and stored in a hot water storage tank. Water using a circulation pump is circulated in the cooling pipe and the exhaust heat recovery pipe.

また、特許文献2には、排水バッファタンクに蓄えられた排水の熱をヒートポンプサイクルにより熱回収ユニットに引き込んで排熱回収を行うことが開示されている。
Patent Document 2 discloses that waste heat is recovered by drawing heat of waste water stored in a drain buffer tank into a heat recovery unit by a heat pump cycle.

ところで、特許文献1には、燃料電池システムの一部として排熱回収が開示され、この排熱回収は、発電装置と排熱回収装置とを連動させており、排熱回収装置の汎用性に乏しいものである。   By the way, Patent Document 1 discloses exhaust heat recovery as a part of the fuel cell system, and this exhaust heat recovery links the power generation device and the exhaust heat recovery device, and makes the exhaust heat recovery device versatile. It is scarce.

また、特許文献2に開示された排熱回収では、排水バッファタンクより排熱回収を行っており、排水バッファタンクユニットが不可欠である。   In the exhaust heat recovery disclosed in Patent Document 2, the exhaust heat recovery is performed from the drain buffer tank, and the drain buffer tank unit is indispensable.

そこで、本発明の目的は、外部装置からの排熱回収に関し、汎用性を向上させた排熱回収装置を提供することである。
Accordingly, an object of the present invention is to provide an exhaust heat recovery apparatus with improved versatility, regarding exhaust heat recovery from an external device.

上記目的を達成するため、本発明の排熱回収装置は、外部装置の排熱を流体に吸収させて回収する排熱回収装置であって、前記外部装置に配設されて流体を循環させ、該流体に前記外部装置の排熱を吸収させる流体路と、前記流体路に流れる前記流体の熱で加熱させた水を溜め、該水によって前記排熱を蓄熱させる貯湯手段と、前記貯湯手段の下層部から取り出した前記水を前記貯湯手段の上層部に戻す循環路と、前記流体路に流れる前記流体と、前記循環路に循環する前記水とを循環させ、前記流体の熱を前記水に熱交換させる熱交換手段と、前記熱交換手段に入る前記流体の入側温度を検出する入側温度検出手段と、前記熱交換手段から出る前記流体の出側温度を検出する出側温度検出手段と、前記流体路に前記流体を循環させる流体路側ポンプと、前記循環路に前記水を循環させる循環路側ポンプと、前記熱交換手段に入る前記流体の前記入側温度に対して排熱回収開始しきい値及び排熱回収停止しきい値、前記熱交換手段から出る前記流体の前記出側温度に対して排熱回収開始しきい値及び排熱回収停止しきい値が設定され、前記流体側ポンプを動作させて前記流体路に循環する前記流体の前記入側温度が前記排熱回収開始しきい値以上又は前記出側温度が前記排熱回収開始しきい値以上であれば、前記循環路側ポンプを動作させて排熱回収を維持するとともに、前記入側温度検出手段又は前記出側温度検出手段の検出温度に応じて前記水の循環流量を制御し、前記入側温度が前記排熱回収停止しきい値以下又は前記出側温度が前記排熱回収停止しきい値以下であれば、前記循環路側ポンプを停止させて排熱回収を終了させ、前記流体の前記排熱回収中において、前記出側温度検出手段の検出温度が最適温度になるように前記循環路側ポンプを制御する制御部とを備えた構成である。 In order to achieve the above object, the exhaust heat recovery apparatus of the present invention is an exhaust heat recovery apparatus that absorbs and recovers the exhaust heat of the external device into the fluid, and is disposed in the external device to circulate the fluid. A fluid path for absorbing the exhaust heat of the external device in the fluid; a hot water storage means for storing water heated by the heat of the fluid flowing in the fluid path; and storing the exhaust heat by the water; and A circulation path for returning the water taken out from the lower layer part to the upper layer part of the hot water storage means , the fluid flowing in the fluid path, and the water circulating in the circulation path are circulated, and the heat of the fluid is transferred to the water. Heat exchanging means for exchanging heat ; inlet side temperature detecting means for detecting the inlet side temperature of the fluid entering the heat exchanging means; and outlet side temperature detecting means for detecting the outlet side temperature of the fluid exiting from the heat exchanging means. And a fluid path for circulating the fluid in the fluid path Pump and the circulation path side pump for circulating the water in the circulation path, the heat recovery start threshold value and the exhaust heat recovery stop threshold value with respect to the entering-side temperature of the fluid entering the heat exchange means, said The exhaust heat recovery start threshold value and the exhaust heat recovery stop threshold value are set with respect to the outlet temperature of the fluid exiting from the heat exchange means, and the fluid circulating in the fluid path by operating the fluid side pump If the inlet side temperature is equal to or higher than the exhaust heat recovery start threshold value or the outlet side temperature is equal to or higher than the exhaust heat recovery start threshold value, the exhaust heat recovery is maintained by operating the circulation side pump, The circulating flow rate of the water is controlled according to the detected temperature of the inlet side temperature detecting means or the outlet side temperature detecting means, and the inlet side temperature is less than the exhaust heat recovery stop threshold value or the outlet side temperature is the exhaust temperature. If it is below the heat recovery stop threshold, the previous Circulation roadside pump is stopped to end the exhaust heat recovery, in the exhaust heat in the recovery of the fluid, and a control unit for detecting the temperature of the delivery temperature detection means for controlling said circulation path side pump for optimal temperature It is the structure provided with.

斯かる構成によれば、外部装置に循環させる流体の熱吸収の状況に応じて排熱開始及び停止を制御し、排熱を効率よく水に回収させることができる。流体の温度を通じて排熱の状況を把握できるので、外部装置の直接的な動作に連動する必要がない。即ち、外部装置と無関係に排熱回収装置を動作させ、効率的な排熱回収が可能であり、冷媒である流体の循環さえあれば、発電装置等、外部装置の仕様や形態に無関係に排熱回収装置を接続して排熱回収を行うことができる。   According to such a configuration, it is possible to control the start and stop of exhaust heat according to the state of heat absorption of the fluid circulated in the external device, and to efficiently recover the exhaust heat into water. Since the state of exhaust heat can be grasped through the temperature of the fluid, it is not necessary to be linked to the direct operation of the external device. In other words, the exhaust heat recovery device can be operated independently of the external device, and efficient exhaust heat recovery is possible. A heat recovery device can be connected to perform exhaust heat recovery.

上記目的を達成するため、本発明の排熱回収装置は、上記構成において、前記熱交換手段から出る前記水の出側温度を検出する温度検出手段を備え、前記排熱回収中において、前記制御部は、前記熱交換手段を出る前記水の検出温度が最適温度になるように前記循環路側ポンプを制御する構成としてもよいし、前記流体路に流れる前記流体の流量を検出する流量検出手段を備え、前記流体の前記排熱回収中において、前記制御部は、前記入側温度検出手段の検出温度と、前記流量検出手段の検出流量とから熱交換熱量を求め、この熱交換熱量から求められる最適循環流量に前記循環路側ポンプを制御する構成としてもよい。 In order to achieve the above object, the exhaust heat recovery apparatus of the present invention comprises, in the above configuration, temperature detection means for detecting an outlet side temperature of the water exiting from the heat exchange means, and during the exhaust heat recovery, the control The unit may be configured to control the circulation path-side pump so that the detection temperature of the water exiting the heat exchange means becomes an optimum temperature, or a flow rate detection means for detecting a flow rate of the fluid flowing in the fluid path. And during the exhaust heat recovery of the fluid, the control unit obtains a heat exchange heat quantity from the detected temperature of the inlet temperature detection means and the detected flow rate of the flow rate detection means, and is obtained from this heat exchange heat quantity It is good also as a structure which controls the said circulation path side pump to the optimal circulation flow volume .

上記目的を達成するため、本発明の排熱回収装置は、上記構成において、前記熱交換手段に入る前記水の入側温度を検出する入側温度検出手段と、前記熱交換手段から出る前記水の出側温度を検出する出側温度検出手段と、前記循環路に流れる前記水の流量を検出する流量検出手段とを備え、前記流体の前記排熱回収中において、前記制御部は、前記水の前記入側温度、前記出側温度と、前記流量検出手段の検出流量とから求められる熱交換熱量から最適循環流量を求め、この最適循環流量に前記循環路側ポンプを制御する構成としてもよい。 In order to achieve the above object, the exhaust heat recovery apparatus of the present invention, in the above configuration, has an inlet side temperature detecting means for detecting an inlet side temperature of the water entering the heat exchanging means, and the water exiting from the heat exchanging means. An outlet side temperature detecting means for detecting the outlet side temperature of the fluid, and a flow rate detecting means for detecting a flow rate of the water flowing in the circulation path, and during the exhaust heat recovery of the fluid, the control unit It is good also as a structure which calculates | requires an optimal circulation flow rate from the heat exchange calorie | heat amount calculated | required from the said inlet side temperature of this, the said outlet side temperature, and the detection flow rate of the said flow volume detection means, and controls the said circulation path side pump to this optimal circulation flow rate .

斯かる構成とすれば、流体の検出温度、水の検出温度、流体の検出流量のいずれか又はこれらの2以上を制御情報に用いて水を循環させるポンプの駆動を制御すれば、排熱状態に応じた熱交換が可能となり、効率的な排熱回収が可能である。   With such a configuration, if one of the fluid detection temperature, the water detection temperature, the fluid detection flow rate, or two or more of these is used as control information to control the driving of the pump that circulates water, the exhaust heat state Therefore, it is possible to efficiently perform exhaust heat recovery.

上記目的を達成するためには、前記流体から前記熱を吸収させた前記水を溜めるタンクを備えた構成としてもよく、前記外部装置が発電装置である構成としてもよい。
In order to achieve the above object, a configuration may be provided that includes a tank for storing the water that has absorbed the heat from the fluid, and the external device may be a power generation device.

斯かる構成により、本発明によれば、次のような効果が得られる。   With such a configuration, the following effects can be obtained according to the present invention.

(1) 発電装置等の外部装置からの排熱に応じた排熱回収制御を実現しているので、外部装置との動作による制御が不要であることから、発電装置等の各種の外部装置の排熱回収装置として利用できる。   (1) Since the exhaust heat recovery control according to the exhaust heat from the external device such as the power generator is realized, the control by the operation with the external device is not necessary. It can be used as an exhaust heat recovery device.

(2) 外部装置の動作と連動させる必要がなく、独立して構成されており、外部装置の冷媒が高温になれば、その冷媒が持つ熱エネルギを回収することができる。
(2) It is not necessary to be linked with the operation of the external device, and is configured independently. When the refrigerant of the external device becomes high temperature, the thermal energy of the refrigerant can be recovered.

本発明の実施形態について、図1を参照して説明する。図1は、本発明の実施形態に係る排熱回収装置の概要を示す図である。   An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing an outline of an exhaust heat recovery apparatus according to an embodiment of the present invention.

排熱回収装置2の外部装置を構成する発電装置4は、エンジン等を駆動源とし、その発電時、熱を発生する。この発電装置4には排熱を吸収するとともに、発電装置4を冷却する手段として冷却水配管6が内蔵され、この冷却水配管6を含んで発電装置4を冷却するための冷却回路8が構成されている。この冷却回路8には冷媒を構成する流体として冷却水W1 が循環しており、排熱を吸収した冷却水W1 は往管10から排熱回収装置2に往き、排熱回収装置2による排熱回収後の冷却水W1 が戻管12を通して冷却回路8に循環する。即ち、この実施形態では、発電装置4に内蔵された冷却水配管6に排熱回収装置2が接続された構成である。斯かる構成とすれば、発電装置4の排熱を吸収した冷却水W1 は排熱回収装置2に循環して排熱回収の後、即ち、冷却機能を回復させた後、発電装置4に循環することになる。排熱回収装置2には熱交換により回収した排熱の蓄熱手段として貯湯タンク14が設置され、排熱が高温水(湯)として蓄えられる。 The power generation device 4 constituting the external device of the exhaust heat recovery device 2 uses an engine or the like as a drive source, and generates heat during the power generation. The power generation device 4 absorbs exhaust heat and incorporates a cooling water pipe 6 as a means for cooling the power generation device 4, and a cooling circuit 8 for cooling the power generation device 4 including the cooling water pipe 6 is configured. Has been. The cooling circuit 8 is cooled water W 1 is circulated as the fluid constituting the refrigerant, cooling water W 1 which has absorbed heat is outward from往10 to the exhaust heat recovery device 2, by the exhaust heat recovery apparatus 2 The cooling water W 1 after the exhaust heat recovery is circulated to the cooling circuit 8 through the return pipe 12. That is, in this embodiment, the exhaust heat recovery device 2 is connected to the cooling water pipe 6 built in the power generation device 4. With such a configuration, the cooling water W 1 that has absorbed the exhaust heat of the power generation device 4 is circulated to the exhaust heat recovery device 2 and recovered after the exhaust heat recovery, that is, after the cooling function is recovered, It will circulate. The exhaust heat recovery device 2 is provided with a hot water storage tank 14 as a heat storage means for exhaust heat recovered by heat exchange, and the exhaust heat is stored as high temperature water (hot water).

排熱回収装置2には、発電装置4の制御とは独立した排熱回収制御を行うための制御装置16が備えられ、この制御装置16には発電装置4とは独立した電源18が接続されている。即ち、排熱回収装置2と発電装置4とは冷却回路8のみで連結されているにすぎない。   The exhaust heat recovery device 2 is provided with a control device 16 for performing exhaust heat recovery control independent of the control of the power generation device 4, and a power source 18 independent of the power generation device 4 is connected to the control device 16. ing. That is, the exhaust heat recovery device 2 and the power generation device 4 are connected only by the cooling circuit 8.

そして、貯湯タンク14には、タンク内の上層側の高温湯を利用する給湯回路20、下層側に熱交換前の冷水を補給する給水回路22を備えており、質の高い効率的な熱利用を可能にしている。   The hot water storage tank 14 includes a hot water supply circuit 20 that uses high-temperature hot water on the upper layer side in the tank, and a water supply circuit 22 that supplies cold water before heat exchange on the lower layer side, so that high-quality and efficient heat use is provided. Is possible.

次に、この排熱回収装置2の構成について、図2を参照して説明する。図2は、排熱回収装置2の構成を示すブロック図である。   Next, the configuration of the exhaust heat recovery apparatus 2 will be described with reference to FIG. FIG. 2 is a block diagram illustrating a configuration of the exhaust heat recovery apparatus 2.

排熱回収装置2には、貯湯タンク14、制御装置16、排熱回収用熱交換器24等が備えられ、熱交換器24には冷却回路8が接続されている。冷却回路8には発電装置4側に循環ポンプ26が設置され、排熱回収装置2側には流量センサ28が設置されているとともに、熱交換器24の与熱入側及び与熱出側に第1の温度検出手段として、温度センサ30、32が設置されている。冷却回路8の冷却水W1 は、冷却水配管6側に設置された循環ポンプ26によって強制的に循環され、その循環流量は流量センサ28によって検出される。温度センサ30は、与熱入側の冷却水W1 の温度を検出し、また、温度センサ32は、与熱出側の冷却水W1 の温度を検出する。なお、循環ポンプ26は発電装置4側で駆動制御が行われ、冷却水W1 の戻り温度が高くなると、発電装置4は発電出力を低下させるか、発電を停止させる。 The exhaust heat recovery device 2 includes a hot water storage tank 14, a control device 16, an exhaust heat recovery heat exchanger 24, and the like, and a cooling circuit 8 is connected to the heat exchanger 24. In the cooling circuit 8, a circulation pump 26 is installed on the power generation device 4 side, a flow rate sensor 28 is installed on the exhaust heat recovery device 2 side, and on the heat input side and heat output side of the heat exchanger 24. As the first temperature detection means, temperature sensors 30 and 32 are installed. The cooling water W 1 of the cooling circuit 8 is forcibly circulated by a circulation pump 26 installed on the cooling water pipe 6 side, and the circulation flow rate is detected by a flow sensor 28. The temperature sensor 30 detects the temperature of the cooling water W 1 on the heating input side, and the temperature sensor 32 detects the temperature of the cooling water W 1 on the heating output side. The circulation pump 26 is driven and controlled on the power generation device 4 side, and when the return temperature of the cooling water W 1 increases, the power generation device 4 decreases the power generation output or stops the power generation.

また、熱交換器24と貯湯タンク14との間には水W2 を循環させる循環路としての循環回路36が設置され、この循環回路36は、貯湯タンク14の下層部から水W2 を取り出し、その水W2 を熱交換器24を循環させて冷却水W1 から受熱させた後、貯湯タンク14の上層部に戻す回路である。この循環回路36には貯湯タンク14の出側に循環ポンプ38及び流量センサ40が設置されているとともに、熱交換器24の受熱入側及び受熱出側に第2の温度検出手段として、温度センサ42、44が設置されている。貯湯タンク14の水W2 は循環ポンプ38によって強制的に循環され、その循環流量は流量センサ40によって検出される。温度センサ42は、受熱入側の水W2 の温度を検出し、また、温度センサ44は、受熱出側の水W2 の温度を検出する。 A circulation circuit 36 is installed between the heat exchanger 24 and the hot water storage tank 14 as a circulation path for circulating the water W 2. The circulation circuit 36 takes out the water W 2 from the lower layer of the hot water storage tank 14. In this circuit, the water W 2 is circulated through the heat exchanger 24 to receive heat from the cooling water W 1 and then returned to the upper layer of the hot water storage tank 14. The circulation circuit 36 is provided with a circulation pump 38 and a flow rate sensor 40 on the outlet side of the hot water storage tank 14, and a temperature sensor as a second temperature detection means on the heat receiving side and the heat receiving side of the heat exchanger 24. 42 and 44 are installed. The water W 2 in the hot water storage tank 14 is forcibly circulated by a circulation pump 38, and the circulation flow rate is detected by a flow sensor 40. The temperature sensor 42 detects the temperature of the water W 2 on the heat receiving side, and the temperature sensor 44 detects the temperature of the water W 2 on the heat receiving side.

貯湯タンク14には、貯湯の階層部分の温度を検出するため、複数の温度センサ46、48、50、52、54が設置されている。これら温度センサ46〜54によって上層部分から下層部分に至る各温度が検出される。   A plurality of temperature sensors 46, 48, 50, 52, 54 are installed in the hot water storage tank 14 in order to detect the temperature of the layer portion of the hot water storage. Each temperature from the upper layer portion to the lower layer portion is detected by these temperature sensors 46-54.

そして、貯湯タンク14には、上層部の高温湯を外部に取り出す給湯回路20が接続されているとともに、下層部に給水する給水回路22が接続されている。給湯回路20には、給湯温度を検出する温度センサ56、給水回路22には給水温度を検出する温度センサ58、給水量を検出する流量センサ60が設置されている。   The hot water storage tank 14 is connected to a hot water supply circuit 20 that takes out the high-temperature hot water in the upper layer portion to the outside, and a water supply circuit 22 that supplies water to the lower layer portion. The hot water supply circuit 20 is provided with a temperature sensor 56 for detecting the hot water supply temperature, the water supply circuit 22 is provided with a temperature sensor 58 for detecting the water supply temperature, and a flow rate sensor 60 for detecting the amount of water supply.

次に、制御装置16について、図3を参照して説明する。図3は、制御装置16の概要を示すブロック図である。   Next, the control device 16 will be described with reference to FIG. FIG. 3 is a block diagram showing an outline of the control device 16.

この制御装置16は、CPU、メモリ、I/O等で構成されている。この制御装置16には、制御状況を温度により監視するため、既述の各センサ46、48等から検出出力が入力されているとともに、動作条件等を設定するための入力装置62が接続されている。この入力装置62は、キーボード等で構成されている。そして、制御装置16の出力は、循環ポンプ38に加えられるとともに、制御情報の提示手段として表示装置64に加えられている。表示装置64はLCD表示器等で構成され、入力装置62からの入力情報や出力情報が表示される。この表示装置64には、音声による警告表示手段も包含される。なお、入力装置62からの入力情報には動作開始温度設定、冷却水戻し温度設定、貯湯温度設定等の各種情報が含まれ、内部メモリに格納される。   The control device 16 includes a CPU, a memory, an I / O, and the like. In order to monitor the control status by temperature, the control device 16 is input with detection outputs from the sensors 46 and 48 described above, and is connected with an input device 62 for setting operating conditions and the like. Yes. The input device 62 includes a keyboard or the like. The output of the control device 16 is applied to the circulation pump 38 and is also applied to the display device 64 as a means for presenting control information. The display device 64 is configured by an LCD display or the like, and displays input information and output information from the input device 62. The display device 64 includes a warning display means by voice. The input information from the input device 62 includes various information such as operation start temperature setting, cooling water return temperature setting, hot water storage temperature setting, etc., and is stored in the internal memory.

次に、排熱回収制御について、図4を参照して説明する。図4は、排熱回収制御を示すフローチャートである。   Next, the exhaust heat recovery control will be described with reference to FIG. FIG. 4 is a flowchart showing exhaust heat recovery control.

この排熱回収制御において、
30:温度センサ30の検出温度(熱交換器24の冷却水W1 の入側温度)、
32:温度センサ32の検出温度(熱交換器24の冷却水W1 の出側温度)、
aH:検出温度T30に対応する排熱回収開始しきい値温度(循環ポンプ38の起動開始しきい値:第1の設定温度)、
bH:検出温度T32に対応する排熱回収開始しきい値温度(循環ポンプ38の起動開始しきい値:第1の設定温度)、
aL:検出温度T30に対応する排熱回収停止しきい値温度(循環ポンプ38の起動停止しきい値:第2の設定温度)、
bL:検出温度T32に対応する排熱回収停止しきい値温度(循環ポンプ38の起動停止しきい値:第2の設定温度)、
S :冷却水W1 の目標温度、
SH:冷却水W1 の目標温度の上限値、
SL:冷却水W1 の目標温度の下限値、
ΔTS :冷却水W1 の目標温度の温度幅(TSH−TSL)、
Tc:外部装置側の最適戻り温度、
42:温度センサ42の検出温度、
44:温度センサ44の検出温度、
Tm:水W2 の目標温度
とする。
In this exhaust heat recovery control,
T 30 : temperature detected by the temperature sensor 30 (inlet temperature of the cooling water W 1 of the heat exchanger 24),
T 32 : temperature detected by the temperature sensor 32 (outside temperature of the cooling water W 1 of the heat exchanger 24),
T aH : waste heat recovery start threshold temperature corresponding to the detected temperature T 30 (starting start threshold of the circulation pump 38: first set temperature),
T bH : Waste heat recovery start threshold temperature corresponding to the detected temperature T 32 (starting start threshold of the circulation pump 38: first set temperature),
T aL : Waste heat recovery stop threshold temperature corresponding to the detected temperature T 30 (start / stop threshold of circulation pump 38: second set temperature),
T bL : Exhaust heat recovery stop threshold temperature corresponding to the detected temperature T 32 (start / stop threshold of the circulation pump 38: second set temperature),
T S : target temperature of the cooling water W 1
T SH : upper limit value of the target temperature of the cooling water W 1 ,
T SL : Lower limit value of the target temperature of the cooling water W 1
ΔT S : temperature width of target temperature of cooling water W 1 (T SH −T SL ),
Tc: optimum return temperature on the external device side,
T 42 : temperature detected by the temperature sensor 42
T 44 : temperature detected by the temperature sensor 44
Tm: the target temperature of the water W 2.

そこで、電源スイッチの投入等により、制御装置16に通電すると、装置初期化等が実行される(ステップS1)。この初期化について、設定値変更があるか否かを検出し(ステップS2)、設定値に変更があればその実行が行われる(ステップS3)。設定値の変更は入力装置62によって行われ、その設定内容は表示装置64を構成する液晶表示器やLED表示器等で表示される。この設定値の変更の後、又は設定値の変更がなければ、排熱回収中であるか否かを判定する(ステップS4)。   Therefore, when the control device 16 is energized by turning on the power switch or the like, device initialization or the like is executed (step S1). For this initialization, it is detected whether or not there is a change in the set value (step S2). The setting value is changed by the input device 62, and the setting content is displayed on a liquid crystal display, an LED display, or the like constituting the display device 64. After the change of the set value or if there is no change of the set value, it is determined whether or not exhaust heat is being recovered (step S4).

排熱回収中であるか否かは循環ポンプ38が駆動中であるか否かにより判定することができる。排熱回収中でなければ、検出温度T30が排熱回収開始しきい値TaH以上か否かを判定し(ステップS5)、T30<TaHである場合には、検出温度T32が排熱回収開始しきい値TbH以上か否かを判定し(ステップS6)、T32<TbHである場合には、発電装置4の停止等、排熱回収ができないことから、ステップS2に戻る。 Whether or not exhaust heat is being recovered can be determined by whether or not the circulation pump 38 is being driven. If it is not in the exhaust heat recovery, if the detected temperature T 30 it is determined whether or not the exhaust heat recovery start threshold value T aH more (step S5), and a T 30 <T aH is the detected temperature T 32 It is determined whether or not the exhaust heat recovery start threshold value T bH is exceeded (step S6). If T 32 <T bH , the exhaust heat recovery cannot be performed, such as when the power generation device 4 is stopped. Return.

ステップS5でT30≧TaHである場合又はステップS6でT32≧TbHである場合には、排熱回収に必要な熱量が冷却水W1 を通じて熱交換器24に供給されているので、循環ポンプ38を起動して排熱回収を開始し(ステップS7)、ステップS2に戻る。 If T 30 ≧ T aH in step S5 or T 32 ≧ T bH in step S6, the amount of heat required for exhaust heat recovery is supplied to the heat exchanger 24 through the cooling water W 1 . The circulation pump 38 is activated to start exhaust heat recovery (step S7), and the process returns to step S2.

また、排熱回収中である場合(ステップS4)には、検出温度T32が目標温度Tsの上限値TSHより高いか否かを判定し(ステップS8)、検出温度T32が目標温度Tsの下限値TSLより低いか否かを判定し(ステップS9)、T32≦TSLの場合には、循環ポンプ38の回転速度を低下させ、熱交換器24に対する水W2 の循環流量を減少させる。また、ステップS8において、T32≧TSHである場合には、循環ポンプ38の回転速度を上昇させ、熱交換器24に対する水W2 の循環流量を増加させ、これにより、水W2 に対する熱交換量を増大させる。この場合、目標温度Tsは一定の温度幅ΔTsを持っており、その上限値及び下限値は、TSH=Ts+ΔTs、TSL=Ts−ΔTsである。 Further, when it is in the heat recovery (step S4), the detected temperature T 32 it is determined whether or not higher than the upper limit value T SH target temperature Ts (step S8), and the detected temperature T 32 is the target temperature Ts It is determined whether or not the lower limit value T SL is lower than the lower limit value T SL (step S9). If T 32 ≦ T SL , the rotational speed of the circulation pump 38 is decreased, and the circulation flow rate of the water W 2 to the heat exchanger 24 Decrease. Further, in step S8, when it is T 32 ≧ T SH raises the rotational speed of the circulating pump 38, to the heat exchanger 24 increases the amount of circulating water W 2, thereby, the heat to water W 2 Increase the exchange amount. In this case, the target temperature Ts has a certain temperature range ΔTs, and the upper limit value and lower limit value thereof are T SH = Ts + ΔTs and T SL = Ts−ΔTs.

このような排熱回収において、検出温度T30が排熱回収停止しきい値温度TaL以下であるか否か(ステップS12)、その検出温度T32が排熱回収停止しきい値温度TbL以下であるか否か(ステップS13)を判定し、T30≦TaL且つT32≦TbLである場合には、循環ポンプ38を停止させて排熱回収を終了し(ステップS14)、ステップS2に戻る。 In such a waste heat recovery, whether the detected temperature T 30 is less than or equal to the heat recovery stop threshold temperature T aL (step S12), the detection temperature T 32 is the exhaust heat recovery stop threshold temperature T bL It is determined whether or not (step S13), and if T 30 ≦ T aL and T 32 ≦ T bL , the circulation pump 38 is stopped to end the exhaust heat recovery (step S14). Return to S2.

このような排熱制御によれば、発電装置4が起動すると、その内部で熱が発生するので、発電装置4内の循環ポンプ26が起動し、発電装置4の排熱を吸収した冷却水W1 が冷却回路8に循環する。この冷却回路8を循環する冷却水W1 の温度は既述の通り温度センサ30、32で検出され、上記条件の成立により、排熱回収動作が開始される。この結果、冷却回路8の冷却水W1 が持つ熱は、熱交換器24により循環回路36を循環する水W2 に熱交換され、熱回収と冷却水W1 の放熱とを同時に行うことができる。即ち、熱回収により、冷却水W1 の冷却能力を回復することができる。 According to such exhaust heat control, when the power generation device 4 is activated, heat is generated therein, so that the circulation pump 26 in the power generation device 4 is activated and the cooling water W that has absorbed the exhaust heat of the power generation device 4 is absorbed. 1 circulates in the cooling circuit 8. The temperature of the cooling water W 1 circulating through the cooling circuit 8 is detected by the temperature sensors 30 and 32 as described above, and the exhaust heat recovery operation is started when the above condition is satisfied. As a result, the heat of the cooling water W 1 of the cooling circuit 8 is heat-exchanged to the water W 2 circulating through the circulation circuit 36 by the heat exchanger 24, and heat recovery and heat dissipation of the cooling water W 1 can be performed simultaneously. it can. That is, the cooling capacity of the cooling water W 1 can be recovered by heat recovery.

この排熱回収において、発電装置4の起動に伴い、冷却水W1 が冷却回路8を循環すると、冷却水W1 の温度が上昇する。冷却水W1 の温度は温度センサ30、32で検出され、検出温度T30が排熱回収開始しきい値TaH以上か、検出温度T32が排熱回収開始しきい値TbH以上のいずれかに到達した時点で循環ポンプ38が起動し、水W2 は、貯湯タンク14の下層部から循環回路36に循環し、熱交換器24を経て貯湯タンク14の上層部に戻る流れを発生させる。このとき、熱交換器24において、冷却回路8に流れる冷却水W1 との熱交換が行われ、冷却水W1 の冷却と、水W2 の加熱及び貯湯が行われる。循環ポンプ38の回転数は温度センサ32の検出温度T32が、発電装置4の最適戻り温度Tcになるように制御すればよい。この最適温度Tcは、制御装置16に予め設定すればよい。 In this exhaust heat recovery, when the cooling water W 1 circulates through the cooling circuit 8 as the power generation device 4 is started, the temperature of the cooling water W 1 rises. The temperature of the cooling water W 1 is detected by the temperature sensors 30 and 32, and the detected temperature T 30 is not less than the exhaust heat recovery start threshold value Ta aH or the detected temperature T 32 is not less than the exhaust heat recovery start threshold value T bH. At this point, the circulation pump 38 is activated, and the water W 2 is circulated from the lower layer of the hot water storage tank 14 to the circulation circuit 36 and flows back to the upper layer of the hot water storage tank 14 via the heat exchanger 24. . At this time, in the heat exchanger 24, heat exchange with the cooling water W 1 flowing in the cooling circuit 8 is performed, and cooling of the cooling water W 1 and heating and hot water storage of the water W 2 are performed. The rotational speed of the circulation pump 38 may be controlled so that the detected temperature T 32 of the temperature sensor 32 becomes the optimum return temperature Tc of the power generator 4. The optimum temperature Tc may be set in the control device 16 in advance.

また、この排熱回収において、発電装置4の動作、即ち、排熱の状況は、発電装置4を循環する冷却水W1 の温度センサ30、32の検出温度T30、T32のいずれか一方又は双方で把握される。即ち、発電装置4の動作状況は冷却水W1 の温度に現れることから、それらの検出温度T30、T32は発電装置4の動作情報であるから、これらの情報をもとに、温度センサ32の検出温度T32が最適温度になるように排熱回収を行えば、発電装置4の冷却と、貯湯タンク14への高温湯の貯湯とを効率的に行える。そこで、温度センサ44の検出温度T44が所定の目標温度Tm以上になるように循環ポンプ38の回転数を調整し、受熱側の循環流量LW2を最適流量に制御することができる。 In this exhaust heat recovery, the operation of the power generator 4, that is, the state of exhaust heat, is determined by either one of the detected temperatures T 30 and T 32 of the temperature sensors 30 and 32 of the cooling water W 1 circulating through the power generator 4. Or both. That is, since the operation state of the power generation device 4 appears in the temperature of the cooling water W 1 , the detected temperatures T 30 and T 32 are the operation information of the power generation device 4. Based on these information, the temperature sensor If the exhaust heat recovery is performed so that the detected temperature T32 of 32 becomes the optimum temperature, cooling of the power generation device 4 and hot water storage in the hot water storage tank 14 can be performed efficiently. Therefore, it is possible to detect the temperature T 44 of the temperature sensor 44 to adjust the rotational speed of the circulation pump 38 so that the above predetermined target temperature Tm, is controlled to the optimum flow rate circulation flow rate L W2 of the heat receiving side.

また、冷却回路8に設置された流量センサ28には冷却水W1 の循環流量が検出され、この与熱側の循環流量LW1は発電装置4の運転状況を表す情報である。そこで、この循環流量LW1を制御情報とすれば、受熱側の循環流量LW2を容易に且つ効率的に設定できる。例えば、発電装置4への最適戻り温度Tcは既知(予め制御装置16に設定された温度)であるので、温度センサ30の検出温度T30と流量センサ28で検出された循環流量LW1とにより熱交換熱量を知ることができる。この熱交換熱量と、温度センサ42の検出温度T42、熱交換器24が持つ性能から推定される受熱熱量、即ち、受熱出側温度を検出する温度センサ44の検出温度T44から、受熱側の循環流量LW2を算定できる。従って、循環ポンプ38の回転数の制御により、受熱側の循環流量LW2を瞬時に最適循環流量に制御することができる。 In addition, the circulating flow rate of the cooling water W 1 is detected by the flow rate sensor 28 installed in the cooling circuit 8, and the circulating flow rate L W1 on the heating side is information indicating the operation status of the power generator 4. Therefore, if this circulating flow rate L W1 is used as control information, the circulating flow rate L W2 on the heat receiving side can be set easily and efficiently. For example, since the optimum return temperature Tc of the power generator 4 is known (temperature set in advance in the control unit 16), by the circulation flow rate L W1 detected by the detected temperature T 30 and the flow sensor 28 of the temperature sensor 30 The amount of heat exchange heat can be known. And heat exchange amount of heat, the detected temperature T 42 of the temperature sensor 42, the heat receiving amount of heat which is estimated from the performance of the heat exchanger 24 has, i.e., the detected temperature T 44 temperature sensor 44 for detecting the heat delivery temperature, the heat-receiving side The circulation flow rate L W2 of can be calculated. Therefore, the circulation flow rate L W2 on the heat receiving side can be instantaneously controlled to the optimum circulation flow rate by controlling the rotation speed of the circulation pump 38.

以上説明した各実施形態の特徴事項及び変形例等を以下に列挙する。   The features and modifications of each embodiment described above are listed below.

(1) 外部装置としての発電装置4は、GE、MGT燃料電池等のいずれでもよい。   (1) The power generation device 4 as an external device may be a GE, MGT fuel cell, or the like.

(2) 発電装置4と排熱回収装置2との間で、直接的な電気的な信号伝送等の通信手段なしで運転が可能であり、発電装置4等の外部装置の排熱回収に用いることができる。   (2) It can be operated between the power generation device 4 and the exhaust heat recovery device 2 without communication means such as direct electrical signal transmission, and is used for exhaust heat recovery of an external device such as the power generation device 4. be able to.

(3) 上記実施形態では、検出温度が第1の設定温度に到達したとき、排熱回収に移行し、第2の設定温度以下になった場合に、排熱回収を停止させる構成について説明したが、第1及び第2の設定温度を変更可能とし、検出温度が第1及び第2の設定温度によって設定される所定の温度範囲内になるように水W2 の循環流量LW2を制御するようにしてもよい。 (3) In the above-described embodiment, the configuration has been described in which when the detected temperature reaches the first set temperature, the process shifts to exhaust heat recovery and stops the exhaust heat recovery when the detected temperature falls below the second set temperature. However, the first and second set temperatures can be changed, and the circulating flow rate L W2 of the water W 2 is controlled so that the detected temperature falls within a predetermined temperature range set by the first and second set temperatures. You may do it.

(4) 上記実施形態において、温度センサ30、32の検出温度のいずれか一方又は双方、温度センサ42、44の検出温度のいずれか一方又は双方、流量センサ28、40の検出流量のいずれか一方又は双方を制御情報とし、これら制御情報から選択される1又は2以上を用いて循環ポンプ38の駆動を制御するようにしてもよい。   (4) In the above embodiment, one or both of the detected temperatures of the temperature sensors 30 and 32, one or both of the detected temperatures of the temperature sensors 42 and 44, and either one of the detected flow rates of the flow sensors 28 and 40 Alternatively, both may be used as control information, and the drive of the circulation pump 38 may be controlled using one or more selected from the control information.

(5) 上記実施形態では、排熱回収装置2と発電装置4側の冷却水配管6とを別個の構成として説明したが、冷却水配管6を含む水冷ジャケット等を排熱回収装置2の一部として構成させてもよい。   (5) In the above embodiment, the exhaust heat recovery device 2 and the cooling water pipe 6 on the power generation device 4 side have been described as separate configurations, but a water cooling jacket or the like including the cooling water pipe 6 is used as one of the exhaust heat recovery devices 2. You may make it comprise as a part.

(6) 上記実施形態では、目標温度Tsに一定の温度幅ΔTsを設定しているが、温度幅ΔTsを小さく又は0に設定すれば、ステップS9の処理は不要となる。   (6) In the above embodiment, the constant temperature range ΔTs is set as the target temperature Ts. However, if the temperature range ΔTs is set to be small or 0, the process of step S9 is not necessary.

以上説明したように、本発明の最も好ましい実施の形態等について説明したが、本発明は、上記記載に限定されるものではなく、特許請求の範囲に記載され、又は発明の詳細な説明に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。   As described above, the most preferred embodiment of the present invention has been described. However, the present invention is not limited to the above description, and is described in the claims or disclosed in the detailed description of the invention. It goes without saying that various modifications and changes can be made by those skilled in the art based on the gist of the invention, and such modifications and changes are included in the scope of the present invention.

次に、実験結果について、図5を参照して説明する。図5は、実験結果を示すグラフである。   Next, experimental results will be described with reference to FIG. FIG. 5 is a graph showing experimental results.

実験は、外部装置として発電装置の冷却回路に排熱回収装置を接続し、起動、定格運転及び停止の一連の運転を行ったものであり、この結果、発電装置の冷却は確実に行われ、且つ、排熱回収の目標である60℃以上の貯湯が得られた。この図5において、Toは発電装置の往き出口温度、Tiは発電装置の戻り温度、Ttは貯湯タンクへの貯湯温度、LW1は発電装置の冷却回路流量である。
In the experiment, an exhaust heat recovery device was connected to the cooling circuit of the power generation device as an external device, and a series of operations including start-up, rated operation, and stop was performed. As a result, the power generation device was reliably cooled, And the hot water storage of 60 degreeC or more which is the target of waste heat recovery was obtained. In FIG. 5, To is the outlet temperature of the power generator, Ti is the return temperature of the power generator, Tt is the hot water storage temperature in the hot water storage tank, and L W1 is the cooling circuit flow rate of the power generator.

本発明は、発電装置等の外部装置の排熱を回収して貯湯し、その湯を暖房、風呂等の生活用水に活用できるとともに、外部装置の制御に無関係に排熱回収を行うことができ、汎用性の高い排熱回収装置を提供することができる。
The present invention collects exhaust heat from an external device such as a power generator and stores hot water, and can use the hot water for domestic water such as heating and bathing, and can perform exhaust heat recovery regardless of the control of the external device. A highly versatile exhaust heat recovery device can be provided.

本発明の実施形態に係る排熱回収装置の概要を示す図である。It is a figure which shows the outline | summary of the waste heat recovery apparatus which concerns on embodiment of this invention. 排熱回収装置の概要を示す図である。It is a figure which shows the outline | summary of an exhaust heat recovery apparatus. 制御系統の構成を示すブロック図である。It is a block diagram which shows the structure of a control system. 排熱制御を示すフローチャートである。It is a flowchart which shows exhaust heat control. 排熱制御の実験結果を示すグラフである。It is a graph which shows the experimental result of waste heat control.

符号の説明Explanation of symbols

2 排熱回収装置
4 発電装置(外部装置)
14 貯湯タンク
16 制御装置(制御部)
24 熱交換器
28 流量センサ(流量検出手段)
30、32 温度センサ(第1の温度検出手段)
36 循環回路(循環路)
38 循環ポンプ
42、44 温度センサ(第2の温度検出手段)
1 冷却水(流体)
2
2 Waste heat recovery device 4 Power generation device (external device)
14 Hot water storage tank 16 Control device (control part)
24 heat exchanger 28 flow sensor (flow rate detection means)
30, 32 Temperature sensor (first temperature detecting means)
36 Circulation circuit (circulation path)
38 Circulating pump 42, 44 Temperature sensor (second temperature detecting means)
W 1 Cooling water (fluid)
W 2 water

Claims (5)

外部装置の排熱を流体に吸収させて回収する排熱回収装置であって、
前記外部装置に配設されて流体を循環させ、該流体に前記外部装置の排熱を吸収させる流体路と、
前記流体路に流れる前記流体の熱で加熱させた水を溜め、該水によって前記排熱を蓄熱させる貯湯手段と、
前記貯湯手段の下層部から取り出した前記水を前記貯湯手段の上層部に戻す循環路と、
前記流体路に流れる前記流体と、前記循環路に循環する前記水とを循環させ、前記流体の熱を前記水に熱交換させる熱交換手段と、
前記熱交換手段に入る前記流体の入側温度を検出する入側温度検出手段と、
前記熱交換手段から出る前記流体の出側温度を検出する出側温度検出手段と、
前記流体路に前記流体を循環させる流体路側ポンプと、
前記循環路に前記水を循環させる循環路側ポンプと、
前記熱交換手段に入る前記流体の前記入側温度に対して排熱回収開始しきい値及び排熱回収停止しきい値、前記熱交換手段から出る前記流体の前記出側温度に対して排熱回収開始しきい値及び排熱回収停止しきい値が設定され、前記流体側ポンプを動作させて前記流体路に循環する前記流体の前記入側温度が前記排熱回収開始しきい値以上又は前記出側温度が前記排熱回収開始しきい値以上であれば、前記循環路側ポンプを動作させて排熱回収を維持するとともに、前記入側温度検出手段又は前記出側温度検出手段の検出温度に応じて前記水の循環流量を制御し、前記入側温度が前記排熱回収停止しきい値以下又は前記出側温度が前記排熱回収停止しきい値以下であれば、前記循環路側ポンプを停止させて排熱回収を終了させ、前記流体の前記排熱回収中において、前記出側温度検出手段の検出温度が最適温度になるように前記循環路側ポンプを制御する制御部と、
を備えたことを特徴とする排熱回収装置。
An exhaust heat recovery device that absorbs and recovers exhaust heat from an external device into a fluid,
A fluid path disposed in the external device to circulate a fluid and allow the fluid to absorb exhaust heat of the external device;
Hot water storage means for storing water heated by heat of the fluid flowing in the fluid path, and storing the exhaust heat by the water;
A circulation path for returning the water taken out from the lower layer of the hot water storage means to the upper layer of the hot water storage means ;
Heat exchange means for circulating the fluid flowing in the fluid path and the water circulating in the circulation path, and exchanging heat of the fluid with the water ;
An inlet temperature detecting means for detecting an inlet temperature of the fluid entering the heat exchanging means ;
Outlet temperature detection means for detecting the outlet temperature of the fluid exiting from the heat exchange means;
A fluid path side pump for circulating the fluid in the fluid path ;
A circulation path side pump for circulating the water in the circulation path;
Exhaust heat recovery start threshold and exhaust heat recovery stop threshold with respect to the inlet temperature of the fluid entering the heat exchange means, and exhaust heat with respect to the outlet temperature of the fluid exiting the heat exchange means A recovery start threshold value and an exhaust heat recovery stop threshold value are set, and the fluid side pump is operated to circulate through the fluid path so that the inlet temperature of the fluid is equal to or higher than the exhaust heat recovery start threshold value or If the outlet side temperature is equal to or higher than the exhaust heat recovery start threshold, the circulation side pump is operated to maintain the exhaust heat recovery, and the detected temperature of the inlet side temperature detecting means or the outlet side temperature detecting means is maintained. Accordingly, the circulation flow rate of the water is controlled, and the circulation side pump is stopped if the inlet side temperature is lower than the exhaust heat recovery stop threshold value or the outlet side temperature is lower than the exhaust heat recovery stop threshold value. To complete exhaust heat recovery, before the fluid During heat recovery, and a control unit for detecting the temperature of the delivery temperature detection means for controlling said circulation path side pump so that the optimum temperature,
An exhaust heat recovery apparatus comprising:
請求項1記載の排熱回収装置において、
前記熱交換手段から出る前記水の出側温度を検出する温度検出手段を備え、前記排熱回収中において、前記制御部は、前記熱交換手段を出る前記水の検出温度が最適温度になるように前記循環路側ポンプを制御することを特徴とする排熱回収装置。
The exhaust heat recovery apparatus according to claim 1,
Temperature detecting means for detecting the outlet temperature of the water exiting from the heat exchanging means, and during the exhaust heat recovery, the control unit is configured so that the detected temperature of the water exiting the heat exchanging means becomes an optimum temperature. The exhaust heat recovery apparatus is characterized by controlling the circulation path side pump .
請求項1記載の排熱回収装置において、
前記流体路に流れる前記流体の流量を検出する流量検出手段を備え、前記流体の前記排熱回収中において、前記制御部は、前記入側温度検出手段の検出温度と、前記流量検出手段の検出流量とから熱交換熱量を求め、この熱交換熱量から求められる最適循環流量に前記循環路側ポンプを制御することを特徴とする排熱回収装置。
The exhaust heat recovery apparatus according to claim 1,
Flow rate detection means for detecting the flow rate of the fluid flowing in the fluid path is provided, and during the exhaust heat recovery of the fluid, the control unit detects the detected temperature of the inlet side temperature detection means and the detection of the flow rate detection means. An exhaust heat recovery apparatus , wherein a heat exchange heat quantity is obtained from a flow rate, and the circulation path side pump is controlled to an optimum circulation flow rate obtained from the heat exchange heat quantity .
請求項1記載の排熱回収装置において、
前記熱交換手段に入る前記水の入側温度を検出する入側温度検出手段と、
前記熱交換手段から出る前記水の出側温度を検出する出側温度検出手段と、
前記循環路に流れる前記水の流量を検出する流量検出手段と、
を備え、前記流体の前記排熱回収中において、前記制御部は、前記水の前記入側温度、前記出側温度と、前記流量検出手段の検出流量とから求められる熱交換熱量から最適循環流量を求め、この最適循環流量に前記循環路側ポンプを制御することを特徴とする排熱回収装置。
The exhaust heat recovery apparatus according to claim 1,
Inlet temperature detecting means for detecting the inlet temperature of the water entering the heat exchange means;
Outlet temperature detecting means for detecting the outlet temperature of the water exiting from the heat exchange means;
A flow rate detecting means for detecting a flow rate of the water flowing in the circulation path;
And during the recovery of the exhaust heat of the fluid, the control unit determines the optimum circulation flow rate from the heat exchange heat quantity obtained from the inlet side temperature, the outlet side temperature of the water, and the detected flow rate of the flow rate detecting means. The exhaust heat recovery apparatus is characterized in that the circulation path side pump is controlled to the optimum circulation flow rate .
前記外部装置が発電装置であることを特徴とする請求項1、2、3又は4記載の排熱回収装置。 The exhaust heat recovery apparatus according to claim 1 , wherein the external device is a power generation device.
JP2004134171A 2004-04-28 2004-04-28 Waste heat recovery device Expired - Lifetime JP3980570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004134171A JP3980570B2 (en) 2004-04-28 2004-04-28 Waste heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004134171A JP3980570B2 (en) 2004-04-28 2004-04-28 Waste heat recovery device

Publications (2)

Publication Number Publication Date
JP2005315513A JP2005315513A (en) 2005-11-10
JP3980570B2 true JP3980570B2 (en) 2007-09-26

Family

ID=35443124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134171A Expired - Lifetime JP3980570B2 (en) 2004-04-28 2004-04-28 Waste heat recovery device

Country Status (1)

Country Link
JP (1) JP3980570B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072352A (en) * 2007-09-20 2009-04-09 Sanyo Electric Co Ltd Beverage dispenser
JP5078817B2 (en) * 2008-09-12 2012-11-21 三菱電機株式会社 Refrigeration cycle equipment
JP6558578B2 (en) * 2015-12-21 2019-08-14 パナソニックIpマネジメント株式会社 Cogeneration system, fuel cell system, and operation method of fuel cell system

Also Published As

Publication number Publication date
JP2005315513A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
WO2012101974A1 (en) Hybrid construction machine
US20060147772A1 (en) Fuel cell system
JP2005341700A (en) Thermoelectric generator
JP2010138811A (en) Exhaust heat recovery device
JP2011085059A (en) Thermostat and cooling device for vehicle
JP2003214705A (en) Cogeneration system
JP2008037302A (en) Vehicle cooling system
JP3980570B2 (en) Waste heat recovery device
JP4396351B2 (en) Thermoelectric generator
JP2007085663A (en) Heat pump water heater
JP2007146676A (en) Cogeneration system
JP2007157616A (en) Heat medium control system, heating control system, and fuel cell vehicle
JP2011052662A (en) Waste heat recovery device for vehicle
JP2009203903A (en) External combustion engine
JP4833707B2 (en) Waste heat recovery device
JP2007225226A (en) Control method of cooling device
JP2009074736A (en) Heat pump type hot water supply device
CN111434904B (en) Heat storage and radiation device for internal combustion engine
JP3744495B2 (en) Water heater
JP2006250037A (en) Cooling system for engine
JP2007127079A (en) Cooling system and control method therefor
JP2006207449A (en) Control device for vehicle
JP4134679B2 (en) Fuel cell system
JP2003267037A (en) Heating apparatus for work machine
JP3977605B2 (en) Waste heat recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

R150 Certificate of patent or registration of utility model

Ref document number: 3980570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140706

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250