JP3972715B2 - Method for producing sulfide derivatives - Google Patents

Method for producing sulfide derivatives Download PDF

Info

Publication number
JP3972715B2
JP3972715B2 JP2002107498A JP2002107498A JP3972715B2 JP 3972715 B2 JP3972715 B2 JP 3972715B2 JP 2002107498 A JP2002107498 A JP 2002107498A JP 2002107498 A JP2002107498 A JP 2002107498A JP 3972715 B2 JP3972715 B2 JP 3972715B2
Authority
JP
Japan
Prior art keywords
group
copper
reaction
mol
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002107498A
Other languages
Japanese (ja)
Other versions
JP2003300952A (en
Inventor
繁栄 西野
健二 弘津
修司 横山
浩史 佐々木
毅 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2002107498A priority Critical patent/JP3972715B2/en
Publication of JP2003300952A publication Critical patent/JP2003300952A/en
Application granted granted Critical
Publication of JP3972715B2 publication Critical patent/JP3972715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、医薬(消炎鎮痛剤等)や農薬(殺虫剤、除草剤等)等の合成中間体として有用なスルフィド誘導体の製法に関する。
【0002】
【従来の技術】
従来、フェニル酢酸誘導体とチオール化合物とを反応させてスルフィド誘導体を製造する方法としては、例えば、銅粉及び炭酸カリウムの存在下、2-(3-カルボキシメチル-4-ヨードフェニル)プロピオン酸とチオフェノールとをN,N-ジメチルホルムアミド中にて115℃で反応させ、収率49%で2-(3-カルボキシメチル-4-フェニルチオフェニル)プロピオン酸を得る方法が開示されている(特開平10-226683号公報)。しかしながら、この方法では、反応時間が長い上に、目的物の収率が低く、工業的な製法としては満足出来るものではなかった。
【0003】
【発明が解決しようとする課題】
本発明の課題は、即ち、上記問題点を解決し、フェニル酢酸誘導体から、簡便な方法によって、高収率でスルフィド誘導体を製造する、工業的に好適なスルフィド誘導体の製法を提供するものである。
【0004】
【課題を解決するための手段】
本発明の課題は、銅(I)塩及び塩基の存在下、一般式(1)
【0005】
【化5】

Figure 0003972715
【0006】
(式中、Rは、水素原子又は一般式(2)
【0007】
【化6】
Figure 0003972715
【0008】
(式中、R及びRは、水素原子又は炭化水素基を示す。)
で示されるカルボキシアルキル基を示し、Xは、ハロゲン原子を示す。)
で示されるフェニル酢酸誘導体と一般式(3)
【0009】
【化7】
Figure 0003972715
【0010】
(式中、Rは、炭化水素基を示す。)
で示されるチオール化合物とを、130〜250℃にて自己圧下で反応させることを特徴とする、一般式(4)
【0011】
【化8】
Figure 0003972715
【0012】
(式中、R及びRは、前記と同義である。)
で示されるスルフィド誘導体の製法によって解決される。
【0013】
【発明の実施の形態】
本発明の反応において使用するフェニル酢酸誘導体は、前記の一般式(1)で示される。その一般式(1)において、Rは、水素原子又は一般式(2)で示されるカルボキシアルキル基である。
【0014】
前記一般式(2)において、R及びRは、水素原子又は炭化水素基を示すが、炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基等のシクロアルキル基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基が挙げられる。なお、これらの基は、各種異性体を含む。
【0015】
又、Xは、ハロゲン原子であり、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子であるが、好ましくは塩素原子、臭素原子である。
【0016】
本発明の反応において使用するチオール化合物は、前記の一般式(3)で示される。その一般式(3)において、Rは、炭化水素基であり、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基等のシクロアルキル基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基が挙げられる。なお、これらの基は、各種異性体を含む。
【0017】
前記チオール化合物の使用量は、フェニル酢酸誘導体1molに対して、好ましくは1.0〜5.0mol、更に好ましくは1.0〜3.0molである。
【0018】
本発明の反応において使用する銅(I)塩としては、例えば、フッ化銅(I)、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)等のハロゲン化銅(I);酢酸銅(I)、硫酸銅(I)、硝酸銅(I)等の銅酸塩(I);酸化銅(I);硫化銅(I)が挙げられるが、好ましくはハロゲン化銅(I)、酸化銅(I)、硫化銅(I)、更に好ましくはハロゲン化銅(I)、硫化銅(I)が使用される。なお、これらの銅(I)塩は、単独又は二種以上を混合して使用しても良い。
【0019】
前記銅(I)塩の使用量は、フェニル酢酸誘導体1molに対して、好ましくは0.001〜1mol、更に好ましくは0.01〜0.8molである。
【0020】
本発明の反応において使用する塩基としては、例えば、アンモニア(水溶液でも良い);水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物が挙げられるが、好ましくはアルカリ金属水酸化物、更に好ましくは水酸化ナトリウムが使用される。なお、これらの塩基は、単独又は二種以上を混合して使用しても良い。
【0021】
前記塩基の使用量は、フェニル酢酸誘導体1molに対して、好ましくは1.0〜10mol、更に好ましくは1.1〜5.0molである。
【0022】
本発明の反応においては、反応液の均一性や攪拌性を更に高めるために、溶媒を加えても良く、使用する溶媒としては、反応を阻害しないものならば特に限定されないが、水;メタノール、エタノール、イソプロピルアルコール、t-ブチルアルコール等のアルコール類;ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類が挙げられるが、好ましくは水、アルコール類、更に好ましくは水が使用される。なお、これらの溶媒は、単独又は二種以上を混合して使用しても良い。
【0023】
前記溶媒の使用量は、反応液の均一性や攪拌性により適宜調節するが、フェニル酢酸誘導体1gに対して、好ましくは1.0〜50g、更に好ましくは1.1〜20gである。
【0024】
本発明の反応は、例えば、不活性ガス雰囲気にて、フェニル酢酸誘導体(アルカリ金属塩又はその水溶液として使用しても良い)、チオール化合物、銅(I)塩、塩基及び溶媒を混合し、130〜250℃にて自己圧力下で攪拌しながら反応させる等の方法によって行われる。
【0025】
本発明の反応は、密閉された反応器内で行うのが好ましく、使用される反応器の具体例としては、例えば、オートクレーブ等が挙げられる。
【0026】
なお、本発明における自己圧力とは、反応中に反応混合物又はその一部が気化することによって発現する反応器内の圧力であり、通常、常圧よりも高い圧力である。
【0027】
なお、最終生成物であるスルフィド誘導体は、反応終了後、例えば、濾過、抽出、濃縮、蒸留、再結晶、晶析、カラムクロマトグラフィー等の一般的な方法によって単離・精製される。
【0028】
【実施例】
次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
なお、実施例における定量は、以下の分析条件により高速液体クロマトグラフィーを用いて絶対検量線法で行った。
【0029】
高速液体クロマトグラフィーの分析条件:
カラム ;COSMOSIL 5C18-AR(ナカライテスク社製)
4.6mmφ×250mm
カラム温度;40℃
溶出溶媒 ;アセトニトリル/水(=1/2(容量比))
(前記の水とは、リン酸水素二ナトリウム水溶液1.4g/l及びリン酸でpH2.5に調整したものである。)
流速 ;1.0ml/min.
検出波長 ;250nm
保持時間 ;2-(3-カルボキシメチル-4-フェニルチオフェニル)プロピオン酸
20min.
2-フェニルチオフェニル酢酸 30min.
【0030】
実施例1(2-(3-カルボキシメチル-4-フェニルチオフェニル)プロピオン酸の合成)
攪拌装置、温度計及び圧力ゲージを備えた内容積2000mlのオートクレーブに、純度97.5質量%の2-(4-ブロモ-3-カルボキシメチルフェニル)プロピオン酸239g(811mmol)、95質量%チオフェノール110g(950mmol)、95質量%臭化銅(I)7.3g(48mmol)、6mol/l水酸化ナトリウム水溶液500ml(3.0mol)及び水500mlを加え、窒素雰囲気下、180℃にて自己圧力下(1.2MPa(ゲージ圧))で7時間反応させた。反応終了後、室温まで冷却し、反応液を高速液体クロマトグラフィーにより分析したところ、2-(3-カルボキシメチル-4-フェニルチオフェニル)プロピオン酸が244g生成していた(反応収率:95%)。次いで、反応液に6mol/l硫酸を加えてpH6.0とした後、水層を酢酸エチルで洗浄した。更に、水層に6mol/l硫酸を加えてpH4.0とした後、酢酸エチルで抽出し、有機層を分離して無水硫酸マグネシウムで乾燥させた。濾過後、濾液を減圧下で濃縮し、濃縮物をシリカゲルカラムクロマトグラフィー(充填剤;ワコーゲルC-200(和光純薬社製)、展開溶媒;酢酸エチル)により精製して、無色針状結晶として2-(3-カルボキシメチル-4-フェニルチオフェニル)プロピオン酸226gを得た(単離収率:88%)。
なお、2-(3-カルボキシメチル-4-フェニルチオフェニル)プロピオン酸の物性値は以下の通りであった。
【0031】
1H-NMR(CDCl3,δ(ppm));1.50(3H,d,J=7.3Hz)、3.71(1H,q,J=7.3Hz)、3.81(1H,d,J=16.1Hz)、3.95(1H,d,J=16.1Hz)、7.1〜7.4(8H,m)、8.0〜11.0(2H,brs)
【0032】
実施例2(2-フェニルチオフェニル酢酸の合成)
攪拌装置、温度計及び圧力ゲージを備えた内容積2000mlのオートクレーブに、2-ブロモフェニル酢酸215g(1.0mol)、95質量%チオフェノール139g(1.2mol)、95質量%臭化銅(I)9.1g(60mmol)、6mol/l水酸化ナトリウム水溶液330ml(2.0mol)及び水600mlを加え、窒素雰囲気下、180℃にて自己圧力下(1.4MPa(ゲージ圧))で10時間反応させた。反応終了後、室温まで冷却し、反応液を高速液体クロマトグラフィーにより分析したところ、2-フェニルチオフェニル酢酸が232g生成していた(反応収率:95%)。次いで、反応液に6mol/l硫酸を加えてpH6.0とした後、水層を酢酸エチルで洗浄した。更に、水層に6mol/l硫酸を加えてpH4.0とした後、酢酸エチルで抽出し、有機層を分離して無水硫酸マグネシウムで乾燥させた。濾過後、濾液を減圧下で濃縮し、濃縮物をシリカゲルカラムクロマトグラフィー(充填剤;ワコーゲルC-200(和光純薬社製)、展開溶媒;トルエン/酢酸エチル=1/1(容量比))により精製して、無色針状結晶として2-フェニルチオフェニル酢酸220gを得た(単離収率:90%)。
なお、2-フェニルチオフェニル酢酸の物性値は以下の通りであった。
【0033】
1H-NMR(CD3OD,δ(ppm));3.79(2H,s)、4.7〜5.3(1H,brs)、7.0〜7.6(9H,m)
【0034】
比較例1(2-フェニルチオフェニル酢酸の合成)
攪拌装置、温度計及び還流冷却器を備えた内容積2000mlのフラスコに、2-ブロモフェニル酢酸215g(1.0mol)、95質量%チオフェノール139g(1.2mol)、95質量%臭化銅(I)9.1g(60mmol)、6mol/l水酸化ナトリウム水溶液330ml(2.0mol)及び水600mlを加え、窒素雰囲気下、100℃にて常圧下で24時間反応させた。反応終了後、室温まで冷却し、反応液を高速液体クロマトグラフィーにより分析したところ、2-フェニルチオフェニル酢酸が4.6g生成していた(反応収率:2%)。
【0035】
【発明の効果】
本発明により、フェニル酢酸誘導体から、簡便な方法によって、高収率でスルフィド誘導体を製造する、工業的に好適なスルフィド誘導体の製法を提供することが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a sulfide derivative useful as a synthetic intermediate for drugs (anti-inflammatory analgesics, etc.) and agricultural chemicals (insecticides, herbicides, etc.).
[0002]
[Prior art]
Conventionally, a method for producing a sulfide derivative by reacting a phenylacetic acid derivative with a thiol compound includes, for example, 2- (3-carboxymethyl-4-iodophenyl) propionic acid and thiol in the presence of copper powder and potassium carbonate. A method is disclosed in which phenol is reacted in N, N-dimethylformamide at 115 ° C. to obtain 2- (3-carboxymethyl-4-phenylthiophenyl) propionic acid in a yield of 49% (Japanese Patent Laid-Open No. Hei. No. 10-226683). However, this method is not satisfactory as an industrial production method because the reaction time is long and the yield of the target product is low.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an industrially suitable method for producing a sulfide derivative, which solves the above-described problems and produces a sulfide derivative in high yield from a phenylacetic acid derivative by a simple method. .
[0004]
[Means for Solving the Problems]
The subject of the present invention is a general formula (1) in the presence of a copper (I) salt and a base.
[0005]
[Chemical formula 5]
Figure 0003972715
[0006]
(Wherein R 1 represents a hydrogen atom or a general formula (2)
[0007]
[Chemical 6]
Figure 0003972715
[0008]
(In the formula, R 2 and R 3 represent a hydrogen atom or a hydrocarbon group.)
And X represents a halogen atom. )
And a phenylacetic acid derivative represented by the general formula (3)
[0009]
[Chemical 7]
Figure 0003972715
[0010]
(Wherein, R 4 represents a hydrocarbon group.)
And a thiol compound represented by the general formula (4):
[0011]
[Chemical 8]
Figure 0003972715
[0012]
(In the formula, R 1 and R 4 are as defined above.)
This is solved by a method for producing a sulfide derivative represented by the following formula.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The phenylacetic acid derivative used in the reaction of the present invention is represented by the general formula (1). In the general formula (1), R 1 is a hydrogen atom or a carboxyalkyl group represented by the general formula (2).
[0014]
In the general formula (2), R 2 and R 3 represent a hydrogen atom or a hydrocarbon group. Examples of the hydrocarbon group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Alkyl groups such as heptyl group, octyl group, nonyl group and decyl group; cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group and cyclodecyl group; benzyl Group, aralkyl group such as phenylethyl group, phenylpropyl group and the like. These groups include various isomers.
[0015]
X is a halogen atom, for example, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom or a bromine atom.
[0016]
The thiol compound used in the reaction of the present invention is represented by the general formula (3). In the general formula (3), R 4 is a hydrocarbon group, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, etc. An cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a cyclodecyl group; an aralkyl group such as a benzyl group, a phenylethyl group, and a phenylpropyl group An aryl group such as a phenyl group, a tolyl group, a xylyl group, or a naphthyl group; These groups include various isomers.
[0017]
The amount of the thiol compound to be used is preferably 1.0 to 5.0 mol, more preferably 1.0 to 3.0 mol, with respect to 1 mol of the phenylacetic acid derivative.
[0018]
Examples of the copper (I) salt used in the reaction of the present invention include copper halides (I) such as copper fluoride (I), copper chloride (I), copper bromide (I) and copper iodide (I). ); Cuprates (I) such as copper acetate (I), copper sulfate (I), copper nitrate (I); copper oxide (I); copper sulfide (I), but preferably copper halide ( I), copper oxide (I), copper sulfide (I), more preferably copper halide (I), copper sulfide (I) are used. In addition, you may use these copper (I) salts individually or in mixture of 2 or more types.
[0019]
The amount of the copper (I) salt to be used is preferably 0.001 to 1 mol, more preferably 0.01 to 0.8 mol, with respect to 1 mol of the phenylacetic acid derivative.
[0020]
Examples of the base used in the reaction of the present invention include ammonia (may be an aqueous solution); alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide. Among them, an alkali metal hydroxide, preferably sodium hydroxide is preferably used. In addition, you may use these bases individually or in mixture of 2 or more types.
[0021]
The amount of the base used is preferably 1.0 to 10 mol, more preferably 1.1 to 5.0 mol, with respect to 1 mol of the phenylacetic acid derivative.
[0022]
In the reaction of the present invention, a solvent may be added to further improve the uniformity and stirring properties of the reaction solution. The solvent used is not particularly limited as long as it does not inhibit the reaction, but water; methanol, Examples include alcohols such as ethanol, isopropyl alcohol, and t-butyl alcohol; ethers such as diisopropyl ether, tetrahydrofuran, and 1,4-dioxane. Water, alcohols, and more preferably water are used. In addition, you may use these solvents individually or in mixture of 2 or more types.
[0023]
The amount of the solvent used is appropriately adjusted depending on the uniformity and stirrability of the reaction solution.
[0024]
In the reaction of the present invention, for example, a phenylacetic acid derivative (which may be used as an alkali metal salt or an aqueous solution thereof), a thiol compound, a copper (I) salt, a base, and a solvent are mixed in an inert gas atmosphere. It is carried out by a method of reacting with stirring under a self-pressure at ˜250 ° C.
[0025]
The reaction of the present invention is preferably carried out in a closed reactor, and specific examples of the reactor used include, for example, an autoclave.
[0026]
In addition, the self-pressure in the present invention is a pressure in the reactor that is expressed by vaporization of the reaction mixture or a part thereof during the reaction, and is usually a pressure higher than normal pressure.
[0027]
The sulfide derivative as the final product is isolated and purified by a general method such as filtration, extraction, concentration, distillation, recrystallization, crystallization, column chromatography and the like after the reaction is completed.
[0028]
【Example】
Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto.
The quantification in the examples was performed by an absolute calibration curve method using high performance liquid chromatography under the following analysis conditions.
[0029]
Analysis conditions for high performance liquid chromatography:
Column: COSMOSIL 5C 18- AR (manufactured by Nacalai Tesque)
4.6mmφ × 250mm
Column temperature: 40 ° C
Elution solvent: acetonitrile / water (= 1/2 (volume ratio))
(The water is adjusted to pH 2.5 with disodium hydrogenphosphate aqueous solution 1.4 g / l and phosphoric acid.)
Flow rate: 1.0ml / min.
Detection wavelength: 250nm
Retention time: 2- (3-carboxymethyl-4-phenylthiophenyl) propionic acid
20min.
2-Phenylthiophenylacetic acid 30min.
[0030]
Example 1 (Synthesis of 2- (3-carboxymethyl-4-phenylthiophenyl) propionic acid)
