JP3968777B2 - Vapor growth apparatus and vapor growth method - Google Patents

Vapor growth apparatus and vapor growth method Download PDF

Info

Publication number
JP3968777B2
JP3968777B2 JP2002161272A JP2002161272A JP3968777B2 JP 3968777 B2 JP3968777 B2 JP 3968777B2 JP 2002161272 A JP2002161272 A JP 2002161272A JP 2002161272 A JP2002161272 A JP 2002161272A JP 3968777 B2 JP3968777 B2 JP 3968777B2
Authority
JP
Japan
Prior art keywords
gas
susceptor
rectifying
vapor phase
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002161272A
Other languages
Japanese (ja)
Other versions
JP2004014535A5 (en
JP2004014535A (en
Inventor
健治 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002161272A priority Critical patent/JP3968777B2/en
Publication of JP2004014535A publication Critical patent/JP2004014535A/en
Publication of JP2004014535A5 publication Critical patent/JP2004014535A5/ja
Application granted granted Critical
Publication of JP3968777B2 publication Critical patent/JP3968777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、気相成長装置及び気相成長方法に関するものである。
【0002】
【従来の技術】
近年、半導体産業分野において複数のウェーハを同時に成膜できるバッチ式ウェーハ処理装置の使用が広がっており、例えば、大型ウェーハの面内特性における均一な薄膜の形成に、高速回転式のバッチ式薄膜気相成長装置が多く用いられている。
【0003】
ここで、図7に示すように、従来のバッチ式薄膜気相成長装置66について説明する。
【0004】
この薄膜気相成長装置66は、反応炉65の下部に設けられ、反応炉65内に成膜用の反応ガス60等の原料ガスやキャリアガス等を供給するための、ガス導出口70、ガス供給口67、ノズル部59及びフード部57とからなるガス供給部68とからなり、ガス供給口67には流量又は濃度調整手段(図示せず)が設けられている。
【0005】
加えて、ガス供給口67及びガス導出口70から供給された成膜反応ガス60の流れを整えるために形成された整流盤58と、この整流盤58を固定しかつウェーハ53を載置する回転式サセプタ54と、この回転式サセプタ54を回転させるための回転軸52と、回転式サセプタ54の上部に設けられ反応ガス60を分解するための加熱源となるヒーター51と、ガス供給部68の下部に設けられ、反応炉65内から出る未反応ガス等を含む排出ガスを排出する排気口(図示せず)とを具備している。
【0006】
ここで、回転式サセプタ54は、ボルト69を有する整流盤58によって回転軸52に固定し、ウェーハ53は取付金具(図示せず)等によって回転式サセプタ54の下面に固定する。
【0007】
また、回転式サセプタ54の端部55とガス供給部68のフード部57の端部とでガス流出口56を形成している。
【0008】
この気相成長装置66を用いて、例えば、複数のウェーハ基板(以下、単にウェーハと称する。)53上にMOVPE(Metal Organic Vapor Phase Epitaxial)で薄膜を気相成長させるには、回転式サセプタ54の周辺部にウェーハ53を固定した後に、高速回転する回転式サセプタ54に対して、ガス供給口67及びガス導出口70から原料ガスを反応炉65内に供給する。ここで、使用可能な原料ガスは、Ga(CH33、AsH3、Al(CH33等を水素等のキャリアガスに希釈したガスからなる反応ガス60であり、これによってウェーハ53上にGaAlAs系等の薄膜をエピタキシャル成長させる。
【0009】
この際に、成膜反応ガス60の流れを整えて導くために整流盤58を用い、この表面上を反応ガス60が流動してウェーハ53上に到達する際に、ヒーター51によって反応ガス60を加熱分解してウェーハ53上に薄膜を気相成長させ、更に、成膜に用いられなかった残留ガスをガス流出口56から反応炉65外に流出させる。図7中の太い矢印は反応炉65内のガス気流の流動状態を模式的に示している。
【0010】
ここで、この気相成長装置66を使用して、ウェーハ53上の全面に亘って厚さや電気特性等の物性が均一な薄膜を形成するには、反応炉65内のガスの流動状態を整えて均一化させることが非常に重要である。
【0011】
ところで、例えばウェーハを一枚づつ成膜する枚葉処理式気相成長装置については、特開2001−351864号公報、特開平03−287771号公報、特開平06−208952号公報及び特開平10−219459号公報等によれば、ガス供給部側の所定の手段で反応ガスの整流を行って均一な成膜を行う構造が公知とはなっている。
【0012】
【発明が解決しようとする課題】
しかし、これらの公知の装置とは異なり、上記のバッチ式薄膜気相成長装置66においては、ガス流を整流する整流盤65を用いる必要があるが、この整流盤の形状がほぼ台形状であり、かつガス導出口70の径よりも整流盤65の中央にある平坦な頂部63の面積が遥かに広い。このために、ガス導出口70から供給された反応ガス60は、整流盤65の中央の平坦な頂部63にほぼ直接に当った後に、一部はこの頂部63に続く傾斜部62に沿って流れて、一定の濃度又はスピードで順次ウェーハ53上に到達して成膜に用いられるが、他の部分は平坦な頂部63に当たる際に反射してガス乱流を生じさせてしまう。
【0013】
そのために、成膜反応ガス60の濃度及び流れが全体的に不均一になり、成膜反応ガス60がウェーハ53上に到達する時には、既に生じた乱流の影響で反応炉65内部のガス流動がスムーズにならないと共に、成膜反応ガス60の濃度等を均一化させることも非常に難しくなるので、均一な成膜が困難になってしまう。
【0014】
特に、大口径のウェーハ53の載置が可能な大容量の反応炉65を有する成膜気相成長装置66を用いる際には、反応炉65内の反応ガス60の流動状態をほぼ完全に制御してスムーズ化し、成膜の均一化を計ることは困難である。
【0015】
また、反応ガス60がガス導出口70から導出されてから先ず整流盤58の平坦な頂部63に当たるために、反応ガス60がウェーハ53上に到達する前に、反応ガス60の一部が回転式サセプタ54の下部及び整流盤58の平坦な頂部63等に付着して堆積してしまい、成膜工程の回数が増えるに連れて堆積による頂部63の形状が変化して、更にガスの乱流の不均一を生じさせると共に、ウェーハ53上への反応ガス60の供給量も変化して高精度の成膜が難しくなる。
【0016】
その結果、ウェーハ53上に形成される薄膜の膜厚が、ウェーハ53の中央部で厚く外周部で薄くなったり、或いはウェーハ53の中央部で薄く外周部で厚くなったり、又はある程度均一であっても所望の厚さに形成できなかったりする。
【0017】
本発明は、上記のような状況に鑑みてなされたものであって、その目的は、整流部の整流面によって原料ガスをスムーズに導いて、整流面上への堆積を防ぐと共に、ほぼ均一の厚みで高精度の成膜を基体上に行うことにある。
【0018】
【課題を解決するための手段】
即ち、本発明は、周辺部に基体を載置するサセプタと、このサセプタの中心部に設けられた整流部と、前記整流部に対して原料ガスを導出するガス導出手段とからなり、導された前記原料ガスが前記整流部に沿って前記周辺部へ導かれるように構成された気相成長装置において、
前記ガス導出手段のガス導出口に対向した前記整流部の対向面が実質的に、全面にお いて前記周辺部側へ連続して曲面状又は直線状に傾斜した整流面からなり、この整流面 が前記傾斜の状態で前記周辺部にまで延びており、
前記サセプタに設けた凹部に前記基体が埋め込まれて前記サセプタ及び前記基体の表 面が同一面をなし、かつ、前記整流部の整流面が、前記基体の側面の近傍であって前記 基体とは非接触の位置まで延びており、
前記サセプタに関し前記整流部とは反対側における前記サセプタの近傍に、前記原料 ガスを加熱分解するためのヒーターが配置されている
ことを特徴とする気相成長装置に係わるものである。
【0019】
本発明は又、サセプタの周辺部に基体を載置し、前記サセプタの中心部に設けられた整流部に対して原料ガスを導出して前記整流部に沿って前記周辺部へ導きながら、前記基体に気相成長を行うに際し、
前記ガス導出手段のガス導出口に対向した対向面が実質的に、全面において前記周辺 部側へ連続して曲面状又は直線状に傾斜した整流面からなり、この整流面が前記傾斜の 状態で前記サセプタに設けた凹部に前記サセプタと同一面をなすように埋め込まれた 前記基体の側面の近傍であって前記基体とは非接触の位置まで延びている前記整流部に 沿って、前記ガス導出口からの前記原料ガスを前記基体上に導くと共に、
前記サセプタに関し前記整流部とは反対側における前記サセプタの近傍に配置したヒ ーターによって、前記原料ガスを加熱分解する
ことを特徴とする気相成長方法に係わるものである。
【0020】
本発明は、周辺部に基体を載置しかつ中心部に整流部が設けられ、前記整流部に対して原料ガスを導出するガス導出手段から導入された前記原料ガスが、前記整流部に沿って前記周辺部へ導かれるように構成された基体保持用サセプタにおいて、前記ガス導出手段のガス導出口に対向した前記整流部の対向面が実質的に、全面において前記周辺部側へ連続して曲面状又は直線状に傾斜した整流面からなり、この整流面が前記傾斜の状態で前記周辺部にまで延びていることを特徴とする基体保持用サセプタを用いるのがよい
【0021】
ここで、上記の対向面とは、ガス導出口と対向した面積領域に相当する整流部の表面を意味する。
【0022】
本発明によれば、導入された前記原料ガスを前記サセプタの前記整流部に沿って前記周辺部へ導く際に、前記ガス導出手段のガス導出口に対向した前記整流部の対向面が実質的に、全面において前記周辺部側へ連続して曲面状又は直線状に傾斜した整流面からなり、この整流面が前記傾斜の状態で前記周辺部にまで延びているために、全面において前記周辺部側へ連続して曲面状又は直線状に傾斜した整流面に沿って前記原料ガスが整流されつつスムーズに前記周辺部へ導かれ、前記整流部とは反対側の前記サセプタの近傍位置に配置されたヒーターによって前記原料ガスが加熱分解されるので、前記整流部の傾斜面等の整流面に前記原料ガスの分解生成物が堆積され難くなると共に、ガスの濃度及び流速が基体上の成膜領域においてほぼ均一となるので、ほぼ均一の厚みや物性の成膜を基体上に施すことができる。
しかも、前記サセプタに設けた前記凹部に前記基体が埋め込まれて前記サセプタ及び前記基体の表面が同一面をなし、かつ、前記整流部の整流面が、前記基体の側面の近傍であって前記基体とは非接触の位置まで延びているので、前記原料ガスが前記基体の側面に当たることによって生じる乱流や基体側面への成膜を防げ、ガス流をスムーズで均一な濃度で基体表面へ供給可能となる。
【0023】
【発明の実施の形態】
本発明においては、前記原料ガスをスムーズに流すために、前記整流部の前記整流面が凸状曲面を成しており、この曲面が前記整流部の中心線に関して対称形状となっているのが好ましい。
【0024】
また、前記原料ガスをスムーズに流すために、前記整流部の前記整流面が直線状の面を成しており、この面が前記整流部の中心線に関して対称形状となっているのが好ましい。
【0025】
また、前記原料ガスをスムーズに流すために、前記整流部の前記整流面が凹状曲面を成しており、この曲面が前記整流部の中心線に関して対称形状となっているのが好ましい。
【0026】
また、前記有機金属化合物ガスを用いる効果的な前記化学的気相成長、特にMOVPEのために、前記サセプタに対向して、前記ガス導出手段を有するフード状ガス案内手段が配置され、このガス案内手段が前記周辺部にまで延びていてこの周辺部にて前記サセプタとの間にガス流出口が形成されているのが好ましい。
【0027】
また、前記有機金属化合物ガスを用いる効果的な前記化学的気相成長のために、前記サセプタと前記ガス案内手段との間の間隔が前記周辺部側へ漸次小さくなるように前記ガス案内手段が拡径されているのが好ましい。
【0028】
また、前記導出ガスとして有機金属化合物ガスを用いる化学的気相成長に適用されるのが好ましい。
【0029】
また、前記サセプタが前記ガス案内手段に対して相対的に回転するのが好ましい。
【0031】
以下に、本発明の好ましい実施の形態を図面の参照下に説明する。
【0032】
まず、図1について本発明の実施の形態の理解のために、バッチ式薄膜気相成長装置16について説明する。
【0033】
この薄膜気相成長装置16は、反応炉15の下部に設けられ、かつ反応炉15内に成膜用の反応ガス10等の原料ガスやキャリアガス等を供給するためのガス導出口20、ガス供給口17、ノズル部9及びフード部7等からなるガス供給部18を有しており、ガス供給口17には流量又は濃度調整手段(図示せず)が設けられている。
【0034】
加えて、ガス供給口17からガス導出口20を通して供給された反応ガス10のガス流を整えるために形成された整流盤8と、この整流盤8を固定しかつウェーハ3を載置する回転式サセプタ4と、この回転式サセプタ4を回転させるための回転軸2と、回転式サセプタ4の上部に設けられ、反応ガス10を分解するための加熱源となるヒーター1と、ガス供給部18の下部に設けられ、かつ反応炉15内から出る未反応ガス等を含む排出ガスを排出する排気口(図示せず)とが設けられている。
【0035】
ここで、回転式サセプタ4は、ボルト19を有する整流盤8によって回転軸2に固定され、また、ウェーハ3は取付治具(図示せず)等によって回転式サセプタ4に固定されてよい。整流盤8は中空であってよいし、或いは非中空であってもよい。
【0036】
また、回転式サセプタ4の端部5とガス供給部18のフード部7の端部とで、ガス流出口6を形成している。
【0037】
この気相成長装置16を用いて、例えば複数のウェーハ基板(以下、単にウェーハと称する。)3上にMOVPE(Metal Organic Vapor Phase Epitaxial)で薄膜を気相成長させるには、回転式サセプタ4の周辺部にウェーハ3を固定した後に、高速回転する回転式サセプタ4に対して、ガス供給口17及びガス導出口20から原料ガスを反応炉15内に供給する。ここで、使用可能な原料ガスは、Ga(CH33、AsH3、Al(CH33等を水素等のキャリアガスに希釈したガスからなる反応ガス10であり、これによってウェーハ3上にGaAlAs系等の薄膜をエピタキシャル成長させる。
【0038】
この際に、反応ガス10の流れを整えて導くために整流盤8を用い、この表面上を反応ガス10が流動してウェーハ3上に到達する際に、ヒーター1によって反応ガス10を加熱分解してウェーハ3上に薄膜を気相成長させ、更に、成膜に用いられなかった残留ガスをガス流出口6から反応炉15外に流出させる。図1中の太い矢印は反応炉15内のガス気流の流動状態を模式的に示している。
【0039】
においては、整流盤8の断面形状が球面形状であるために、滑らかで平坦な面がなく、球面状の傾斜部12はその中心部からウェーハ3の側面の近傍にまで連続して延びている。
【0040】
また、整流盤8の材質としては、例えば、融点が2620℃で耐熱性があって形状保持性に富むモリブデンを用いるが、他にも融点がそれぞれ、1860℃のクロム、2990℃のタンタル又は3400℃のタングステン等を使用することができる。
【0041】
また、例えば、ガス供給口17に設けられる流量又は濃度調整手段(図示せず)が流量調整手段である場合には、一般的に用いられている流量制御弁を用いることができ、濃度調整手段である場合には、一般的に用いられている流量制御弁を組合せて用いることができる。
【0042】
また、薄膜形成に用いるウェーハ3の材質としては例えばアルミナ、シリコンウェーハを用いるが、炭化珪素基板等も使用できる。ウェーハ3上に形成される薄膜はGaAlAs系膜やシリコン膜等である。
【0043】
また、この薄膜気相成長に用いる反応ガス10として、従来のCVD(Chemical Vapor Deposition)薄膜成長に用いる成膜用ガスを使用でき、このような反応ガス10の種類としては、例えば、反応ガス、不純物ドーパントガスからなり、キャリアガスとして水素を用いてよい。
【0044】
次に、図2に示すように、より効果的な反応ガス10の整流のために、反応ガス10の物性等の条件に合わせて、例えば、回転式サセプタ4の端部5から回転軸中心14までの距離をW、整流盤8の高さ(厚さ)をt及び整流盤8の半径をwとし、それぞれの値を変化させることによって、反応ガス10の整流にとって最適の値を求めることができるが、一例として本実施の形態では、Wを250mm、tを20mm及びwを100mmとする。
【0045】
整流盤8の表面形状が滑らかで平坦な面がなく、球面状の傾斜部12のみで構成されているために、ガス導出口20から導出した反応ガス10が整流され、乱流を生じることなく、ほぼ均一の濃度及び流速で、整流盤8の表面をウェーハ3上に向かって流れて到達し、ここに分解生成物が成膜した後に、残留ガスはウェーハ3の表面上から、回転式サセプタ4の端部5とフード部7とで形成されるガス流出口6を通過して反応炉15内から外へ流出する。
【0046】
このように、反応炉15内のガスの流動状態を整えてほぼ均一化し、ガスの乱流や損失を生じることなしに中心部から周辺部へと放射状のほぼ一定の流れで順次ウェーハ3上に到達させて成膜できるようになるので、ウェーハ3上の全面に亘って、厚さや電気特性等の物性がほぼ均一な薄膜を形成することができる。
【0047】
更に、大口径のウェーハ3の載置が可能な大容量の反応炉15を有する成膜気相成長装置16においても、反応炉15内のガスの流動状態を制御してガスの流動をほぼ均一化することができる。
【0048】
また、反応ガス10がガス導出口17から供給されてから先ず整流盤8の頂部13に当たるが、この頂面もすぐに傾斜するために、流れがスムーズとなり、ウェーハ3上に到達する前に回転式サセプタ4の下部面及び整流盤8の表面に分解生成物10が堆積し難くなる。従って、成膜工程の回数を増やしたとしても、分解生成物の堆積による整流盤8の表面形状の変化は殆ど生じないために、ガスの乱流によるガス濃度及び流速等の不均一化を起すことがなく、更には、ウェーハ3上への反応ガス10の供給量が変化することもないために、高精度の成膜を行い易い。
【0049】
また、例えば整流盤8を回転式サセプタ4の交換時に新たな整流盤8と交換することによって、ガス流動の整流効果を持続することができ、更には、整流盤8及び回転式サセプタ4等が洗浄可能(再利用可能)な材質であれば、これらの製造コストの面でも効率が良いと言える。
【0050】
次に、回転式サセプタ4に対向してフード状のガス供給部18が配置され、このガス供給部18のフード部7が回転式サセプタ4の周辺部にまで延びていて、この周辺部にて回転式サセプタ4との間にガス流出口6が形成され、更には、回転式サセプタ4とフード部7との間の間隔が、回転式サセプタ4の周辺部側へ漸次小さくなるようにフード部7が拡径されている。
【0051】
そのために、例えば、MOCVDのように、反応ガス10として有機金属化合物ガスを用いる化学的気相成長を行う場合には、回転式サセプタ4に固定したウェーハ3の表面上の反応炉15の空間が狭くなる領域(回転式サセプタ4の周辺部)において、反応ガス10の濃度が高まって堆積効率が上昇し易くなり、その結果、ヒーター1による加熱によって反応ガス10を分解してウェーハ3上に所定の金属を堆積して成膜する工程を効率的に行える。
【0052】
図3に示す例では、反応炉15内で反応ガス10をスムーズに流動させるために、整流盤8の整流面である傾斜部12が直線状の面を成しており、この面が全面において整流盤8の中心線に関して対称形状であって円錐形になっている以外は、図1と同様である。
【0053】
においては、整流盤8の頂部13が平坦ではなく、点状の頂部13からすぐに傾斜部12が連続しているので、頂部13に反応ガス10が当たってもガスの乱流が起きることなく、スムーズにほぼ均一の濃度で反応ガス10をウェーハ3上に流動させて成膜することができる。
【0054】
また、整流盤8の形状が円錐形で複雑な曲面がないために、その成形加工が比較的容易である。
【0055】
その他、においても、上記した図1と同様の作用効果が得られる。
【0056】
図4に示す例では、反応炉15内で反応ガス10をスムーズに流動させるために、整流盤8の整流面である傾斜部12が凹状の曲面を成しており、この面が全面において整流盤8の中心線に関して対称形状となっていて略円錐形になっている以外は、図1と同様である。
【0057】
においては、整流盤8の頂部13が平坦ではなく、点状の頂部13からすぐに凹状の傾斜部12が連続しているので、頂部13に反応ガス10が当たっても乱流が起きることなく、スムーズにほぼ均一の濃度で反応ガス10をウェーハ3上に流動させて成膜することができる。
【0058】
また、傾斜部12の傾斜面が反応ガス10の導出方向に対して凹状の曲面を有するので、反応ガス10の導出圧力を緩衝し易くなり、反応ガス10の流動をよりスムーズに行うことができる。
【0059】
その他、においても、上記した図1と同様の作用効果が得られる。
【0060】
図5に示す例では、反応ガス10をスムーズに流すために、平坦な整流盤8の整流面である傾斜部12が凹状の曲面を成しており、かつガス導出口20に対向して僅かに平坦な頂部13を有し、凹状の曲面が全面において整流盤8の中心線に関して対称形状となっていて略円錐形になっている以外は、図1と同様である。
【0061】
においては、整流盤8の頂部13に僅かな平坦部があるが、この平坦部の面積がガス導出口20の面積よりも遥かに小さいために、反応ガス10がガス導出口20から導出した際に、頂部13の平坦部に反応ガス10が当たってもガスの乱流が殆ど起きることなく、スムーズにほぼ均一の濃度で傾斜部12からウェーハ3上へ反応ガス10を流動でき、ウェーハ3上にほぼ均一に成膜することができる。
【0062】
また、傾斜部12の傾斜面が反応ガス10の導出方向に対して凹状の曲面を有するので、成膜反応ガス10の導出圧力を緩衝し易くなり、反応ガス10の流動をよりスムーズに行うことができる。
【0063】
また、頂部13を有するために整流盤8の成形加工が比較的容易である。
【0064】
その他、においても、上記した図1と同様の作用効果が得られる。
【0065】
図6は本発明の実施の形態を示すものであって、ウェーハ3が回転式サセプタ4に形成された凹部内に埋め込まれて固定され、ウェーハ3の表面と回転式サセプタ4の表面とが同一面を成す以外は、図1と同様である。
【0066】
本実施の形態においては、傾斜部12に沿って流動する反応ガス10がウェーハ3の側面に当ることによって生じるガスの乱流やウェーハ3の側面への成膜等がないために、よりスムーズで均一な濃度の反応ガス10をウェーハ3上に流動できる。
【0067】
その他、本実施の形態においても、上記した図1と同様の作用効果が得られる。
【0068】
以上に説明した実施の形態は、本発明の技術的思想に基づいて更に変形が可能である。
【0069】
例えば、整流盤8は、回転式サセプタ4と一体成形してもよいし、別体に作製したときは回転式サセプタ4への取付方法はねじ止め以外にも溶接等も可能である。
【0070】
また、整流盤8の形状、材質、大きさ、取り付け位置等は上述したものに限定されず、任意に変化させてもよい。
【0071】
【発明の作用効果】
上述したように、本発明によれば、導入された前記原料ガスを前記サセプタの前記整流部に沿って前記周辺部へ導く際に、前記ガス導出手段のガス導出口に対向した前記整流部の対向面が実質的に、全面において前記周辺部側へ連続して曲面状又は直線状に傾斜した整流面からなり、この整流面が前記傾斜の状態で前記周辺部にまで延びているために、全面において前記周辺部側へ連続して曲面状又は直線状に傾斜した整流面に沿って前記原料ガスが整流されつつスムーズに前記周辺部へ導かれ、前記整流部とは反対側の前記サセプタの近傍位置に配置されたヒーターによって前記原料ガスが加熱分解されるので、前記整流部の傾斜面等の整流面に前記原料ガスの分解生成物が堆積され難くなると共に、ガスの濃度及び流速が基体上の成膜領域においてほぼ均一となるので、ほぼ均一の厚みや物性の成膜を基体上に施すことができる。
しかも、前記サセプタに設けた凹部に前記基体が埋め込まれて前記サセプタ及び前記基体の表面が同一面をなし、かつ、前記整流部の整流面が前記基体の側面の近傍であって前記基体とは非接触の位置まで延びているので、前記原料ガスが前記基体の側面に当ることによって生じる乱流や基体側面への成膜を防げ、ガス流をスムーズで均一な濃度で基体表面へ供給可能となる。
【図面の簡単な説明】
【図1】 本発明の実施の形態を理解するための薄膜気相成長装置の断面図である。
【図2】同、薄膜気相成長装置の部分拡大断面図である。
【図3】 同、他の薄膜気相成長装置の断面図である。
【図4】 同、他の薄膜気相成長装置の断面図である。
【図5】 同、更に他の薄膜気相成長装置の断面図である。
【図6】 本発明の実施の形態における薄膜気相成長装置の断面図である。
【図7】従来例における薄膜気相成長装置の断面図である。
【符号の説明】
1…ヒーター、2…回転軸、3…ウェーハ、4…回転式サセプタ、5…端部、
6…ガス流出口、7…フード部、8…整流盤、9…ノズル部、
10…反応ガス、12…傾斜部、13…頂部、14…回転軸中心、
15…反応炉、16…薄膜気相成長装置、17…ガス供給口、
18…ガス供給部、19…ボルト、20…ガス導出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vapor phase growth apparatus and a vapor phase growth method.
[0002]
[Prior art]
In recent years, the use of batch-type wafer processing apparatuses capable of simultaneously forming a plurality of wafers in the semiconductor industry has become widespread. For example, a high-speed rotating batch-type thin film gas can be used to form a uniform thin film in the in-plane characteristics of a large wafer. Many phase growth apparatuses are used.
[0003]
Here, as shown in FIG. 7, a conventional batch type thin film vapor phase growth apparatus 66 will be described.
[0004]
The thin film vapor phase growth apparatus 66 is provided in the lower part of the reaction furnace 65, and supplies a source gas such as a reaction gas 60 for film formation, a carrier gas, and the like into the reaction furnace 65, a gas outlet 70, a gas The gas supply port 68 includes a supply port 67, a nozzle portion 59, and a hood portion 57. The gas supply port 67 is provided with a flow rate or concentration adjusting means (not shown).
[0005]
In addition, a rectifier 58 formed for adjusting the flow of the film forming reaction gas 60 supplied from the gas supply port 67 and the gas outlet 70, and a rotation for fixing the rectifier 58 and placing the wafer 53 thereon. Of the rotary susceptor 54, the rotary shaft 52 for rotating the rotary susceptor 54, the heater 51 provided on the rotary susceptor 54 as a heating source for decomposing the reaction gas 60, and the gas supply unit 68 An exhaust port (not shown) is provided in the lower portion and exhausts exhaust gas including unreacted gas exiting from the reaction furnace 65.
[0006]
Here, the rotary susceptor 54 is fixed to the rotary shaft 52 by a rectifying board 58 having bolts 69, and the wafer 53 is fixed to the lower surface of the rotary susceptor 54 by a mounting bracket (not shown).
[0007]
A gas outlet 56 is formed by the end 55 of the rotary susceptor 54 and the end of the hood 57 of the gas supply unit 68.
[0008]
In order to vapor-phase grow a thin film on a plurality of wafer substrates (hereinafter simply referred to as wafers) 53 by MOVPE (Metal Organic Vapor Phase Epitaxial) using this vapor phase growth apparatus 66, for example, a rotary susceptor 54 is used. After the wafer 53 is fixed to the peripheral portion, the source gas is supplied into the reaction furnace 65 from the gas supply port 67 and the gas outlet port 70 with respect to the rotary susceptor 54 that rotates at high speed. Here, the usable raw material gas is a reaction gas 60 made of a gas obtained by diluting Ga (CH 3 ) 3 , AsH 3 , Al (CH 3 ) 3 or the like into a carrier gas such as hydrogen. A GaAlAs-based thin film is epitaxially grown.
[0009]
At this time, a flow straightening plate 58 is used to arrange and guide the flow of the film forming reaction gas 60, and when the reaction gas 60 flows on the surface and reaches the wafer 53, the reaction gas 60 is caused to flow by the heater 51. The thin film is thermally decomposed to vapor-phase grow on the wafer 53, and the residual gas that has not been used for film formation flows out of the reaction furnace 65 from the gas outlet 56. A thick arrow in FIG. 7 schematically shows the flow state of the gas flow in the reaction furnace 65.
[0010]
Here, in order to form a thin film having uniform physical properties such as thickness and electrical characteristics over the entire surface of the wafer 53 using the vapor phase growth apparatus 66, the flow state of the gas in the reaction furnace 65 is adjusted. It is very important to make it uniform.
[0011]
Incidentally, for example, with respect to a single wafer processing type vapor phase growth apparatus for forming wafers one by one, JP 2001-351864 A, JP 03-287771 A, JP 06-208952 A, and JP 10-10 A. According to Japanese Patent No. 219459 and the like, a structure in which a reaction gas is rectified by a predetermined means on the gas supply unit side to perform uniform film formation is known.
[0012]
[Problems to be solved by the invention]
However, unlike these known apparatuses, in the batch type thin film vapor phase growth apparatus 66 described above, it is necessary to use a rectifying board 65 that rectifies the gas flow, but the shape of this rectifying board is substantially trapezoidal. In addition, the area of the flat top 63 at the center of the rectifying plate 65 is much larger than the diameter of the gas outlet 70. For this reason, after the reaction gas 60 supplied from the gas outlet 70 almost directly hits the flat top 63 at the center of the rectifying board 65, a part of the reaction gas 60 flows along the inclined part 62 that follows the top 63. Thus, it reaches the wafer 53 sequentially at a constant concentration or speed and is used for film formation, but other portions are reflected when they hit the flat top 63 and cause gas turbulence.
[0013]
Therefore, the concentration and flow of the deposition reaction gas 60 become non-uniform as a whole, and when the deposition reaction gas 60 reaches the wafer 53, the gas flow inside the reaction furnace 65 is affected by the turbulent flow that has already occurred. Is not smooth, and it is also very difficult to make the concentration of the film forming reaction gas 60 uniform, so that uniform film formation becomes difficult.
[0014]
In particular, when a film-forming vapor phase growth apparatus 66 having a large-capacity reaction furnace 65 capable of mounting a large-diameter wafer 53 is used, the flow state of the reaction gas 60 in the reaction furnace 65 is almost completely controlled. Therefore, it is difficult to achieve smoothness and uniform film formation.
[0015]
Further, since the reaction gas 60 first hits the flat top 63 of the rectifying plate 58 after being led out from the gas outlet 70, a part of the reaction gas 60 is rotated before the reaction gas 60 reaches the wafer 53. The deposits adhere to the lower portion of the susceptor 54 and the flat top portion 63 of the rectifier 58, and the shape of the top portion 63 changes due to the increase in the number of film forming steps. In addition to causing non-uniformity, the supply amount of the reaction gas 60 onto the wafer 53 also changes, making it difficult to form a film with high accuracy.
[0016]
As a result, the film thickness of the thin film formed on the wafer 53 is thick at the center of the wafer 53 and thin at the outer periphery, thin at the center of the wafer 53 and thick at the outer periphery, or is uniform to some extent. However, it cannot be formed to a desired thickness.
[0017]
The present invention has been made in view of the situation as described above, and its purpose is to smoothly guide the raw material gas by the rectifying surface of the rectifying unit to prevent deposition on the rectifying surface and to obtain a substantially uniform state. It is to perform highly accurate film formation on the substrate on the basis of thickness.
[0018]
[Means for Solving the Problems]
That is, the present invention comprises a susceptor for mounting a substrate to the peripheral portion, and a rectifying portion provided at the center portion of the susceptor, a gas outlet means for deriving the feed gas to the rectification section, out guide Te configured vapor deposition apparatus odor as the source gas is guided to the peripheral portion along the rectifying section,
The facing surface of the rectifying unit facing the gas outlet port of the gas deriving means is substantially composed of a rectifying surface that is continuously curved toward the peripheral side and curved or linearly inclined on the entire surface. Extends to the periphery in the inclined state,
None the front surface is the same surface of the susceptor and the substrate wherein the substrate embedded in the recess formed in the susceptor, and, straightening surface of the rectifying section, wherein the base body in the vicinity of the side surface of the substrate and the Extends to a non-contact position,
A heater for thermally decomposing the raw material gas is disposed in the vicinity of the susceptor on the opposite side of the rectifier with respect to the susceptor.
[0019]
In the present invention, the substrate is placed on the periphery of the susceptor, and the raw material gas is led out to the rectifier provided at the center of the susceptor and guided to the periphery along the rectifier, When performing vapor phase growth on a substrate,
The opposed surface facing the gas outlet of the gas outlet means is substantially composed of a straightened rectifying surface that is continuously curved toward the peripheral side on the entire surface, and the rectifying surface is in the inclined state. The gas is provided along the rectifying unit extending to a position in contact with the base in the vicinity of a side surface of the base that is embedded in a recess provided in the susceptor so as to be flush with the susceptor. While guiding the source gas from the outlet on the substrate,
The present invention relates to a vapor phase growth method characterized in that the source gas is thermally decomposed by a heater disposed in the vicinity of the susceptor on the opposite side of the rectifier with respect to the susceptor.
[0020]
In the present invention , the base material is placed on the periphery and a rectification unit is provided in the center, and the raw material gas introduced from the gas derivation means for deriving the raw material gas to the rectification unit is supplied to the rectification unit. In the substrate holding susceptor configured to be guided to the peripheral portion along the surface, the facing surface of the rectifying portion facing the gas outlet port of the gas outlet means is substantially continuous to the peripheral portion side over the entire surface. It is preferable to use a susceptor for holding a substrate, which is composed of a rectifying surface inclined in a curved shape or linear shape, and the rectifying surface extends to the peripheral portion in the inclined state.
[0021]
Here, said facing surface means the surface of the rectification | straightening part corresponded to the area area | region facing the gas outlet.
[0022]
According to the present invention, when the introduced source gas is led to the peripheral portion along the rectifying portion of the susceptor, the facing surface of the rectifying portion facing the gas outlet of the gas derivation means is substantially Further, since the rectifying surface is continuously curved toward the peripheral portion side toward the peripheral portion, and the rectifying surface extends to the peripheral portion in the inclined state, the peripheral portion is provided over the entire surface. The raw material gas is smoothly guided to the peripheral part while being rectified along a rectifying surface that is continuously curved or linearly inclined to the side, and is disposed in the vicinity of the susceptor on the side opposite to the rectifying part. Since the source gas is thermally decomposed by the heated heater, it is difficult for the decomposition product of the source gas to be deposited on the rectifying surface such as the inclined surface of the rectifying unit, and the concentration and flow rate of the gas can be reduced in the film formation region on the substrate Almost equal Since the can forming a film of substantially uniform thickness and physical properties on the substrate.
In addition, the base body is embedded in the concave portion provided in the susceptor so that the surfaces of the susceptor and the base body are flush with each other, and the rectifying surface of the rectifying unit is in the vicinity of the side surface of the base body. Extends to a non-contact position, preventing turbulent flow caused by the source gas hitting the side surface of the substrate and film formation on the side surface of the substrate, and supplying the gas flow to the substrate surface in a smooth and uniform concentration. It becomes.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, in order to smoothly flow the source gas, the rectifying surface of the rectifying unit has a convex curved surface, and the curved surface is symmetrical with respect to the center line of the rectifying unit. preferable.
[0024]
Further, in order to smoothly flow the source gas, it is preferable that the rectifying surface of the rectifying unit forms a linear surface, and this surface is symmetrical with respect to the center line of the rectifying unit.
[0025]
In order to smoothly flow the source gas, it is preferable that the rectifying surface of the rectifying portion has a concave curved surface, and the curved surface is symmetrical with respect to the center line of the rectifying portion.
[0026]
Further, for effective chemical vapor deposition using the organometallic compound gas, in particular, MOVPE, a hood-like gas guiding means having the gas deriving means is disposed opposite to the susceptor, and this gas guidance is provided. Preferably, the means extends to the peripheral portion, and a gas outlet is formed between the peripheral portion and the susceptor.
[0027]
Further, for effective chemical vapor deposition using the organometallic compound gas, the gas guiding means is arranged so that a distance between the susceptor and the gas guiding means is gradually reduced toward the peripheral side. The diameter is preferably increased.
[0028]
Further, it is preferably applied to chemical vapor deposition using an organometallic compound gas as the derived gas.
[0029]
The susceptor preferably rotates relative to the gas guiding means.
[0031]
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0032]
First, a batch type thin film vapor phase growth apparatus 16 will be described with reference to FIG. 1 in order to understand the embodiment of the present invention .
[0033]
The thin film vapor phase growth apparatus 16 is provided at the lower part of the reaction furnace 15 and also has a gas outlet 20 for supplying a raw material gas such as a reaction gas 10 for film formation, a carrier gas, etc. A gas supply unit 18 including a supply port 17, a nozzle unit 9, a hood unit 7, and the like is provided, and the gas supply port 17 is provided with a flow rate or concentration adjusting means (not shown).
[0034]
In addition, a rectifier 8 formed to adjust the gas flow of the reaction gas 10 supplied from the gas supply port 17 through the gas outlet 20, and a rotary type on which the rectifier 8 is fixed and the wafer 3 is placed. A susceptor 4, a rotary shaft 2 for rotating the rotary susceptor 4, a heater 1 provided on the rotary susceptor 4 and serving as a heating source for decomposing the reaction gas 10; An exhaust port (not shown) is provided in the lower portion and exhausts exhaust gas including unreacted gas that exits from the reaction furnace 15.
[0035]
Here, the rotary susceptor 4 may be fixed to the rotary shaft 2 by a rectifier 8 having bolts 19, and the wafer 3 may be fixed to the rotary susceptor 4 by an attachment jig (not shown) or the like. The rectifier 8 may be hollow or non-hollow.
[0036]
A gas outlet 6 is formed by the end 5 of the rotary susceptor 4 and the end of the hood 7 of the gas supply unit 18.
[0037]
In order to vapor-phase grow a thin film by MOVPE (Metal Organic Vapor Phase Epitaxial) using, for example, a plurality of wafer substrates (hereinafter simply referred to as wafers) 3 using this vapor phase growth apparatus 16, After the wafer 3 is fixed to the peripheral portion, the source gas is supplied into the reaction furnace 15 from the gas supply port 17 and the gas outlet port 20 with respect to the rotary susceptor 4 that rotates at high speed. Here, the usable raw material gas is a reaction gas 10 made of a gas obtained by diluting Ga (CH 3 ) 3 , AsH 3 , Al (CH 3 ) 3 or the like into a carrier gas such as hydrogen, and thereby on the wafer 3. A GaAlAs-based thin film is epitaxially grown.
[0038]
At this time, the rectifier 8 is used to arrange and guide the flow of the reaction gas 10. When the reaction gas 10 flows on the surface and reaches the wafer 3, the reaction gas 10 is thermally decomposed by the heater 1. Then, a thin film is vapor-phase grown on the wafer 3, and the residual gas that has not been used for film formation is caused to flow out of the reaction furnace 15 from the gas outlet 6. A thick arrow in FIG. 1 schematically shows the flow state of the gas flow in the reactor 15.
[0039]
In this example, because the cross-sectional shape of the rectifying plate 8 is spherical, smooth, no flat surfaces, spherical inclined portion 12 is continuous to the vicinity of the side surface of the wafer 3 from its central portion It extends.
[0040]
Further, as the material of the rectifying panel 8, for example, molybdenum having a melting point of 2620 ° C. and heat resistance and having a good shape retention property is used, but in addition, the melting point is 1860 ° C. chromium, 2990 ° C. tantalum, or 3400 C. Tungsten or the like can be used.
[0041]
For example, when the flow rate or concentration adjusting means (not shown) provided in the gas supply port 17 is a flow rate adjusting means, a generally used flow control valve can be used, and the concentration adjusting means In this case, a commonly used flow control valve can be used in combination.
[0042]
Moreover, as a material of the wafer 3 used for thin film formation, for example, alumina or silicon wafer is used, but a silicon carbide substrate or the like can also be used. The thin film formed on the wafer 3 is a GaAlAs film, a silicon film, or the like.
[0043]
Further, as the reactive gas 10 used for the thin film vapor phase growth, a film forming gas used for conventional CVD (Chemical Vapor Deposition) thin film growth can be used. Examples of the reactive gas 10 include a reactive gas, It is made of an impurity dopant gas, and hydrogen may be used as a carrier gas.
[0044]
Next, as shown in FIG. 2, in order to rectify the reaction gas 10 more effectively, for example, from the end 5 of the rotary susceptor 4 to the rotation axis center 14 according to conditions such as physical properties of the reaction gas 10. The optimum value for the rectification of the reaction gas 10 can be obtained by changing the respective values to W, the height (thickness) of the rectification board 8 as t, and the radius of the rectification board 8 as w. As an example, in this embodiment, W is 250 mm, t is 20 mm, and w is 100 mm.
[0045]
Since the surface shape of the rectifying board 8 is smooth and does not have a flat surface, and is configured only by the spherical inclined portion 12, the reaction gas 10 derived from the gas outlet 20 is rectified without causing turbulent flow. At a substantially uniform concentration and flow rate, the surface of the rectifier 8 flows toward the wafer 3 and reaches the wafer 3. After the decomposition products are formed on the wafer 3, the residual gas is transferred from the surface of the wafer 3 to the rotary susceptor. 4 flows out of the reaction furnace 15 through the gas outlet 6 formed by the end portion 5 and the hood portion 7.
[0046]
In this way, the flow state of the gas in the reaction furnace 15 is made uniform by making it almost uniform, and sequentially on the wafer 3 in a substantially constant radial flow from the center to the periphery without causing gas turbulence or loss. Therefore, a thin film having substantially uniform physical properties such as thickness and electrical characteristics can be formed over the entire surface of the wafer 3.
[0047]
Further, in the film-forming vapor phase growth apparatus 16 having the large-capacity reaction furnace 15 capable of mounting a large-diameter wafer 3, the gas flow in the reaction furnace 15 is controlled to make the gas flow almost uniform. Can be
[0048]
Further, after the reactive gas 10 is supplied from the gas outlet 17, it first hits the top 13 of the rectifying plate 8, but this top surface is also inclined immediately, so that the flow becomes smooth and rotates before reaching the wafer 3. The decomposition products 10 are difficult to deposit on the lower surface of the susceptor 4 and the surface of the rectifier 8. Therefore, even if the number of film forming steps is increased, the surface shape of the flow straightening plate 8 hardly changes due to the deposition of decomposition products, and therefore the gas concentration and flow velocity are made non-uniform due to gas turbulence. Furthermore, since the supply amount of the reaction gas 10 onto the wafer 3 does not change, it is easy to perform highly accurate film formation.
[0049]
Further, for example, by replacing the rectifier 8 with a new rectifier 8 when the rotary susceptor 4 is replaced, the rectifying effect of the gas flow can be maintained. Further, the rectifier 8 and the rotary susceptor 4 and the like can be maintained. If the material is washable (reusable), it can be said that the production cost is also efficient.
[0050]
Next, a hood-like gas supply unit 18 is disposed opposite to the rotary susceptor 4, and the hood unit 7 of the gas supply unit 18 extends to the peripheral part of the rotary susceptor 4. A gas outlet 6 is formed between the rotary susceptor 4 and the hood portion so that the distance between the rotary susceptor 4 and the hood portion 7 gradually decreases toward the peripheral side of the rotary susceptor 4. 7 is expanded.
[0051]
Therefore, for example, when chemical vapor deposition using an organometallic compound gas as the reaction gas 10 is performed as in MOCVD, the space of the reaction furnace 15 on the surface of the wafer 3 fixed to the rotary susceptor 4 is increased. In the narrowed region (peripheral portion of the rotary susceptor 4), the concentration of the reaction gas 10 is increased and the deposition efficiency is easily increased. As a result, the reaction gas 10 is decomposed by heating with the heater 1 and is predetermined on the wafer 3. The process of depositing the metal and forming a film can be performed efficiently.
[0052]
In the example shown in FIG. 3, in order to smoothly flow the reaction gas 10 in the reaction furnace 15, the inclined portion 12 that is the rectifying surface of the rectifying plate 8 forms a linear surface, and this surface is the entire surface. It is the same as the example of FIG. 1 except that it is symmetrical with respect to the center line of the rectifier 8 and has a conical shape.
[0053]
In this example, not flat top 13 of the rectification plate 8, since the inclined portion 12 immediately from the point-shaped top portion 13 is continuous, turbulence of the gas be reactive gas 10 to the top portion 13 is hit by The film can be formed by causing the reaction gas 10 to smoothly flow on the wafer 3 at a substantially uniform concentration without occurring.
[0054]
Moreover, since the shape of the rectifying plate 8 is conical and there is no complicated curved surface, the forming process is relatively easy.
[0055]
Other, in the example of this, the same effect as the example of FIG. 1 described above is obtained.
[0056]
In the example shown in FIG. 4, in order to smoothly flow the reaction gas 10 in the reaction furnace 15, the inclined portion 12, which is the rectifying surface of the rectifying plate 8, forms a concave curved surface, and this surface rectifies the entire surface. except that are substantially conical they become symmetrical with respect to the centerline of the panel 8 is similar to the example of FIG.
[0057]
In this example, rather than a top portion 13 of the rectifying plate 8 is flat, the concave inclined portion 12 immediately from the point-shaped top portion 13 is continuous, turbulence even reactive gas 10 to the top portion 13 is hit by The film can be formed by causing the reaction gas 10 to smoothly flow on the wafer 3 at a substantially uniform concentration without occurring.
[0058]
Further, since the inclined surface of the inclined portion 12 has a concave curved surface with respect to the direction in which the reaction gas 10 is derived, it is easy to buffer the derived pressure of the reaction gas 10 and the reaction gas 10 can flow more smoothly. .
[0059]
Other, in the example of this, the same effect as the example of FIG. 1 described above is obtained.
[0060]
In the example shown in FIG. 5, in order to smoothly flow the reaction gas 10, the inclined portion 12, which is the rectifying surface of the flat rectifying board 8, forms a concave curved surface, and slightly faces the gas outlet port 20. has a flat top portion 13, except that the concave curved surface is in a substantially conical shape have a symmetrical shape with respect to the center line of the rectifying plate 8 over the entire surface, it is similar to the example of FIG.
[0061]
In this example, there is a slight flat portion at the top 13 of the rectification plate 8, for the area of the flat portion is much smaller than the area of the gas outlet 20, the reaction gas 10 through the gas outlet port 20 When derived, even if the reaction gas 10 hits the flat portion of the top portion 13, there is almost no gas turbulence, and the reaction gas 10 can flow smoothly from the inclined portion 12 onto the wafer 3 at a substantially uniform concentration. A film can be formed almost uniformly on the wafer 3.
[0062]
In addition, since the inclined surface of the inclined portion 12 has a concave curved surface with respect to the direction in which the reaction gas 10 is derived, it is easy to buffer the derived pressure of the film forming reaction gas 10 and the reaction gas 10 can flow more smoothly. Can do.
[0063]
In addition, since the top portion 13 is provided, it is relatively easy to form the rectifier 8.
[0064]
Other, in the example of this, the same effect as the example of FIG. 1 described above is obtained.
[0065]
FIG. 6 shows an embodiment of the present invention, in which the wafer 3 is embedded and fixed in a recess formed in the rotary susceptor 4 so that the surface of the wafer 3 and the surface of the rotary susceptor 4 are the same. except forming the surface, it is the same as in the example of FIG.
[0066]
In the present embodiment, there is no turbulent gas flow caused by the reaction gas 10 flowing along the inclined portion 12 hitting the side surface of the wafer 3, film formation on the side surface of the wafer 3, etc. The reaction gas 10 having a uniform concentration can flow on the wafer 3.
[0067]
In addition, also in the present embodiment, the same effects as those of the above-described example of FIG. 1 can be obtained.
[0068]
The embodiment described above can be further modified based on the technical idea of the present invention.
[0069]
For example, the rectifier 8 may be integrally formed with the rotary susceptor 4, and when manufactured separately, the attachment method to the rotary susceptor 4 can be welded or the like in addition to screwing.
[0070]
Further, the shape, material, size, mounting position and the like of the rectifying board 8 are not limited to those described above, and may be arbitrarily changed.
[0071]
[Effects of the invention]
As described above, according to the present invention, when the introduced source gas is guided to the peripheral portion along the rectifying portion of the susceptor, the rectifying portion of the rectifying portion facing the gas outlet of the gas derivation means is provided. The opposing surface is substantially composed of a rectifying surface that is continuously curved toward the peripheral side on the entire surface and is inclined in a curved or linear shape, and since this rectifying surface extends to the peripheral portion in the inclined state, The raw material gas is smoothly guided to the peripheral portion while being rectified along a curved surface or linearly rectifying surface continuously to the peripheral portion side over the entire surface, and the susceptor on the side opposite to the rectifying portion is guided. Since the source gas is thermally decomposed by the heater disposed in the vicinity, the decomposition product of the source gas is difficult to be deposited on the rectifying surface such as the inclined surface of the rectifying unit, and the concentration and flow rate of the gas are reduced to the base. Upper film formation area Because substantially uniform in, can be subjected to deposition of substantially uniform thickness and physical properties on the substrate.
In addition, the base is embedded in a recess provided in the susceptor so that the surfaces of the susceptor and the base are flush with each other, and the rectifying surface of the rectifying unit is in the vicinity of the side surface of the base, Since it extends to a non-contact position, turbulence caused by the source gas hitting the side surface of the substrate and film formation on the side surface of the substrate can be prevented, and the gas flow can be supplied to the substrate surface in a smooth and uniform concentration. Become.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a thin film vapor phase growth apparatus for understanding an embodiment of the present invention.
FIG. 2 is a partially enlarged sectional view of the thin film vapor phase growth apparatus.
FIG. 3 is a sectional view of another thin film vapor phase growth apparatus.
FIG. 4 is a sectional view of another thin film vapor phase growth apparatus.
FIG. 5 is a sectional view of still another thin film vapor phase growth apparatus.
FIG. 6 is a cross-sectional view of a thin film vapor phase growth apparatus in an embodiment of the present invention.
FIG. 7 is a cross-sectional view of a conventional thin film vapor phase growth apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heater, 2 ... Rotating shaft, 3 ... Wafer, 4 ... Rotary susceptor, 5 ... End part,
6 ... Gas outlet, 7 ... Hood, 8 ... Rectifier, 9 ... Nozzle,
10 ... reactive gas, 12 ... inclined part, 13 ... top part, 14 ... center of rotation axis,
15 ... Reactor, 16 ... Thin film vapor phase growth apparatus, 17 ... Gas supply port,
18 ... Gas supply part, 19 ... Bolt, 20 ... Gas outlet

Claims (16)

周辺部に基体を載置するサセプタと、このサセプタの中心部に設けられた整流部と、前記整流部に対して原料ガスを導出するガス導出手段とからなり、導出された前記原料ガスが前記整流部に沿って前記周辺部へ導かれるように構成された気相成長装置において、
前記ガス導出手段のガス導出口に対向した前記整流部の対向面が実質的に、全面にお いて前記周辺部側へ連続して曲面状又は直線状に傾斜した整流面からなり、この整流面 が前記傾斜の状態で前記周辺部にまで延びており、
前記サセプタに設けた凹部に前記基体が埋め込まれて前記サセプタ及び前記基体の表 面が同一面をなし、かつ、前記整流部の整流面が、前記基体の側面の近傍であって前記 基体とは非接触の位置まで延びており、
前記サセプタに関し前記整流部とは反対側における前記サセプタの近傍に、前記原料 ガスを加熱分解するためのヒーターが配置されている
ことを特徴とする気相成長装置。
A susceptor for mounting a substrate on a peripheral portion; a rectifying unit provided at a central part of the susceptor; and a gas deriving unit for deriving a raw material gas to the rectifying unit. In the vapor phase growth apparatus configured to be guided to the peripheral portion along the rectifying unit,
The facing surface of the rectifying unit facing the gas outlet port of the gas deriving means is substantially composed of a rectifying surface that is continuously curved toward the peripheral side and curved or linearly inclined over the entire surface. Extends to the periphery in the inclined state,
None the front surface is the same surface of the susceptor and the substrate wherein the substrate embedded in the recess formed in the susceptor, and, straightening surface of the rectifying section, wherein the base body in the vicinity of the side surface of the substrate and the Extending to a non-contact position,
A vapor phase growth apparatus characterized in that a heater for thermally decomposing the raw material gas is disposed in the vicinity of the susceptor on the opposite side of the rectifier with respect to the susceptor.
前記整流部の整流面が凸状曲面を成しており、この曲面が前記整流部の中心線に関して対称形状となっている、請求項1に記載の気相成長装置。  The vapor phase growth apparatus according to claim 1, wherein a rectifying surface of the rectifying unit forms a convex curved surface, and the curved surface is symmetrical with respect to a center line of the rectifying unit. 前記整流部の整流面が直線状の面を成しており、この面が前記整流部の中心線に関して対称形状となっている、請求項1に記載の気相成長装置。  The vapor phase growth apparatus according to claim 1, wherein the rectifying surface of the rectifying unit forms a linear surface, and the surface is symmetrical with respect to the center line of the rectifying unit. 前記整流部の整流面が凹状曲面を成しており、この曲面が前記整流部の中心線に関して対称形状となっている、請求項1に記載の気相成長装置。  The vapor phase growth apparatus according to claim 1, wherein a rectifying surface of the rectifying unit forms a concave curved surface, and the curved surface is symmetrical with respect to a center line of the rectifying unit. 前記サセプタに対向して、前記ガス導出手段を有するフード状ガス案内手段が配置され、このガス案内手段が前記周辺部にまで延びていてこの周辺部にて前記サセプタとの間にガス流出口が形成されている、請求項1に記載の気相成長装置。  Opposite to the susceptor, a hood-shaped gas guide means having the gas outlet means is disposed, the gas guide means extends to the peripheral portion, and a gas outlet is provided between the susceptor and the peripheral portion. The vapor phase growth apparatus according to claim 1 formed. 前記サセプタと前記ガス案内手段との間の間隔が前記周辺部側へ漸次小さくなるように前記ガス案内手段が拡径されている、請求項5に記載の気相成長装置。  6. The vapor phase growth apparatus according to claim 5, wherein the diameter of the gas guide means is increased so that a distance between the susceptor and the gas guide means gradually decreases toward the peripheral portion. 前記導出ガスとして有機金属化合物ガスを用いる化学的気相成長に適用される、請求項1に記載の気相成長装置。  The vapor phase growth apparatus according to claim 1, which is applied to chemical vapor deposition using an organometallic compound gas as the derived gas. 前記サセプタが前記ガス案内手段に対して相対的に回転する、請求項5に記載の気相成長装置。  6. The vapor phase growth apparatus according to claim 5, wherein the susceptor rotates relative to the gas guiding means. サセプタの周辺部に基体を載置し、前記サセプタの中心部に設けられた整流部に対して原料ガスを導出して前記整流部に沿って前記周辺部へ導きながら、前記基体に気相成長を行うに際し、
前記ガス導出手段のガス導出口に対向した対向面が実質的に、全面において前記周辺 部側へ連続して曲面状又は直線状に傾斜した整流面からなり、この整流面が前記傾斜の 状態で前記サセプタに設けた凹部に前記サセプタと同一面をなすように埋め込まれた 前記基体の側面の近傍であって前記基体とは非接触の位置まで延びている前記整流部に 沿って、前記ガス導出口からの前記原料ガスを前記基体上に導くと共に、
前記サセプタに関し前記整流部とは反対側における前記サセプタの近傍に配置したヒ ーターによって、前記原料ガスを加熱分解する
ことを特徴とする気相成長方法。
A base is placed on the periphery of the susceptor, and a source gas is led out to the rectification unit provided at the center of the susceptor and led to the peripheral part along the rectification unit, while vapor growth is performed on the base When doing
The opposed surface facing the gas outlet of the gas outlet means is substantially composed of a straightened rectifying surface that is continuously curved toward the peripheral side on the entire surface, and the rectifying surface is in the inclined state. The gas is provided along the rectifying unit extending to a position in contact with the base in the vicinity of a side surface of the base that is embedded in a recess provided in the susceptor so as to be flush with the susceptor. While guiding the source gas from the outlet on the substrate,
A vapor phase growth method characterized in that the source gas is thermally decomposed by a heater disposed in the vicinity of the susceptor on the opposite side of the rectifier with respect to the susceptor.
前記整流部の整流面を凸状曲面にし、この曲面を前記整流部の中心線に関して対称形状とする、請求項に記載の気相成長方法。The vapor phase growth method according to claim 9 , wherein the rectifying surface of the rectifying unit is a convex curved surface, and the curved surface is symmetrical with respect to the center line of the rectifying unit. 前記整流部の整流面を直線状の面にし、この面を前記整流部の中心線に関して対称形状とする、請求項に記載の気相成長方法。The vapor phase growth method according to claim 9 , wherein the rectifying surface of the rectifying unit is a straight surface, and the surface is symmetrical with respect to the center line of the rectifying unit. 前記整流部の整流面を凹状曲面にし、この曲面を前記整流部の中心線に関して対称形状とする、請求項に記載の気相成長方法。The vapor phase growth method according to claim 9 , wherein the rectifying surface of the rectifying unit is a concave curved surface, and the curved surface is symmetrical with respect to the center line of the rectifying unit. 前記サセプタに対向して、前記ガス導出手段を有するフード状ガス案内手段を配置し、このガス案内手段を前記周辺部にまで延ばしてこの周辺部にて前記サセプタとの間にガス流出口を形成する、請求項に記載の気相成長方法。A hood-like gas guide means having the gas outlet means is arranged opposite to the susceptor, the gas guide means is extended to the peripheral portion, and a gas outlet is formed between the susceptor and the peripheral portion. The vapor phase growth method according to claim 9 . 前記サセプタと前記ガス案内手段との間の間隔が前記周辺部側へ漸次小さくなるように前記ガス案内手段を拡径する、請求項13に記載の気相成長方法。14. The vapor phase growth method according to claim 13 , wherein the diameter of the gas guide means is increased so that a distance between the susceptor and the gas guide means gradually decreases toward the peripheral portion. 前記導出ガスとして有機金属化合物ガスを用いる化学的気相成長に適用する、請求項に記載の気相成長方法。The vapor deposition method according to claim 9 , which is applied to chemical vapor deposition using an organometallic compound gas as the derived gas. 前記サセプタを前記ガス案内手段に対して相対的に回転させる、請求項13に記載の気相成長方法。The vapor phase growth method according to claim 13 , wherein the susceptor is rotated relative to the gas guiding means.
JP2002161272A 2002-06-03 2002-06-03 Vapor growth apparatus and vapor growth method Expired - Fee Related JP3968777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161272A JP3968777B2 (en) 2002-06-03 2002-06-03 Vapor growth apparatus and vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161272A JP3968777B2 (en) 2002-06-03 2002-06-03 Vapor growth apparatus and vapor growth method

Publications (3)

Publication Number Publication Date
JP2004014535A JP2004014535A (en) 2004-01-15
JP2004014535A5 JP2004014535A5 (en) 2005-09-22
JP3968777B2 true JP3968777B2 (en) 2007-08-29

Family

ID=30430390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161272A Expired - Fee Related JP3968777B2 (en) 2002-06-03 2002-06-03 Vapor growth apparatus and vapor growth method

Country Status (1)

Country Link
JP (1) JP3968777B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021487B2 (en) * 2007-12-12 2011-09-20 Veeco Instruments Inc. Wafer carrier with hub
JP2010232624A (en) * 2009-02-26 2010-10-14 Japan Pionics Co Ltd Vapor phase growth apparatus for group-iii nitride semiconductor
KR101455737B1 (en) 2010-12-31 2014-11-03 세메스 주식회사 apparatus for treating substrate
JP5954202B2 (en) * 2013-01-29 2016-07-20 東京エレクトロン株式会社 Deposition equipment
CN115922557B (en) * 2023-03-09 2023-07-25 长鑫存储技术有限公司 Polishing assembly and polishing equipment

Also Published As

Publication number Publication date
JP2004014535A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP4945185B2 (en) Crystal growth method
JP6330941B1 (en) Epitaxial growth apparatus, preheat ring, and epitaxial wafer manufacturing method using them
US8349083B2 (en) Vapor-phase process apparatus, vapor-phase process method, and substrate
US7699604B2 (en) Manufacturing apparatus for semiconductor device and manufacturing method for semiconductor device
JP6697558B2 (en) Method for epitaxially coating semiconductor wafers
JP5018708B2 (en) Vapor phase processing apparatus, vapor phase processing method and substrate
US7060944B2 (en) Heat treatment device and heat treatment method
KR20090038606A (en) Susceptor and fabrication method of semiconductor using thereof
JP3968777B2 (en) Vapor growth apparatus and vapor growth method
JP6812961B2 (en) Epitaxy growth device and manufacturing method of semiconductor epitaxial wafer using it
JP5988486B2 (en) Film forming apparatus and film forming method
JP4984046B2 (en) Vapor growth susceptor, vapor growth apparatus, vapor growth susceptor design method and vapor growth method
US20010052324A1 (en) Device for producing and processing semiconductor substrates
WO2012132575A1 (en) Shower plate, vapor-phase growth apparatus, and vapor-phase growth method
KR100966370B1 (en) Chemical Vapor Deposition Apparatus
CN109695027B (en) Vapor phase film forming apparatus
JP3731844B2 (en) Vapor thin film growth apparatus and vapor thin film growth method using the same
KR20230038514A (en) Device and method for achieving homogeneous growth and doping in semiconductor wafers having a diameter greater than 100 mm
JP6587354B2 (en) Susceptor
JP2018148222A (en) Epitaxial growth device, preheat ring and epitaxial wafer manufacturing method using the epitaxial growth device and preheat ring
JP4613451B2 (en) Epitaxial wafer manufacturing method
JPH1050615A (en) Single wafer processing gas-phase growth device
TW200903594A (en) Vapor phase growth apparatus and vapor phase growth method
JPH0354193A (en) Organic metal gaseous phase growth device
JPH0530350Y2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070111

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20070125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees