JP3971336B2 - Method for producing alumina film mainly composed of α-type crystal structure and method for producing member coated with alumina film mainly composed of α-type crystal structure - Google Patents

Method for producing alumina film mainly composed of α-type crystal structure and method for producing member coated with alumina film mainly composed of α-type crystal structure Download PDF

Info

Publication number
JP3971336B2
JP3971336B2 JP2003125517A JP2003125517A JP3971336B2 JP 3971336 B2 JP3971336 B2 JP 3971336B2 JP 2003125517 A JP2003125517 A JP 2003125517A JP 2003125517 A JP2003125517 A JP 2003125517A JP 3971336 B2 JP3971336 B2 JP 3971336B2
Authority
JP
Japan
Prior art keywords
film
alumina
crystal structure
type crystal
alumina film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003125517A
Other languages
Japanese (ja)
Other versions
JP2004332003A (en
Inventor
浩 玉垣
利光 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003125517A priority Critical patent/JP3971336B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to AU2003254888A priority patent/AU2003254888A1/en
Priority to PCT/JP2003/010114 priority patent/WO2004015170A1/en
Priority to EP03784598.9A priority patent/EP1553210B1/en
Priority to CNB038189275A priority patent/CN100413998C/en
Priority to EP14169851.4A priority patent/EP2848712B1/en
Priority to US10/523,931 priority patent/US7531212B2/en
Priority to EP20140169853 priority patent/EP2865784A1/en
Publication of JP2004332003A publication Critical patent/JP2004332003A/en
Priority to IL166622A priority patent/IL166622A/en
Application granted granted Critical
Publication of JP3971336B2 publication Critical patent/JP3971336B2/en
Priority to US12/402,755 priority patent/US8323807B2/en
Priority to US12/402,763 priority patent/US20090173625A1/en
Priority to IL218369A priority patent/IL218369A0/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、α型結晶構造主体のアルミナ皮膜の製造方法およびα型結晶構造主体のアルミナ皮膜で被覆された部材の製造方法に関するものであり、詳細には、切削工具、摺動部材、金型等の如き耐摩耗部材に被覆される耐摩耗性及び耐熱性に優れたα型結晶構造主体のアルミナ皮膜を、上記切削工具や摺動部材等の基材の特性を損なうことのない低温条件で形成することのできる有用な製造方法と、該α型結晶構造主体のアルミナ皮膜の被覆された部材の製造方法(以下、これらの方法を単に「本発明法」ということがある)に関するものである。
【0002】
尚、本発明のα型結晶構造主体のアルミナ皮膜は、上記した様々な用途の部材に適用できるが、以下では代表例として切削工具に適用する場合を中心に説明を進める。
【0003】
【従来の技術】
一般に、優れた耐摩耗性や摺動特性が求められる切削工具や摺動部材として、高速度鋼製や超硬合金製等の基材表面に、チタン窒化物やチタンアルミニウム窒化物等の硬質皮膜が、物理蒸着法(以下、PVD法という)や化学蒸着法(以下、CVD法という)等の方法で形成されたものが用いられている。
【0004】
特に切削工具として使用する場合、前記硬質皮膜には耐摩耗性と耐熱性(高温での耐酸化性)が特性として要求されるので、該両特性を有するものとして、特にチタンアルミニウム窒化物(TiAlN)が、切削時の刃先温度が高温となる超硬工具等への被覆材料として近年多く使用されている。この様にTiAlNが優れた特性を発揮するのは、皮膜に含まれるアルミニウムの作用により耐熱性が向上し、800℃程度の高温まで安定した耐摩耗性と耐熱性を維持できるからである。該TiAlNとしては、TiとAlの組成比の異なる様々なものが使用されているが、その大半は、上記両特性を備えたTi:Alの原子比が50:50〜25:75のものである。
【0005】
ところで切削工具等の刃先は、切削時に1000℃以上の高温となる場合がある。この様な状況下、上記TiAlN膜のみでは十分な耐熱性を確保できないため、例えば、特許文献1に示されるように、TiAlN膜を形成した上に、更にアルミナ層を形成して耐熱性を確保することが行われている。
【0006】
アルミナは、温度によって様々な結晶構造をとるが、いずれも熱的に準安定状態にある。しかし、切削工具の如く切削時における刃先の温度が、常温から1000℃以上にわたる広範囲で著しく変動する場合には、アルミナの結晶構造が変化し、皮膜に亀裂が生じたり剥離する等の問題を生じる。ところが、CVD法を採用し、基材温度を1000℃以上に高めることによって形成されるα型結晶構造(コランダム構造)のアルミナだけは、一旦形成されると、以後の温度に関係なく熱的に安定な構造を維持する。したがって、切削工具等に耐熱性を付与するには、α型結晶構造のアルミナ皮膜を被覆することが有効な手段とされている。
【0007】
しかしながら、上述した通りα型結晶構造のアルミナを形成するには、基材を1000℃以上にまで加熱しなければならないため、適用できる基材が限られる。基材の種類によっては、1000℃以上の高温にさらされると軟質化し、耐摩耗部材用基材としての適性が失われる可能性が生じるからである。また、超硬合金の様な高温用基材であっても、この様な高温にさらされると変形等の問題が生じる。また、耐摩耗性を発揮する膜として基材上に形成されたTiAlN膜等の硬質皮膜の実用温度域は一般に最高で800℃程度であり、1000℃以上の高温にさらされると、皮膜が変質し、耐摩耗性が劣化するおそれがある。
【0008】
この様な問題に対し、特許文献2には、上記アルミナと同レベルの高硬度を有する(Al,Cr)23混合結晶が、500℃以下の低温域で得られた旨報告されている。しかしながら、被削材が鉄を主成分とするものである場合、前記混合結晶皮膜の表面に存在するCrが、切削時に被削材中の鉄と化学反応を起こし易いため、皮膜の消耗が激しく寿命を縮める原因となる。
【0009】
また、O.Zywitzki,G.Hoetzschらは、非特許文献1で、高出力(11−17kW)のパルス電源を用いて反応性スパッタリングを行うことで、750℃でα型結晶構造のアルミナ皮膜を形成できた旨報告している。しかし、この方法でα型結晶構造のアルミナを得るには、パルス電源の大型化が避けられない。
【0010】
この様な問題を解決した技術として、特許文献3には、格子定数が4.779Å以上5.000Å以下で、膜厚が少なくとも0.005μmであるコランダム構造(α型結晶構造)の酸化物皮膜を下地層とし、該下地層上にα型結晶構造のアルミナ皮膜を形成する方法が開示されている。上記酸化物皮膜の成分は、Cr23、(Fe,Cr)23又は(Al,Cr)23のいずれかであることが好ましく、該酸化物皮膜の成分が(Fe,Cr)23である場合には、(Fex,Cr(1-x)23(ただし、xは0≦x≦0.54)を採用することがより好ましく、また、該酸化物皮膜の成分が(Al,Cr)23である場合には、(Aly,Cr(1-y)23(ただし、yは0≦y≦0.90)を採用することがより好ましいと示されている。
【0011】
また、上記特許文献3には、硬質皮膜としてTi、Cr、Vよりなる群から選択される1種以上の元素とAlとの複合窒化皮膜を形成した上に、中間層として(Alz,Cr(1-z))N(ただし、zは0≦z≦0.90)からなる皮膜を形成し、さらに該皮膜を酸化処理してコランダム構造(α型結晶構造)の酸化物皮膜を形成した後に、該酸化物皮膜上にα型アルミナを形成することが有用である旨示されており、この方法によれば、低温の基材温度でα型結晶構造のアルミナが形成できるとされている。
【0012】
上記の方法で得られるアルミナ皮膜は、α型結晶構造を主体とするアルミナであるが、X線回折パターンを詳細に観察すると、γ型等のα型以外の結晶構造のアルミナを示す回折ピークが観察される場合があった。また、ほぼα型結晶構造のみからなるアルミナ皮膜が得られた場合であっても、該皮膜表面をSEM(scanning electron microscope)で観察すると、アルミナ結晶粒間の空隙が大きい場合や、該結晶粒のサイズが不均一である場合があった。従って、より確実に耐摩耗性及び耐熱性に優れたアルミナ皮膜を得るには、更なる改善を要するものと考えられる。
【0013】
【特許文献1】
特許第2742049号公報
【特許文献2】
特開平5−208326号公報
【特許文献3】
特開2002−53946号公報
【非特許文献1】
Surf.Coat.Technol. 86-87 1996 p. 640-647
【0014】
【発明が解決しようとする課題】
本発明は、上記の様な事情に鑑みてなされたものであって、その目的は、α型結晶構造以外の結晶相の生成が抑制され、かつアルミナ結晶粒が微細かつ均一である耐摩耗性及び耐熱性に優れたアルミナ皮膜を、上記切削工具や摺動部材等の基材の特性を損なうことのない低温条件で形成する有用な方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明に係るα型結晶構造主体のアルミナ皮膜の製造方法とは、鋼材またはcBN焼結体からなる基材上に、α型結晶構造を主体とするアルミナ皮膜を形成する方法であって、基材表面にガスイオンボンバード処理を施した後、表面を酸化処理し、その後にアルミナ皮膜を形成するところに要旨を有するものである。
【0016】
本発明に係るα型結晶構造主体のアルミナ皮膜の他の製造方法とは、Ti、AlおよびCrよりなる群から選択される1種以上の元素と、CまたはNを含む化合物若しくはこれら化合物の相互固溶体、のいずれか1種以上からなる下地皮膜が基材上に予め形成されている当該下地皮膜上に、α型結晶構造を主体とするアルミナ皮膜を形成する方法であって、前記下地皮膜表面にガスイオンボンバード処理を施した後、該表面を酸化処理し、その後にアルミナ皮膜を形成するところに要旨を有するものである。
【0017】
前記ガスイオンボンバード処理は、真空チャンバー内においてガスプラズマ中で前記基材に対して電圧を印加して行うのがよく、また前記酸化処理は、酸化性ガス含有雰囲気下で前記基材または該基材上の下地被膜の温度を650〜800℃に保持して行うのがよい。
【0018】
本発明は、上記α型結晶構造主体のアルミナ皮膜で被覆された部材の製造方法も規定するものであって、該方法は、
(1)基材上に、Ti、AlおよびCrよりなる群から選択される1種以上の元素と、CまたはNを含む化合物、若しくはこれら化合物の相互固溶体、のいずれか1種以上からなる下地皮膜を形成する工程、
(2)該下地皮膜表面にガスイオンボンバード処理を施す工程、
(3)ガスイオンボンバード処理後の下地皮膜表面を酸化処理する工程、
(4)次いでα型結晶構造を主体とするアルミナ皮膜を形成する工程を、
同一装置内で順次実施するところに特徴を有する。
【0020】
前記下地皮膜としては、Ti(C,N)、Cr(C,N)、TiAl(C,N)、CrAl(C,N)およびTiAlCr(C,N)よりなる群から選択される1種以上を形成するのが好ましい。前記Ti(C,N)、Cr(C,N)、TiAl(C,N)、CrAl(C,N)、TiAlCr(C,N)は、Ti、Cr、TiAl、CrAl、またはTiAlCrの、それぞれの炭化物、窒化物または炭・窒化物を示す(以下同じ)。
【0021】
【発明の実施の形態】
本発明者らは、前述した様な状況の下で、α型結晶構造主体でかつ結晶粒が微細かつ均一であるアルミナ皮膜(以下、単に「α型主体アルミナ皮膜」ということがある)を、前記基材や下地皮膜(以下、特に断りのない限り「基材」には、基材上に予め下地皮膜が形成されたものを含める)の特性を維持できる約800℃以下の温度域で形成するための方法について研究を進めた。
【0022】
その結果、アルミナ皮膜を形成するにあたり、基材表面にガスイオンボンバード処理を施したのち表面を酸化処理しておくことによって、アルミナ皮膜の結晶構造に占めるα型の割合が格段に向上し、かつアルミナ結晶粒が微細かつ均一なものとなることを見出し、上記本発明に想到した。上記方法がα型主体アルミナ皮膜の形成に有効に作用するメカニズムは、後述する実施例における実験結果から、以下の様に一応推定される。
【0023】
上述の通り、従来法によれば、CrN皮膜上にアルミナ皮膜を形成するにあたり、CrN皮膜の表面を酸化させることによって、α型結晶構造を主体とするアルミナ皮膜を形成できる。
【0024】
この方法のメカニズムとして、アルミナ皮膜形成前に、成膜対象である上記CrN皮膜の表面を酸化性雰囲気に曝すことで、その表面にα型結晶構造のアルミナと同一の結晶構造を有するCr23が形成され、この表面状態が、アルミナ皮膜形成時におけるα型結晶構造のアルミナ結晶核の生成に好適であることが考えられる。
【0025】
しかしながら、この方法でアルミナ皮膜を形成した場合には、該皮膜表面をSEMで観察すると、後述する比較例として示す様にアルミナ結晶粒が粗大化し、かつ疎らとなっている。その理由として、酸化処理表面の全ての領域がα型結晶構造のアルミナ結晶核の生成に好適な状態でなく、具体的には、酸化処理前のCrN皮膜の表面状態が必ずしも均一でないことから、酸化処理後の表面も不均一な状態となっていることが考えられる。
【0026】
これに対し、本発明の様にガスイオンボンバード処理を行ってから酸化処理した場合には、形成されたアルミナ皮膜の表面をSEMで観察すると、後述する本発明例として示す如く、α型結晶構造のアルミナの結晶粒は、従来法で成膜した場合より微細かつ均一になっている。
【0027】
これらの結果から、酸化処理前にガスイオンボンバード処理を施すことによって、酸化処理で形成されるα型結晶構造のアルミナ結晶核の生成ポイントが、より多数かつ均一に存在するようになったと推定することができる。
【0028】
このメカニズムについて詳細は明らかでないが、例えば次の様に考えることができる。即ち、本発明の方法では、上記CrN等の皮膜表面に存在する吸着水分、コンタミネーション、自然酸化膜が、ガスイオンボンバード処理で除去されて、酸素と化合しやすい状態となった表面を酸化処理するため、皮膜表面に、α型結晶構造のアルミナ結晶核の生成ポイントとなる酸化物が微細かつ均一に形成されたものと考えられる。
【0029】
以下に、本発明法における好ましい実施態様等について詳述する。
【0030】
<ガスイオンボンバード処理について>
本発明法は、上述の通り、アルミナ皮膜を形成するにあたり、基材表面にガスイオンボンバード処理を施したのち表面を酸化処理することを特徴とするものであり、該ガスイオンボンバード処理の詳細な条件まで特に限定されず、基材表面をエッチングできる条件を適宜採用すれば良い。
【0031】
具体的な方法として例えば後述する図1に示す様に、フィラメント励起のプラズマを利用する次の様な方法が挙げられる。即ち、Ar等の不活性ガスを真空チャンバー内に導入した状態で、フィラメントから熱電子を発生させて放電を生じさせ、該放電で生じたプラズマ中のAr等のガスイオンを、基材に印加した負の電圧で加速して衝突させることで、基材表面をエッチングする方法である。
【0032】
前記電圧の印加は、上記の通り負の直流電圧を連続的または断続的に印加する他、高周波の交流電圧を印加してもよい。
【0033】
発生したAr等のガスイオンを基材に向けて加速させ、該基材表面のエッチングを十分に行うには、前記負の直流電圧を−100V以上(好ましくは−300V以上)とするのがよい。しかし上記負の電圧が大きすぎると、アーク放電が生ずる等の悪影響が懸念されるため、−2000V以下(好ましくは−1000V以下)に抑えるのがよい。また高周波の交流電圧を印加する場合には、発生するセルフバイアスを前記直流電圧と同程度とするのがよい。
【0034】
使用するガスイオン種は、エッチング効果を有するものであれば特に限定されず、Ar、Kr、Xe等の希ガスを使用することができる。その中でも、比較的安価でありかつ一般に使用されているArガスを使用することが好ましい。
【0035】
上記プラズマの生成は、上記フィラメントによる方法の他、ホロカソード放電やRF(ラジオ周波数)放電等の方法で行ってもよい。
【0036】
また、より簡便な方法として、Ar等の不活性ガスを真空チャンバー内に導入した状態で、基材に負の直流電圧または高周波の交流電圧を印加してグロー放電を発生させ、該放電で生じたプラズマ中のガスイオン(Arイオン等)を、印加した電圧で加速させてエッチングを行ってもよい。
【0037】
ガスイオンボンバード処理の別の具体的態様として、イオンビームソースから発生させた高加速のガスイオンを、基材表面に衝突させる方法を採用することもできる。
【0038】
<基材および下地皮膜について>
本発明法では、基材として、切削工具等の部材を構成する基材をそのまま使用する他、耐摩耗性等の特性を付与すべく、該基材上に予め単層または多層の下地皮膜を形成したものを用いることもできる。本発明は、該基材や下地皮膜の具体的な種類まで規定するものではないが、優れた耐熱性や耐摩耗性等の要求される切削工具、摺動部材、金型等の製造に本発明法を適用するには、該基材や下地皮膜として下記のものが好ましく使用される。
【0039】
基材としては、高速度鋼等の鋼系材料、超硬合金、サーメット、またはcBN(立方晶窒化ほう素)焼結体やセラミックス焼結体を用いることができる。
【0040】
基材上に下地皮膜を形成させたものを用いる場合には、基材の種類は特に問わない。前記下地皮膜としては、例えば、周期律表の4a族,5a族および6a族の元素、Al、Si、Fe、Cu並びにYよりなる群から選択される1種以上の元素とC、N、B、Oの中の1種以上の元素との化合物、または、これら化合物の相互固溶体、のいずれか1種以上を形成すれば、α型結晶構造のアルミナ形成に有利な酸化物層ができるので好ましい。
【0041】
上記下地皮膜の代表的なものとして、Ti(C,N)、Cr(C,N)、TiAl(C,N)、CrAl(C,N)、TiAlCr(C,N)、即ち、Ti、Cr、TiAl、CrAl、またはTiAlCrの、それぞれの炭化物、窒化物、炭・窒化物が挙げられ、切削工具等に汎用されている硬質皮膜として、例えばTiN、TiC、TiCN、TiAlN、CrN、CrAlN、TiAlCrNを単層または多層形成することができる。
【0042】
下地皮膜の膜厚は、該皮膜に期待される耐摩耗性や耐熱性等を十分に発揮させるため、0.5μm以上とするのがよく、より好ましくは1μm以上である。しかし下地皮膜の膜厚が厚すぎると、切削時に該皮膜に亀裂が生じ易くなり長寿命化が図れなくなるので、下地皮膜の膜厚は20μm以下、より好ましくは10μm以下に抑えるのがよい。
【0043】
上記下地皮膜の形成方法は特に限定されないが、PVD法で形成することが好ましく、該PVD法としてAIP(イオンプレーティング)法や反応性スパッタリング法を採用することがより好ましい。また、PVD法で硬質皮膜を形成する方法を採用すれば、下地皮膜の形成と後述するα型主体アルミナ皮膜の形成を同一装置内で成膜を行うことができるので、生産性向上の観点からも好ましい。
【0044】
<酸化処理方法について>
本発明では、前記ガスイオンボンバード処理後に下地表面の酸化処理を行う。該酸化処理の条件についても特に限定されないが、α型結晶構造のアルミナ結晶核の生成に有利な酸化物含有層を効率よく形成するには、下記の条件で酸化を行うことが好ましい。
【0045】
即ち、前記酸化は、酸化性ガス含有雰囲気で行うことが好ましい。その理由は効率よく酸化できるからであり、例えば酸素、オゾン、H22等の酸化性ガスを含有する雰囲気が挙げられ、その中には大気雰囲気も勿論含まれる。
【0046】
また前記酸化は、基材温度を650〜800℃に保持して熱酸化を行うことが望ましい。基材温度が低過ぎると十分に酸化が行われないからであり、好ましくは700℃以上に高めて行うことが望ましい。基材温度を高めるにつれて酸化は促進されるが、基材温度の上限は、本発明の目的に照らして1000℃未満に抑えることが必要である。本発明では、800℃以下でも後述するα型主体アルミナ皮膜の形成に有用な酸化物含有層を形成することができる。
【0047】
本発明では、上記酸化処理のその他の条件について格別の制限はなく、具体的な酸化方法として、上記熱酸化の他、例えば酸素、オゾン、H22等の酸化性ガスをプラズマ化して照射する方法を採用することも勿論有効である。
【0048】
この工程は、次の工程で成膜するアルミナ皮膜の成膜装置中で行うのが望ましく、酸化性ガスの雰囲気中で基材温度を高めて上記熱酸化を行う方法が、好ましい実施形態として挙げられる。
【0049】
<アルミナ皮膜の形成方法について>
α型主体アルミナ皮膜の形成方法は特に限定されないが、CVD法では1000℃以上の高温域で行う必要があるので好ましくなく、低温域で成膜することのできるPVD法を採用することが望ましい。PVD法としてスパッタリング法、イオンプレーティング法、蒸着法等が挙げられるが、その中でも、スパッタリング法が好ましく、特に反応性スパッタリングは、安価なメタルターゲットを用いて高速成膜を行うことができるので好ましい。
【0050】
また、アルミナ皮膜形成時の基材温度も特に規定しないが、約650〜800℃の温度域で行うと、α型主体アルミナ皮膜が形成され易いので好ましい。更には、前記酸化処理工程に引き続き、酸化処理時の基材温度を一定に保ってα型主体アルミナ皮膜を形成すれば、基材や硬質皮膜の特性を維持できる他、生産性にも優れているので好ましい。
【0051】
形成するアルミナ皮膜の膜厚は、0.1〜20μmとすることが望ましい。該アルミナ皮膜の優れた耐熱性を持続させるには、0.1μm以上確保することが有効だからであり、より好ましくは1μm以上である。しかしアルミナ皮膜の膜厚が厚すぎると、該アルミナ皮膜中に内部応力が生じて亀裂等が生じ易くなるので好ましくない。従って、前記膜厚は20μm以下とするのがよく、より好ましくは10μm以下、更に好ましくは5μm以下である。
【0052】
<成膜プロセスについて>
前記下地皮膜の形成(基材上に下地皮膜を形成したものを用いる場合)、前記ガスイオンボンバード処理、前記酸化処理、および前記α型結晶構造を主体とするアルミナ皮膜の形成の全ての工程を、同一装置内で行えば、処理物を移動させることなく連続して処理を行うことができるので、α型結晶構造主体のアルミナ皮膜で被覆された部材を効率よく製造することができる。
【0053】
また、この様に同一装置内で行えば、下地皮膜形成時の基材温度(約350〜600℃程度)を低下させることなく、続けて前記ガスイオンボンバード処理や前記酸化処理を行うことができるので、基材の加熱に要する時間やエネルギーを抑えることもできる。
【0054】
具体的には、AIP蒸発源、マグネトロンスパッタリングカソード、ヒーター加熱機構、基材回転機構等を備え、後述する実施例で示す様な装置に、例えば超硬合金製の基材を設置し、まず下地皮膜としてTiAlN等の硬質皮膜をAIP法等を採用して形成した後、真空チャンバー内にArを導入し、基材に負の直流電圧を印加してガスイオンボンバード処理を行い、次に、前述した様な酸素、オゾン、H22等の酸化性ガス雰囲気中で該硬質皮膜の表面を熱酸化させ、その後に反応性スパッタリング法等を採用して、α型結晶構造主体のアルミナ皮膜を形成することが挙げられる。
【0055】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0056】
<実施例1>
実験では、表面を鏡面研磨(Ra=0.02μm程度)したサイズが12.7mm×12.7mm×5mmの超硬合金製の基材上に、予めAIP法で下地皮膜として膜厚2〜3μmのTiAlN皮膜を形成したものを用意した。尚、前記TiAlNの皮膜組成は、Ti0.55Al0.45Nである。
【0057】
比較例として、前記TiAlN皮膜またはCrN皮膜の表面を酸化処理してから、アルミナ皮膜の形成を行った。該酸化処理とアルミナ皮膜の形成は、図1に示す真空成膜装置(神戸製鋼所製 AIP-S40複合機)で行った。
【0058】
上記酸化処理は、具体的に次の様にして行った。即ち、試料(基材)2をチャンバー1内の回転テーブル3上の遊星回転治具4にセットし、チャンバー1内がほぼ真空状態となるまで排気した後、チャンバー1内部の側面に2箇所と中央部に設置したヒーター5で試料2を750℃(酸化処理工程での基材温度)となるまで加熱した。試料2の温度が所定の温度となった時点で、チャンバー1内に、酸素ガスを流量300sccm、圧力0.75Paとなるよう導入し、20分間加熱保持して酸化を行った。
【0059】
尚、上記下地皮膜の形成、酸化処理および後述するアルミナ成膜は、前記図1における回転テーブル3を回転(公転)させるとともに、その上に設置した遊星回転治具4(基材保持用パイプ)も回転(自転)させながら行った。
【0060】
次に、酸化処理後の下地皮膜上に、アルミナ皮膜を形成した。該アルミナ皮膜の形成は、アルゴンと酸素雰囲気中で、基材温度を前記酸化処理工程とほぼ同程度(750℃)とし、図1における2台のアルミニウムターゲットを装着したスパッタリングカソード6に約2.5kWのパルスDC電力を加え、反応性スパッタリング法を採用して行った。該アルミナ皮膜の形成は、放電電圧およびアルゴン−酸素の流量比率をプラズマ発光分光法を利用して制御し、放電状態をいわゆる遷移モードにして行った。この様にして膜厚が約2μmのアルミナ皮膜を形成した。
【0061】
また本発明例として、下記のガスイオンボンバード処理を酸化処理前に実施する以外は、上記比較例と同様にして実験を行った。即ち、前記TiAlN皮膜またはCrN皮膜の表面にガスイオンボンバード処理を施した後、酸化処理してから、アルミナ皮膜の形成を行った。
【0062】
ガスイオンボンバード処理は次の様にして行った。試料(基材)2をチャンバー1内の回転テーブル3上の遊星回転治具4にセットし、チャンバー1内がほぼ真空状態となるまで排気した後、チャンバー1内部の側面に2箇所と中央部に設置したヒーター5で試料を550℃となるまで加熱した。試料の温度が所定の温度となった時点で、チャンバー1内に、Arガスを圧力0.75Paとなるよう導入し、熱電子放出用フィラメント9(図1の紙面に対して垂直にワイヤ状に張っている)から熱電子を放出し、フィラメント9近傍のArガスをプラズマ化することによって、Arプラズマを生成した。
【0063】
そしてArプラズマ中で、基材に対し、バイアス電源8によりDC電圧(30kHzの周波数でパルス化)を−300Vで5分間、次に−400Vで10分間、合計15分間印加してガスイオンボンバード処理を行った。尚、この場合も、回転テーブル3および遊星回転治具4を回転させながら処理を行った。
【0064】
次にヒーター5で基材を750℃まで加熱した後は、前記比較例と同様に酸化処理とアルミナ皮膜の形成を行い、膜厚が約2μmのアルミナ皮膜を形成した。
【0065】
本実施例では行わなかったが、図1に示すように、AIP蒸発源(アーク蒸発源)7を設置して、下地皮膜の形成を上記ガスイオンボンバード処理、酸化処理およびアルミナ皮膜の形成を行う装置1内で行ってもよい。
【0066】
この様にして得られたアルミナ皮膜の表面を薄膜X線回折装置で分析し、アルミナ皮膜の結晶構造を特定した。その結果を図2(比較例)および図3(本発明例)に示す。
【0067】
図2から、X線回折の主要なピークは、α型結晶構造のアルミナを示す回折ピーク(以下、「αアルミナピーク」という)であり、その他に下地皮膜のTiAlNを示す回折ピーク、およびγ型結晶構造のアルミナを示す回折ピーク(以下、「γアルミナピーク」という)も若干見られる。このことから、従来の方法でアルミナ皮膜を形成すると、α型結晶構造のアルミナとγ型結晶構造のアルミナの混合した皮膜が形成していることがわかる。
【0068】
これに対し、本発明例の結果を示す図3では、γアルミナピークがかろうじて確認できるレベルにまでγ型結晶構造のアルミナの生成が抑制されており、その分、α型結晶構造のアルミナの比率が高まっていることが明らかである。
【0069】
また、これらのアルミナ皮膜の表面をSEMで観察(倍率:10,000倍)した結果を図4に示す。図4(a)は、比較例におけるアルミナ皮膜表面を示すSEM観察写真であり、図4(b)は、本発明例におけるアルミナ皮膜表面を示すSEM観察写真である。
【0070】
図4(a)から、比較例におけるアルミナ皮膜は、結晶粒(白色部分)と結晶粒の成長していない平坦な部分(黒色部分)に分かれており、成長した結晶粒は粗大化し、かつ疎らに存在していることがわかる。これに対して、図4(b)に示す本発明例のアルミナ皮膜は、均一かつ微細な結晶粒で構成されており、前記比較例の皮膜表面と明らかに相違している。
【0071】
<実施例2>
下地皮膜としてCrN皮膜を形成する以外は、上記実施例1と同様にして実験を行い、得られたアルミナ皮膜の表面を薄膜X線回折装置で分析して、該皮膜の結晶構造を特定した。その結果を図5(比較例)および図6(本発明例)に示す。
【0072】
図5および図6から、アルミナと判別される回折ピークは、どちらも全てα型結晶構造を示すものであり、本発明例と比較例のどちらもほぼα型結晶構造のみからなるアルミナ皮膜が得られており、この薄膜X線回折分析では、本発明例と比較例のアルミナ皮膜に顕著な相違はみられない。しかし、図5と図6の回折ピークの高さを比較すると、前記図6における回折強度は、図5と比較して若干小さめであることがわかる。これは後述する結晶粒の微細化の影響によるものと考えられる。
【0073】
また、これらのアルミナ皮膜の表面を、上記実施例1と同様にSEMで観察した。その結果を図7に示す。図7(a)は、比較例におけるアルミナ皮膜表面を示すSEM観察写真であり、図7(b)は、本発明例におけるアルミナ皮膜表面を示すSEM観察写真である。
【0074】
図7(b)に示す通り本発明例のアルミナ皮膜は、より細かい結晶粒で構成されており、また結晶粒間の空孔が、比較例のアルミナ皮膜[図7(a)]と比較してかなり小さく、結晶粒の緻密化が進んでいることがわかる。前記薄膜X線回折上では顕著な差はみられなかったが、該SEM観察では、この様に表面状態の相違が顕著であり、本発明例のアルミナ皮膜は、より優れた特性を発揮するものと思われる。
【0075】
尚、CrN皮膜やTiAlN皮膜等の下地皮膜を設けず、高速度鋼基材、cBN焼結体を基材として上記実施例1,2と同様の条件でアルミナ皮膜を形成する実験を行った場合にも、前記ガスイオンボンバード処理を行った後に酸化処理を行えば、形成されるアルミナの結晶構造は、γ型結晶構造の割合が小さくα型結晶構造主体であり、かつ結晶粒が微細かつ均一であるアルミナ皮膜が形成されることを確認した。
【0076】
【発明の効果】
本発明は以上の様に構成されており、基材や下地皮膜の特性を劣化させることのない比較的低温域で、α型結晶構造以外のアルミナの生成を極力抑制してほぼα型結晶構造のみからなるアルミナ皮膜を確実に形成することができる。また本発明法によれば、得られるアルミナ皮膜は、結晶粒が微細かつ均一であるため、従来よりもより優れた耐摩耗性および耐熱性を期待することができる。
【0077】
更に本発明法は、全ての工程を同一装置内で行うことが可能であるので、効率的にα型結晶構造主体のアルミナ皮膜を形成することができる。
【図面の簡単な説明】
【図1】本発明の実施に用いる装置例を示す概略説明図(上面図)である。
【図2】TiAlN皮膜上に形成したアルミナ皮膜(比較例)の薄膜X線回折結果(成膜温度750℃)である。
【図3】TiAlN皮膜上に形成したアルミナ皮膜(本発明例)の薄膜X線回折結果(成膜温度750℃)である。
【図4】TiAlN皮膜上に形成したアルミナ皮膜の表面をSEMで撮影した顕微鏡観察写真(aは比較例、bは本発明例)である。
【図5】CrN皮膜上に形成したアルミナ皮膜(比較例)の薄膜X線回折結果(成膜温度750℃)である。
【図6】CrN皮膜上に形成したアルミナ皮膜(本発明例)の薄膜X線回折結果(成膜温度750℃)である。
【図7】CrN皮膜上に形成したアルミナ皮膜の表面をSEMで撮影した顕微鏡観察写真(aは比較例、bは本発明例)である。
【符号の説明】
1 チャンバー
2 試料(基材)
3 回転テーブル
4 遊星回転治具
5 ヒーター
6 スパッタリングカソード
7 AIP用蒸発源
8 バイアス電源
9 熱電子放出用フィラメント
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an α-type crystal structure-based alumina film and a method for producing a member coated with an α-type crystal structure-based alumina film. Specifically, the present invention relates to a cutting tool, a sliding member, and a mold. An α-type crystal structure-based alumina coating that is coated on a wear-resistant member such as the above, under low-temperature conditions that do not impair the characteristics of the base material such as the cutting tool or the sliding member. The present invention relates to a useful production method that can be formed, and a production method of a member coated with the α-type crystal structure-based alumina film (hereinafter, these methods may be simply referred to as “the method of the present invention”). .
[0002]
Although the alumina film mainly composed of the α-type crystal structure of the present invention can be applied to members for various uses as described above, the following description will focus on the case where it is applied to a cutting tool as a representative example.
[0003]
[Prior art]
In general, as a cutting tool or sliding member that requires excellent wear resistance and sliding characteristics, a hard film such as titanium nitride or titanium aluminum nitride is formed on the surface of a base material such as high-speed steel or cemented carbide. However, those formed by methods such as physical vapor deposition (hereinafter referred to as PVD) and chemical vapor deposition (hereinafter referred to as CVD) are used.
[0004]
In particular, when used as a cutting tool, the hard coating is required to have wear resistance and heat resistance (oxidation resistance at high temperature) as characteristics. Therefore, titanium aluminum nitride (TiAlN) is particularly preferable as having both characteristics. However, in recent years, it has been widely used as a coating material for carbide tools and the like in which the cutting edge temperature during cutting becomes high. The reason why TiAlN exhibits excellent characteristics is that heat resistance is improved by the action of aluminum contained in the film, and stable wear resistance and heat resistance can be maintained up to a high temperature of about 800 ° C. As the TiAlN, various materials having different composition ratios of Ti and Al are used, and most of them are Ti: Al atomic ratios having the above characteristics of 50:50 to 25:75. is there.
[0005]
By the way, the cutting edge of a cutting tool or the like may become a high temperature of 1000 ° C. or higher during cutting. Under such circumstances, the TiAlN film alone cannot secure sufficient heat resistance. For example, as shown in Patent Document 1, after forming a TiAlN film, an alumina layer is further formed to ensure heat resistance. To be done.
[0006]
Alumina has various crystal structures depending on the temperature, but all are thermally metastable. However, when the temperature of the cutting edge at the time of cutting, such as a cutting tool, fluctuates significantly over a wide range from room temperature to over 1000 ° C., the crystal structure of alumina changes, causing problems such as cracking or peeling of the film. . However, only the α-type crystal structure (corundum structure) alumina formed by adopting the CVD method and raising the substrate temperature to 1000 ° C. or higher is thermally formed regardless of the subsequent temperature. Maintain a stable structure. Accordingly, in order to impart heat resistance to a cutting tool or the like, it is an effective means to cover an alumina film having an α-type crystal structure.
[0007]
However, as described above, in order to form an alumina having an α-type crystal structure, the base material must be heated to 1000 ° C. or higher, so that applicable base materials are limited. This is because, depending on the type of the substrate, when exposed to a high temperature of 1000 ° C. or higher, the substrate softens and may lose its suitability as a wear-resistant member substrate. Further, even a high temperature base material such as a cemented carbide causes problems such as deformation when exposed to such a high temperature. In addition, the practical temperature range of hard coatings such as TiAlN films formed on a substrate as a film exhibiting wear resistance is generally about 800 ° C. at maximum, and when exposed to a high temperature of 1000 ° C. or more, the coating changes in quality. In addition, the wear resistance may deteriorate.
[0008]
In order to solve such a problem, Patent Document 2 has the same high hardness as that of the alumina (Al, Cr).2OThreeIt is reported that mixed crystals were obtained in a low temperature range of 500 ° C. or lower. However, when the work material is composed mainly of iron, Cr present on the surface of the mixed crystal film tends to cause a chemical reaction with iron in the work material at the time of cutting. This will shorten the service life.
[0009]
In addition, O. Zywitzki, G. Hoetzsch et al., In Non-Patent Document 1, formed an alumina film having an α-type crystal structure at 750 ° C. by performing reactive sputtering using a high power (11-17 kW) pulse power source. It reports that it was formed. However, in order to obtain an α-type crystal structure alumina by this method, it is inevitable to increase the size of the pulse power source.
[0010]
As a technique for solving such problems, Patent Document 3 discloses an oxide film having a corundum structure (α-type crystal structure) having a lattice constant of 4.779 mm or more and 5.000 mm or less and a film thickness of at least 0.005 μm. Is a base layer, and an α-type crystal structure alumina film is formed on the base layer. The oxide film component is Cr2OThree, (Fe, Cr)2OThreeOr (Al, Cr)2OThreeIt is preferable that the component of the oxide film is (Fe, Cr)2OThree(Fe)x, Cr(1-x))2OThree(However, x is preferably 0 ≦ x ≦ 0.54), and the oxide film component is (Al, Cr).2OThree(Aly, Cr(1-y))2OThreeIt is indicated that it is more preferable to adopt (where y is 0 ≦ y ≦ 0.90).
[0011]
In Patent Document 3 above, a composite nitride film of Al and one or more elements selected from the group consisting of Ti, Cr, and V is formed as a hard film, and an intermediate layer (Alz, Cr(1-z)) N (provided that z is 0 ≦ z ≦ 0.90), and the oxide is further oxidized to form a corundum structure (α-type crystal structure) oxide film. It has been shown that it is useful to form α-type alumina on the film, and according to this method, it is said that α-type crystal structure alumina can be formed at a low substrate temperature.
[0012]
The alumina film obtained by the above method is an alumina mainly composed of an α-type crystal structure. However, when an X-ray diffraction pattern is observed in detail, a diffraction peak indicating alumina having a crystal structure other than α-type such as γ-type is observed. It was sometimes observed. Further, even when an alumina film having only an α-type crystal structure is obtained, when the surface of the film is observed with a scanning electron microscope (SEM), when the voids between the alumina crystal grains are large, In some cases, the size of the was uneven. Therefore, it is considered that further improvement is required to obtain an alumina film excellent in wear resistance and heat resistance more reliably.
[0013]
[Patent Document 1]
Japanese Patent No. 2742049
[Patent Document 2]
JP-A-5-208326
[Patent Document 3]
JP 2002-53946 A
[Non-Patent Document 1]
Surf.Coat.Technol. 86-87 1996 p. 640-647
[0014]
[Problems to be solved by the invention]
The present invention has been made in view of the circumstances as described above, and its purpose is to suppress the formation of crystal phases other than the α-type crystal structure and to provide wear resistance with fine and uniform alumina crystal grains. It is another object of the present invention to provide a useful method for forming an alumina film excellent in heat resistance under low temperature conditions that do not impair the properties of a substrate such as the cutting tool or sliding member.
[0015]
[Means for Solving the Problems]
  The method for producing an α-type crystal structure-based alumina film according to the present invention is as follows.On a base material made of steel or cBN sintered body,A method for forming an alumina film mainly composed of an α-type crystal structure, which has a gist in that a surface of a base material is subjected to gas ion bombardment treatment, followed by oxidation treatment, and then an alumina film is formed. It is.
[0016]
  Another method for producing an α-type crystal structure-based alumina film according to the present invention includes one or more elements selected from the group consisting of Ti, Al, and Cr, a compound containing C or N, or a mutual combination of these compounds. A method of forming an alumina coating mainly comprising an α-type crystal structure on a base coating in which a base coating consisting of at least one of a solid solution is previously formed on a substrate, the surface of the base coating After subjecting to gas ion bombardment, the surface is oxidized, and then an alumina film is formed.
[0017]
  The gas ion bombardment treatment is preferably performed by applying a voltage to the substrate in a gas plasma in a vacuum chamber, and the oxidation treatment is carried out in an oxidizing gas-containing atmosphere. It is preferable to keep the temperature of the undercoat on the material at 650 to 800 ° C.
[0018]
  The present invention also provides a method for producing a member coated with the α-type crystal structure-based alumina film, the method comprising:
(1) A substrate comprising at least one element selected from the group consisting of Ti, Al, and Cr and a compound containing C or N, or a mutual solid solution of these compounds on a substrate. Forming a film;
(2) A step of performing gas ion bombardment treatment on the surface of the undercoat;
(3) a step of oxidizing the surface of the undercoat after the gas ion bombardment treatment,
(4) Next, a step of forming an alumina film mainly composed of an α-type crystal structure,
It is characterized in that it is sequentially performed in the same apparatus.
[0020]
The undercoat is at least one selected from the group consisting of Ti (C, N), Cr (C, N), TiAl (C, N), CrAl (C, N), and TiAlCr (C, N). Is preferably formed. Ti (C, N), Cr (C, N), TiAl (C, N), CrAl (C, N), TiAlCr (C, N) are Ti, Cr, TiAl, CrAl, or TiAlCr, respectively. Represents carbide, nitride or charcoal / nitride (the same applies hereinafter).
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Under the circumstances as described above, the inventors of the present invention provide an alumina film mainly composed of α-type crystal structure and fine and uniform crystal grains (hereinafter sometimes simply referred to as “α-type principal alumina film”). Formed in a temperature range of about 800 ° C. or less capable of maintaining the characteristics of the base material and the base film (hereinafter, unless otherwise specified, “base material” includes those in which the base film is previously formed on the base material). The research was advanced about the method to do.
[0022]
As a result, in forming the alumina film, the ratio of α-type in the crystal structure of the alumina film is significantly improved by subjecting the surface of the base material to gas ion bombardment and then oxidizing the surface. The inventors have found that the alumina crystal grains are fine and uniform, and have arrived at the present invention. The mechanism by which the above method effectively acts on the formation of the α-type main alumina film is presumed as follows from the experimental results in the examples described later.
[0023]
As described above, according to the conventional method, when the alumina film is formed on the CrN film, the alumina film mainly composed of the α-type crystal structure can be formed by oxidizing the surface of the CrN film.
[0024]
As a mechanism of this method, before forming the alumina film, the surface of the CrN film to be formed is exposed to an oxidizing atmosphere, so that Cr has the same crystal structure as that of the α-type crystal structure on the surface.2OThreeIt is considered that this surface condition is suitable for the generation of alumina crystal nuclei having an α-type crystal structure during the formation of the alumina film.
[0025]
However, when an alumina film is formed by this method, when the surface of the film is observed with an SEM, the alumina crystal grains become coarse and sparse as shown in a comparative example described later. The reason is that not all regions on the oxidized surface are suitable for the production of alumina crystal nuclei having an α-type crystal structure. Specifically, the surface state of the CrN film before the oxidation treatment is not necessarily uniform. It is considered that the surface after the oxidation treatment is also in a non-uniform state.
[0026]
In contrast, when the gas ion bombardment is performed after the gas ion bombardment as in the present invention, the surface of the formed alumina film is observed with an SEM. The alumina crystal grains are finer and more uniform than those formed by the conventional method.
[0027]
From these results, it is presumed that by forming the gas ion bombardment before the oxidation treatment, more and more uniform generation points of alumina crystal nuclei having an α-type crystal structure formed by the oxidation treatment are present. be able to.
[0028]
Although details of this mechanism are not clear, for example, it can be considered as follows. That is, according to the method of the present invention, the adsorbed moisture, contamination, and natural oxide film present on the surface of the film such as CrN are removed by the gas ion bombardment process, and the surface that is easily combined with oxygen is oxidized. For this reason, it is considered that oxides which are the formation points of alumina crystal nuclei having an α-type crystal structure are formed finely and uniformly on the surface of the film.
[0029]
Hereinafter, preferred embodiments and the like in the method of the present invention will be described in detail.
[0030]
<About gas ion bombardment>
As described above, the method of the present invention is characterized in that the surface of the base material is subjected to a gas ion bombardment treatment, and then the surface is oxidized to form an alumina film. The details of the gas ion bombardment treatment are as follows. The conditions are not particularly limited, and conditions that can etch the substrate surface may be appropriately employed.
[0031]
As a specific method, for example, as shown in FIG. 1 to be described later, the following method using filament-excited plasma can be cited. That is, in a state where an inert gas such as Ar is introduced into the vacuum chamber, a thermal electron is generated from the filament to generate a discharge, and gas ions such as Ar in the plasma generated by the discharge are applied to the substrate. In this method, the substrate surface is etched by accelerating and colliding with a negative voltage.
[0032]
In addition to applying the negative DC voltage continuously or intermittently as described above, the voltage may be applied by applying a high-frequency AC voltage.
[0033]
In order to accelerate the generated gas ions such as Ar toward the substrate and to sufficiently etch the surface of the substrate, the negative DC voltage is preferably set to −100 V or more (preferably −300 V or more). . However, if the negative voltage is too large, there is a concern about an adverse effect such as the occurrence of arc discharge, so it is preferable to suppress it to −2000 V or less (preferably −1000 V or less). When a high-frequency AC voltage is applied, the generated self-bias is preferably set to the same level as the DC voltage.
[0034]
The gas ion species to be used is not particularly limited as long as it has an etching effect, and a rare gas such as Ar, Kr, or Xe can be used. Among them, it is preferable to use Ar gas which is relatively inexpensive and generally used.
[0035]
The plasma may be generated by a method such as a holocathode discharge or RF (radio frequency) discharge in addition to the method using the filament.
[0036]
As a simpler method, a glow discharge is generated by applying a negative DC voltage or a high-frequency AC voltage to the base material with an inert gas such as Ar introduced into the vacuum chamber. Etching may be performed by accelerating gas ions (Ar ions or the like) in the plasma with an applied voltage.
[0037]
As another specific embodiment of the gas ion bombardment process, a method of causing highly accelerated gas ions generated from an ion beam source to collide with the substrate surface can be adopted.
[0038]
<Substrate and undercoat>
In the method of the present invention, as a base material, a base material constituting a member such as a cutting tool is used as it is, and a single layer or a multilayer base film is previously formed on the base material in order to impart characteristics such as wear resistance. What was formed can also be used. Although the present invention does not prescribe the specific types of the base material and the base film, it is not limited to the production of cutting tools, sliding members, molds and the like that require excellent heat resistance and wear resistance. In order to apply the inventive method, the following materials are preferably used as the substrate and the base film.
[0039]
As the base material, steel materials such as high speed steel, cemented carbide, cermet, cBN (cubic boron nitride) sintered body or ceramic sintered body can be used.
[0040]
When using what formed the base film on the base material, the kind of base material is not particularly limited. Examples of the base film include one or more elements selected from the group consisting of elements 4a, 5a, and 6a in the periodic table, Al, Si, Fe, Cu, and Y, and C, N, and B. It is preferable to form at least one of a compound with one or more elements in O, or a mutual solid solution of these compounds, because an oxide layer advantageous for forming an alumina having an α-type crystal structure can be formed. .
[0041]
Typical examples of the undercoat are Ti (C, N), Cr (C, N), TiAl (C, N), CrAl (C, N), TiAlCr (C, N), that is, Ti, Cr. , TiAl, CrAl, or TiAlCr, such as carbides, nitrides, charcoal / nitrides, and hard coatings commonly used for cutting tools, for example, TiN, TiC, TiCN, TiAlN, CrN, CrAlN, TiAlCrN Can be formed as a single layer or multiple layers.
[0042]
The film thickness of the undercoat is preferably 0.5 μm or more, more preferably 1 μm or more, in order to sufficiently exhibit the wear resistance and heat resistance expected of the film. However, if the film thickness of the undercoat is too thick, cracks are likely to occur in the film at the time of cutting and the life cannot be extended. Therefore, the thickness of the undercoat is preferably 20 μm or less, more preferably 10 μm or less.
[0043]
Although the formation method of the said base film is not specifically limited, It is preferable to form by PVD method, and it is more preferable to employ | adopt AIP (ion plating) method and reactive sputtering method as this PVD method. In addition, if a method of forming a hard film by the PVD method is adopted, the formation of the base film and the formation of the α-type main alumina film described later can be performed in the same apparatus, so from the viewpoint of improving productivity. Is also preferable.
[0044]
<About oxidation treatment method>
In the present invention, the base surface is oxidized after the gas ion bombardment. The conditions for the oxidation treatment are not particularly limited, but in order to efficiently form an oxide-containing layer advantageous for the production of alumina crystal nuclei having an α-type crystal structure, oxidation is preferably performed under the following conditions.
[0045]
That is, the oxidation is preferably performed in an oxidizing gas-containing atmosphere. The reason is that it can be oxidized efficiently, for example, oxygen, ozone, H2O2An atmosphere containing an oxidizing gas such as, for example, is included, and of course, an air atmosphere is also included.
[0046]
Moreover, it is desirable that the oxidation is performed by maintaining the substrate temperature at 650 to 800 ° C. This is because if the substrate temperature is too low, sufficient oxidation will not be performed, and it is desirable to increase the temperature to 700 ° C. or higher. Oxidation is promoted as the substrate temperature is increased, but the upper limit of the substrate temperature needs to be suppressed to less than 1000 ° C. for the purpose of the present invention. In the present invention, an oxide-containing layer useful for forming an α-type main alumina film described later can be formed even at 800 ° C. or lower.
[0047]
In the present invention, there are no particular restrictions on the other conditions for the oxidation treatment, and specific oxidation methods include, for example, oxygen, ozone, H, in addition to the thermal oxidation.2O2Of course, it is also effective to adopt a method in which an oxidizing gas such as plasma is irradiated.
[0048]
This step is desirably performed in a film forming apparatus for forming an alumina film to be formed in the next step, and a method for increasing the substrate temperature in an oxidizing gas atmosphere and performing the thermal oxidation is given as a preferred embodiment. It is done.
[0049]
<Alumina coating formation method>
The formation method of the α-type main alumina film is not particularly limited, but the CVD method is not preferable because it needs to be performed in a high temperature range of 1000 ° C. or higher, and it is desirable to adopt a PVD method capable of forming a film in a low temperature range. Examples of the PVD method include a sputtering method, an ion plating method, and a vapor deposition method. Among them, the sputtering method is preferable, and reactive sputtering is particularly preferable because high-speed film formation can be performed using an inexpensive metal target. .
[0050]
Further, the substrate temperature at the time of forming the alumina film is not particularly specified, but it is preferable to carry out in the temperature range of about 650 to 800 ° C. because the α-type main alumina film is easily formed. Furthermore, following the oxidation treatment step, if the base material temperature during the oxidation treatment is kept constant to form the α-type main alumina film, the characteristics of the base material and the hard film can be maintained, and the productivity is also excellent. This is preferable.
[0051]
The thickness of the alumina film to be formed is desirably 0.1 to 20 μm. In order to maintain the excellent heat resistance of the alumina film, it is effective to secure 0.1 μm or more, and more preferably 1 μm or more. However, when the alumina film is too thick, internal stress is generated in the alumina film, and cracks and the like are likely to occur. Therefore, the film thickness is preferably 20 μm or less, more preferably 10 μm or less, and still more preferably 5 μm or less.
[0052]
<About film formation process>
All steps of formation of the base film (when using a base film formed on a base material), the gas ion bombardment process, the oxidation process, and the formation of an alumina film mainly composed of the α-type crystal structure If the treatment is performed in the same apparatus, the treatment can be continuously performed without moving the treatment object, and therefore, the member coated with the α-type crystal structure-based alumina film can be efficiently produced.
[0053]
Moreover, if it carries out in the same apparatus in this way, the said gas ion bombardment process and the said oxidation process can be performed without reducing the base-material temperature (about 350-600 degreeC) at the time of base film formation. Therefore, the time and energy required for heating the substrate can be suppressed.
[0054]
Specifically, an AIP evaporation source, a magnetron sputtering cathode, a heater heating mechanism, a substrate rotating mechanism, etc. are provided, and a substrate made of cemented carbide, for example, is installed in an apparatus as shown in the examples described later. After forming a hard film such as TiAlN as a film by adopting the AIP method or the like, Ar is introduced into the vacuum chamber, a negative DC voltage is applied to the base material to perform gas ion bombardment, Like oxygen, ozone, H2O2It is possible to thermally oxidize the surface of the hard film in an oxidizing gas atmosphere such as, and then to form an alumina film mainly composed of an α-type crystal structure by employing a reactive sputtering method or the like.
[0055]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
[0056]
<Example 1>
In the experiment, the surface was mirror-polished (Ra = 0.02 μm) on a cemented carbide substrate having a size of 12.7 mm × 12.7 mm × 5 mm, and a film thickness of 2 to 3 μm was previously formed as an undercoat by the AIP method. A TiAlN film was prepared. The film composition of TiAlN is Ti0.55Al0.45N.
[0057]
As a comparative example, the surface of the TiAlN film or CrN film was oxidized and then an alumina film was formed. The oxidation treatment and the formation of the alumina film were performed with a vacuum film forming apparatus (AIP-S40 compound machine manufactured by Kobe Steel) shown in FIG.
[0058]
Specifically, the oxidation treatment was performed as follows. That is, the sample (base material) 2 is set on the planetary rotating jig 4 on the rotary table 3 in the chamber 1 and evacuated until the inside of the chamber 1 is almost in a vacuum state. The sample 2 was heated with the heater 5 installed in the center until it reached 750 ° C. (base material temperature in the oxidation treatment step). When the temperature of the sample 2 reached a predetermined temperature, oxygen gas was introduced into the chamber 1 so as to have a flow rate of 300 sccm and a pressure of 0.75 Pa, and oxidation was performed by heating and holding for 20 minutes.
[0059]
In addition, the formation of the base film, the oxidation treatment, and the alumina film formation described later rotate (revolve) the rotary table 3 in FIG. 1 and the planetary rotating jig 4 (base material holding pipe) installed thereon. Was also carried out while rotating (rotating).
[0060]
Next, an alumina film was formed on the base film after the oxidation treatment. The alumina film is formed in an atmosphere of argon and oxygen at a substrate temperature of about the same level as that in the oxidation treatment step (750 ° C.), and on the sputtering cathode 6 equipped with two aluminum targets in FIG. A pulsed DC power of 5 kW was applied and a reactive sputtering method was employed. The alumina film was formed by controlling the discharge voltage and the flow rate ratio of argon-oxygen using plasma emission spectroscopy, and setting the discharge state to a so-called transition mode. In this way, an alumina film having a thickness of about 2 μm was formed.
[0061]
Further, as an example of the present invention, an experiment was conducted in the same manner as in the above comparative example except that the following gas ion bombardment treatment was performed before the oxidation treatment. That is, the surface of the TiAlN film or CrN film was subjected to gas ion bombardment and then oxidized to form an alumina film.
[0062]
The gas ion bombardment process was performed as follows. The sample (base material) 2 is set on the planetary rotating jig 4 on the turntable 3 in the chamber 1 and evacuated until the inside of the chamber 1 is almost in a vacuum state. The sample was heated to 550 ° C. with the heater 5 installed in the above. When the temperature of the sample reaches a predetermined temperature, Ar gas is introduced into the chamber 1 so that the pressure becomes 0.75 Pa, and the thermoelectron emission filament 9 (in a wire shape perpendicular to the paper surface of FIG. 1). Ar plasma was generated by emitting thermoelectrons from the gas and turning Ar gas in the vicinity of the filament 9 into plasma.
[0063]
A gas ion bombardment treatment is performed by applying a DC voltage (pulsed at a frequency of 30 kHz) to the substrate in Ar plasma for 5 minutes at −300 V for 5 minutes and then at −400 V for 10 minutes for a total of 15 minutes. Went. Also in this case, the processing was performed while rotating the rotary table 3 and the planetary rotating jig 4.
[0064]
Next, after heating the base material to 750 ° C. with the heater 5, oxidation treatment and formation of an alumina film were performed in the same manner as in the comparative example to form an alumina film having a thickness of about 2 μm.
[0065]
Although not performed in this embodiment, as shown in FIG. 1, an AIP evaporation source (arc evaporation source) 7 is installed, and the formation of the base film is performed by the gas ion bombardment process, the oxidation process, and the formation of the alumina film. It may be performed in the apparatus 1.
[0066]
The surface of the alumina film thus obtained was analyzed with a thin film X-ray diffractometer to identify the crystal structure of the alumina film. The results are shown in FIG. 2 (comparative example) and FIG. 3 (invention example).
[0067]
From FIG. 2, the main peak of X-ray diffraction is a diffraction peak indicating alumina having an α-type crystal structure (hereinafter referred to as “α-alumina peak”), and in addition, a diffraction peak indicating TiAlN of the underlying film, and γ-type. Some diffraction peaks (hereinafter referred to as “γ-alumina peak”) showing a crystalline alumina are also observed. From this, it is understood that when an alumina film is formed by a conventional method, a film in which an alumina having an α-type crystal structure and an alumina having a γ-type crystal structure are mixed is formed.
[0068]
On the other hand, in FIG. 3 showing the results of the present invention example, the production of alumina having a γ-type crystal structure is suppressed to a level at which the γ-alumina peak can be barely confirmed. It is clear that is increasing.
[0069]
Moreover, the result of having observed the surface of these alumina membrane | film | coats by SEM (magnification: 10,000 times) is shown in FIG. FIG. 4A is an SEM observation photograph showing the surface of the alumina film in the comparative example, and FIG. 4B is an SEM observation photograph showing the surface of the alumina film in the example of the present invention.
[0070]
4A, the alumina film in the comparative example is divided into crystal grains (white part) and flat parts (black part) where the crystal grains are not grown, and the grown crystal grains are coarsened and sparse. It can be seen that On the other hand, the alumina film of the example of the present invention shown in FIG. 4B is composed of uniform and fine crystal grains, and is clearly different from the film surface of the comparative example.
[0071]
<Example 2>
An experiment was performed in the same manner as in Example 1 except that a CrN film was formed as the base film, and the surface of the obtained alumina film was analyzed with a thin film X-ray diffractometer to identify the crystal structure of the film. The results are shown in FIG. 5 (comparative example) and FIG. 6 (invention example).
[0072]
From FIGS. 5 and 6, the diffraction peaks discriminated from alumina all show an α-type crystal structure, and both the present invention example and the comparative example provide an alumina film having only an α-type crystal structure. In this thin film X-ray diffraction analysis, no remarkable difference is observed between the alumina films of the present invention and the comparative example. However, when the heights of the diffraction peaks in FIG. 5 and FIG. 6 are compared, it can be seen that the diffraction intensity in FIG. 6 is slightly smaller than that in FIG. This is considered to be due to the influence of crystal grain refinement described later.
[0073]
Further, the surfaces of these alumina coatings were observed by SEM in the same manner as in Example 1 above. The result is shown in FIG. FIG. 7A is an SEM observation photograph showing the surface of the alumina film in the comparative example, and FIG. 7B is an SEM observation photograph showing the surface of the alumina film in the example of the present invention.
[0074]
As shown in FIG. 7 (b), the alumina film of the example of the present invention is composed of finer crystal grains, and the pores between the crystal grains are compared with the alumina film of the comparative example [FIG. 7 (a)]. It can be seen that the crystal grains are becoming denser. Although no significant difference was observed on the thin film X-ray diffraction, the difference in the surface state was remarkable in the SEM observation, and the alumina film of the present invention example exhibited more excellent characteristics. I think that the.
[0075]
In the case of conducting an experiment in which an alumina coating was formed under the same conditions as in Examples 1 and 2 using a high-speed steel substrate and a cBN sintered body as a substrate without providing a base coating such as a CrN coating or a TiAlN coating. In addition, if the oxidation treatment is performed after the gas ion bombardment treatment, the crystal structure of the alumina formed is mainly of the α-type crystal structure with a small proportion of the γ-type crystal structure, and the crystal grains are fine and uniform. It was confirmed that an alumina film was formed.
[0076]
【The invention's effect】
The present invention is configured as described above, and has a substantially α-type crystal structure by suppressing generation of alumina other than the α-type crystal structure as much as possible in a relatively low temperature range without deteriorating the properties of the base material and the base film. It is possible to reliably form an alumina film consisting only of the above. Further, according to the method of the present invention, since the obtained alumina film has fine and uniform crystal grains, it can be expected to have better wear resistance and heat resistance than before.
[0077]
Furthermore, since the method of the present invention can perform all the steps in the same apparatus, an α-type crystal structure-based alumina film can be efficiently formed.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view (top view) showing an example of an apparatus used for carrying out the present invention.
FIG. 2 is a thin film X-ray diffraction result (film formation temperature 750 ° C.) of an alumina film (comparative example) formed on a TiAlN film.
FIG. 3 is a thin film X-ray diffraction result (film formation temperature of 750 ° C.) of an alumina film (example of the present invention) formed on a TiAlN film.
FIG. 4 is a microscopic photograph (a is a comparative example, and b is an example of the present invention) in which the surface of an alumina coating formed on a TiAlN coating is photographed with an SEM.
FIG. 5 is a thin film X-ray diffraction result (film formation temperature 750 ° C.) of an alumina film (comparative example) formed on a CrN film.
FIG. 6 is a thin film X-ray diffraction result (film formation temperature of 750 ° C.) of an alumina film (example of the present invention) formed on a CrN film.
FIG. 7 is a microscopic photograph (a is a comparative example, and b is an example of the present invention) in which the surface of an alumina film formed on a CrN film is photographed by SEM.
[Explanation of symbols]
1 chamber
2 Sample (base material)
3 Rotary table
4 Planetary rotating jig
5 Heater
6 Sputtering cathode
7 Evaporation source for AIP
8 Bias power supply
9 Thermionic emission filament

Claims (6)

鋼材またはcBN焼結体からなる基材上に、α型結晶構造を主体とするアルミナ皮膜を形成する方法であって、前記基材表面にガスイオンボンバード処理を施した後、表面を酸化処理し、その後にアルミナ皮膜を形成することを特徴とするα型結晶構造主体のアルミナ皮膜の製造方法。 On a substrate made of steel or cBN sintered body, a method of forming an alumina film mainly composed of α-type crystal structure, was subjected to gas ion bombardment process on the substrate surface, oxidized the surface And then forming an alumina coating, characterized in that an α-type crystal structure-based alumina coating is produced. Ti、AlおよびCrよりなる群から選択される1種以上の元素と、CまたはNを含む化合物若しくはこれら化合物の相互固溶体、のいずれか1種以上からなる下地皮膜が基材上に予め形成されている当該下地皮膜上に、α型結晶構造を主体とするアルミナ皮膜を形成する方法であって、前記下地皮膜表面にガスイオンボンバード処理を施した後、該表面を酸化処理し、その後にアルミナ皮膜を形成することを特徴とするα型結晶構造主体のアルミナ皮膜の製造方法。An undercoat made of one or more elements selected from the group consisting of Ti, Al, and Cr, and a compound containing C or N, or a mutual solid solution of these compounds is formed in advance on the substrate. A method of forming an alumina film mainly comprising an α-type crystal structure on the underlying film, wherein the surface of the underlying film is subjected to gas ion bombardment treatment, and then the surface is oxidized, and then alumina A method for producing an alumina coating mainly comprising an α-type crystal structure, comprising forming a coating. 前記ガスイオンボンバード処理は、真空チャンバー内においてガスプラズマ中で前記基材に対して電圧を印加して行う請求項1または2に記載の製造方法。The gas ion bombardment treatment method according to claim 1 or 2 carried out by applying a voltage to said substrate in a gas plasma in a vacuum chamber. 前記酸化処理は、酸化性ガス含有雰囲気下で前記基材または該基材上の下地被膜の温度を650〜800℃に保持して行う請求項1〜のいずれかに記載の製造方法。The said oxidation process is a manufacturing method in any one of Claims 1-3 performed by hold | maintaining the temperature of the said base material or the base film on this base material at 650-800 degreeC in oxidizing gas containing atmosphere. 基材上に、Ti、AlおよびCrよりなる群から選択される1種以上の元素と、CまたはNを含む化合物若しくはこれら化合物の相互固溶体、のいずれか1種以上からなる下地皮膜を形成する工程、該下地皮膜表面にガスイオンボンバード処理を施す工程、表面を酸化処理する工程、次いでα型結晶構造を主体とするアルミナ皮膜を形成する工程を、同一装置内で順次実施することを特徴とするα型結晶構造主体のアルミナ皮膜で被覆された部材の製造方法。On the base material , an undercoat film made of one or more elements selected from the group consisting of Ti, Al and Cr, and a compound containing C or N or a mutual solid solution of these compounds is formed. A step of performing a gas ion bombarding process on the surface of the base film, a process of oxidizing the surface, and then forming an alumina film mainly composed of an α-type crystal structure in the same apparatus. A method for producing a member coated with an alumina film mainly composed of an α-type crystal structure. 前記下地皮膜として、Ti(C,N)、Cr(C,N)、TiAl(C,N)、CrAl(C,N)およびTiAlCr(C,N)よりなる群から選択される1種以上を形成する請求項に記載の製造方法。As the undercoat, at least one selected from the group consisting of Ti (C, N), Cr (C, N), TiAl (C, N), CrAl (C, N) and TiAlCr (C, N) is used. The manufacturing method of Claim 5 formed.
JP2003125517A 2002-08-08 2003-04-30 Method for producing alumina film mainly composed of α-type crystal structure and method for producing member coated with alumina film mainly composed of α-type crystal structure Expired - Fee Related JP3971336B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2003125517A JP3971336B2 (en) 2003-04-30 2003-04-30 Method for producing alumina film mainly composed of α-type crystal structure and method for producing member coated with alumina film mainly composed of α-type crystal structure
EP20140169853 EP2865784A1 (en) 2002-08-08 2003-08-08 Process for producing alumina coating composed mainly of alpha-type crystal structure
EP03784598.9A EP1553210B1 (en) 2002-08-08 2003-08-08 PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF a-TYPE CRYSTAL STRUCTURE
CNB038189275A CN100413998C (en) 2002-08-08 2003-08-08 Process for producing alumina coating composed mainly of alpha-type crystal structure, alumina coating composed mainly of alpha-type crystal structure, laminate coating including the alumina coating,
EP14169851.4A EP2848712B1 (en) 2002-08-08 2003-08-08 Process for producing alumina coating composed mainly of alpha-type crystal structure, alumina coating composed mainly of alpha-type crystal structure, laminate coating including the alumina coating , member clad with the alumina coating or laminate coating, process for producing the member, and physical vapor deposition apparatus
US10/523,931 US7531212B2 (en) 2002-08-08 2003-08-08 Process for producing an alumina coating comprised mainly of α crystal structure
AU2003254888A AU2003254888A1 (en) 2002-08-08 2003-08-08 PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF Alpha-TYPE CRYSTAL STRUCTURE, ALUMINA COATING COMPOSED MAINLY OF Alpha-TYPE CRYSTAL STRUCTURE, LAMINATE COATING INCLUDING THE ALUMINA COATING, MEMBER CLAD WITH THE ALUMINA COATING OR LAMINATE COATING, PROCESS FOR PRODUCING THE MEMBER, AND PHYSICAL EVAPORATION APPARATU
PCT/JP2003/010114 WO2004015170A1 (en) 2002-08-08 2003-08-08 PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF α-TYPE CRYSTAL STRUCTURE, ALUMINA COATING COMPOSED MAINLY OF α-TYPE CRYSTAL STRUCTURE, LAMINATE COATING INCLUDING THE ALUMINA COATING, MEMBER CLAD WITH THE ALUMINA COATING OR LAMINATE COATING, PROCESS FOR PRODUCING THE MEMBER, AND PHYSICAL EVAPORATION APPARATU
IL166622A IL166622A (en) 2002-08-08 2005-02-01 Process for producing an alumina coating and laminate coatings including the same
US12/402,755 US8323807B2 (en) 2002-08-08 2009-03-12 Process for producing alumina coating composed mainly of α-type crystal structure
US12/402,763 US20090173625A1 (en) 2002-08-08 2009-03-12 Process for producing an alumina coating comprised mainly of alpha crystal structure
IL218369A IL218369A0 (en) 2002-08-08 2012-02-28 A process for producing an alumina coating and laminate coatings including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125517A JP3971336B2 (en) 2003-04-30 2003-04-30 Method for producing alumina film mainly composed of α-type crystal structure and method for producing member coated with alumina film mainly composed of α-type crystal structure

Publications (2)

Publication Number Publication Date
JP2004332003A JP2004332003A (en) 2004-11-25
JP3971336B2 true JP3971336B2 (en) 2007-09-05

Family

ID=33502757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125517A Expired - Fee Related JP3971336B2 (en) 2002-08-08 2003-04-30 Method for producing alumina film mainly composed of α-type crystal structure and method for producing member coated with alumina film mainly composed of α-type crystal structure

Country Status (1)

Country Link
JP (1) JP3971336B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2299128T3 (en) 2005-09-06 2008-05-16 Yamaha Hatsudoki Kabushiki Kaisha EXHAUST PIPE FOR AN INTERNAL COMBUSTION ENGINE.
DE112006003471B4 (en) 2006-01-18 2017-02-09 Mitsubishi Heavy Industries, Ltd. Particle erosion resistant coating and rotating machine treated therewith
JP5032198B2 (en) * 2007-05-10 2012-09-26 株式会社アルバック Method for forming metal oxide film
JP5038017B2 (en) * 2007-05-16 2012-10-03 住友電気工業株式会社 Coated cutting tool
JP6459391B2 (en) * 2013-10-31 2019-01-30 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance
JP6488106B2 (en) * 2014-10-30 2019-03-20 三菱マテリアル株式会社 Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting
JP7111380B2 (en) * 2020-04-01 2022-08-02 株式会社シンクロン Sputtering device and film forming method using the same
RU2756961C1 (en) * 2020-11-11 2021-10-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" METHOD FOR APPLYING HEAT-RESISTANT Y-Al-O COATINGS FROM VACUUM-ARC DISCHARGE PLASMA

Also Published As

Publication number Publication date
JP2004332003A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
EP2848712B1 (en) Process for producing alumina coating composed mainly of alpha-type crystal structure, alumina coating composed mainly of alpha-type crystal structure, laminate coating including the alumina coating , member clad with the alumina coating or laminate coating, process for producing the member, and physical vapor deposition apparatus
JP4205546B2 (en) Method for producing a laminated film having excellent wear resistance, heat resistance and adhesion to a substrate
JP4427271B2 (en) Alumina protective film and method for producing the same
US20060219325A1 (en) Method for producing alpha-alumina layer-formed member and surface treatment
JP2002053946A (en) Hard film and wear resistant member, and manufacturing method thereof
CN113789503B (en) In-situ synthesis method of high-entropy silicide film with antioxidant property
JP2006307318A (en) Method for producing alpha-alumina layer-formed member and surface treatment
JP3971336B2 (en) Method for producing alumina film mainly composed of α-type crystal structure and method for producing member coated with alumina film mainly composed of α-type crystal structure
JP4173762B2 (en) Method for producing alumina film mainly composed of α-type crystal structure and method for producing laminated film-coated member
US5419822A (en) Method for applying a thin adherent layer
JP4402898B2 (en) Physical vapor deposition equipment
JP3971337B2 (en) Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same
WO2024065970A1 (en) Composite deposition method for hard oxide coating, and coated cutting tool
JP4025267B2 (en) Method for producing alumina film mainly composed of α-type crystal structure
JP2004131820A (en) Method for producing advanced high-speed steel tool
KR100682416B1 (en) Process for producing alumina coating composed mainly of ?-type crystal structure, alumina coating composed mainly of ?-type crystal structure, laminate coating including the alumina coating, member clad with the alumina coating or laminate coating, process for producing the member, and physical evaporation apparatus
JP4142370B2 (en) Method for producing alumina film mainly composed of α-type crystal structure
JP2006169614A (en) Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member
JP2003027236A (en) Hard carbon film deposition method and hard carbon film coated tool member
JP2963455B1 (en) Method for forming boron nitride film
JP2004332007A (en) ALUMINA FILM WITH alpha TYPE CRYSTAL STRUCTURE
JP3971339B2 (en) Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3971336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees