JP3971618B2 - Quenching quality control method - Google Patents

Quenching quality control method Download PDF

Info

Publication number
JP3971618B2
JP3971618B2 JP2002034924A JP2002034924A JP3971618B2 JP 3971618 B2 JP3971618 B2 JP 3971618B2 JP 2002034924 A JP2002034924 A JP 2002034924A JP 2002034924 A JP2002034924 A JP 2002034924A JP 3971618 B2 JP3971618 B2 JP 3971618B2
Authority
JP
Japan
Prior art keywords
quenching
output waveform
frequency power
period
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002034924A
Other languages
Japanese (ja)
Other versions
JP2003231923A (en
Inventor
秀明 片沼
木藤  清明
洋平 粟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denki Kogyo Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP2002034924A priority Critical patent/JP3971618B2/en
Publication of JP2003231923A publication Critical patent/JP2003231923A/en
Application granted granted Critical
Publication of JP3971618B2 publication Critical patent/JP3971618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Control Of Heat Treatment Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波誘導加熱コイルを用いて、低歪みを目的として1sec以下の短時間で高周波誘導加熱を行なって、複数の同じ種類の焼入対象物の表面を順次に焼入する際に、ワークを切断せずに焼入品質の良否判別(すなわち、焼入品が良品であるか不良品であるかの判別)をして焼入品の品質管理をするための焼入品質管理方法に関するものである。
【0002】
【従来技術】
高周波誘導加熱コイルを用いて焼入対象物の表面を高周波誘導加熱して急冷することにより表面焼入処理をするにあたっては、通常、複数の同じ種類の被加熱体(例えば、自動車のトランスミッション部品等)を連続して順次に焼入処理するようにしている。そして、従来では、一連の焼入処理の前に、高周波誘導加熱コイルの電流,電圧,電力,及び周波数、並びに、加熱時間,冷却水量,高周波誘導加熱コイルから焼入対象物の表面までの距離(すなわち、ギャップ)等の各種の焼入条件を、経験上から得られているような最適条件に予め設定するようにしているのが実状である。
【0003】
【発明が解決しようとする課題】
しかし、その焼入条件の設定後における一連の焼入においては、焼入対象が同じ種類のものであっても、個々の焼入対象物の寸法のバラツキ等により焼入深さ等が一定にならないという問題点がある。
【0004】
このような問題点を解決するための方法として、特開平10-8130号及び特開2000−239735号公報記載の焼入深さ管理方法が提案されている。この焼入深さ管理方法にあっては、予め設定した電流・電圧にて調査のための高周波焼入(調査焼入)を行ない、この調査焼入の際の高周波誘導加熱時に得られたコイル電圧若しくは電力の経時的な変化パターンと焼入深さとの関係から、焼入深さを規格範囲内に管理するのに必要な電力若しくはコイル電圧の変化パターンの許容範囲を求め、高周波誘導加熱を行なう毎に焼入深さが規格範囲内に管理されているかどうかを判定すると共に、許容範囲から外れる手前の時点で電力若しくはコイル電圧の変化パターンを許容範囲内に戻すべく電力若しくはコイル電圧を制御するような手法を採用している。なお、この場合、電力若しくはコイル電圧の出力波形の立ち上がり期間並びに立ち下がり期間の両期間においては、許容範囲を設定しないようにしている。
【0005】
しかしながら、このような焼入深さ管理方法では、電力若しくはコイル電圧の上限値と下限値との間の範囲(監視幅領域)内でしか焼入処理後の焼入深さを判定していないので、特に、低歪みを目的とした加熱時間1sec以下というような焼入では、次のような不具合がある。すなわち、加熱時間が1sec以下であるような焼入処理では、高周波電圧の立ち上がり期間の長短や加熱時間の変動が焼入後の焼入品質に大きく影響し、上述の如き方法では所定の焼入深さ及び焼入硬さ等を規格の範囲内に正確に設定するのが困難である。
【0006】
本発明は、上述の如き実状に鑑みてなされたものであって、その目的は、低歪みを目的とした加熱時間1sec以下というような焼入れを行なうに際し、焼入処理後における焼入品が良品であるか不良品であるかの判定、すなわち、焼入品質の良否判定を厳格(正確)に行なって焼入品質の管理を適切に行なうことができる焼入品質管理方法を提供することにある。
【0007】
【課題を解決するための手段】
上述の目的を達成するために、本発明では、高周波誘導加熱コイルを用いて、低歪みを目的として1sec以下の短時間で高周波誘導加熱を行なって、複数の同じ種類の焼入対象物の表面を順次に焼入する際に、前記高周波誘導加熱コイルに電力を供給する高周波電源の出力電圧,出力電流又は出力電力及び加熱時間と焼入品質との関係を予め調査するための調査焼入を行ない、この調査焼入によって得られる前記高周波電源の出力波形の経時的な変化パターンを基準として、前記焼入対象物の焼入品質を規格範囲内にするのに必要な前記高周波電源の出力波形の変化パターンの許容範囲を、短時間加熱の場合に焼入品質に大きな影響を及ぼす前記高周波電源の出力波形の立ち上がり期間、並びに、この立ち上がり期間経過後の飽和期間を含む加熱期間に亘って設定し、前記調査焼入後の本焼入において高周波誘導加熱する毎に前記高周波電源の出力波形の変化パターンが前記許容範囲内に管理されているかどうかの判断に基づいて前記焼入対象物の焼入品質を管理するようにしている。
また、本発明では、焼入品質が、焼入深さ,表面硬さ,又は焼入部の歪み量であるようにしている。
また、本発明では、前記高周波電源の出力波形が、電圧値,電流値,又は電力値の出力波形であるようにしている。
また、本発明では、前記立ち上がり期間を相対的に短く設定することにより、前記加熱時間を短期間にするようにしている。
また、本発明では、前記高周波電源の出力波形の変化パターンの許容範囲を、前記高周波電源の出力波形の立ち下がり期間をも含む全加熱期間に亘って設定している。
【0008】
【発明の実施の形態】
以下、本発明の一実施形態について図1〜4を参照して説明する。
【0009】
図1は、自動車のトランスミッションミッション部品の小孔部(図示せず)を高周波誘導加熱し、その小孔の内径部(内周面)を高周波焼入(表面焼入)するために使用される高周波誘導加熱コイル1を示すものである。この高周波誘導加熱コイル1は、図1に示すように、高周波電源11(図2参照)から高周波電流を伝達する一対のリード部2a,2bと、これらのリード部2a,2b間に介在された絶縁板3と、前記一対のリード部2a,2b間に接続された断面ほぼ円筒形状のコイル頭部(焼入対象物の近傍位置に対応配置されるコイル部分)4とから構成されている。なお、コイル頭部4の外形寸法(外径)は、焼入処理すべきトランスミッション部品の小孔に内径寸法よりも僅かに小さく設定されており、従って前記コイル頭部4がトランスミッション部品の小孔内に僅かな隙間をもって挿入配置されるようになっている。さらに、高周波発振の結合効率を良くするために、磁性材料から成るダストコア5がコイル頭部4の内径中空部内に挿入配置されている。また、上述の一対のリード部2a,2bのうちの一方のリード部2aには、冷却水導入用パイプ6が取付けられると共に、その他方のリード部2bには冷却水導出用パイプ7が取付けられており、冷却水導入用パイプ6から一対のリード部2a,2bの内部の中空部を介して冷却水導出用パイプ7に流される冷却水によって高周波誘導加熱コイル1が冷却されるように構成されている。
【0010】
図2は、上述の高周波誘導加熱コイル1を用いてトランスミッション部品の小孔の内径部を高周波焼入するための高周波焼入装置10の構成を示すものであって、この装置10は、所定の電源電圧に基づいて高周波電圧を発生する発振器から成る高周波電源11と、この高周波電源11から出力される高周波電圧を低電圧に変換して大電流を得る出力トランス12と、この出力トランス12に接続された既述の高周波誘導加熱コイル1(図1参照)と、高周波電源11の出力側に接続された出力波形検出モニタ13と、この出力波形検出モニタ13にて検出された出力波形を画面表示する陰極線管等の表示装置14と、出力波形検出モニタ13にて検出された出力波形S(図4(b)参照)に基づいて高周波電源11の出力電圧,出力電流若しくは出力電力を制御する制御回路15とをそれぞれ具備している。
【0011】
上述の如き高周波誘導加熱コイル1を有する高周波焼入装置10にてトランスミッション部品の小孔の内径部を高周波焼入する際の操作手順、並びに、高周波焼入に際して焼入品質を管理する方法について述べると、次の通りである。まず、焼入対象物(被焼入体)であるトランスミッション部品を冷却液(浸漬液)中に浸漬させた状態で保持し、トランスミッション部品の小孔内に高周波誘導加熱コイル1のコイル頭部4を僅かな隙間をもった状態で挿入配置する。そして、高周波電源11から出力トランス12を介して高周波誘導加熱コイル1に高周波電流を供給して前記小孔の内径部を高周波誘導加熱すると同時に、前記冷却液による焼入冷却を行なう。これにより、前記小孔の内径部(焼入予定部)に焼入硬化層が形成され、焼入処理がなされる。なお、この際の高周波電流は、周波数1MHz〜4MHzの範囲で発振する発振器を高周波電源11として使用し、高周波電源11の出力電圧の立ち上がり期間を35msecとすることによって0.2sec程度での高周波誘導加熱が可能である。
【0012】
このような焼入処理工程においては、出力波形検出モニタ13により高周波電源11の出力電圧,出力電流、又は出力電力が検出され、トランスミッション部品の小孔の内径部を高周波誘導加熱するときの高周波電圧,高周波電流,又は高周波電力が表示装置14に表示される。そして、出力波形検出モニタ13により検出された高周波電源11の出力電圧,出力電流,又は出力電力の経時的な出力波形が、予め設置してある許容範囲内にあるか否かについて、制御回路15において判定される。かくして、前記出力波形が前記許容範囲内にある場合には、焼入処理が完了されたトランスミッション部品の焼入品質は規格範囲内のものでありトランスミッション部品は良品であると判定される。
【0013】
一方、前記出力波形が前記許容範囲から外れている場合には、焼入処理が完了されたトランスミッション部品の焼入品質は規格範囲外のものでありトランスミッション部品は不良品であると判定される。この場合には、出力波形検出モニタ13から所定の制御信号が制御回路に送られ、これに基づいて、高周波電源11の出力波形が前記許容範囲内に入るように高周波電源11の動作条件が変更される。すなわち、次に焼入処理すべきトランスミッション部品の焼入品質が規格範囲内になるように、高周波電源11の作動条件が適宜に変更され、その結果、高周波電源11の出力波形ひいては高周波誘導加熱条件が変更される。
【0014】
ここで、高周波電源11の出力波形及びその出力波形の許容範囲の設定方法について具体的に説明すると、以下の通りである。まず、高周波電源11の出力波形に関しては、本実施形態の場合には、その出力波形の立ち上がり期間を相対的に短く設定するようにしている。図3は高周波電源11の出力波形Sを模式的に示したものであり、図3(a)は立ち上がり期間が長い場合を示し、図3(b)は立ち上がり期間を短くした場合を示している。図3(a)のような出力波形の場合には、立ち上がり期間t1 が長いため、電力が有効に投与されない。従って、この条件の下で所定の焼入深さと表面硬さを確保するためには加熱時間を相当に長くしなければらないが、それでは長時間に亘る加熱により焼入歪みが大きく生じてしまうこととなる。そこで、本実施形態においては、図3(b)に示すように立ち上がり期間t2 を例えば35msec程度の比較的短い時間に設定するようにしている。なお、この加熱時間は、焼入対象物の寸法や材質,投入電力や電源周波数,焼入深さなどに応じて適宜に設定するのが望ましい。
【0015】
また、既述の出力波形の許容範囲については、次のようにして設定する。まず、高周波誘導加熱コイル1を用いて高周波誘導加熱により複数の同じ種類の焼入対象物の表面を順次に焼入する際に、高周波誘導加熱コイル1に電力を供給する高周波電源(発振器)11の出力電圧,出力電流又は出力電力及び加熱時間と焼入品質との関係を予め調査するための調査焼入を行なう。そして、この調査焼入によって事前に得られる高周波電源11の出力波形の経時的な変化パターン(図4(b)に示す出力波形Sを参照)を基準として、焼入対象物であるトランスミッション部品の焼入品質を規格範囲内にするのに必要な高周波電源11の出力波形の変化パターンの許容範囲を、高周波電源11の出力波形の立ち上がり期間を含む加熱期間に亘って設定し、調査焼入後の本焼入において高周波誘導加熱する毎に高周波誘導加熱コイル1の出力波形の変化パターンが許容範囲内に管理されているかどうかの判断に基づいて前記焼入対象物の焼入品質を管理するようにしている。なお、調査焼入において所定の許容範囲を設定するにあたり焼入品質としては、焼入深さ,表面硬さ,又は焼入部の歪み量を必要に応じて適宜に選択することとしている。
【0016】
図4は、最適な焼入条件での高周波電源11の出力波形を出力波形検出モニタ13に表示させたものであり、図4(a)は従来の焼入品質管理方法を施行する際に得られる電圧の変化パターン、図4(b)は本発明に係る焼入品質管理方法を施行する際に得られる電圧の変化パターンである。なお、図4(a)に示すような従来の焼入品質管理方法では、電圧の飽和状態における上限値Hと下限値Lの範囲内において焼入深さの管理を行っているが、既述の如く、出力波形の立ち上がり期間及び立ち下がり期間においては許容範囲W(図4(a)に示すような許容範囲に関する監視幅W)を設定しないようにしている。一方、図4(b)で示す本発明の場合の出力波形の変化パターンでは、立ち上がり期間T1 ,この立ち上がり期間T1 経過後の飽和期間T2 ,及びこの飽和期間T2 に引き続く立ち下がり期間T3 の全ての加熱期間(T1 +T2 +T3 の期間)に亘って上限値Hと下限値Lを設定しているため、トランススミッション部品(ワーク)に投入される電力量は、高周波誘導加熱の全期間において許容範囲W内に収まるように監視され、ひいては焼入品質がより厳密に管理される。
【0017】
以後は、各トランスミッション部品の高周波焼入に際して高周波誘導過熱加熱工程を施行する度に高周波電源11の出力波形を前記監視幅Wと比較し、焼入加工したトランスミッション部品が良品か不良品かを判別する。
【0018】
次に、本発明の一実施例を以下に示す。
実施例
(1) 焼入対象物(ワーク) : ミッション部品

Figure 0003971618
(2) 焼入条件
Figure 0003971618
【0019】
上記加工条件にて予め焼入(調査焼入)を行い、その際の高周波電圧,高周波電流,又は高周波電力の出力波形パターンを出力波形検出モニタ13に表示させ、その出力波形を基準として上限値H及び下限値L(図4(b)参照)を設定する。この場合には、例えば、基準となる条件(基準の出力波形S)から5%以上のバラツキは不良品とするような判別を行なう。なお、この5%という数値は、限定されるものではなく、焼入対象物の種類等に応じて適宜に変更することが可能である。
【0020】
また、出力波形検出モニタ13に表示される出力波形には、電源電圧の変動や焼入部の異物混入等によるインダクタンスの変化も反映される。このようなインダクタンス変化に起因して焼入品質が大きく変化するので、本実施形態では、出力波形の変化パターンに基づいて焼入品質を監視することにより、焼入品質の管理(すなわち、焼入品が良品であるか不良品であるかの判定)を厳格に行なうようにしている。
【0021】
以上、本発明の一実施形態について述べたが、本発明はこの実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。例えば、既述の実施形態では、高周波電源11の出力波形の立ち上がり期間T1 、飽和期間T2 ,及び立ち下がり期間T3 の全期間で監視幅Wを設定するようにしたが、立ち下がり期間T3 においての管理効果はあまり大きくないので、立ち下がり期間T3 においては監視幅Wを設けないで許容範囲の設定を行なうようにしても良く、この場合にも焼入品質の管理を良好に管理することが可能である。また、既述の実施形態では、高周波電源11の出力波形の変化パターンとして高周波電圧の電圧値を採用するようにしたが、これに限らず、高周波電流の電流値、高周波電力の電力値を測定してその出力波形の経時的な変化パターンを基準として許容範囲(ひいては、監視幅W)を設定するようにしても良い。また、本発明に係る焼入品質管理方法は、トランスミッション部品の小孔の内径部を高周波焼入する場合に限らず、各種の焼入対象物(被焼入体)を表面焼入する場合にも適用可能であることは言う迄もない。
【0022】
【発明の効果】
請求項1に記載の本発明は、高周波誘導加熱コイルを用いて、低歪みを目的として1sec以下の短時間で高周波誘導加熱を行なって、複数の同じ種類の焼入対象物の表面を順次に焼入する際に、前記高周波誘導加熱コイルに電力を供給する高周波電源の出力電圧,出力電流又は出力電力及び加熱時間と焼入品質との関係を予め調査するための調査焼入を行ない、この調査焼入によって得られる前記高周波電源の出力波形の経時的な変化パターンを基準として、前記焼入対象物の焼入品質を規格範囲内にするのに必要な前記高周波電源の出力波形の変化パターンの許容範囲(監視幅)を、短時間加熱の場合に焼入品質に大きな影響を及ぼす前記高周波電源の出力波形の立ち上がり期間、並びに、この立ち上がり期間経過後の飽和期間を含む加熱期間に亘って設定し、前記調査焼入後の本焼入において高周波誘導加熱する毎に前記高周波電源の出力波形の変化パターンが前記許容範囲内に管理されているかどうかの判断に基づいて前記焼入対象物の焼入品質を管理するようにしたものであり、換言すれば、焼入品質が規格範囲内に管理されるように高周波電源の出力波形に「監視幅」を設けて以後の焼入における出力波形のパターンが上述の監視幅内に管理されているか否かを判別することにより焼入品質を管理するようにしたものであるから、高周波電源の出力波形の立ち上がり期間(すなわち、短時間加熱の場合に焼入品質に大きな影響を及ぼす期間)をも含む加熱期間において品質管理を行なうことに伴って焼入品質の管理(焼入品が良品であるか不良品であるかの判定)を従来方法の場合より厳密に管理することができる。また、本発明に係る焼入品質管理方法の場合には、複数の焼入条件の管理が可能である。特に、高周波電圧の立ち上がり期間や立ち下がり期間についての時間幅の変動が焼入処理後の品質に大きく影響するような表面焼入においては、従来よりも厳しい条件監視の下での品質管理が可能となる。
【0023】
また、請求項2に記載の本発明は、焼入品質が焼入深さ,表面硬さ,又は焼入部の歪み量であるようにしたものであるから、焼入対象物の種類に応じて特に要求される焼入品質をこれらの中から適宜に選択して焼入品質の管理を最適に行なうことができる。
【0024】
また、請求項3に記載の本発明は、高周波電源の出力波形が電圧値,電流値,又は電力値の出力波形であるようにしたものであるから、焼入対象物の表面焼入部に応じて電圧値,電流値,又は電力値の出力波形のうちの何れか1つ又はそのうちの複数を選択することによって、最適な焼入品質管理を行なうことが可能である。
【0025】
また、請求項4に記載の本発明は、立ち上がり期間を相対的に短く設定することにより、加熱時間を短期間にするようにしたものであるから、長時間に亘る加熱により焼入歪みが大きく生じてしまうような不具合を回避することができ、ひいては焼入品質をより安定して管理することが可能となる。
【0026】
また、請求項5に記載の本発明は、高周波電源の出力波形の変化パターンの許容範囲を、高周波電源の出力波形の立ち下がり期間をも含む全加熱期間に亘って設定したものであるから、高周波電源の出力波形の立ち上がり期間,この立ち上がり期間に引き続く飽和期間,及び立ち下がり期間の全加熱期間において出力波形の監視幅に基づく品質管理を施行することによって、品質管理をより一層厳密に行なうことができる。
【図面の簡単な説明】
【図1】トランスミッション部品の小孔の内径部を高周波誘導加熱するために用いられる高周波焼入高周波誘導加熱コイルの斜視図である。
【図2】本発明に係る焼入品質管理方法を施行する高周波焼入装置の構成図である。
【図3】高周波電源の出力波形を模式的に示したものであって、図3(a)は出力波形の立ち上がり期間が長い場合を示す波形図、図3(b)は立ち上がり期間を短くした場合を示す波形図である。
【図4】最適な焼入条件での高周波電源の出力波形を出力波形検出モニタに表示させたものであって、図4(a)は従来の品質管理法方を施行する際に得られる電圧の変化パターン、図4(b)は本発明に係る品質管理方法を施行する際に得られる電圧の変化パターンである。
【符号の説明】
1 高周波誘導加熱コイル
10 高周波誘導加熱装置
11 高周波電源(発振器)
12 出力トランス
13 出力波形検出モニタ
14 表示装置
15 制御回路
H 上限値
L 下限値
S 出力波形
W 許容範囲(監視幅)
1 立ち上がり期間
2 飽和期間
3 立ち下がり期間[0001]
BACKGROUND OF THE INVENTION
The present invention performs high frequency induction heating in a short time of 1 sec or less for the purpose of low distortion using a high frequency induction heating coil, and sequentially quenches the surface of a plurality of the same type of quenching objects. The present invention relates to a quenching quality control method for performing quenching quality control by determining whether a quenching quality is good or not (ie, determining whether a quenching product is non-defective or defective) without cutting the workpiece. Is.
[0002]
[Prior art]
When performing surface hardening treatment by high-frequency induction heating and quenching the surface of the object to be hardened using a high-frequency induction heating coil, usually a plurality of the same type of object to be heated (for example, automobile transmission parts, etc.) ) Are sequentially and sequentially quenched. Conventionally, prior to a series of quenching treatments, the current, voltage, power, and frequency of the high-frequency induction heating coil, as well as the heating time, the amount of cooling water, and the distance from the high-frequency induction heating coil to the surface of the object to be quenched. It is the actual situation that various quenching conditions such as (that is, gap) are set in advance to optimum conditions obtained from experience.
[0003]
[Problems to be solved by the invention]
However, in a series of quenching after setting the quenching conditions, even if the quenching target is of the same type, the quenching depth etc. is constant due to variations in the size of each quenching target. There is a problem of not becoming.
[0004]
As methods for solving such problems, quenching depth management methods described in JP-A-10-8130 and JP-A-2000-239735 have been proposed. In this quenching depth management method, induction quenching (survey quenching) is performed for investigation at a preset current and voltage, and the coil obtained during induction heating during the survey quenching From the relationship between the change pattern of voltage or power over time and the quenching depth, obtain the allowable range of the change pattern of power or coil voltage necessary to manage the quenching depth within the standard range, and perform high frequency induction heating. Each time it is performed, it is determined whether the quenching depth is controlled within the standard range, and the power or coil voltage is controlled so that the change pattern of the power or coil voltage is returned to the allowable range just before it is out of the allowable range. The method is used. In this case, the allowable range is not set in both the rising period and the falling period of the output waveform of the power or coil voltage.
[0005]
However, in such a quenching depth management method, the quenching depth after the quenching process is determined only within the range (monitoring width region) between the upper limit value and the lower limit value of the power or coil voltage. Therefore, in particular, quenching with a heating time of 1 sec or less for the purpose of low distortion has the following problems. That is, in the quenching process in which the heating time is 1 sec or less, the length of the rising period of the high-frequency voltage and the variation in the heating time greatly affect the quenching quality after quenching. It is difficult to accurately set the depth, quenching hardness, and the like within the standard range.
[0006]
The present invention has been made in view of the actual situation as described above. The purpose of the present invention is to perform a quenching for 1 sec or less for the purpose of low distortion. It is to provide a quenching quality management method capable of appropriately managing quenching quality by strict (accurate) judgment of whether the product is defective or defective, that is, quality judgment of quenching quality. .
[0007]
[Means for Solving the Problems]
In order to achieve the above-described object, in the present invention, a high-frequency induction heating coil is used to perform high-frequency induction heating in a short time of 1 sec or less for the purpose of low distortion, and the surfaces of a plurality of quenching objects of the same type. When sequentially quenching, a quenching quenching is performed to investigate in advance the relationship between the quenching quality and the output voltage, output current, or output power of the high frequency power source that supplies power to the high frequency induction heating coil. The output waveform of the high-frequency power source required to bring the quenching quality of the object to be quenched within the standard range with reference to the temporal change pattern of the output waveform of the high-frequency power source obtained by this investigation and quenching the tolerance of the pattern of change, the rise time of great influence the high frequency power source output waveform quenching quality when the short time heating, as well as the saturation period after this start-up period Over the heating period, and based on the judgment whether or not the change pattern of the output waveform of the high-frequency power source is managed within the allowable range every time high-frequency induction heating is performed in the main quenching after the survey quenching. The quenching quality of the quenching object is managed.
In the present invention, the quenching quality is the quenching depth, the surface hardness, or the distortion amount of the quenching part.
In the present invention, the output waveform of the high-frequency power source is an output waveform of a voltage value, a current value, or a power value.
In the present invention, the heating time is set to a short time by setting the rising period relatively short.
In the present invention, the permissible range of the change pattern of the output waveform of the high frequency power supply is set over the entire heating period including the falling period of the output waveform of the high frequency power supply.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0009]
FIG. 1 is used for induction heating of a small hole portion (not shown) of a transmission mission part of an automobile and induction hardening (surface hardening) of an inner diameter portion (inner peripheral surface) of the small hole. A high-frequency induction heating coil 1 is shown. As shown in FIG. 1, the high-frequency induction heating coil 1 is interposed between a pair of lead portions 2a and 2b for transmitting a high-frequency current from a high-frequency power source 11 (see FIG. 2), and these lead portions 2a and 2b. An insulating plate 3 and a coil head (coil portion arranged corresponding to the position near the object to be hardened) 4 connected between the pair of lead portions 2a, 2b are formed. The outer dimension (outer diameter) of the coil head 4 is set to be slightly smaller than the inner diameter dimension of the small hole of the transmission part to be hardened. It is inserted and arranged with a slight gap inside. Further, a dust core 5 made of a magnetic material is inserted and disposed in the inner diameter hollow portion of the coil head 4 in order to improve the coupling efficiency of high-frequency oscillation. A cooling water introduction pipe 6 is attached to one lead portion 2a of the pair of lead portions 2a and 2b, and a cooling water outlet pipe 7 is attached to the other lead portion 2b. The high-frequency induction heating coil 1 is cooled by the cooling water flowing from the cooling water introduction pipe 6 to the cooling water outlet pipe 7 through the hollow portions inside the pair of lead portions 2a and 2b. ing.
[0010]
FIG. 2 shows a configuration of an induction hardening apparatus 10 for induction hardening of the inner diameter portion of the small hole of the transmission part using the above-described induction induction coil 1. A high-frequency power source 11 composed of an oscillator that generates a high-frequency voltage based on the power source voltage, an output transformer 12 that converts a high-frequency voltage output from the high-frequency power source 11 into a low voltage to obtain a large current, and a connection to the output transformer 12 The above described high frequency induction heating coil 1 (see FIG. 1), the output waveform detection monitor 13 connected to the output side of the high frequency power supply 11, and the output waveform detected by the output waveform detection monitor 13 are displayed on the screen. The output voltage and output current of the high-frequency power source 11 based on the display device 14 such as a cathode ray tube and the output waveform S detected by the output waveform detection monitor 13 (see FIG. 4B). Ku is and a control circuit 15 for controlling the output power, respectively.
[0011]
The operation procedure when induction hardening the inner diameter portion of the small hole of the transmission part in the induction hardening apparatus 10 having the induction heating coil 1 as described above, and the method for managing the quenching quality at the induction hardening will be described. It is as follows. First, a transmission component, which is an object to be quenched (hardened object), is held in a state of being immersed in a coolant (immersion liquid), and the coil head 4 of the high-frequency induction heating coil 1 is placed in a small hole of the transmission component. Are inserted and arranged with a slight gap. Then, a high frequency current is supplied from the high frequency power supply 11 to the high frequency induction heating coil 1 through the output transformer 12 so that the inner diameter portion of the small hole is subjected to high frequency induction heating, and at the same time, quenching and cooling with the coolant is performed. As a result, a hardened hardened layer is formed on the inner diameter portion (the quenching scheduled portion) of the small hole, and a quenching process is performed. The high-frequency current at this time is a high-frequency induction of about 0.2 sec by using an oscillator that oscillates in the frequency range of 1 MHz to 4 MHz as the high-frequency power supply 11 and setting the rising period of the output voltage of the high-frequency power supply 11 to 35 msec. Heating is possible.
[0012]
In such a quenching process, the output waveform detection monitor 13 detects the output voltage, output current, or output power of the high-frequency power supply 11, and the high-frequency voltage when the inner diameter portion of the small hole of the transmission component is heated by high-frequency induction. , High-frequency current, or high-frequency power is displayed on the display device 14. Then, the control circuit 15 determines whether or not the output waveform of the output voltage, output current, or output power of the high frequency power supply 11 detected by the output waveform detection monitor 13 is within an allowable range set in advance. Is determined. Thus, when the output waveform is within the allowable range, it is determined that the quenching quality of the transmission component for which the quenching process has been completed is within the standard range, and the transmission component is a non-defective product.
[0013]
On the other hand, when the output waveform is out of the allowable range, it is determined that the quenching quality of the transmission component for which the quenching process has been completed is out of the standard range, and the transmission component is defective. In this case, a predetermined control signal is sent from the output waveform detection monitor 13 to the control circuit, and based on this, the operating condition of the high frequency power supply 11 is changed so that the output waveform of the high frequency power supply 11 falls within the allowable range. Is done. That is, the operating conditions of the high-frequency power supply 11 are appropriately changed so that the quenching quality of the transmission component to be hardened next falls within the standard range. As a result, the output waveform of the high-frequency power supply 11 and the high-frequency induction heating condition are accordingly changed. Is changed.
[0014]
Here, it is as follows when the output waveform of the high frequency power supply 11 and the setting method of the tolerance | permissible_range of the output waveform are demonstrated concretely. First, regarding the output waveform of the high frequency power supply 11, in the case of this embodiment, the rising period of the output waveform is set to be relatively short. FIG. 3 schematically shows the output waveform S of the high-frequency power source 11, FIG. 3 (a) shows a case where the rising period is long, and FIG. 3 (b) shows a case where the rising period is shortened. . In the case of the output waveform as shown in FIG. 3A, since the rising period t 1 is long, power is not effectively administered. Therefore, in order to ensure a predetermined quenching depth and surface hardness under these conditions, the heating time must be made considerably long, but this will cause a large quenching distortion due to heating over a long period of time. It becomes. Therefore, in the present embodiment, as shown in FIG. 3B, the rising period t 2 is set to a relatively short time, for example, about 35 msec. The heating time is preferably set as appropriate according to the size and material of the object to be quenched, input power, power frequency, quenching depth, and the like.
[0015]
Further, the allowable range of the output waveform described above is set as follows. First, a high-frequency power source (oscillator) 11 that supplies power to the high-frequency induction heating coil 1 when sequentially quenching the surfaces of a plurality of same-type quenching objects by high-frequency induction heating using the high-frequency induction heating coil 1. Investigation quenching is performed to investigate in advance the relationship between the output voltage, the output current or the output power, the heating time, and the quenching quality. Then, based on the temporal change pattern of the output waveform of the high-frequency power supply 11 obtained in advance by this investigation quenching (see the output waveform S shown in FIG. 4B), the transmission component that is the object to be quenched is used. The allowable range of the change pattern of the output waveform of the high-frequency power supply 11 necessary to bring the quenching quality within the standard range is set over the heating period including the rising period of the output waveform of the high-frequency power supply 11, and after the investigation and quenching The quenching quality of the object to be quenched is managed based on the judgment as to whether or not the change pattern of the output waveform of the high frequency induction heating coil 1 is managed within an allowable range every time high frequency induction heating is performed in the main quenching. I have to. In setting the predetermined allowable range in the investigation quenching, as the quenching quality, the quenching depth, the surface hardness, or the distortion amount of the quenched portion is appropriately selected as necessary.
[0016]
FIG. 4 shows the output waveform of the high-frequency power supply 11 under optimum quenching conditions displayed on the output waveform detection monitor 13. FIG. 4 (a) is obtained when the conventional quenching quality control method is implemented. FIG. 4B is a voltage change pattern obtained when the quenching quality control method according to the present invention is performed. In the conventional quenching quality control method as shown in FIG. 4A, the quenching depth is managed within the range of the upper limit value H and the lower limit value L in the voltage saturation state. As described above, the allowable range W (the monitoring width W related to the allowable range as shown in FIG. 4A) is not set in the rising and falling periods of the output waveform. On the other hand, in the change pattern of the output waveform in the case of the present invention shown in FIG. 4B, the rising period T 1 , the saturation period T 2 after the rising period T 1 elapses, and the falling period following the saturation period T 2 Since the upper limit value H and the lower limit value L are set over the entire heating period of T 3 (period of T 1 + T 2 + T 3 ), the amount of power input to the transmission component (work) is high frequency. The entire period of induction heating is monitored so as to be within the allowable range W, and hence the quenching quality is more strictly controlled.
[0017]
Thereafter, each time the induction heating of each transmission part is induction-hardened, the output waveform of the high-frequency power supply 11 is compared with the monitoring width W every time the high-frequency induction heating process is carried out to determine whether the quenched transmission part is a good product or a defective product. To do.
[0018]
Next, an embodiment of the present invention will be described below.
Example (1) Hardened object (work): Mission parts
Figure 0003971618
(2) Quenching conditions
Figure 0003971618
[0019]
Quenching (inspection quenching) in advance under the above processing conditions, the output waveform pattern of the high frequency voltage, high frequency current, or high frequency power at that time is displayed on the output waveform detection monitor 13, and the upper limit value is based on the output waveform. H and a lower limit L (see FIG. 4B) are set. In this case, for example, it is determined that a variation of 5% or more from the reference condition (reference output waveform S) is a defective product. In addition, the numerical value of 5% is not limited and can be changed as appropriate according to the type of the object to be quenched.
[0020]
The output waveform displayed on the output waveform detection monitor 13 also reflects changes in inductance due to fluctuations in the power supply voltage and contamination of the hardened part. Since the quenching quality greatly changes due to such an inductance change, in this embodiment, the quenching quality is managed by monitoring the quenching quality based on the change pattern of the output waveform (ie, quenching quality). Judgment whether the product is a good product or a defective product) is strictly performed.
[0021]
Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and various modifications and changes can be made based on the technical idea of the present invention. For example, in the above embodiments, the rising period T 1 of the output waveform of the high frequency power source 11, saturation period T 2, and the entire period of the falling period T 3 is made to be set monitoring width W, fall period Since the management effect at T 3 is not so great, the allowable range may be set without providing the monitoring width W during the falling period T 3 . It is possible to manage. In the above-described embodiment, the voltage value of the high-frequency voltage is adopted as the change pattern of the output waveform of the high-frequency power supply 11. However, the present invention is not limited to this, and the current value of the high-frequency current and the power value of the high-frequency power are measured. Then, an allowable range (as a result, the monitoring width W) may be set on the basis of the temporal change pattern of the output waveform. Moreover, the quenching quality control method according to the present invention is not limited to induction hardening of the inner diameter portion of the small hole of the transmission component, but also when various types of quenching objects (quenched objects) are surface quenched. It goes without saying that is also applicable.
[0022]
【The invention's effect】
The present invention according to claim 1 performs high-frequency induction heating in a short time of 1 sec or less for the purpose of low distortion using a high-frequency induction heating coil, and sequentially applies the surfaces of a plurality of the same type of quenching objects. When quenching, conduct a survey quenching in advance to investigate the relationship between the output voltage, output current or output power of the high frequency power source that supplies power to the high frequency induction heating coil, and the heating time and the quenching quality. The change pattern of the output waveform of the high-frequency power source necessary to bring the quenching quality of the object to be hardened within the standard range with reference to the change pattern of the output waveform of the high-frequency power source with time obtained by the investigation quenching including the allowable range (monitoring range), the rise time of great influence the high frequency power source of the output waveform in the case of short heating quenching quality as well as the saturation period after this start-up period It is set over a heat period, and based on the judgment whether or not the change pattern of the output waveform of the high frequency power source is managed within the allowable range every time high frequency induction heating is performed in the main quenching after the survey quenching. In other words, the quenching quality of the object to be quenched is controlled. In other words, a “monitoring width” is provided in the output waveform of the high frequency power supply so that the quenching quality is managed within the standard range. Since the quenching quality is managed by determining whether or not the pattern of the output waveform in quenching is managed within the above-described monitoring width, the rising period of the output waveform of the high-frequency power source (that is, Quenching quality control (whether the hardened product is non-defective or defective) along with quality control during the heating period that also includes the time when quenching quality has a large effect on quenching quality Judgment) It can be strictly managed than in the case of the coming way. In addition, in the case of the quenching quality control method according to the present invention, it is possible to manage a plurality of quenching conditions. Especially for surface quenching, where fluctuations in the duration of the rising and falling periods of the high-frequency voltage greatly affect the quality after quenching, quality control can be performed under stricter condition monitoring than before. It becomes.
[0023]
Further, the present invention according to claim 2 is such that the quenching quality is the quenching depth, the surface hardness, or the distortion amount of the quenching part. In particular, quenching quality can be optimally selected by appropriately selecting the quenching quality required from these.
[0024]
Moreover, since the output waveform of the high-frequency power source is an output waveform of a voltage value, a current value, or a power value, the present invention according to claim 3 corresponds to the surface quenching portion of the object to be quenched. By selecting any one or a plurality of output waveforms of voltage value, current value, and power value, it is possible to perform optimum quenching quality control.
[0025]
Further, in the present invention according to claim 4, since the heating period is set to a short time by setting the rising period relatively short, the quenching distortion is increased by heating for a long time. Problems that may occur can be avoided, and as a result, the quenching quality can be managed more stably.
[0026]
Further, the present invention according to claim 5 is that the allowable range of the change pattern of the output waveform of the high frequency power supply is set over the entire heating period including the falling period of the output waveform of the high frequency power supply. By implementing quality control based on the monitoring width of the output waveform during the rising period of the output waveform of the high-frequency power supply, the saturation period following this rising period, and the entire heating period of the falling period, the quality control is performed more strictly. Can do.
[Brief description of the drawings]
FIG. 1 is a perspective view of a high frequency induction high frequency induction heating coil used for high frequency induction heating of an inner diameter portion of a small hole of a transmission component.
FIG. 2 is a configuration diagram of an induction hardening apparatus for enforcing a quenching quality control method according to the present invention.
FIG. 3 schematically shows an output waveform of a high-frequency power source. FIG. 3 (a) is a waveform diagram showing a case where the rising period of the output waveform is long, and FIG. 3 (b) is a case where the rising period is shortened. It is a wave form diagram which shows a case.
FIG. 4 shows an output waveform detection monitor displaying an output waveform of a high-frequency power source under optimum quenching conditions, and FIG. 4 (a) shows a voltage obtained when a conventional quality control method is enforced. FIG. 4B is a voltage change pattern obtained when the quality control method according to the present invention is performed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High frequency induction heating coil 10 High frequency induction heating apparatus 11 High frequency power supply (oscillator)
12 output transformer 13 output waveform detection monitor 14 display device 15 control circuit H upper limit value L lower limit value S output waveform W allowable range (monitoring width)
T 1 rising period T 2 saturation period T 3 falling period

Claims (5)

高周波誘導加熱コイルを用いて、低歪みを目的として1sec以下の短時間で高周波誘導加熱を行なって、複数の同じ種類の焼入対象物の表面を順次に焼入する際に、前記高周波誘導加熱コイルに電力を供給する高周波電源の出力電圧,出力電流又は出力電力及び加熱時間と焼入品質との関係を予め調査するための調査焼入を行ない、この調査焼入によって得られる前記高周波電源の出力波形の経時的な変化パターンを基準として、前記焼入対象物の焼入品質を規格範囲内にするのに必要な前記高周波電源の出力波形の変化パターンの許容範囲を、短時間加熱の場合に焼入品質に大きな影響を及ぼす前記高周波電源の出力波形の立ち上がり期間、並びに、この立ち上がり期間経過後の飽和期間を含む加熱期間に亘って設定し、前記調査焼入後の本焼入において高周波誘導加熱する毎に前記高周波電源の出力波形の変化パターンが前記許容範囲内に管理されているかどうかの判断に基づいて前記焼入対象物の焼入品質を管理するようにしたことを特徴とする焼入品質管理方法。When high- frequency induction heating is performed in a short time of 1 sec or less using a high-frequency induction heating coil in order to quench the surfaces of a plurality of objects of the same type , the high-frequency induction heating is performed. Investigation and quenching is performed in advance to investigate the relationship between the output voltage, output current or output power of the high-frequency power source that supplies power to the coil, and the heating time and quenching quality. In the case where the allowable range of the change pattern of the output waveform of the high-frequency power source necessary for bringing the quenching quality of the quenching object within the standard range is short-time heating , based on the change pattern of the output waveform with time the rising period of great influence the high frequency power source output waveform quenching quality as well, and set over a heating period containing saturated period after the lapse of the rising period, the survey quenching The quenching quality of the quenching object is managed based on the judgment as to whether or not the change pattern of the output waveform of the high-frequency power source is managed within the allowable range every time high-frequency induction heating is performed in the main quenching. A quenching quality control method characterized by that. 前記焼入品質が、焼入深さ,表面硬さ,又は焼入部の歪み量であることを特徴とする請求項1に記載の焼入品質管理方法。  The quenching quality control method according to claim 1, wherein the quenching quality is a quenching depth, a surface hardness, or a distortion amount of a quenching portion. 前記高周波電源の出力波形が、電圧値,電流値,又は電力値の出力波形であることを特徴とする請求項1又は2に記載の焼入品質管理方法。  The quenching quality control method according to claim 1 or 2, wherein the output waveform of the high-frequency power source is an output waveform of a voltage value, a current value, or a power value. 前記立ち上がり期間を相対的に短く設定することにより、前記加熱時間を短期間にするようにしたことを特徴とする請求項1乃至3の何れか1項に記載の焼入品質管理方法。  The quenching quality control method according to any one of claims 1 to 3, wherein the heating time is set to a short time by setting the rising period relatively short. 前記高周波電源の出力波形の変化パターンの許容範囲を、前記高周波電源の出力波形の立ち下がり期間をも含む全加熱期間に亘って設定したことを特徴とする請求項1乃至4の何れか1項に記載の焼入品質管理方法。  The allowable range of the change pattern of the output waveform of the high-frequency power source is set over the entire heating period including the falling period of the output waveform of the high-frequency power source. The quenching quality control method described in 1.
JP2002034924A 2002-02-13 2002-02-13 Quenching quality control method Expired - Lifetime JP3971618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002034924A JP3971618B2 (en) 2002-02-13 2002-02-13 Quenching quality control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002034924A JP3971618B2 (en) 2002-02-13 2002-02-13 Quenching quality control method

Publications (2)

Publication Number Publication Date
JP2003231923A JP2003231923A (en) 2003-08-19
JP3971618B2 true JP3971618B2 (en) 2007-09-05

Family

ID=27777260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002034924A Expired - Lifetime JP3971618B2 (en) 2002-02-13 2002-02-13 Quenching quality control method

Country Status (1)

Country Link
JP (1) JP3971618B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060102620A1 (en) * 2004-11-12 2006-05-18 Ntn Corporation Heat treat process
JP5257790B2 (en) 2007-09-13 2013-08-07 高周波熱錬株式会社 Induction hardening monitoring apparatus and method
KR101362831B1 (en) 2009-03-12 2014-02-14 고오슈우하네쓰렌 가부시기가이샤 Management system for high frequency quenching
JP5735239B2 (en) * 2010-09-03 2015-06-17 愛知機械工業株式会社 Quenching state judgment device and quenching state judgment method
CN112779411A (en) * 2020-12-16 2021-05-11 中钢集团邢台机械轧辊有限公司 Heat treatment method of high-performance forged steel cold roll

Also Published As

Publication number Publication date
JP2003231923A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
US6265688B1 (en) Method of welding metals and apparatus for use therefor
US6566636B1 (en) Closed loop control of the induction heating process using miniature magnetic sensors
US8274022B2 (en) Induction heater and induction heating method
RU2499371C2 (en) Method for determining emission measure for thermal emission, electric arc furnace, signal processing device, as well as programme code and information medium for implementation of method
JP5722025B2 (en) Induction quenching apparatus and induction quenching method
JP3971618B2 (en) Quenching quality control method
Saritas et al. Effects of pulse duration on magnetostimulation thresholds
US11378639B2 (en) System and method to reduce eddy current artifacts in magnetic resonance imaging
JP2006144126A (en) Circuit for monitoring high frequency hardening process
JP2000239735A (en) Method for controlling hardening depth
US10161015B2 (en) Heat treatment method and method of manufacturing machine part
JP3369603B2 (en) Heat treatment method for steel
JP4209116B2 (en) Induction hardening method for internal teeth and induction hardening device used therefor
JPH108130A (en) Method for controlling quenching depth
JPH0324487A (en) Nuclear magnetic resonance probe
JPH02194119A (en) High frequency quenching apparatus
JPH09257752A (en) Apparatus for detecting transformation point of member to be heated by high frequency induction heating and tempering apparatus
JP6180341B2 (en) Heating test control device and heating test control method
JP3347030B2 (en) Induction hardening apparatus and method
JP2010065306A (en) High frequency induction-heating apparatus and method for detecting degradation of core
JP5231090B2 (en) High frequency heating apparatus and core deterioration detection method
JPH01257203A (en) Electric plating method and apparatus
KR101515552B1 (en) High frequency heat treatment apparatus having the temperature control device
JPS58110616A (en) Controlling method for starting time for cooling in precision hardening
JP2009092582A (en) Method and device for evaluating quench-hardened layer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3971618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term