JP3975762B2 - Epoxy resin composition and cured product thereof - Google Patents

Epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP3975762B2
JP3975762B2 JP2002019995A JP2002019995A JP3975762B2 JP 3975762 B2 JP3975762 B2 JP 3975762B2 JP 2002019995 A JP2002019995 A JP 2002019995A JP 2002019995 A JP2002019995 A JP 2002019995A JP 3975762 B2 JP3975762 B2 JP 3975762B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
hydroxyl group
general formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002019995A
Other languages
Japanese (ja)
Other versions
JP2003246846A (en
Inventor
一郎 小椋
芳行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2002019995A priority Critical patent/JP3975762B2/en
Publication of JP2003246846A publication Critical patent/JP2003246846A/en
Application granted granted Critical
Publication of JP3975762B2 publication Critical patent/JP3975762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密着性に優れる硬化物を与えるエポキシ樹脂組成物およびその硬化物に関する。
【0002】
【従来の技術】
エポキシ樹脂は種々のフェノール樹脂等の硬化剤で硬化させることにより、一般的に機械的性質、耐湿性、耐薬品性,耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層板、成形材料、注型材料などの幅広い分野に利用されている。電子材料分野に関しては、半導体封止材料やプリント配線基板などの用途分野において、エポキシ樹脂と硬化剤として多価フェノール化合物を用いた組成物が主要材料として用いられている。
【0003】
ところで近年、半導体分野においては、半導体装置のリードフレームに関しては、環境上問題となる半田に含まれる鉛を削減することを目的として、銅合金や42アロイ合金等に代わってパラジウムを素材としたものが普及しつつある。しかし、パラジウム素材系のリードフレームは従来型と比較して封止材との密着性が低く、半導体装置を基板に実装する工程でリフロークラックが発生しやすいという問題点がある。
【0004】
また、プリント配線基板分野においては、多層化、薄物化、配線パターンの高密度化に伴い、基材及び銅箔との密着性と耐熱性を兼備することが重要な要求となっている。プリント配線基板用途では、硬化剤としてジシアンジアミドが使用されているが、この系は密着性に優れるものの、満足できる耐熱性を得ることができない。また、耐熱性改良のためにノボラック樹脂を硬化剤として用いる場合技術も知られているが、この系は、耐熱性が向上するものの、基材及び銅箔との密着性に劣る問題があった。
【0005】
前記の問題点を解決する方法として特開平7−292070号公報には低応力特性を有するエポキシ樹脂としてエポキシ基と1級アルコールを反応させて、脂肪族性2級水酸基を含有させたノボラック型エポキシ樹脂が提案されているが、前述の問題点を解決するに十分な耐湿性は発現しない。
【0006】
【発明が解決しようとする課題】
本発明は、半導体装置やプリント配線基板等の各種部材への密着性に優れたエポキシ樹脂系材料を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らはこうした実状に鑑み、密着性に優れるエポキシ樹脂系材料を求めて鋭意研究した結果、下記一般式(2)で表される構造を有するフェノール化合物中に、下記一般式(1)で表される構造中の脂肪族性1級水酸基を一定濃度以上含有するフェノール化合物とエポキシ樹脂を必須成分とするエポキシ樹脂組成物が、これらの要求を満たすものであることを見いだし、また、特定の構造のフェノール化合物に一般式(1)で表される構造中の脂肪族性1級水酸基を有するフェノール化合物が新規な物質であることを見出し、本発明を完成させるに到った。
【0008】
すなわち、本発明は一般式(2)
【化2】

Figure 0003975762
(式中、Arはベンゼン環又は芳香族縮合環を、R はそれぞれ独立して水素原子、ハロゲン原子、炭素数1〜8の炭化水素基またはアリル基を、また、Yは下記一般式(1)
−O−R −CH OH ………(1)
(式中、R は炭素数1〜6の直鎖アルキレン基を表わす。)
で表される構造を表わす。また、a、b、及びcは、下記の条件ア)、イ)、及びウ)
ア)0<(a+b+c)≦2(n+2)
イ)n=(Ar中の芳香環の総数)−1
ウ) 0≦a≦4、0≦b≦4、0<c≦4
を満たす。)で表わされる構造を含有し、前記一般式(1)で表わされる構造中の脂肪族性1級水酸基を一定濃度以上含有するフェノール化合物とエポキシ樹脂とを必須成分とするエポキシ樹脂組成物、これを硬化した硬化物を提供する。
【0009】
【発明の実施の形態】
本発明のエポキシ樹脂組成物に用いるフェノール化合物は、下記一般式(2)
【化3】
Figure 0003975762
(式中、Arはベンゼン環又は芳香族縮合環を、R はそれぞれ独立して水素原子、ハロゲン原子、炭素数1〜8の炭化水素基またはアリル基を、また、Yは下記一般式(1)
−O−R −CH OH ………(1)
(式中、R は炭素数1〜6の直鎖アルキレン基を表わす。)
で表される構造を表わす。また、a、b、及びcは、下記の条件ア)、イ)、及びウ)
ア)0<(a+b+c)≦2(n+2)
イ)n=(Ar中の芳香環の総数)−1
ウ) 0≦a≦4、0≦b≦4、0<c≦4
を満たす。)で表される構造を有するものであって、一般式(1)で表わされる構造中の脂肪族性1級水酸基を0.1重量%以上含有しているものである。一般式(1)で表わされる構造中の脂肪族性1級水酸基の量は、前記フェノール化合物中に0.1重量%〜12重量%含有することが好ましく、より好ましくは0.4重量%以上、更に好ましくは0.8重量%以上含有することが好ましい。また、前記一般式(1)で表わされる構造中の脂肪族性1級水酸基と芳香族性水酸基のモル比率としては、[脂肪族性1級水酸基]/[芳香族性水酸基]=2/98〜50/50の範囲が密着性と硬化性、耐熱性等のバランスに優れることから好ましく、一層の特性バランスを得るためには、[脂肪族性1級水酸基]/[芳香族性水酸基]=5/95〜30/70の範囲が特に好ましい。
【0011】
上記のフェノール化合物の例としては、下記一般式(3)で表されるフェノール化合物が挙げられる。
【化4】
Figure 0003975762
(式中、Xは、直接結合、または下記構造式(4)〜(15)を、またVは一般式(2)或いはヒドロキシル基で置換されたベンゼン環又は芳香族縮合環を、また、n、mはそれぞれ独立に1から10の繰り返し単位数表わし、他は一般式(2)と同一。)
【化5】
Figure 0003975762
【0012】
前記フェノール化合物としては、前記一般式(2)で表される構造を有しフェノール化合物のフェノール性水酸基の一部が一般式(1)の構造で置換されているものであって、例えば、ビスフェノールA、ビスフェノールF、ビフェノール、ビスフェノールS、テトラメチルビフェノール、ジヒドロキシベンゾフェノン、ジヒドロキシフェニルエーテル、ハイドロキノン、カテコール、レゾルシン、ジヒドロキシナフタレン、ナフトールダイマーなどの2価フェノール化合物類のフェノール性水酸基の一部分が一般式(1)の構造で置換されたフェノール化合物、フェノール又はクレゾールとメラミン又はベンゾグアナミンおよびアルデヒド化合物、ケトン化合物の縮合反応物等、フェノール骨格含有化合物とトリアジン骨格含有化合物を含有したアミノトリアジン変性フェノール化合物が挙げられる。
【0013】
また、フェノールノボラック型樹脂、クレゾールノボラック型樹脂、トリフェニルメタン型樹脂、テトラフェニルエタン型樹脂、ジシクロペンタジエン−フェノール付加反応型樹脂、フェノールアラルキル型樹脂、ナフトールノボラック型樹脂、ナフトールアラルキル型樹脂、ナフトール−フェノール共縮型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ビフェニル変性ノボラック型樹脂、BPAノボラック樹脂などの多官能フェノール樹脂の水酸基の一部が一般式(1)の構造で置換され、かつ前記一般式(2)で表される構造を有する樹脂が挙げられる。
【0014】
本発明のエポキシ樹脂組成物に用いられるフェノール化合物は、例えば、フェノール化合物とオキシラン環含有化合物類または炭酸エステル化合物類を任意のモル数で反応することで得ることができる。用いられるオキシラン環含有化合物類としては、エチレンオキサイド、プロピレンオキサイド、エポキシブタンなどが挙げられ、炭酸エステル化合物類としてはエチレンカーボネート、プロピレンカーボネートなどが挙げられるが、これらに限定されるものではない。エチレンカーボネートとの反応を例に挙げると、まず、フェノール化合物に所望の脂肪族性1級水酸基濃度になるような理論割合の環状炭酸エステル類を加えて脱炭酸反応をおこない、水酸基の一部を脂肪族性1級水酸基含有基に置換する。反応の際には、必要に応じてトルエン、キシレンやメチルイソブチルケトンのような有機溶媒を使用しても構わないし、また反応速度を高めるためには、塩基触媒を添加すればよい。塩基触媒としては、苛性ソーダ、苛性カリウム、炭酸カリウムなどが使用でき、添加量としては環状炭酸エステル類に対して1〜50モル%の範囲が好ましい。反応温度は50〜150℃の範囲が適当であり、反応時間としては0.5〜10時間が適当である。反応状況は環状炭酸エステル類の濃度分析で追跡でき、反応終了後は触媒を中和によって失活した後に、水洗やろ過等で触媒残を除去して、有機溶媒を蒸留などで除去することによって、目的の多価フェノール化合物を得ることができる。
【0015】
前記一般式(1)中のR1は、炭素数1〜6の直鎖アルキレン基である。これらの中でもメチレン基が、密着性と硬化性、耐熱性の特性にバランスに優れることからメチレン基が特に好ましい。
【0016】
次いで、本発明のエポキシ樹脂組成物について説明する。本発明のエポキシ樹脂組成物とは、硬化剤として前記の多価フェノール化合物とエポキシ樹脂とを必須成分とする組成物である。
【0017】
本発明のエポキシ樹脂組成物において使用できるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂などが挙げられる。またこれらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。更に、前記の一般式(1)で表わされる構造を0.1重量%以上含有する多価フェノール化合物のグリシジルエーテル類も使用可能である。これらのエポキシ樹脂の中でも、耐熱性に優れる点では、下記構造式(16)、(17)で示されるノボラック型エポキシ樹脂や、構造式(18)で示されるトリフェニロールメタン型エポキシ樹脂が好ましく、
【化6】
Figure 0003975762
(式中、nは平均値で0〜20の数を表す。)
【0018】
また、吸湿特性、密着性に優れる点では、構造式(19)で示されるジシクロペンタジェン型エポキシ樹脂が好ましい。
【化7】
Figure 0003975762
(式中、nは平均値で0〜20の数を表す。)
【0019】
また、無機充填材の配合量を多くできる点では、下記構造式(20)、または(21)で示されるビフェニル型エポキシ樹脂が好ましい。
【化8】
Figure 0003975762
【0020】
本発明のエポキシ樹脂組成物は、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などの他の硬化剤を併用することができる。例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、アミノトリアジン変性フェノール樹脂等の多価フェノール化合物、及びこれらの変性物、イミダゾ−ル、BF3−アミン錯体、グアニジン誘導体などが挙げられる。また、前記多価フェノール化合物(B)も使用可能な硬化剤として挙げられる。またこれらの硬化剤は単独で用いてもよく、2種以上を混合してもよい。
【0021】
前記他の硬化剤を併用する場合は、多価フェノール化合物(B)が全硬化剤に占める割合を30重量%以上、特に40重量%以上にすることが好ましい。
【0022】
本発明のエポキシ樹脂組成物において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して、硬化が円滑に進行し、良好な硬化物性が得られる点から全硬化剤中の総活性水素基が0.5〜1.5当量になる量が好ましい。
【0023】
また、本発明のエポキシ樹脂組成物において、硬化促進剤を適宜使用することもできる。硬化促進剤としては公知慣用のものがいずれも使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられ、これらは単独のみならず2種以上の併用も可能である。半導体封止材料用途としては、リン系ではトリフェニルホスフィン、アミン系ではDBUなどが、硬化性、耐熱性、電気特性、耐湿信頼性などが優れるために好ましいものである。
【0024】
また、無機充填材を使用してもよく、用いられる無機充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等が挙げられる。無機質充填材の配合量を特に大きくする場合は、溶融シリカを用いるのが一般的である。溶融シリカは、破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、且つ成形材料の溶融粘度の上昇を抑えるためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布がより広くなるように調整することが好ましい。その充填率は難燃性を鑑みれば高い方が好ましく、エポキシ樹脂組成物の全体量に対して65〜92重量%以上が特に好ましい。
【0025】
また、必要に応じて、シランカップリング剤、離型剤、顔料等の種々の配合剤を添加することができる。また、必要に応じて難燃付与剤を添加できる。難燃付与剤としては、種々のものが全て使用できるが、例えば、ハロゲン化合物、燐原子含有化合物や窒素原子含有化合物や無機系難燃化合物などが挙げられる。
【0026】
それらの具体例を挙げるならば、ハロゲン化合物としては、テトラブロモビスフェノールA型エポキシ樹脂臭素化フェノールノボラック樹脂、
【0027】
燐原子含有化合物としては、赤燐、ぽり燐酸アンモニウム及び燐酸エステル化合物、ホスフィン酸、ホスファゼン化合物などの有機燐化合物が挙げられる。ここでいう赤燐とは、表面処理が施されていてもよく、例えば、水酸化マグネシウム、水酸化亜鉛、水酸化チタン等の金属水酸化物の被膜で被覆処理されたもの、水酸化マグネシウム、水酸化亜鉛、水酸化チタン等および熱硬化性樹脂よりなる被膜で被覆処理されたもの、水酸化マグネシウム、水酸化亜鉛、水酸化チタン等より選ばれる金属水酸化物の被膜の上に熱硬化性樹脂の被膜で二重に被覆処理されたもの等がいずれも使用可能である。また上記燐化合物としては、燐酸アミド等、アミノ基、フェノール性水酸基、エポキシ基等の官能基を有していてもよい。これらの燐化合物の添加量は、前記に例示される充填材を除く他の全配合成分に対して、燐原子の量で0.1〜5.0重量%、より好ましくは0.2〜3.0重量%の範囲内であることが好ましい。0.1重量%より少ない場合は難燃性の向上効果が少なく、5.0重量%より多いと成形性、耐湿性の低下や燐原子含有化合物のブリードの問題がある。
【0028】
窒素原子含有化合物としては、メラミン、ベンゾグアナミン、アセトグアナミンおよび上記したトリアジン化合物から誘導される化合物、硫酸メラミン、硫酸アミノトリアジン、メラミンシアヌレート、シアヌル酸等が挙げられ、これらはフェノール性水酸基等の官能基を有していてもよい。これらの窒素原子含有化合物の添加量は、前記に例示される充填材を除く他の全配合成分に対して、窒素原子の量で0.1〜20重量%、より好ましくは1〜10重量%の範囲内であることが好ましい。0.1重量%より少ない場合は難燃性の向上効果が少なく、20重量%より多い耐湿性の低下の問題がある。
【0029】
有機ケイ素化合物としては、フェニル基やメチル基等のアルキル基を含有する化合物が挙げられ、これらはフェノール性水酸基、アミノ基、エポキシ基等の官能基を有していてもよい。これらの有機ケイ素化合物の添加量は、前記に例示される充填材を除く他の全配合成分に対して、窒素原子の量で0.1〜20重量%、より好ましくは1〜10重量%の範囲内であることが好ましい。0.1重量%より少ない場合は難燃性の向上効果が少なく、20重量%より多い密着性低下の低下の問題がある。
【0030】
無機系難燃化合物としては、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、塩基性炭酸マグネシウム、水酸化ジルコニウム、酸化スズの水和物等の水和金属系化合物、シリカ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化スズ、酸化アンチモン、酸化ニッケル、酸化銅、酸化タングステン等の金属酸化物、アルミニウム、鉄、フェロセン、チタン、マンガン、亜鉛、モリブデン等の金属類表面を樹脂や無機物で表面被覆したもの、コバルト、コバルトナフテン酸錯体、コバルトエチレンジアミン錯体等のコバルト金属錯体、ホウ酸、ホウ砂、ホウ酸亜鉛等のホウ酸金属塩、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム等が挙げられる。上記無機系難燃化合物は、表面を樹脂や無機物で表面被覆したものが使用可能であり、表面被覆により密着性向上など封止材とした場合の信頼性が向上する。これらの無機系難燃化合物の添加量は、前記に例示される充填材を除く他の全配合成分に対して、0.1〜10重量%、より好ましくは0.1〜5重量%の範囲内であることが好ましい。0.1重量%より少ない場合は難燃性の向上効果が少なく、10重量%より多い成形性が低下するので好ましくない。
【0031】
本発明のエポキシ樹脂組成物は、各成分を均一に混合することにより得られる。本発明のエポキシ樹脂、硬化剤更に必要により硬化促進剤の配合された本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易に硬化物とすることができる。
【0032】
半導体封止材料用のエポキシ樹脂組成物としては、無機充填材を必須成分とする本発明のエポキシ樹脂組成物を押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合することによって得られる。得られたエポキシ樹脂組成物は、射出成型機やトランスファ−成形機などを用いることにより、また、液状の場合はキャスティングやポッティング、印刷等の方式で注型、80〜200℃で2〜10時間に加熱することで、半導体装置のリードフレームや積層板を搭載した半導体素子を封止した半導体装置を得ることができる。
【0033】
また、回路基板材料用のエポキシ樹脂組成物としては、本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の溶剤に溶解させてワニス化して塗料として用いることができる。さらにはそのワニスをガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形して積層板を得ることができる。この際の溶剤は、本発明のエポキシ樹脂組成物と該溶剤の混合物中で通常10〜70重量%、好ましくは15〜65重量%、特に好ましくは15〜65重量%を占める量を用いる。
【0034】
【実施例】
次に、本発明を実施例、比較例により具体的に説明するが、以下において部は特に断わりのない限り重量部である。
【0035】
製造例1
温度計、冷却管、攪拌機、加熱装置を取り付けたフラスコに窒素ガスパージを施しながら、フェノールノボラック樹脂(大日本インキ化学工業株式会社製:フェノライト TD−2106、軟化点90℃、水酸基当量104g/eq.)416g(水酸基4.0モル)とメチルイソブチルケトン500gとエチレンカーボネート35g(0.4モル)を仕込んで均一溶解した。それに49%苛性ソーダ6.5g(0.08モル)を加えた後に、110℃まで昇温して、その温度で攪拌して反応させた。反応中、脱炭酸の様子が観察でき、5時間後にガスクロマトグラフィーで分析したところ、エチレンカーボネートのピークが実質的に消失していることを確認した後に、燐酸ソーダで中和して、100gの水で3回水洗して、触媒残を除去した。次いで、共沸脱水して精密ろ過を経て、最後に蒸留でメチルイソブチルケトンを除去して目的の多価フェノール化合物(P1)420gを得た。
【0036】
製造例2
エチレンカーボネートを70g(0.8モル)に変更した以外は、製造例1と同様な操作で、目的の多価フェノール化合物(P2)428gを得た。
【0037】
製造例3
フェノールノボラック樹脂をフェノールアラルキル樹脂(三井化学製 ミレックス XLC−LL、軟化点78℃、水酸基当量175g/eq.)700g(水酸基4.0モル)に変更した以外は、製造例1と同様な操作で、目的の目的の多価フェノール化合物(P3)718gを得た。
【0038】
製造例4
フェノールノボラック樹脂をクレゾールノボラック樹脂(軟化点95℃、水酸基当量120g/eq.)480g(水酸基4.0モル)に変更した以外は、製造例1と同様な操作で、目的の目的の多価フェノール化合物(P4)492gを得た。
【0039】
製造例5
エチレンカーボネートを70g(0.8モル)に変更した以外は、製造例1と同様な操作で、目的の多価フェノール化合物(P5)515gを得た。
【0040】
上記製造例1〜5で得られた化合物の(1)脂肪族性1級水酸基の重量%、(2)脂肪族性1級水酸基と芳香族性水酸基のモル比、(3)脂肪族性1級水酸基価、(4)芳香族性水酸基価を表1にまとめた。尚、これらの(1)〜(4)は次のようにして算出した。
(1):後述の(3)より求めた脂肪族性1級水酸当量から次式により求めた。
脂肪族性1級水酸基の重量%=17×100/((3)の脂肪族性1級水酸当量)
ここで、17は水酸基の分子量を示す。
(2):得られた化合物を13C NMR分析し、芳香性水酸基に直結する炭素原子のシグナル(150〜160ppm)と、脂肪族性水酸基に直結する炭素原子のシグナル(55〜65ppm)の積分値比から、両者の比を100分率で算出した。
(3):JIS K0070に準拠し求めた水酸基当量(脂肪族性1級水酸基と芳香族性水酸基の合計)と、(2)で求めた脂肪族性1級水酸基と芳香族性水酸基のモル比より、次式で求めた。
・芳香族性水酸基当量=水酸基当量/(全水酸基中における芳香族水酸基のモル比)
・脂肪族性1級水酸基当量=水酸基当量/(全水酸基中における脂肪族性1級水酸基のモル比)
【表1】
Figure 0003975762
【0041】
製造例6(P2のエポキシ化物の製造例)
温度計、滴下ロート、冷却管、攪拌機、加熱装置を取り付けたフラスコに窒素ガスパージを施しながら、製造例1で得られた多価フェノール化合物(P2)141g(芳香族性水酸基1.0当量)、エピクロルヒドリン463g(5.0モル)、n−ブタノール53g、テトラエチルベンジルアンモニウムクロライド2.3gを仕込み溶解させた。65℃に昇温した後に、共沸する圧力までに減圧して、49%水酸化ナトリウム水溶液82g(1.0モル)を5時間かけて滴下した、次いで同条件下で0.5時間攪拌を続けた。この間、共沸で留出してきた留出分をディーンスタークトラップで分離して、水層を除去し、油層を反応系内に戻しながら反応した。その後、未反応のエピクロルヒドリンを減圧蒸留して留去させた。それで得られた粗エポキシ樹脂にメチルイソブチルケトン550gとn−ブタノール55gとを加え溶解した。更にこの溶液に10%水酸化ナトリウム水溶液15gを添加して80℃で2時間反応させた後に洗浄液のPHが中性となるまで水100部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(E1)191gを得た。得られたエポキシ樹脂のエポキシ当量は226g/eqであった。
【0042】
製造例7
多価フェノール化合物(P1)を多価フェノール化合物(P4)138gに変更した以外は製造例6と同様にして、目的のエポキシ樹脂(E2)188gを得た。得られたエポキシ樹脂のエポキシ当量は223g/eqであった。
【0043】
製造例8
多価フェノール化合物(P1)を多価フェノール化合物(P5)161gに変更した以外は製造例6と同様にして、目的のエポキシ樹脂(E3)210gを得た。得られたエポキシ樹脂のエポキシ当量は249g/eqであった。
【0044】
製造例9
温度計、滴下ロート、冷却管、攪拌機、加熱装置を取り付けたフラスコに窒素ガスパージを施しながらオルソクレゾールノボラック型エポキシ樹脂(EPICLON N−665−EXP−S:大日本インキ化学工業製、エポキシ当量202g/eq.)750g、メチルイソブチルケトン1400gを仕込み、80℃に昇温攪拌して樹脂を溶解した。次いで、エチレングリコール52.5g、10重量%のNaOH水溶液15.4mlを加え80℃で2.5時間反応させた。その後、MIBK860g、イオン交換水750gを加えて80℃にて20分間攪拌し、静置後、水層を分離した。更にイオン交換水750gを加え、10重量%NaH2PO4にて中和し、静置後、水層を分離した。更にイオン交換水750gを加え攪拌し、静置後、水層を分離した。次いで得られた樹脂溶液を濾過し、減圧下で溶剤を除去してエポキシ樹脂(E4)を得た。このエポキシ樹脂のエポキシ当量は、204g/eqであった。
【0045】
実施例1、2及び比較例1、2
上記のフェノール化合物(P1)、(P3)とエポキシ樹脂(E2)と、比較用の硬化剤としてフェノールノボラック樹脂(PHENOLITE TD−2131:大日本インキ化学工業製、軟化点80℃、水酸基当量104g/eq.)、比較用のエポキシ樹脂として、クレゾールノボラック型エポキシ樹脂(EPICLON N−665−EXP−S:大日本インキ化学工業製、エポキシ当量202g/eq.)および製造例11で得たエポキシ樹脂を用いて表2に示した組成で配合し、2本ロールを用いて100℃の温度で10分間溶融混練して目的の組成物を得た。表2中の上記以外の成分は以下のものを用いた。臭素化エポキシ樹脂(EPICLON 153:大日本インキ化学工業製、エポキシ当量400g/eq.)、トリフェニルホスフィン(北興化学株式会社製TPP)、カルナバワックス(天然カルナバワックス)、シランカップリング剤(日本ユニカー株式会社製 A−187)、カーボンブラック(三菱マテリアル株式会社製 750−B)、三酸化アンチモン(日本精工株式会社製 PATOX−M)無機充填材として溶融シリカ(龍森(株)製、RD−8)。次に得られた組成物を粉砕したものを、シリコンチップを搭載したCu合金の上にNi、Pd、Auを順にメッキしてなるメッキリードフレーム(以下、s−Pdメッキフレームと略す)に、口径28mm、厚さ3.2mmの160QFP用の金型を用いて、金型温度175℃、成形時間100秒、注入圧力70〜90kg/cmの条件下でトランスファー成形した。得られた成形品を175℃で6時間アフターキュアすることで、評価用パッケージを得た。この評価用パッケージを用い、動的粘弾性装置(DMA)によるガラス転移温度、密着性、耐湿性を評価した。尚、密着性と耐湿性は、パッケージを85℃、85%RHの雰囲気下に168時間放置して吸湿させた後、260℃のハンダ浴に10秒浸し、エポキシ樹脂とチップ、フレーム、ダイパッドとの剥離を生じたパッケージ、更には、エポキシ樹脂組成物の成形体にクラックを生じたパッケージを数えて評価した。
【0046】
【表2】
Figure 0003975762
【0047】
実施例3、4及び比較例3
製造例で得られたフェノール化合物(P2)(P3)(P5)、エポキシ樹脂(E1)(E3)およびEPICLON 153(大日本インキ化学工業株式会社製 臭素化エポキシ樹脂、エポキシ当量400g/eq)、比較のフェノール樹脂として、TD−2090−60M(大日本インキ化学工業株式会社製 フェノールノボラック樹脂、水酸基当量 104g/eq)、比較用エポキシ樹脂として、N−690−75M(大日本インキ化学工業株式会社製 クレゾールノボラック型エポキシ樹脂、エポキシ当量 219g/eq)、1121N−80M(大日本インキ化学工業株式会社製 低臭素化エポキシ樹脂、エポキシ当量 495g/eq)を用いて、表3に示した配合で積層板を作成した。フェノール化合物(P2)(P3)(P5)、エポキシ樹脂(E2)(E5)およびEPICLON 153は、各々別にメチルエチルケトンで溶解させ、不揮発分(NV)が80%なる混合溶液を調製した。次いで予めメチルセロソルブ、ジメチルホルムアミドに溶解させておいた硬化促進剤2エチル4メチルイミダゾールを加えて、不揮発分(NV)が55%なる混合溶液を調製した。この際の硬化剤の量としてはエポキシ樹脂中のエポキシ基に対して水酸基当量が1.0当量となるような割合にし、また、硬化促進剤量はプリプレグのゲルタイムが170℃で120秒になる割合にした。しかるのち、それぞれの混合溶液を用い、基材であるガラスクロスWEA 7628 H258N〔日東紡(株)製〕に含浸させ、160℃3分乾燥させて樹脂分40%のプリプレグを作製した。
次いで、得られたプリプレグを8枚重ね合わせ、圧力3.9MN/m、加熱温度170℃、加熱時間120分の条件で硬化させて積層板を作製した。
【0048】
得られた各々の積層板について、Tg、密着性を試験した。その結果を第2表に示す。尚、各試験は以下の方法に従った。
[Tg(ガラス転移温度)] DMA法にて測定。昇温スピード3℃/min
[ピール強度] JIS−K6481に準拠した。
【表3】
Figure 0003975762
【0049】
【発明の効果】
本発明のエポキシ樹脂組成物からなる硬化物は、金属や他の無機材料への密着性及び硬化物同士の密着性に優れる。とりわけ半導体パッケージにおけるリードフレームとの密着性、プリント配線板における基材及び銅箔との密着性に優れるエポキシ樹脂組成物を提供できる。従って、本発明のフェノール化合物又はエポキシ樹脂は、半導体封止材料やプリント配線板材料、レジストインキ、先端複合材料などにきわめて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition that gives a cured product having excellent adhesion and a cured product thereof.
[0002]
[Prior art]
Epoxy resins are cured with various hardeners such as phenolic resins, resulting in cured products with excellent mechanical properties, moisture resistance, chemical resistance, heat resistance, electrical properties, etc. It is used in a wide range of fields such as laminates, molding materials and casting materials. In the field of electronic materials, a composition using an epoxy resin and a polyhydric phenol compound as a curing agent is used as a main material in application fields such as a semiconductor sealing material and a printed wiring board.
[0003]
By the way, in recent years, in the semiconductor field, with respect to lead frames of semiconductor devices, palladium is used instead of copper alloy or 42 alloy alloy for the purpose of reducing lead contained in solder, which is an environmental problem. Is spreading. However, the palladium-based lead frame has a problem that the adhesion to the sealing material is lower than that of the conventional type, and reflow cracks are likely to occur in the process of mounting the semiconductor device on the substrate.
[0004]
Further, in the printed wiring board field, with the increase in the number of layers, the reduction in thickness, and the increase in the density of wiring patterns, it is an important requirement to have both adhesiveness and heat resistance with the base material and the copper foil. In printed wiring board applications, dicyandiamide is used as a curing agent, but although this system is excellent in adhesion, satisfactory heat resistance cannot be obtained. In addition, a technique is also known in the case of using a novolak resin as a curing agent for improving heat resistance, but this system has a problem of poor adhesion to the base material and the copper foil, although the heat resistance is improved. .
[0005]
As a method for solving the above problems, Japanese Patent Application Laid-Open No. 7-292070 discloses a novolak type epoxy containing an aliphatic secondary hydroxyl group by reacting an epoxy group with a primary alcohol as an epoxy resin having low stress characteristics. Resins have been proposed, but do not exhibit sufficient moisture resistance to solve the aforementioned problems.
[0006]
[Problems to be solved by the invention]
The present invention provides an epoxy resin material having excellent adhesion to various members such as semiconductor devices and printed wiring boards.
[0007]
[Means for Solving the Problems]
In light of these circumstances, the present inventors have eagerly studied for an epoxy resin-based material having excellent adhesion, and as a result, in a phenol compound having a structure represented by the following general formula (2), the following general formula (1) It was found that an epoxy resin composition containing an epoxy resin as an essential component and a phenolic compound containing an aliphatic primary hydroxyl group in the structure represented by the above requirements satisfies these requirements. The present inventors have found that a phenol compound having an aliphatic primary hydroxyl group in the structure represented by the general formula (1) is a novel substance in the phenol compound having the structure: and has completed the present invention.
[0008]
That is, the present invention relates to the general formula (2)
[Chemical formula 2]
Figure 0003975762
(In the formula, Ar represents a benzene ring or an aromatic condensed ring, R 2 independently represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 8 carbon atoms or an allyl group, and Y represents the following general formula ( 1)
—O—R 1 —CH 2 OH (1)
(In the formula, R 1 represents a linear alkylene group having 1 to 6 carbon atoms.)
Represents a structure represented by A, b, and c are the following conditions a), b), and c):
A) 0 <(a + b + c) ≦ 2 (n + 2)
A) n = (total number of aromatic rings in Ar) -1
C) 0 ≦ a ≦ 4, 0 ≦ b ≦ 4, 0 <c ≦ 4
Meet. ), An epoxy resin composition comprising, as essential components, a phenolic compound and an epoxy resin containing at least a predetermined concentration of the aliphatic primary hydroxyl group in the structure represented by the general formula (1) A cured product obtained by curing is provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The phenol compound used in the epoxy resin composition of the present invention is represented by the following general formula (2).
[Chemical Formula 3]
Figure 0003975762
(In the formula, Ar represents a benzene ring or an aromatic condensed ring, R 2 independently represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 8 carbon atoms or an allyl group, and Y represents the following general formula ( 1)
—O—R 1 —CH 2 OH (1)
(In the formula, R 1 represents a linear alkylene group having 1 to 6 carbon atoms.)
Represents a structure represented by A, b, and c are the following conditions a), b), and c):
A) 0 <(a + b + c) ≦ 2 (n + 2)
A) n = (total number of aromatic rings in Ar) -1
C) 0 ≦ a ≦ 4, 0 ≦ b ≦ 4, 0 <c ≦ 4
Meet. ) Containing 0.1% by weight or more of an aliphatic primary hydroxyl group in the structure represented by the general formula (1). The amount of the aliphatic primary hydroxyl group in the structure represented by the general formula (1) is preferably 0.1 to 12% by weight, more preferably 0.4% by weight or more, in the phenol compound. More preferably, the content is 0.8% by weight or more. The molar ratio of the aliphatic primary hydroxyl group to the aromatic hydroxyl group in the structure represented by the general formula (1) is [aliphatic primary hydroxyl group] / [aromatic hydroxyl group] = 2/98. A range of ˜50 / 50 is preferable because of excellent balance between adhesion, curability, heat resistance, and the like. In order to obtain a further balance of properties, [aliphatic primary hydroxyl group] / [aromatic hydroxyl group] = The range of 5/95 to 30/70 is particularly preferred.
[0011]
As an example of said phenol compound, the phenol compound represented by following General formula (3) is mentioned.
[Formula 4]
Figure 0003975762
(In the formula, X represents a direct bond, or the following structural formulas (4) to (15), V represents a general formula (2) or a benzene ring or an aromatic condensed ring substituted with a hydroxyl group, and n , M each independently represents the number of repeating units of 1 to 10, and the others are the same as in the general formula (2).)
[Chemical formula 5]
Figure 0003975762
[0012]
Examples of the phenolic compound, some of the phenolic hydroxyl group of a phenol compound having the structure represented by the general formula (2) be those which are substituted by structural formula (1), for example, bisphenol A part of the phenolic hydroxyl group of dihydric phenol compounds such as A, bisphenol F, biphenol, bisphenol S, tetramethylbiphenol, dihydroxybenzophenone, dihydroxyphenyl ether, hydroquinone, catechol, resorcin, dihydroxynaphthalene, naphthol dimer is represented by the general formula (1 Phenolic compounds substituted with the structure of), phenol or cresol and melamine or benzoguanamine and aldehyde compounds, and condensation products of ketone compounds, including phenol skeleton-containing compounds and triazine skeleton-containing compounds. Aminotriazine-modified phenolic compounds were the like.
[0013]
Also, phenol novolac resin, cresol novolac resin, triphenylmethane resin, tetraphenylethane resin, dicyclopentadiene-phenol addition reaction resin, phenol aralkyl resin, naphthol novolac resin, naphthol aralkyl resin, naphthol -Some of the hydroxyl groups of polyfunctional phenol resins such as phenol co-condensed epoxy resins, naphthol-cresol co-condensed novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, biphenyl-modified novolac resins, BPA novolac resins, etc. Examples thereof include a resin substituted with the structure (1) and having a structure represented by the general formula (2) .
[0014]
The phenol compound used in the epoxy resin composition of the present invention can be obtained, for example, by reacting a phenol compound with an oxirane ring-containing compound or a carbonate ester compound in an arbitrary number of moles. Examples of the oxirane ring-containing compounds used include ethylene oxide, propylene oxide, and epoxybutane. Examples of the carbonic acid ester compounds include ethylene carbonate and propylene carbonate, but are not limited thereto. Taking the reaction with ethylene carbonate as an example, first, a carbonic acid ester having a theoretical ratio such that a desired aliphatic primary hydroxyl group concentration is obtained is added to a phenol compound to perform a decarboxylation reaction. Substitution with an aliphatic primary hydroxyl group-containing group. In the reaction, if necessary, an organic solvent such as toluene, xylene or methyl isobutyl ketone may be used. In order to increase the reaction rate, a base catalyst may be added. As the base catalyst, caustic soda, caustic potassium, potassium carbonate and the like can be used, and the addition amount is preferably in the range of 1 to 50 mol% with respect to the cyclic carbonate. The reaction temperature is suitably in the range of 50 to 150 ° C., and the reaction time is suitably 0.5 to 10 hours. The reaction status can be traced by analyzing the concentration of cyclic carbonates. After the reaction is completed, the catalyst is deactivated by neutralization, then the catalyst residue is removed by washing with water or filtration, and the organic solvent is removed by distillation or the like. The desired polyphenol compound can be obtained.
[0015]
R1 in the general formula (1) is a linear alkylene group having 1 to 6 carbon atoms . Among these, a methylene group is particularly preferable because the methylene group is excellent in balance between adhesiveness, curability, and heat resistance.
[0016]
Next, the epoxy resin composition of the present invention will be described. The epoxy resin composition of the present invention is a composition containing the polyhydric phenol compound and epoxy resin as essential components as a curing agent.
[0017]
Examples of the epoxy resin that can be used in the epoxy resin composition of the present invention include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a biphenyl type epoxy resin, a tetramethylbiphenyl type epoxy resin, a phenol novolac type epoxy resin, and a cresol novolak type. Epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol Condensed novolac epoxy resin, naphthol-cresol co-condensed novolac epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenolic resin type Epoxy resins, biphenyl-modified novolak type epoxy resin, tetrabromobisphenol A type epoxy resins, such as brominated phenol novolak type epoxy resins. Moreover, these epoxy resins may be used independently and may mix 2 or more types. Furthermore, glycidyl ethers of polyhydric phenol compounds containing 0.1% by weight or more of the structure represented by the general formula (1) can also be used. Among these epoxy resins, in terms of excellent heat resistance, novolac type epoxy resins represented by the following structural formulas (16) and (17) and triphenylol methane type epoxy resin represented by the structural formula (18) are preferable. ,
[Chemical 6]
Figure 0003975762
(In formula, n represents the number of 0-20 by an average value.)
[0018]
In addition, the dicyclopentagen type epoxy resin represented by the structural formula (19) is preferable in terms of excellent hygroscopic properties and adhesion.
[Chemical 7]
Figure 0003975762
(In formula, n represents the number of 0-20 by an average value.)
[0019]
Moreover, the biphenyl type epoxy resin shown by following Structural formula (20) or (21) is preferable at the point which can compound the compounding quantity of an inorganic filler.
[Chemical 8]
Figure 0003975762
[0020]
The epoxy resin composition of the present invention can be used in combination with other curing agents such as amine compounds, acid anhydride compounds, amide compounds, and phenol compounds. For example, diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, Maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, Dicyclopentadiene phenol addition resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylol methane resin, tetraphenylol Tan resins, naphthol novolak resins, naphthol-phenol co-condensed novolak resins, naphthol-cresol co-condensed novolac resins, biphenyl-modified phenol resins, aminotriazine-modified phenol resins and the like, and their modified products, imidazoles, Examples thereof include BF 3 -amine complexes and guanidine derivatives. Moreover, the said polyhydric phenol compound (B) is mentioned as a hardening | curing agent which can be used. Moreover, these hardening | curing agents may be used independently and may mix 2 or more types.
[0021]
When the other curing agent is used in combination, the proportion of the polyhydric phenol compound (B) in the total curing agent is preferably 30% by weight or more, particularly 40% by weight or more.
[0022]
In the epoxy resin composition of the present invention, the amount of the curing agent used is the total active hydrogen in all the curing agents from the point that curing proceeds smoothly and good cured properties are obtained with respect to 1 equivalent of epoxy group of the epoxy resin. An amount that results in 0.5 to 1.5 equivalents of group is preferred.
[0023]
Moreover, a hardening accelerator can also be used suitably in the epoxy resin composition of this invention. As the curing accelerator, any known and conventional ones can be used. Examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like. Two or more types can be used in combination. As the semiconductor sealing material application, triphenylphosphine for phosphorus and DBU for amine are preferable because of excellent curability, heat resistance, electrical characteristics, moisture resistance reliability, and the like.
[0024]
An inorganic filler may be used, and examples of the inorganic filler used include fused silica, crystalline silica, alumina, silicon nitride, and aluminum nitride. When the blending amount of the inorganic filler is particularly large, it is common to use fused silica. The fused silica can be used in either a crushed shape or a spherical shape, but in order to increase the blending amount of the fused silica and to suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical shape. In order to further increase the blending amount of the spherical silica, it is preferable to adjust so that the particle size distribution of the spherical silica becomes wider. The filling rate is preferably higher in view of flame retardancy, and is particularly preferably 65 to 92% by weight or more based on the total amount of the epoxy resin composition.
[0025]
Moreover, various compounding agents, such as a silane coupling agent, a mold release agent, and a pigment, can be added as needed. Moreover, a flame retardant imparting agent can be added as necessary. Various flame retardants can be used, and examples include halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, and inorganic flame retardant compounds.
[0026]
If those specific examples are given, as the halogen compound, tetrabromobisphenol A type epoxy resin brominated phenol novolac resin,
[0027]
Examples of the phosphorus atom-containing compound include organic phosphorus compounds such as red phosphorus, ammonium polyphosphate and phosphate ester compounds, phosphinic acid, and phosphazene compounds. As used herein, red phosphorus may be subjected to a surface treatment, for example, coated with a metal hydroxide film such as magnesium hydroxide, zinc hydroxide, titanium hydroxide, magnesium hydroxide, Thermosetting on a coating of metal hydroxide selected from a coating made of zinc hydroxide, titanium hydroxide, etc. and a thermosetting resin, magnesium hydroxide, zinc hydroxide, titanium hydroxide, etc. Any of the resin coatings that are doubly coated can be used. Moreover, as said phosphorus compound, you may have functional groups, such as phosphoric acid amide, an amino group, a phenolic hydroxyl group, an epoxy group. The addition amount of these phosphorus compounds is 0.1 to 5.0% by weight, more preferably 0.2 to 3% in terms of the amount of phosphorus atoms with respect to all the other components except the filler exemplified above. It is preferably within the range of 0.0% by weight. When the amount is less than 0.1% by weight, the effect of improving the flame retardancy is small. When the amount is more than 5.0% by weight, there is a problem of deterioration of moldability and moisture resistance and bleeding of the phosphorus atom-containing compound.
[0028]
Examples of the nitrogen atom-containing compound include compounds derived from melamine, benzoguanamine, acetoguanamine and the above-described triazine compounds, melamine sulfate, aminotriazine sulfate, melamine cyanurate, cyanuric acid and the like, and these include functional groups such as phenolic hydroxyl groups. It may have a group. The addition amount of these nitrogen atom-containing compounds is 0.1 to 20% by weight, more preferably 1 to 10% by weight, in terms of the amount of nitrogen atoms, with respect to all other compounding ingredients except the fillers exemplified above. It is preferable to be within the range. When the amount is less than 0.1% by weight, the effect of improving the flame retardancy is small, and there is a problem that the moisture resistance is decreased by more than 20% by weight.
[0029]
Examples of the organosilicon compound include compounds containing an alkyl group such as a phenyl group or a methyl group, and these may have a functional group such as a phenolic hydroxyl group, an amino group, or an epoxy group. The amount of these organosilicon compounds added is 0.1 to 20% by weight, more preferably 1 to 10% by weight, in terms of nitrogen atoms, with respect to all other ingredients except the fillers exemplified above. It is preferable to be within the range. When the amount is less than 0.1% by weight, the effect of improving the flame retardancy is small, and there is a problem that the adhesion deterioration is more than 20% by weight.
[0030]
Examples of inorganic flame retardant compounds include hydrated metals such as aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, basic magnesium carbonate, zirconium hydroxide, and tin oxide hydrates. Compounds, silica, aluminum oxide, iron oxide, titanium oxide, manganese oxide, magnesium oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, bismuth oxide, chromium oxide, tin oxide, antimony oxide, nickel oxide, copper oxide, Metal oxide such as tungsten oxide, metal surface such as aluminum, iron, ferrocene, titanium, manganese, zinc, molybdenum, etc., coated with resin or inorganic material, cobalt metal such as cobalt, cobalt naphthenic acid complex, cobalt ethylenediamine complex Complex, boric acid, borax Boric acid metal salts such as zinc borate, zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, and the like. As the inorganic flame retardant compound, those whose surface is coated with a resin or an inorganic substance can be used, and the reliability when the sealing material such as adhesion is improved by the surface coating is improved. The amount of these inorganic flame retardant compounds added is in the range of 0.1 to 10% by weight, more preferably 0.1 to 5% by weight, relative to all the other ingredients except the fillers exemplified above. It is preferable to be within. When the amount is less than 0.1% by weight, the effect of improving the flame retardancy is small, and the moldability exceeding 10% by weight is deteriorated, which is not preferable.
[0031]
The epoxy resin composition of this invention is obtained by mixing each component uniformly. The epoxy resin composition of the present invention in which the epoxy resin of the present invention, a curing agent and, if necessary, a curing accelerator are blended can be easily made into a cured product by a method similar to a conventionally known method.
[0032]
As an epoxy resin composition for semiconductor encapsulating materials, the epoxy resin composition of the present invention containing an inorganic filler as an essential component is sufficiently mixed until uniform using an extruder, kneader, roll, etc. It is obtained by doing. The obtained epoxy resin composition can be cast by using an injection molding machine, a transfer molding machine, or the like, and in the case of liquid, casting, potting, printing, etc., and 80 to 200 ° C. for 2 to 10 hours By heating to a semiconductor device, it is possible to obtain a semiconductor device in which a semiconductor element on which a lead frame or a laminated plate of the semiconductor device is mounted is sealed.
[0033]
Moreover, as an epoxy resin composition for circuit board materials, the epoxy resin composition of this invention can be dissolved in solvents, such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, and it can be used as a varnish. Further, a prepreg obtained by impregnating the varnish into a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and heat-drying can be subjected to hot press molding to obtain a laminate. The solvent used in this case is usually 10 to 70% by weight, preferably 15 to 65% by weight, particularly preferably 15 to 65% by weight in the mixture of the epoxy resin composition of the present invention and the solvent.
[0034]
【Example】
Next, the present invention will be specifically described with reference to examples and comparative examples. In the following, parts are parts by weight unless otherwise specified.
[0035]
Production Example 1
While purging a flask equipped with a thermometer, condenser, stirrer, and heating device with a nitrogen gas purge, phenol novolac resin (Dainippon Ink Chemical Co., Ltd .: Phenolite TD-2106, softening point 90 ° C., hydroxyl group equivalent 104 g / eq .) 416 g (hydroxyl 4.0 mol), methyl isobutyl ketone 500 g and ethylene carbonate 35 g (0.4 mol) were charged and uniformly dissolved. After adding 6.5 g (0.08 mol) of 49% caustic soda, the temperature was raised to 110 ° C. and the reaction was stirred at that temperature. During the reaction, the state of decarboxylation can be observed. After 5 hours of analysis by gas chromatography, it was confirmed that the ethylene carbonate peak substantially disappeared, and then neutralized with sodium phosphate. The catalyst residue was removed by washing with water three times. Subsequently, azeotropic dehydration was performed, followed by microfiltration, and finally methyl isobutyl ketone was removed by distillation to obtain 420 g of the desired polyphenol compound (P1).
[0036]
Production Example 2
428 g of the target polyphenol compound (P2) was obtained in the same manner as in Production Example 1, except that ethylene carbonate was changed to 70 g (0.8 mol).
[0037]
Production Example 3
The same operation as in Production Example 1 was conducted except that the phenol novolak resin was changed to 700 g (hydroxyl 4.0 mol) of phenol aralkyl resin (Milex XLC-LL, softening point 78 ° C., hydroxyl equivalent 175 g / eq., Manufactured by Mitsui Chemicals). 718 g of the desired polyhydric phenol compound (P3) was obtained.
[0038]
Production Example 4
The target polyhydric phenol was obtained in the same manner as in Production Example 1 except that the phenol novolac resin was changed to 480 g (hydroxyl group 4.0 mol) of cresol novolac resin (softening point 95 ° C., hydroxyl group equivalent 120 g / eq.). 492 g of compound (P4) was obtained.
[0039]
Production Example 5
515 g of the target polyphenol compound (P5) was obtained in the same manner as in Production Example 1, except that ethylene carbonate was changed to 70 g (0.8 mol).
[0040]
(1)% by weight of aliphatic primary hydroxyl group of the compounds obtained in Production Examples 1 to 5, (2) molar ratio of aliphatic primary hydroxyl group to aromatic hydroxyl group, (3) Aliphatic 1 The primary hydroxyl value and (4) aromatic hydroxyl value are summarized in Table 1. These (1) to (4) were calculated as follows.
(1): It calculated | required by following Formula from the aliphatic primary hydroxyl equivalent calculated | required from below-mentioned (3).
% By weight of aliphatic primary hydroxyl group = 17 × 100 / (aliphatic primary hydroxyl equivalent of (3))
Here, 17 indicates the molecular weight of the hydroxyl group.
(2): The obtained compound was analyzed by 13 C NMR, and the integration of the carbon atom signal (150 to 160 ppm) directly bonded to the aromatic hydroxyl group and the carbon atom signal (55 to 65 ppm) directly bonded to the aliphatic hydroxyl group From the value ratio, the ratio between the two was calculated at 100 minutes.
(3): hydroxyl group equivalent (total of aliphatic primary hydroxyl group and aromatic hydroxyl group) determined in accordance with JIS K0070, and molar ratio of aliphatic primary hydroxyl group and aromatic hydroxyl group determined in (2) From the following equation,
・ Aromatic hydroxyl group equivalent = hydroxyl group equivalent / (molar ratio of aromatic hydroxyl group in all hydroxyl groups)
Aliphatic primary hydroxyl group equivalent = hydroxyl group equivalent / (molar ratio of aliphatic primary hydroxyl group in all hydroxyl groups)
[Table 1]
Figure 0003975762
[0041]
Production Example 6 (Production example of epoxidized product of P2)
While performing a nitrogen gas purge to a flask equipped with a thermometer, a dropping funnel, a condenser, a stirrer, and a heating device, 141 g of the polyphenol compound (P2) obtained in Production Example 1 (1.0 equivalent of aromatic hydroxyl group), Epichlorohydrin 463 g (5.0 mol), n-butanol 53 g, and tetraethylbenzylammonium chloride 2.3 g were charged and dissolved. After raising the temperature to 65 ° C., the pressure was reduced to an azeotropic pressure, and 82 g (1.0 mol) of 49% aqueous sodium hydroxide solution was added dropwise over 5 hours, and then the mixture was stirred for 0.5 hours under the same conditions. Continued. During this time, the distillate distilled azeotropically was separated by a Dean-Stark trap, the aqueous layer was removed, and the reaction was carried out while returning the oil layer to the reaction system. Thereafter, unreacted epichlorohydrin was distilled off under reduced pressure. 550 g of methyl isobutyl ketone and 55 g of n-butanol were added to the crude epoxy resin thus obtained and dissolved. Further, 15 g of a 10% aqueous sodium hydroxide solution was added to this solution and reacted at 80 ° C. for 2 hours. Then, washing with 100 parts of water was repeated three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropic distillation, and after passing through microfiltration, the solvent was distilled off under reduced pressure to obtain 191 g of the desired epoxy resin (E1). The epoxy equivalent of the obtained epoxy resin was 226 g / eq.
[0042]
Production Example 7
188 g of the target epoxy resin (E2) was obtained in the same manner as in Production Example 6 except that the polyhydric phenol compound (P1) was changed to 138 g of the polyhydric phenol compound (P4). The epoxy equivalent of the obtained epoxy resin was 223 g / eq.
[0043]
Production Example 8
210 g of the target epoxy resin (E3) was obtained in the same manner as in Production Example 6 except that the polyhydric phenol compound (P1) was changed to 161 g of the polyhydric phenol compound (P5). The epoxy equivalent of the obtained epoxy resin was 249 g / eq.
[0044]
Production Example 9
Orthocresol novolak type epoxy resin (EPICLON N-665-EXP-S: manufactured by Dainippon Ink & Chemicals, epoxy equivalent 202 g /) while performing nitrogen gas purging on a flask equipped with a thermometer, dropping funnel, condenser, stirrer, and heating device eq.) 750 g and methyl isobutyl ketone 1400 g were charged and heated to 80 ° C. with stirring to dissolve the resin. Subsequently, 52.5 g of ethylene glycol and 15.4 ml of 10 wt% NaOH aqueous solution were added and reacted at 80 ° C. for 2.5 hours. Thereafter, 860 g of MIBK and 750 g of ion-exchanged water were added and stirred at 80 ° C. for 20 minutes, and allowed to stand, and then the aqueous layer was separated. Further, 750 g of ion-exchanged water was added, neutralized with 10 wt% NaH2PO4, and allowed to stand, and then the aqueous layer was separated. Further, 750 g of ion-exchanged water was added and stirred, and after standing, the aqueous layer was separated. Next, the obtained resin solution was filtered, and the solvent was removed under reduced pressure to obtain an epoxy resin (E4). The epoxy equivalent of this epoxy resin was 204 g / eq.
[0045]
Examples 1 and 2 and Comparative Examples 1 and 2
The phenolic compounds (P1), (P3), the epoxy resin (E2), and a phenol novolac resin (PHENOLITE TD-2131: manufactured by Dainippon Ink & Chemicals, softening point 80 ° C., hydroxyl equivalent 104 g / eq.), as a comparative epoxy resin, the cresol novolac type epoxy resin (EPICLON N-665-EXP-S: manufactured by Dainippon Ink and Chemicals, epoxy equivalent 202 g / eq.) and the epoxy resin obtained in Production Example 11 The composition shown in Table 2 was used, and the mixture was melt-kneaded for 10 minutes at a temperature of 100 ° C. using two rolls to obtain the desired composition. The other components in Table 2 were as follows. Brominated epoxy resin (EPICLON 153: manufactured by Dainippon Ink and Chemicals, epoxy equivalent 400 g / eq.), Triphenylphosphine (TPP manufactured by Hokuko Chemical Co., Ltd.), carnauba wax (natural carnauba wax), silane coupling agent (Nihon Unicar) A-187), carbon black (750-B, manufactured by Mitsubishi Materials Corporation), antimony trioxide (PATOX-M, manufactured by Nippon Seiko Co., Ltd.), fused silica (manufactured by Tatsumori Co., Ltd., RD-) 8). Next, the pulverized composition obtained was plated lead frame (hereinafter abbreviated as s-Pd plating frame) formed by sequentially plating Ni, Pd, Au on a Cu alloy on which a silicon chip is mounted. Using a 160QFP mold having a diameter of 28 mm and a thickness of 3.2 mm, transfer molding was performed under conditions of a mold temperature of 175 ° C., a molding time of 100 seconds, and an injection pressure of 70 to 90 kg / cm 2 . The obtained molded product was after-cured at 175 ° C. for 6 hours to obtain an evaluation package. Using this evaluation package, the glass transition temperature, adhesion, and moisture resistance of a dynamic viscoelastic device (DMA) were evaluated. Adhesion and moisture resistance are as follows: the package is left to stand for 168 hours in an atmosphere of 85 ° C. and 85% RH, and then dipped in a solder bath at 260 ° C. for 10 seconds. Evaluation was made by counting and counting the packages that had peeled off and the packages that had cracks in the molded article of the epoxy resin composition.
[0046]
[Table 2]
Figure 0003975762
[0047]
Examples 3 and 4 and Comparative Example 3
Phenol compounds (P2) (P3) (P5) obtained in production examples, epoxy resins (E1) (E3) and EPICLON 153 (brominated epoxy resin, epoxy equivalent 400 g / eq, manufactured by Dainippon Ink & Chemicals, Inc.) As a comparative phenol resin, TD-2090-60M (manufactured by Dainippon Ink & Chemicals, Inc., phenol novolac resin, hydroxyl group equivalent 104 g / eq), as a comparative epoxy resin, N-690-75M (Dainippon Ink Chemical Co., Ltd.) Cresol novolak type epoxy resin, epoxy equivalent 219 g / eq), 1121N-80M (Dainippon Ink & Chemicals, Inc., low brominated epoxy resin, epoxy equivalent 495 g / eq), laminated in the formulation shown in Table 3 A board was created. Phenol compounds (P2) (P3) (P5), epoxy resins (E2) (E5), and EPICLON 153 were each dissolved with methyl ethyl ketone to prepare a mixed solution having a non-volatile content (NV) of 80%. Subsequently, a curing accelerator 2 ethyl 4-methylimidazole previously dissolved in methyl cellosolve and dimethylformamide was added to prepare a mixed solution having a nonvolatile content (NV) of 55%. The amount of the curing agent at this time is such that the hydroxyl equivalent is 1.0 equivalent with respect to the epoxy group in the epoxy resin, and the amount of curing accelerator is 120 seconds at 170 ° C. gel time of the prepreg. In proportion. Thereafter, each mixed solution was used to impregnate a glass cloth WEA 7628 H258N (manufactured by Nittobo Co., Ltd.) as a base material and dried at 160 ° C. for 3 minutes to prepare a prepreg having a resin content of 40%.
Subsequently, 8 sheets of the obtained prepregs were superposed and cured under the conditions of a pressure of 3.9 MN / m 2 , a heating temperature of 170 ° C., and a heating time of 120 minutes to produce a laminate.
[0048]
About each obtained laminated board, Tg and adhesiveness were tested. The results are shown in Table 2. In addition, each test followed the following method.
[Tg (glass transition temperature)] Measured by DMA method. Temperature rising speed 3 ℃ / min
[Peel Strength] Conforms to JIS-K6481.
[Table 3]
Figure 0003975762
[0049]
【The invention's effect】
The hardened | cured material which consists of an epoxy resin composition of this invention is excellent in the adhesiveness to a metal or another inorganic material, and the adhesiveness of hardened | cured materials. In particular, it is possible to provide an epoxy resin composition having excellent adhesion with a lead frame in a semiconductor package and excellent adhesion with a substrate and a copper foil in a printed wiring board. Therefore, the phenol compound or epoxy resin of the present invention is extremely useful for semiconductor sealing materials, printed wiring board materials, resist inks, advanced composite materials, and the like.

Claims (10)

下記一般式(2)
Figure 0003975762
(式中、Arはベンゼン環又は芳香族縮合環を、Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1〜8の炭化水素基またはアリル基を、また、Yは下記一般式(1)
−O−R−CHOH ………(1)
(式中、Rは炭素数1〜6の直鎖アルキレン基を表わす。)
で表される構造を表わす。また、a、b、及びcは、下記の条件ア)、イ)、及びウ)
ア) 0<(a+b+c)≦2(n+2)
イ) n=(Ar中の芳香環の総数)−1
ウ) 0≦a≦4、0≦b≦4、0<c≦4
を満たす。)で表わされる構造を含有したフェノール化合物とエポキシ樹脂とを必須成分とするエポキシ樹脂組成物。
The following general formula (2)
Figure 0003975762
(In the formula, Ar represents a benzene ring or an aromatic condensed ring, R 2 independently represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 8 carbon atoms or an allyl group, and Y represents the following general formula ( 1)
—O—R 1 —CH 2 OH (1)
(In the formula, R 1 represents a linear alkylene group having 1 to 6 carbon atoms.)
Represents a structure represented by A, b, and c are the following conditions a), b), and c):
A) 0 <(a + b + c) ≦ 2 (n + 2)
B) n = (total number of aromatic rings in Ar) -1
C) 0 ≦ a ≦ 4, 0 ≦ b ≦ 4, 0 <c ≦ 4
Meet. An epoxy resin composition comprising a phenolic compound containing a structure represented by) and an epoxy resin as essential components.
一般式(1)で表される構造中の脂肪族性1級水酸基が、フェノール化合物中に0.1〜12.0重量%含有している請求項1記載のエポキシ樹脂組成物。  The epoxy resin composition according to claim 1, wherein the aliphatic primary hydroxyl group in the structure represented by the general formula (1) is contained in the phenol compound in an amount of 0.1 to 12.0% by weight. 一般式(1)で表わされる構造中の脂肪族性1級水酸基と、芳香族性水酸基との比率が[脂肪族性1級水酸基]/[芳香族性水酸基]=2/98〜50/50(モル比)である請求項1または2記載のエポキシ樹脂組成物。  The ratio between the aliphatic primary hydroxyl group and the aromatic hydroxyl group in the structure represented by the general formula (1) is [aliphatic primary hydroxyl group] / [aromatic hydroxyl group] = 2/98 to 50/50. The epoxy resin composition according to claim 1 or 2, which is (molar ratio). 一般式(1)で表わされる構造中の がメチレン基である請求項1〜3のいずれか一つに記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1 , wherein R 1 in the structure represented by the general formula (1) is a methylene group. 半導体封止材料用の組成物である請求項1〜4のいずれか一つに記載のエポキシ樹脂組成物。  It is a composition for semiconductor sealing materials, The epoxy resin composition as described in any one of Claims 1-4. 更に、無機充填材を必須成分とする請求項1〜5のいずれか一つに記載のエポキシ樹脂組成物。  Furthermore, the epoxy resin composition as described in any one of Claims 1-5 which uses an inorganic filler as an essential component. エポキシ樹脂組成物中の無機充填材の充填率が、エポキシ樹脂組成物当たり65重量%以上である請求項6記載のエポキシ樹脂組成物。  The epoxy resin composition according to claim 6, wherein a filling rate of the inorganic filler in the epoxy resin composition is 65% by weight or more per epoxy resin composition. Pd系リードフレームを搭載し、且つ請求項5〜7のいずれか1つに記載の組成物によって封止された半導体装置。  A semiconductor device mounted with a Pd-based lead frame and sealed with the composition according to claim 5. 回路基板材料用の組成物である請求項1〜4のいずれか1つに記載のエポキシ樹脂組成物。  It is a composition for circuit board materials, The epoxy resin composition as described in any one of Claims 1-4. 請求項1〜9のいずれか一つに記載のエポキシ樹脂組成物を硬化させてなる硬化物。  Hardened | cured material formed by hardening | curing the epoxy resin composition as described in any one of Claims 1-9.
JP2002019995A 2001-12-17 2002-01-29 Epoxy resin composition and cured product thereof Expired - Lifetime JP3975762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002019995A JP3975762B2 (en) 2001-12-17 2002-01-29 Epoxy resin composition and cured product thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001382409 2001-12-17
JP2001-382409 2001-12-17
JP2002019995A JP3975762B2 (en) 2001-12-17 2002-01-29 Epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2003246846A JP2003246846A (en) 2003-09-05
JP3975762B2 true JP3975762B2 (en) 2007-09-12

Family

ID=28676751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002019995A Expired - Lifetime JP3975762B2 (en) 2001-12-17 2002-01-29 Epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP3975762B2 (en)

Also Published As

Publication number Publication date
JP2003246846A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
EP1785441B1 (en) Epoxy resin composition, products of curing thereof, material for the encapsulation of semiconductors, novel phenol resin, novel epoxy resin, process for production of novel phenol resin and process for production of novel epoxy resin
EP1854819B1 (en) Epoxy resin composition, cured object obtained therefrom, semiconductor-encapsulating material, novel phenolic resin, and novel epoxy resin
KR101340283B1 (en) Phenol resin composition, curable resin composition, cured products tehreof, and printed wiring board
US20090069490A1 (en) Epoxy resin composition and cured article thereof, novel epoxy resin and production method thereof, and novel phenol resin
TWI472559B (en) Thermosetting resin composition ,thermosetting material thereof, phenolic resin,epoxy resin,and semiconductor sealing material
JP5136729B2 (en) Curable resin composition, cured product thereof, phenol resin, epoxy resin, and semiconductor sealing material
KR19980018778A (en) Modified epoxy resin, epoxy resin composition and cured product
JP5135702B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, and semiconductor device
JP5002897B2 (en) Polyhydric hydroxy compound, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2005015689A (en) Epoxy resin composition, semiconductor encapsulation material and semiconductor device
JP5689230B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device, and epoxy resin
JP2005097352A (en) Epoxy resin composition, semiconductor sealing material, and semiconductor device
JP2006097004A (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, new phenolic resin, new epoxy resin, method for producing the new phenolic resin, and method for producing the new epoxy resin
JP5246481B2 (en) Curable resin composition, cured product thereof, novel epoxy resin, and production method thereof
JP5954571B2 (en) Curable composition, cured product, and printed wiring board
JP5233858B2 (en) Epoxy resin composition, cured product thereof, and semiconductor device
JP5605629B2 (en) Curable resin composition, cured product thereof, phenol resin, epoxy resin, and semiconductor encapsulant
JP5708306B2 (en) Epoxy resin, curable resin composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP4474891B2 (en) Epoxy resin composition, cured product thereof and epoxy resin
JP3944765B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2012031281A (en) Curable resin composition, cured product thereof, phenol resin, epoxy resin and semiconductor sealing material
JP3894628B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP3975762B2 (en) Epoxy resin composition and cured product thereof
JP6198038B2 (en) Curable composition, cured product, and printed wiring board
JP3963106B2 (en) Epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3975762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term