In an autoclave having an internal volume of 2000 ml equipped with a stirrer, a thermometer and a pressure gauge, 239 g (811 mmol) of 2- (4-bromo-3-carboxymethylphenyl) propionic acid having a purity of 97.5% by mass, 110 g of 95% by mass of thiophenol ( 950 mmol), 95 mass% copper bromide (I) 7.3 g (48 mmol), 6 mol / l aqueous sodium hydroxide solution 500 ml (3.0 mol) and water 500 ml were added, under a nitrogen atmosphere at 180 ° C. under self pressure (1.2 MPa) (Gauge pressure)) for 7 hours. After completion of the reaction, the reaction solution was cooled to room temperature and analyzed by high performance liquid chromatography. As a result, 244 g of 2- (3-carboxymethyl-4-phenylthiophenyl) propionic acid was formed (reaction yield: 95%). ). Subsequently, 6 mol / l sulfuric acid was added to the reaction solution to adjust the pH to 6.0, and then the aqueous layer was washed with ethyl acetate. Further, 6 mol / l sulfuric acid was added to the aqueous layer to adjust the pH to 4.0, followed by extraction with ethyl acetate, and the organic layer was separated and dried over anhydrous magnesium sulfate. After filtration, the filtrate is concentrated under reduced pressure, and the concentrate is purified by silica gel column chromatography (filler: Wako Gel C-200 (manufactured by Wako Pure Chemical Industries, Ltd.), developing solvent: ethyl acetate) to give colorless needle crystals. 226 g of 2- (3-carboxymethyl-4-phenylthiophenyl) propionic acid was obtained (isolation yield: 88%).
The physical properties of 2- (3-carboxymethyl-4-phenylthiophenyl) propionic acid were as follows.
[0031]
1 H-NMR (CDCl 3 , δ (ppm)); 1.50 (3H, d, J = 7.3 Hz), 3.71 (1H, q, J = 7.3 Hz), 3.81 (1H, d, J = 16.1 Hz), 3.95 (1H, d, J = 16.1Hz), 7.1-7.4 (8H, m), 8.0-11.0 (2H, brs)
[0032]
Example 2 (Synthesis of 2-phenylthiophenylacetic acid)
In an autoclave with an internal volume of 2000 ml equipped with a stirrer, a thermometer and a pressure gauge, 215 g (1.0 mol) of 2-bromophenylacetic acid, 139 g (1.2 mol) of 95% by mass thiophenol, 95% by mass copper bromide (I) 9.1 g (60 mmol), 6 mol / l sodium hydroxide aqueous solution 330 ml (2.0 mol) and water 600 ml were added, and the mixture was reacted at 180 ° C. under a self-pressure (1.4 MPa (gauge pressure)) for 10 hours in a nitrogen atmosphere. After completion of the reaction, the reaction solution was cooled to room temperature and analyzed by high performance liquid chromatography. As a result, 232 g of 2-phenylthiophenylacetic acid was formed (reaction yield: 95%). Subsequently, 6 mol / l sulfuric acid was added to the reaction solution to adjust the pH to 6.0, and then the aqueous layer was washed with ethyl acetate. Further, 6 mol / l sulfuric acid was added to the aqueous layer to adjust the pH to 4.0, followed by extraction with ethyl acetate, and the organic layer was separated and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure, and the concentrate was subjected to silica gel column chromatography (filler: Wako Gel C-200 (manufactured by Wako Pure Chemical Industries, Ltd.), developing solvent: toluene / ethyl acetate = 1/1 (volume ratio)). To give 220 g of 2-phenylthiophenylacetic acid as colorless needle crystals (isolation yield: 90%).
The physical properties of 2-phenylthiophenylacetic acid were as follows.
[0033]
1 H-NMR (CD 3 OD, δ (ppm)); 3.79 (2H, s), 4.7 to 5.3 (1 H, brs), 7.0 to 7.6 (9 H, m)
[0034]
Comparative Example 1 (Synthesis of 2-phenylthiophenylacetic acid)
In a flask with an internal volume of 2000 ml equipped with a stirrer, a thermometer and a reflux condenser, 215 g (1.0 mol) of 2-bromophenylacetic acid, 139 g (1.2 mol) of 95% by mass thiophenol, 95% by mass copper (I) bromide 9.1 g (60 mmol), 6 mol / l sodium hydroxide aqueous solution 330 ml (2.0 mol) and water 600 ml were added, and the mixture was reacted at 100 ° C. under normal pressure for 24 hours under a nitrogen atmosphere. After completion of the reaction, the reaction solution was cooled to room temperature and analyzed by high performance liquid chromatography. As a result, 4.6 g of 2-phenylthiophenylacetic acid was formed (reaction yield: 2%).
[0035]
【The invention's effect】
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an industrially suitable method for producing a sulfide derivative that produces a sulfide derivative in a high yield from a phenylacetic acid derivative by a simple method.

Claims (1)

銅(I)塩及び塩基の存在下、一般式(1)
Figure 0003972715
(式中、Rは、水素原子又は一般式(2)
Figure 0003972715
(式中、R及びRは、水素原子又は炭化水素基を示す。)
で示されるカルボキシアルキル基を示し、Xは、ハロゲン原子を示す。)
で示されるフェニル酢酸誘導体と一般式(3)
Figure 0003972715
(式中、Rは、炭化水素基を示す。)
で示されるチオール化合物とを、130〜250℃にて、反応中に反応混合物又はその一部が気化することによって発現する反応器内の圧力下で反応させることを特徴とする、一般式(4)
Figure 0003972715
(式中、R及びRは、前記と同義である。)
で示されるスルフィド誘導体の製法。
In the presence of a copper (I) salt and a base, the general formula (1)
Figure 0003972715
(Wherein R 1 represents a hydrogen atom or a general formula (2)
Figure 0003972715
(In the formula, R 2 and R 3 represent a hydrogen atom or a hydrocarbon group.)
And X represents a halogen atom. )
And a phenylacetic acid derivative represented by the general formula (3)
Figure 0003972715
(Wherein, R 4 represents a hydrocarbon group.)
And a thiol compound represented by the general formula (4) , wherein the reaction mixture is reacted at 130 to 250 ° C. under a pressure in a reactor expressed by vaporization of the reaction mixture or a part thereof during the reaction. )
Figure 0003972715
(In the formula, R 1 and R 4 are as defined above.)
The manufacturing method of the sulfide derivative shown by.
JP2002107498A 2002-04-10 2002-04-10 Method for producing sulfide derivatives Expired - Fee Related JP3972715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002107498A JP3972715B2 (en) 2002-04-10 2002-04-10 Method for producing sulfide derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002107498A JP3972715B2 (en) 2002-04-10 2002-04-10 Method for producing sulfide derivatives

Publications (2)

Publication Number Publication Date
JP2003300952A JP2003300952A (en) 2003-10-21
JP3972715B2 true JP3972715B2 (en) 2007-09-05

Family

ID=29391506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002107498A Expired - Fee Related JP3972715B2 (en) 2002-04-10 2002-04-10 Method for producing sulfide derivatives

Country Status (1)

Country Link
JP (1) JP3972715B2 (en)

Also Published As

Publication number Publication date
JP2003300952A (en) 2003-10-21

Similar Documents

Publication Publication Date Title
JPWO2013047738A1 (en) Method for producing glufosinate P free acid
JP4528123B2 (en) Process for the production of nitrooxy derivatives of naproxen
US6197998B1 (en) Process for producing N-glycyltyrosine and its crystal structure
WO2002014325A1 (en) Crystals of penicillin and process for the production thereof
JP3972715B2 (en) Method for producing sulfide derivatives
ES2716748T3 (en) Procedures for the preparation of compounds, such as 3-arylbutanales, useful in the synthesis of medetomidine
US7015353B2 (en) Process for the production of 9-(Z)-retinoic acid
JP4879907B2 (en) Process for producing phenyl 2-pyrimidinyl ketones and novel intermediates thereof
JP3677786B2 (en) Method for producing aryloxypropionic acid
TWI823808B (en) Preparation method of glufosinate-ammonium
JP4451537B2 (en) Process for producing substituted alicyclic-1,3-diones
JP5205971B2 (en) Method for producing tetrahydropyran compound
JP3855686B2 (en) 3,3-dialkoxy-2-hydroxyimino derivative and process for producing the same
JP4109446B2 (en) Process for producing pure trans-2-[(α-methylbenzyl) amino] cyclopentanol as a diastereoisomer
JPH05230026A (en) Production of 2-chloro-5-methylpyridine derivative
JPH04164080A (en) Production of furanone derivative
JP2000143590A (en) Production of 3-oxocarboxylic ester
JPH07252205A (en) Method for producing oxyamine compounds
JP4058960B2 (en) Indazole derivatives and process for producing the same
JP2708617B2 (en) Method for producing 4,4-dialkyl-substituted thiazolidinethione
JP2003113153A (en) METHOD FOR PRODUCING beta-OXONITRILE DERIVATIVE OR ALKALI METAL SALT THEREOF
JP3581721B2 (en) Method for producing N-substituted-3-iodopropioamide and its synthetic intermediate
JP2002249477A (en) METHOD OF PRODUCING beta-KETONITRILES
JP2000212125A (en) Production of fluorine-containing carboxylic acid derivative
JPH1067766A (en) Production of tetrahydrofuran derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees