JP3967318B2 - 光伝送路保持部材 - Google Patents

光伝送路保持部材 Download PDF

Info

Publication number
JP3967318B2
JP3967318B2 JP2003435827A JP2003435827A JP3967318B2 JP 3967318 B2 JP3967318 B2 JP 3967318B2 JP 2003435827 A JP2003435827 A JP 2003435827A JP 2003435827 A JP2003435827 A JP 2003435827A JP 3967318 B2 JP3967318 B2 JP 3967318B2
Authority
JP
Japan
Prior art keywords
holding member
optical transmission
connection end
transmission line
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003435827A
Other languages
English (en)
Other versions
JP2005195699A (ja
Inventor
浩史 濱崎
英人 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003435827A priority Critical patent/JP3967318B2/ja
Priority to US11/014,833 priority patent/US7198412B2/en
Priority to TW093139848A priority patent/TWI249253B/zh
Priority to KR1020040111922A priority patent/KR100662039B1/ko
Priority to CNB2004101048979A priority patent/CN100381846C/zh
Publication of JP2005195699A publication Critical patent/JP2005195699A/ja
Application granted granted Critical
Publication of JP3967318B2 publication Critical patent/JP3967318B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3644Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the coupling means being through-holes or wall apertures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、光通信技術や光伝送技術などに用いられる光半導体モジュールに係わり、特にアレイ状に配列された複数の光半導体素子と、光伝送路を構成する複数のコアとを、互いに精密に位置合わせし、実装する際に必要となる光伝送路保持部材に関する。
近年、光通信技術及び光伝送技術においては、光を搬送波として強度変調や位相変調などによって信号を伝送することが広く行われるようになっている。このような光伝送のためには、発光素子や受光素子などの光半導体素子を複数個集積化した光素子チップと、光ファイバなどの光伝送路とを精密に位置合わせし、互いに光学的に結合させる光半導体モジュールが必要となる。
この種の光半導体モジュールにおいて、扱う光信号が高速化するにつれ、発光素子や受光素子の電気的な寄生容量が無視できなくなり、素子の発光領域或いは受光領域の寸法が小さくなっている。例えば、GaAs系のpin型フォトダイオードの受光面の直径は、10Gbps以上の応答を得るために50〜60μm程度まで微小化してきている。そのため、マルチモード光ファイバからの出力光を受光素子に入力する際には、ビームの広がりなどから光結合効率の低下が起こり、耐雑音特性が劣化し伝送距離を稼げないといった問題が出てくる。
又、光素子チップにアレイ状に集積化された複数の光半導体素子のそれぞれと光ファイバのコアとの相対位置のトレランスを大きく取るためにも光路中にレンズを挿入することが必要になってくる。しかし、レンズを挿入することで部品点数が増えて益々位置合わせが困難となり、実装コストが上昇する傾向にあるという問題がある。
そこで、光ファイバと光素子チップを直近の位置に対向させてレンズを用いないで光結合を得る、いわゆる直接光結合(バットジョイント)と呼ばれる結合方式によって実装コストの低減をはかる技術が研究開発されている。直接光結合を用いる場合、光半導体素子からの出射光、或いは光ファイバからの出射光は、特別にレンズ効果を持たせない限り導波機構を持たないほぼ等屈折率の媒質中(例えば空気中や屈折率整合材中)を透過するため、ビームが拡がっていく。そのため、光ファイバの導波部(コア)や受光素子の活性領域以外の部分に到達する光が増加し、光結合効率が低下して耐雑音性が低下する。更に、迷光が増えることで別の雑音(例えばクロストークノイズ)を増加させ、信号伝送に悪影響を及ぼす可能性がある。したがって、なるべく光素子チップと光ファイバとを直近に配置して余分な部分に光が到達しないようにすることが重要になってくる。
例えば、開口部率(NA)=0.21、コアの直径50μmのマルチモード光ファイバからの出射光は、空気中で広がり角約12度を持つ。したがって、光ファイバとの距離は数十μm程度にまで近づける必要がある。
そのため、光ファイバなどの支持部材(いわゆる「光ファイバフェルール」)の主面上に電気配線を直接作製しておき、主面上に光素子チップの活性領域(受発光領域)が光ファイバと対向するように搭載する方法が提案されている(例えば、特許文献1参照)。この方法では、受発光素子と光ファイバを非常に近接して搭載することができる。又、直接光ファイバを基準として光半導体素子をアセンブルすることができるので、通常のフリップチップ実装を用いることで横方向も高い精度で搭載が可能でありながら、部品点数が少なくて済み、低コスト化に向いた構造とすることができる。更に、支持部材の基材を樹脂とすることで、部品作製コストを大幅に低減することができる。又、電気配線を光ファイバ用穴の開口部のある面から側面にかけて形成していることにより、直交変換を実現しており、光ファイバの伸びる方向と実装面とを平行に保ち、実装面に対して光ファイバが垂直に立ち上がることを防止している。しかしながら、この構造によれば、受発光素子の熱伝導の経路は、信号引き出し用の電気配線と空気中への放熱のみであり、特に、支持部材が樹脂からなる場合、支持部材の基体への放熱は極端に悪いため、ほとんど熱伝導の経路が確保できない状態に陥るという問題がある。そのため、外部から熱伝導の経路を光半導体素子の裏面に設置するなどという方策が必要になり、コストの上昇を招くといった問題がある。又、複数の光半導体素子を光素子チップ上に集積化した「光半導体素子アレイ」の場合には、問題が深刻となる。光半導体素子の基体である半導体基板(半導体チップ)は、比較的熱抵抗が低い材料を使用しているため、一つの光素子チップに集積化される各光半導体素子同士が熱的に干渉を起こし、隣接する光半導体素子のマーク率や動作電流値変化の影響を受けやすい構造となるという問題がある。この熱的干渉を防止するために、外部から各光半導体素子ごとに熱伝導の経路を付加することは非常に困難である。
特開2000−357804号公報
このように、支持部材の主面上に電気配線を設けておき、受発光素子を搭載して光ファイバと直接結合させる構造では、光半導体素子の熱伝導の経路は、信号引き出し用の電気配線と空気中への放熱のみである。しかし、電気配線の長さを長くすることは配線容量やインダクタンス、配線抵抗を上昇させることにつながり、特性の劣化を招くため、必要以上に長くすることはできない。そのため、十分な放熱効果を期待することはできない。
特に、支持部材(以下において「光伝送路保持部材」という。)が樹脂からなる場合、光伝送路保持部材からの放熱は極端に悪いため、ほとんど熱伝導の経路が確保できない状態に陥るという問題がある。そのため、外部から熱伝導の経路を光半導体素子の裏面に設置するなどという方策が必要になり、コストの上昇を招くといった問題があった。
又、複数の光半導体素子を同一の半導体チップに集積化した光素子チップの場合には、問題が深刻となる。光素子チップの基体である半導体基板は比較的熱抵抗が低い材料を使用しているため、一つの光素子チップに含まれる各光半導体素子同士が熱的に干渉を起こし、隣接する光半導体素子のマーク率や動作電流値変化の影響を受けやすい構造となるという問題があった。
上記事情を鑑み、本発明は、複数の光半導体素子を同一の半導体チップに集積化した光素子チップと光伝送路とを安価に直接結合させることが可能で、各光半導体素子間の熱的相互干渉を抑制可能な光伝送路保持部材を提供することにある。
上記目的を達成するために、本発明の特徴は、(イ)光素子チップ実装用の接続端面、接続端面に相対する対向端面、接続端面と対向端面を接続する複数の側面とで外形を定義される絶縁性の基体と、(ロ)接続端面と対向端面間を貫通し、光伝送路を機械的に保持する保持穴が接続端面を切って接続端面に形成される開口部の近傍から、複数の側面の内の1側面上まで延長形成される複数の電気配線と、(ハ)接続端面において、複数の電気配線と互いに交互に配置され、且つ1側面上まで延長形成され、前記接続端面及び1側面上での長さが、前記複数の電気配線の前記接続端面及び前記1側面上での長さより長い複数の熱伝導ストリップとを備える光伝送路保持部材であることを要旨とする。
本発明によれば、複数の光半導体素子を同一の半導体チップに集積化した光素子チップと光伝送路とを安価に直接結合させることが可能で、各光半導体素子間の熱的相互干渉を抑制可能な光伝送路保持部材を提供することができる。
次に、図面を参照して、本発明の第1〜第4の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
又、以下に示す第1〜第5の実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。
(第1の実施の形態)
本発明の第1の実施の形態に係る光伝送路保持部材は、図1に示ように、光素子チップ実装用の接続端面1A、接続端面1Aに相対する対向端面1B、接続端面1Aと対向端面1Bを接続する複数の側面1C,1D,1E,1Fとで外形を定義される絶縁性の基体1と、接続端面1Aと対向端面1B間を貫通し、光伝送路を機械的に保持する複数の円柱形状の保持穴2a、2b、2c、2dの接続端面1Aにおける開口部3a,3b,3c,3dの近傍から、複数の側面1C,1D,1E,1Fの内の1側面(第1側面)1C上まで互いに平行に延長形成される複数の電気配線4a,4b,4c,4dと、接続端面1Aにおいて、複数の電気配線4a,4b,4c,4dと互いに交互に配置され、且つ第1側面1C上まで延長形成され、1側面1C上での長さが、複数の電気配線4a,4b,4c,4dより長い複数の熱伝導ストリップ(保持部材側熱伝導ストリップ)5a,5b,5c,5d,5eとを備える。図1では、第1側面1Cと第3側面1Eとが互いに平行であり、この第1側面1Cと第3側面1Eにそれぞれ直交する第2側面1Dと第4側面1Fとで4角筒が構成されている。そして、4角筒を構成する第1側面1C、第2側面1D、第3側面1E及び第4側面1Fが、接続端面1Aと対向端面1Bとの間を接続して直方体の形状を実現しているが、基体1の形状は直方体に限定されるものではない。又、図1では、複数の熱伝導ストリップ(保持部材側熱伝導ストリップ)5a,5b,5c,5d,5eが、複数の開口部3a,3b,3c,3d,・・・・・の間に、それぞれ平行に配置されており、複数の開口部3a,3b,3c,3d,・・・・・をそれぞれ仕切る位置、即ち搭載される光素子の活性領域を仕切る位置に熱伝導ストリップを設置する必要がある。そのため、接続端面1Aにおいて、電気配線4a,4b,4c,4dよりも長い方がよい。更に、図1に示すように、接続端面1Aにおいて、複数の開口部3a,3b,3c,3d,・・・・・の間を第1側面1Cから第3側面1Eに至るまで長く配置した方が熱的分離の観点からは有利である。
基体1の材料としては、有機系の種々な合成樹脂、セラミック、ガラス等の無機系の材料が使用可能である。有機系の樹脂材料としては、エポキシ樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリブチレンテレフタレート(PBT)樹脂、フェノール樹脂、ポリエステル樹脂、ポリイミド樹脂、フッ素樹脂等が、使用可能である。又、透明な基体が必要な場合には、ガラスや石英が用いられる。セラミックとしてはアルミナ(Al23)、ムライト(3Al23・2SiO2)、ジルコニア(ZrO)、ベリリア(BeO)、窒化アルミニウム(AlN)、窒化珪素(SiC)等が使用可能である。特に、基体1を、30μm程度のガラスフィラーを80%程度混入したエポキシ樹脂により構成すれば、金型による樹脂成型で保持穴2a,2b,2c,2d,・・・・・が簡単に高精度に形成できるので好適である。
保持穴2a,2b,2c,2d,・・・・・は、第1側面1C、第2側面1D、第3側面1E及び第4側面1Fのそれぞれに平行となる方向に伸延し、且つ、接続端面1A及び対向端面1Bに直交するように設けられている。図1では、4本の保持穴2a,2b,2c,2dが、互いに対向する第1側面1Cと第3側面1Eとの間を、第1側面1Cと第3側面1Eに平行方向となる面に沿って配列されているが、4本に限定されるものではなく、3本以下若しくは5本以上でもよい。一般に光ファイバのクラッド層の外径は125μmであるので、125μmの外径に対しては、保持穴2a,2b,2c,2d,・・・・・の内径は125.5〜128μm程度に設定すればよい。光ファイバの被覆層の外径を考慮すれば、保持穴2a,2b,2c,2d,・・・・・の配列のピッチは、クラッド層の外径の2倍程度に選定すればよい。
図1においては、3本の熱伝導ストリップ(保持部材側熱伝導ストリップ)5b,5c,5dが4本の電気配線4a,4b,4c,4dのそれぞれの間に交互に挿入され、更に、熱伝導ストリップ5b,5c,5dよりも幅の広い熱伝導ストリップ5a及び5eが電気配線4a及び4dの外側に配置されている。外側の幅の広い熱伝導ストリップ5a及び5eも、内側の幅の狭い熱伝導ストリップ5b,5c,5dと同様の熱伝導ストリップであるが、第1の実施の形態に係る光伝送路保持部材における熱の流れの経路の対称性を保つために補助的に形成されている。
図2は、図1の保持穴2bを切る面Sに沿った本発明の第1の実施の形態に係る光伝送路保持部材の断面構造を示す。図2の断面図に示すように、接続端面1Aから第1側面1Cに跨るように、電気配線4bが基体1の表面に延長形成され、その奥に同様に、熱伝導ストリップ5bが、第1側面1Cに跨って延長形成されていることが分かる。図示を省略しているが、他の電気配線4a,4c,4d及び熱伝導ストリップ5a,5c,5d,5eも同様に、接続端面1Aから第1側面1Cに跨るように、基体1の表面に延長形成されている。
図3は、本発明の第1の実施の形態に係る光伝送路保持部材に、光伝送路としての光ファイバ31a,31b,31c,31d,・・・・・が実装されている様子を示す模式的鳥瞰図である。複数の光ファイバ31a,31b,31c,31d,・・・・・は、光ファイバアレイ(光ファイバ束)を構成している。
電気配線4a,4b,4c,4d,・・・・・が、接続端面1Aから第1側面1Cに跨って形成されることにより、光伝送路(光ファイバ)31a,31b,31c,31d,・・・・・の軸方向と第1側面1Cにおける電気配線4a,4b,4c,4d,・・・・・との平行性が保たれている。これにより、光伝送路の軸方向と実装面方向を直角とすることが可能であるため、モジュール全体として薄型化の可能な構造である。電気配線4a,4b,4c,4d,・・・・・は、銅(Cu)やアルミニウム(Al)等の金属薄膜のパターンであり、メタルマスクとスパッタリング法や鍍金法等によるパターンメタライズで、容易に形成できる。或いは、Cu−Fe,Cu−Cr,Cu−Ni−Si,Cu−Sn等の銅合金、Ni−Fe、Fe−Ni−Co等のニッケル・鉄合金、或いは銅とステンレスの複合材料等を用いることが可能である。更に、これらの金属にニッケル(Ni)鍍金や金(Au)鍍金等を施した多層構造からなるものとしてもよく、その他下地金属としてチタン(Ti)や白金(Pt)等も利用可能である。
熱伝導ストリップ5b,5c,5d,・・・・・は、スパッタリング法やCVD法により形成されたアモルファスSi、多結晶Si等の半導体薄膜、或いは窒化アルミニウム(AlN)などのセラミック薄膜からなる高熱伝導材料、或いは熱伝導性のエポキシ樹脂などの絶縁物材料などの高熱伝導性材料を選定し、これを帯状の薄膜ストリップにパターニングして構成すればよい。或いは、CVDにより作製された多結晶ダイヤモンド、フラーレン、カーボンナノチューブ等の高熱伝導材料で熱伝導ストリップ5b,5c,5d,・・・・・を構成してもよい。
更に、熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・は、電気配線4a,4b,4c,4d,・・・・・と同様にメタルマスクとスパッタリング法等によりCu、Al等の金属薄膜で形成してもよい。Cu上にAu鍍金した構造でもよい。これら金属材料で熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・を構成した場合は、同時に電気伝導性を有するため、各電気配線4a,4b,4c,4d,・・・・・を電気的に分離するための接地ラインとして併用することも可能である。
いずれにせよ、第1の実施の形態に係る光伝送路保持部材は、1μm以下の非常に高い精度を持ちながら、非常に低コストで量産することが可能である。
図4(a)は、本発明の第1の実施の形態に係る光伝送路保持部材に搭載される光素子チップ21の概略を説明する模式的鳥瞰図であり、図4(b)は、既に図1を用いて説明した光伝送路保持部材に、実装に必要な熱的接続部材(熱伝導バンプ)や電気的接続部材(電気伝導バンプ)を配置した状態を説明する模式的な鳥瞰図である。図4(a)に示すように、光素子チップ21の表面には、活性領域22a,22b,22c,22d,・・・・・が集積化されている。更に、信号入出力用の電気配線26a,26b,26c,26d,・・・・・及びチップ側熱伝導ストリップ27a,27b,27c,27d,27e,・・・・・が、光素子チップ21の表面に形成されている。
光素子チップ21が受光素子アレイであれば、活性領域22a,22b,22c,22d,・・・・・の最表面層、即ちコンタクト層は、1×1018cm−3〜1×1021cm−3程度のドナー若しくはアクセプタがドープされた複数の高不純物密度領域であり、pinダイオードのアノード領域若しくはカソード領域である。そして、この複数の活性領域22a,22b,22c,22d,・・・・・のコンタクト層表面にコアの外径より大きめの入射窓を囲んで額縁状に、活性領域22a,22b,22c,22d,・・・・にオーミック接触する金属電極が複数の電気配線26a,26b,26c,26d,・・・・・が接続されている。一般に多モード光ファイバのコアの外径は50μm、単一モード光ファイバのコアの外径は9μmであるので、活性領域22a,22b,22c,22d,・・・・・・の外径は、光の利用効率の観点からは、光ファイバのコアから出射される光ビームをすべて受光できることが望ましいため、これらのコアの外径より大きめの値に設定すればよいが、使用される光信号の帯域によっては素子のCR時定数により活性領域の面積が制限される。例えば、10Gbpsの光信号を受講するためにはGaAs系の受光素子で直径約60μmの円形が限界となるため、ビーム広がりを考慮するとファイバと非常に近接して置かれる必要がある。金属電極の代わりに、錫(Sn)をドープした酸化インジウム(In23)膜(ITO)、インジウム(In)をドープした酸化亜鉛(ZnO)膜(IZO)、ガリウム(Ga)をドープした酸化亜鉛膜(GZO)、酸化錫(SnO2)等の透明電極とし、この透明電極にオーミック接触するように、Al、若しくはアルミニウム合金(Al−Si,Al−Cu−Si)等の金属から電気配線26a,26b,26c,26d,・・・・・とを、接続する構造でも構わない。
光素子チップ21が発光素子アレイであれば、活性領域22a,22b,22c,22d,・・・・・は、化合物半導体等を基板とする光素子チップ21の素子形成面に複数個集積化された面発光レーザの発光面に相当し、コアの外径より小さい発光面を囲んで、額縁状にアノード領域若しくはカソード領域となる電極領域にオーミック接触する金属電極を設けておけばよく、この金属電極と電気配線26a,26b,26c,26d,・・・・・とを、一体で構成してもよい。面発光レーザの発光面の大きさは、例えばGaAs系の波長850nm程度の素子で、10Gbpsで動作する素子であれば約10μm程度の大きさであるため、マルチモードファイバを用いた場合は、十分コア径より小さくでき、光の利用効率を高くすることができる。シングルモードファイバの場合は、モード半径よりも小さくするとそして以降の上昇により高速動作ができなくなるなどの問題が生じるため、必ずしもコア径より小さくすることはできないため光の利用効率が低下することに注意が必要となるが、いずれにしても活性領域の大きさは数十μm程度である。
図4(a)では、電気配線26a,26b,26c,26d,・・・・・は、活性領域22a,22b,22c,22d,・・・・・・の外径サイズより徐々に広くなるテーパ部を経て、一定線幅のストリップパターンに接続されるトポロジーであるが、電気配線26a,26b,26c,26d,・・・・・の形状やトポロジーは、図4(a)に示されるものに限定されるものではない。
なお、この複数の電気配線26a,26b,26c,26d,・・・・・の上部に、酸化膜(SiO)、PSG膜、BPSG膜、窒化膜(Si)、或いはポリイミド膜等からなるパッシベーション膜を堆積し、パッシベーション膜の一部に開口部を設け、複数の電気配線26a,26b,26c,26d,・・・・・を露出するように構成してもよい。電気配線26a,26b,26c,26d,・・・・・は、ポリシリコンやタングステン(W)、チタン(Ti)、モリブデン(Mo)等の高融点金属等から構成してもかまわないが、接続信頼性の点からは、これらの導電薄膜の最上層にAuの薄膜等を設けて、電気配線26a,26b,26c,26d,・・・・・とするのが好ましい。
又、図示していないが光素子チップのアノード電極又はカソード電極のもう一方はチップ裏面又は、アイソレートされた表面側に形成されており、ワイヤボンディングや、フリップチップといった手法で外部に引き出されている。
図4(a)においては、3本のチップ側熱伝導ストリップ27b,27c,27dが4本の電気配線26a,26b,26c,26dのそれぞれの間に交互に挿入され、更に、チップ側熱伝導ストリップ27b,27c,27dよりも幅の広いチップ側熱伝導ストリップ27a及び27eが、電気配線26a及び26dの外側に配置されている。チップ側熱伝導ストリップ27a及び27eも、チップ側熱伝導ストリップ27b,27c,27dと同様の熱伝導ストリップであるが、第1の実施の形態に係る光素子チップ21における熱の流れの経路の対称性を保つために補助的に形成されている。
チップ側熱伝導ストリップ27a,27b,27c,27d,27e,・・・・・は、スパッタリング法やCVD法により形成されたアモルファスSi、多結晶Si等の半導体薄膜、或いはAlNなどのセラミック薄膜等の高熱伝導材料、更には、熱伝導性のエポキシ樹脂などの絶縁物材料などの高熱伝導性材料から適宜選定し、これを図4(a)に示す帯状のストリップパターンに構成すればよい。更に、チップ側熱伝導ストリップ27a,27b,27c,27d,27e,・・・・・は、電気配線26a,26b,26c,26d,・・・・・と同様にメタルマスクとスパッタリング法等によりCu、Al等の金属薄膜で形成してもよい。特に熱伝導率を考慮すれば、Cu,AuやAg等の金属が好ましく、Cu上にAu鍍金した構造でもよい。これら金属材料でチップ側熱伝導ストリップ27a,27b,27c,27d,27e,・・・・・を構成した場合は、同時に電気伝導性を有するため、各電気配線26a,26b,26c,26d,・・・・・を電気的に分離するための接地ラインとして併用することも可能で、且つ、光素子チップのアノード電極又はカソード電極のもう一方としてチップ側熱伝導ストリップを使用することができる。
図4(b)に示すように、光素子チップ21の電気配線26a,26b,26c,26d,・・・・・のそれぞれと、光伝送路保持部材の電気配線4a,4b,4c,4d,・・・・・のそれぞれを互いに電気的に接続するために、電気的接続部材(電気伝導バンプ)24a,24b,24c,24d,・・・・・が、光伝送路保持部材の電気配線4a,4b,4c,4d,・・・・・上にそれぞれ配置されている。電気的接続部材(電気伝導バンプ)24a,24b,24c,24d,・・・・・としては、半田ボール、金(Au)バンプ、銀(Ag)バンプ、銅(Cu)バンプ、ニッケル/金(Ni−Au)バンプ、或いはニッケル/金/インジウム(Ni−Au−In)バンプ等が使用可能である。半田ボールとしては、直径10μm乃至25μm、高さ5μm乃至20μmの錫(Sn):鉛(Pb)=6:4の共晶半田等が使用可能である。或いは、Sn:Pb=5:95の半田やSn:Au=2:8の共晶半田でもよい。
図4(b)には、光素子チップ21のチップ側熱伝導ストリップ27a,27b,27c,27d,27e,・・・・・のそれぞれと、光伝送路保持部材の保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・のそれぞれを互いに熱に接続するために、熱的接続部材(熱伝導バンプ)23a,23b,23c,23d,23e,・・・・・が、保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・上にそれぞれ配置されている。熱的接続部材(熱伝導バンプ)23a,23b,23c,23d,23e,・・・・・・としては、Auバンプ、Agバンプ、Cuバンプ等の熱伝導率の良好な金属バンプや高熱伝導性のエポキシ樹脂ペースト等が使用可能であるが、半田バンプでも構わない。
そして、図5に示すように、光素子チップ21は、活性領域22a,22b,22c,22d,・・・・・が配設された表面部を下側に向けたフェイスダウン(フリップチップ)方式で光伝送路保持部材の接続端面1Aの表面上に実装される。図5(a)が接続端面1A側から見た透視正面図、図5(b)が第1側面1C側から見た平面図である。図5(a)の透視正面図において、活性領域22a,22b,22c,22d,・・・・は図示されているものの、簡単化のため、光素子チップ21の電気配線26a,26b,26c,26d,・・・・・及びチップ側熱伝導ストリップ27a,27b,27c,27d,27e,・・・・・の図示は、省略されている。
フェイスダウン(フリップチップ)方式のマウントの結果、光素子チップ21の電気配線26a,26b,26c,26d,・・・・・は、光伝送路保持部材の電気配線4a,4b,4c,4d,・・・・・に、それぞれ電気的接続部材(電気伝導バンプ)24a,24b,24c,24d,・・・・・で電気的に接続される。又、光素子チップ21のチップ側熱伝導ストリップ27a,27b,27c,27d,27e,・・・・・のそれぞれは、光伝送路保持部材の保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・のそれぞれと、熱的接続部材(熱伝導バンプ)23a,23b,23c,23d,23e,・・・・・により、互いに熱に接続される。この結果、接続端面1A上に搭載された光素子チップ21の入出力電気信号は、第1側面1Cにまで延長形成された電気配線4a,4b,4c,4d,・・・・・により、第1側面1Cにおいて、外部に引き出すことができる。
図5に示したように、保持部材側熱伝導ストリップ5b,5c,5d,・・・・・は、電気配線4a,4b,4c,4d,・・・・・のそれぞれの間に交互に挿入され、開口部3a,3b,3c,3d,・・・・・の位置、即ち、搭載された光素子チップ21の活性領域22a,22b,22c,22d,・・・・・の位置のそれぞれの間に位置する。そして、図5(a)及び(b)に示したように、活性領域22a,22b,22c,22d,・・・・・で発生した熱は矢印で示した経路で拡散するが、隣の活性領域22a,22b,22c,22d,・・・・・に到達する前に、一部が熱的接続部材(熱伝導バンプ)23a,23b,23c,23d,・・・・・を通して保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・へ引き出される。その後、電気配線4a,4b,4c,4d,・・・・よりも、更に長く引き出された保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・から、黒矢印で示すように、空気中に放熱される。図5(b)に示すように、外側の幅の広い保持部材側熱伝導ストリップ5a及び5eは、光素子チップ21に配列された内側の活性領域22b及び22cと、最も外側の活性領域22a及び22dとで熱的な対称性を保つ機能を果たしている。
熱伝導ストリップや熱的接続部材としては、光素子チップの熱伝導率と同程度か、それよりも高い熱伝導率を持つ材料である方が有効である。例えば、光素子チップの基板材料としては、ガリウム砒素(GaAs)、インジウムリン(InP)、ガリウムナイトライド(GaN)などがあるが、熱伝導率はそれぞれ50W/m/K、70W/m/K、130W/m/K程度である。したがって、CVDダイヤモンド(2000W/m/K程度)やアルミニウム(Al:240W/m/K程度)などの金属等は十分適した材料である。
又、図1〜5においては、熱伝導ストリップは、光伝送路保持部材の接続端面及び1側面での長さが電気配線よりも長い場合を図示しているが、接続端面又は1側面のいずれか一方での長さが長いことによっても同様に放熱経路を確保することが可能となるため、同様の効果が得られる。
図6は、本発明の第1の実施の形態の変形例(第1変形例)に係る光伝送路保持部材として、光伝送路が光導波路フィルム32の場合の実装構造を示すが、図4(a)に示した光素子チップ21を接続端面1Aに搭載して、図5と同様な光半導体モジュールを実現することが可能である。
図1では、接続端面1Aと対向端面1B間を貫通する複数の円柱形状の保持穴2a,2b,2c,2d,・・・・・が基体1に設けられていたが、第1変形例に係る光伝送路保持部材では、単一の矩形の保持穴が、接続端面1Aと対向端面1B間を貫通するように基体1に設けられている。
即ち、第1変形例に係る光伝送路保持部材は、図6に示すように、光素子チップ21を実装するための接続端面1A、接続端面1Aに相対する対向端面1B、接続端面1Aと対向端面1Bを接続する第1側面1C、第2側面1D、第3側面1E及び第4側面1Fとで外形を定義される絶縁性の基体1と、接続端面1Aと対向端面1B間を貫通し、光導波路フィルム32を機械的に保持する保持穴が接続端面1Aを切って接続端面1Aに形成される開口部の近傍から、第1側面1C上まで互いに平行に延長形成される複数の電気配線4a,4b,4c,4dと、接続端面1Aにおいて、複数の電気配線4a,4b,4c,4dと互いに交互に配置され、且つ第1側面1C上まで延長形成され、第1側面1C上での長さが、複数の電気配線4a,4b,4c,4dより長い複数の保持部材側熱伝導ストリップ5a,5b,5c,5d,5eとを備える。光導波路フィルム32には、4本の矩形のコア6a,6b,6c,6dが例示されているが、コアの形状や数は図6に示すものに限定されないのは勿論である。図1では、複数の保持部材側熱伝導ストリップ5a,5b,5c,5d,5eが、複数の開口部3a,3b,3c,3d,・・・・・の間に、それぞれ平行に配置されているが、図6の構造では、接続端面1Aにおいて、電気配線4a,4b,4c,4dと内側の3本の保持部材側熱伝導ストリップ5b,5c,5dは、同程度の長さである。但し、図6に示すように、接続端面1Aにおいて、外側の幅の広い2本の保持部材側熱伝導ストリップ5a及び5eは、第1側面1Cから第3側面1Eに至るまで長く配置されている。
図6に示す第1変形例に係る光伝送路保持部材を用いた光半導体モジュールでは、基体1に設けられた単一の矩形の保持穴により、光導波路フィルム32のコア6a,6b,6c,6dが、図4(a)に示した光素子チップ21の活性領域22a,22b,22c,22dの位置に精密に位置合わせされる。
光導波路フィルム32は、UV硬化型エポキシ樹脂やポリイミド樹脂、フッ素化ポリイミド樹脂等により構成できる。
図6に示した光伝送路保持部材を用いた光半導体モジュールにおいても、図5に示したと同様な熱エネルギーの流れになり、隣接する活性領域22a,22b,22c,22d,・・・・・間の実効的な熱抵抗が上昇し、各活性領域22a,22b,22c,22d,・・・・・間の熱的相互干渉を抑制することができる。即ち、光素子チップ21の各活性領域22a,22b,22c,22d,・・・・・間に、第1変形例に係る光伝送路保持部材の保持部材側熱伝導ストリップ5b,5c,5d,・・・・・が挿入されているため、各活性領域22a,22b,22c,22d,・・・・・間の熱的相互干渉を抑制することが可能である。
図1においては、電気配線4a,4b,4c,4d,・・・・・及び保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・の接続端面1Aにおけるトポロジー、及び、電気配線4a,4b,4c,4d,・・・・・及び保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・が接続端面1Aから引き出され第1側面1Cの表面に形成されるトポロジーに着目して説明し、第1側面1Cに対向する第3側面1E側のパターンやトポロジーについては説明を省略した。本発明の第1の実施の形態の他の変形例(第2変形例)に係る光伝送路保持部材では、図7(a)に示すように、第3側面1E側から見た裏面図について説明する。なお、図7(b)は、接続端面1A側から見た正面図、図7(c)が第1側面1C側から見た平面図であり、図1に示した構造と同様であるので重複した説明は省略する。
光伝送路保持部材自身を、実装基板等に実装する場合は、第1側面1Cに対向する第3側面1Eが接着用の面として用いられる。この場合、図7(a)に示す第3側面1Eのほぼ全面に、べた(一面)に接着用の金属膜を形成すると、基体1が樹脂などの場合には、べた状の金属膜と樹脂との線膨張係数の差により応力が生じて、接着後にそりや、程度によっては破壊にいたる可能性がある。第1の実施の形態の第2変形例では、図7(a)に示すように、光伝送路保持部材自身の接着用に、マトリクス状に矩形(長方形)のメタルパターン(短冊)Xij(i=1〜3;j=1〜n)を配置している。図7(a)に示すように、メタルパターンXijを、第3側面1Eに短冊状に分割しておくことにより、基体1が樹脂などの場合であっても、メタルパターンXijとの線膨張係数の差により生じる応力の絶対値を低減することができ、接着後にそりや、程度によっては破壊にいたる可能性を低減する効果がある。メタルパターン(短冊)Xijの形状は、図7(a)に示す矩形(長方形)に限定されず、6角形のメタルパターンXijを蜂の巣状に配置する等、他のトポロジーでもよいことは勿論である。
図8は、第1の実施の形態の更に他の変形例(第3変形例)に係る光伝送路保持部材の概略構成を示す断面図で、図2と同様に、図1の保持穴2bを切る面Sに沿った断面構造を示す。図8の断面図に示すように、接続端面1Aと第1側面1Cとの境界縁部に面取り部10が設けられている。そして、接続端面1Aから面取り部10を経て第1側面1Cに跨るように、電気配線4bが基体1の表面に延長形成され、その奥に同様に、熱伝導ストリップ5bが、第1側面1Cに跨って延長形成されていることが分かる。
図示を省略しているが、他の電気配線4a,4c,4d及び熱伝導ストリップ5a,5c,5d,5eも同様に、接続端面1Aから面取り部10を経て第1側面1Cに跨るように、基体1の表面に延長形成されている。
接続端面1Aと第1側面1Cとの境界縁部に面取り部10を設けることにより、保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・及び電気配線4a,4b,4c,4d,・・・・・の接続端面1Aと第1側面1Cとの界縁部における配線段切れを予防する効果があり、メタライゼーションが容易になる。
図9は、第1の実施の形態の更に他の変形例(第4変形例)に係る光伝送路保持部材の概略構成を示す断面図で、図1の保持穴2bを切る面Sに沿った断面構造を示す。第4変形例においては、光伝送路保持部材の接続端面1Aの法線方向Snが、図9に示すように、保持穴2a,2b,2c,2d,・・・・・の軸方向に対してわずかに傾いている。
図9に示すように、保持穴2bの軸方向と接続端面1Aの法線方向Snとがなす角度をθとして、θ=4〜10°程度傾けることで、光伝送路(光ファイバ)31a,31b,31c,31d,・・・・・中を伝播してきた光が、開口部3a,3b,3c,3dに位置する端面で反射して戻り光となることを防止できる。
図10は、第1の実施の形態の更に他の変形例(第5変形例)に係る光伝送路保持部材の概略構成を示す断面図で、図1の保持穴2bを切る面Sに沿った断面構造を示す。第5変形例においては、光伝送路保持部材の接続端面1Aの法線方向Snが、保持穴2a,2b,2c,2d,・・・・・の軸方向に対してわずかに傾いているだけでなく、対向端面1Bが、保持穴2a,2b,2c,2d,・・・・・の軸方向に対して、接続端面1Aと平行となるように、傾いている。
光素子チップ21を第1の実施の形態に係る光半導体モジュールに実装する際には、光素子チップ21を搭載する加重方向を、接続端面1A方向と一致させる。このとき、図10に示すように、光伝送路保持部材の対向端面1Bが接続端面1Aに対して平行であれば、対向端面1Bを基準にして、加重方向に対する接続端面1A方向の角度を容易に規定することができるのでアセンブリ工程が容易になる。
(第2の実施の形態)
本発明の第2の実施の形態に係る光伝送路保持部材は、図11に示ように、光素子チップ実装用の接続端面1A、接続端面1Aに相対する対向端面1B、接続端面1Aと対向端面1Bを接続する第1側面1C、第2側面1D、第3側面1E,及び第4側面1Fとで外形を定義される絶縁性の基体1と、接続端面1Aと対向端面1B間を貫通する複数の円柱形状の保持穴2a,2b,2c,2d,・・・・・が接続端面1Aを切って接続端面1Aに形成される複数の開口部3a,3b,3c,3d,・・・・・の近傍から第1側面1C上まで延長形成される複数の電気配線4a,4b,4c,4d,・・・・・とを備える点では、第1の実施の形態に係る光伝送路保持部材と同様である。
しかし、第2の実施の形態に係る光伝送路保持部材は、図11に示ように、複数の開口部3a,3b,3c,3d,・・・・・の間に、それぞれ平行に配置され、接続端面1Aから第1側面1C上まで延長形成される複数の熱伝導ストリップ5b,5c,5d,・・・・・が、図11に示す様に、第1側面1C上において、一括して、放熱用パッド71により、熱的に短絡されている。複数の熱伝導ストリップ5b,5c,5d,・・・・・が、接続端面1Aにおいて、複数の熱伝導ストリップ5b,5c,5d,・・・・・と互いに交互に配置され、第1側面1C上での長さが、複数の電気配線4a,4b,4c,4d,・・・・・より長い点では、第1の実施の形態に係る光伝送路保持部材と同様である。更に、図11に示す様に、電気配線4a及び4dの外側で、電気配線4a及び4dを挟むように配置された補助的な保持部材側熱伝導ストリップ5a及び5eも、放熱用パッド71により一括して接続されている。
図示を省略しているが、第2の実施の形態に係る光伝送路保持部材は、図5と同様に、複数個の光半導体素子を同一半導体チップに集積化した光素子チップ21が搭載され、第1の実施の形態と同様に、光素子チップ21を直接、且つ簡単にアセンブリ可能である。そして、光素子チップ21に集積化され、光半導体素子として機能する各活性領域22a,22b,22c,22d,・・・・・間の熱的相互干渉を抑制できる。このため、非常に安価な直接光結合系を構成しつつ、且つ熱的に安定な光半導体モジュールが提供できる。その結果、非常に高密度に同一半導体チップに光半導体素子を集積化した構造であっても、特性の安定した安価な光半導体モジュールを提供することができる。特に、図11に示ような、第1側面1C上に、熱的短絡部材(放熱用パッド)71を備えたトポロジーにすることにより、保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・の表面積を大きくすることができるため、放熱効率を大幅に上昇可能である。このため、第1の実施の形態に係る光伝送路保持部材よりも、一層、活性領域22a,22b,22c,22d,・・・・・の熱的相互干渉を抑制可能である。
保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・と放熱用パッド71は、多結晶Si等の半導体薄膜、AlNなどのセラミック薄膜、熱伝導性のエポキシ樹脂などの高熱伝導性材料で形成すればよい。保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・の端部が、放熱用パッド71で短絡された櫛状のパターンは、CVDやスパッタリング法等により高熱伝導材料の薄膜を堆積ごフォトリソグラフィー法と反応性イオンエッチング(RIE)法等で一体としてパターニングしてもよく、メタルマスク等を用いて、選択的に堆積させてもよい。同様に、電気配線4a,4b,4c,4d,・・・・・は、フォトリソグラフィー法とRIE法でパターニングするか、メタルマスクを用いて、選択的に堆積しパターニングしてもよい。
保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・は、Cu,Au、Ag等の金属やCu上にAu鍍金した多層構造でもよい。これら金属材料で熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・及び放熱用パッド71からなる櫛状の一体パターンを構成した場合は、この櫛状の一体パターンが、同時に電気伝導性を有するため、各電気配線4a,4b,4c,4d,・・・・・を電気的に分離するための接地ラインとして併用することも可能である。この場合は、保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・と放熱用パッド71は、電気配線4a,4b,4c,4d,・・・・・と同時に、パターニングしてもよい。
特に、金属材料で熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・及び放熱用パッド71からなる櫛状の一体パターンを構成した場合は、各保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・の電位を一定に保つことができる。そのため、保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・を外部のグランドラインや電源に接続することで、電気的なアイソレーションをより確実にすることができ、各電気配線4a,4b,4c,4d,・・・・・間のクロストークを抑制することができる。
保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・は、図12に示す様に、ヒートスプレッダや放熱フィン等の放熱部材72により、一括して熱的に短絡されてもよい。ヒートスプレッダの例として、Siなど高熱伝導度を持つ部材からなるチップなども可能である。
放熱部材72との熱的な接続は、図11に示す櫛状のパターンの放熱用パッド71の上に、半田やバンプ等で放熱部材72を接続してもよく、放熱用パッド71が存在しない(図1に示すような)トポロジーに対して、放熱部材72を配置してもよい。
図12に示す第2の実施の形態の変形例に係る光伝送路保持部材の場合も、補助的な保持部材側熱伝導ストリップ5a及び5eも一括して接続されていることが望ましい。補助的な保持部材側熱伝導ストリップ5a及び5eも一括して接続することにより、保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・の表面積を、より大きくすることができるため、放熱効率を大幅に上昇可能である。このため、より一層、活性領域22a,22b,22c,22d,・・・・・の熱的相互干渉を抑制可能である。
図12に示すように、放熱部材72で、保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・のそれぞれの端部を短絡することで、各保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・の電位を一定に保つことができる。そのため、保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・を外部のグランドラインや電源に接続することで、電気的なアイソレーションとすることができ、各電気配線4a,4b,4c,4d,・・・・・間のクロストークを、確実に抑制することができる。
図12に示す第2の実施の形態の変形例に係る光伝送路保持部材においても、図11と同様に、保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・は電気配線4a,4b,4c,4d,・・・・・と金属膜で構成してもよい。この場合、保持部材側熱伝導ストリップ5a,5b,5c,5d,5e,・・・・・は電気伝導性を有するため、各電気配線4a,4b,4c,4d,・・・・・を電気的に分離するための接地ラインとして機能する。
(第3の実施の形態)
光ファイバのクラッド層の外側は、UV被覆で覆われ、いわゆるテープ芯線として一体となっており厚さが約400μm程度と光ファイバ素線より大きくなっている。この被覆ごと、光伝送路保持部材の保持穴2a,2b,2c,2d,・・・・・に固定することが可能であれば、光ファイバと光伝送路保持部材との結合の機械的強度を格段に上昇させることが可能である。しかし、外径の大きな被覆部分を挿入可能な大きさの開口部を作製するためには、光伝送路保持部材の肉厚tがある一定の値を必要とするため、光伝送路保持部材の厚さが大きくなる。図1から明らかなように、光伝送路保持部材の厚さが大きくなると、接続端面1A上に形成された電気配線4a,4b,4c,4d,・・・・・が長くなり、配線容量、リアクタンス、抵抗値の上昇を伴う。即ち、機械的強度の向上と、配線容量、リアクタンス、抵抗値等の電気的特性とは、トレードオフの関係がある。
図13は、本発明の第3の実施の形態に係る光伝送路保持部材の概略構成を示す図である。図13(a)は平面図、図13(b)は、図13(a)のA−A方向から見た断面図である。
第4の実施の形態に係る光伝送路保持部材においては、保持穴2bの内径は、接続端面1Aから対向端面1Bに向かう途中で内部段差9を有しており、対向端面1Bに近い後方で大きくなっている。内部段差9は、図13(b)の断面図ではテーパで示されるが、3次元で見れば、保持穴2bの中心軸に対称な円錐形の一部を構成している。即ち、接続端面1Aに近い領域の小さな内径部分と、対向端面1Bに近い大きな内径部分の変換領域として、円錐形の内部段差9が存在している。又、第1側面1C側に外部段差8を有している。
図13(b)の断面図に示すように、接続端面1Aから第1側面1Cに跨るように、電気配線4bが基体1の表面に延長形成され、その奥に同様に、熱伝導ストリップ5bが、第1側面1Cに跨って延長形成されていることが分かる。図示を省略しているが、他の保持穴2a,2c,2dも同様に、接続端面1Aから対向端面1Bに向かう途中で内部段差9を有しており、対向端面1Bに近い後方で大きくなっていることは勿論である。又、他の電気配線4a,4c,4d及び熱伝導ストリップ5a,5c,5d,5eも同様に、接続端面1Aから第1側面1Cに跨るように、基体1の表面に延長形成されていることは説明を要しないであろう。
内部段差9の位置から対向端面1B向かう領域の保持穴2bの内径は、光伝送路(光ファイバ)の被覆を挿入可能な大きさである。第3の実施の形態に係る光伝送路保持部材によれば、光伝送路保持部材の接続端面1Aと対向端面1Bの間に段差8を設けることで接続端面1A側は薄く、対向端面1B側は厚くすることが可能となるので、電気的特性と機械的強度とのトレードオフの関係を解消し、両者をともに向上させることができるという効果がある。このため、各光素子間の熱的相互干渉を抑制でき、且つ機械的強度や実装信頼性が向上する。
即ち、本発明の第4の実施の形態に係る光伝送路保持部材によれば、非常に安価且つ信頼性の高い直接光結合系を構成しつつ、且つ熱的に安定で電気的特性にも優れた光半導体モジュールが提供できる。その結果、非常に高密度に同一半導体チップに光半導体素子を集積化した構造であっても、特性の安定した安価で、且つ高性能、高信頼性の光半導体モジュールを提供することができる。
本発明の第3の実施の形態の変形例(第1変形例)に係る光伝送路保持部材は、図14に示すように、複数の開口部3a,3b,3c,3d,・・・・・の間に、接続端面1Aから第1側面1C上まで延長形成される複数の熱伝導ストリップ5b,5c,5d,・・・・・のみがそれぞれ平行に配置され、図13(a)に示すような、電気配線4a及び4dの外側に、電気配線4a及び4dを挟むように配置された補助的な保持部材側熱伝導ストリップ5a及び5eが存在しない点で、図13に示した光伝送路保持部材とは異なる。
既に第1の実施の形態で説明したように、保持部材側熱伝導ストリップ5a及び5eは、熱伝導ストリップ5b,5c,5dと同様の熱伝導ストリップであるが、熱の流れの経路の対称性を保つために補助的に形成されているのであり、一定の場合は省略可能である。したがって、第4の実施の形態の第1変形例に係る光伝送路保持部材は、図14に示ように、補助的な保持部材側熱伝導ストリップ5a及び5eを省略し、接続端面1Aには、円形のパッド7a及び7eが配置されている。
本発明の第3の実施の形態の他の変形例(第2変形例)に係る光伝送路保持部材では、図15(a)に示すように、第3側面1E側から見た裏面図について説明する。なお、図15(b)は、接続端面1A側から見た正面図であり、円形のパッド7a及び7eが電気配線4a及び4dの外側に、気配線4a及び4dを挟んで配置されていることが分かる。図15(c)は、第1側面1C側から見た平面図であり、図14(a)に示した構造と同様であるので重複した説明は省略する。
光伝送路保持部材自身を、実装基板等に実装する場合は、第1側面1Cに対向する第3側面1Eが接着用の面として用いられる。第4の実施の形態の第2変形例では、図15(a)に示すように、光伝送路保持部材自身の接着用に、マトリクス状に矩形(長方形)のメタルパターン(短冊)Xij(i=1〜3;j=1〜n)を配置している。図15(a)に示すように、メタルパターンXijを、第3側面1Eに短冊状に分割しておくことにより、基体1とメタルパターンXijとの線膨張係数の差により応力が生じるのが回避され、実装基板等に接着後にそりや、破壊にいたる可能性を低減できる。
(第4の実施の形態)
図16は本発明の第4の実施の形態に係る光伝送路保持部材の概略構成を示す図である。第1〜第4の実施の形態との違いは、第2側面1D及び第4側面1Fのそれぞれの一部に第1側面1Cから第3側面1Eに向かう位置決め用のザグリ12a及び12bを設けたことにある。ザグリ12a及び12bを設け、このザグリ12a及び12bに外部のピンなどをはめ込んで、光伝送路保持部材の位置をおおよそ決定することができるため、電気配線4a,4b,4c,4d,・・・・・に外部回路を接続するためにワイヤボンディングを施したりする場合に役立つ。又、外部ピンに対して接着剤等で光伝送路保持部材を固定することにより、光伝送路保持部材の接着強度を増すことができ、光伝送路(光ファイバ)が後方から強く引っ張られた場合などに対しての破壊強度を上げることができる。
他は、第1〜第3の実施の形態に係る光伝送路保持部材と実質的に同様であるので、重複した説明を省略する。
(その他の実施の形態)
上記のように、本発明は第1〜第4の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
例えば、既に述べた第1〜第3の実施の形態の光伝送路保持部材の構造に、第4の実施の形態に係る光伝送路保持部材のザグリ12a及び12bを設ける構造でもよい。更に、第1〜第2の実施の形態の光伝送路保持部材の構造において、補助的な保持部材側熱伝導ストリップ5a及び5eを省略し、図14〜図16に示したように、接続端面1Aに円形のパッド7a及び7eを配置する構造でもよく、円形のパッド7a及び7eも省略してもよい。
更に、第1の実施の形態の第1変形例で説明した光導波路フィルム32を用いた構造、第1の実施の形態の第3変形例で説明した面取り部10を有する構造、第1の実施の形態第4及び第5の変形例で説明した接続端面1Aの法線方向Snが、保持穴2a,2b,2c,2d,・・・・・の軸方向に対してわずかに傾むいた構造等は、それぞれ、第2〜第4の実施の形態の光伝送路保持部材の構造に適用して構わないことは勿論である。同様に、第1の実施の形態の第2変形例及び第3の実施の形態の第2変形例として説明した第3側面1E側における複数のメタルパターンXijに分割した構造も、第2又は第4の実施の形態の光伝送路保持部材の構造に適用可能なことは勿論である。
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
本発明の第1の実施形態に係る光伝送路保持部材の概略構成を示す鳥瞰図である。 図1の面Sで切った第1の実施形態に係る光伝送路保持部材の断面図である。 図1に示した第1の実施形態に係る光伝送路保持部材に光ファイバを実装した状態を示す模式的な鳥瞰図である。 図4(a)は、本発明の第1の実施形態の光伝送路保持部材に搭載される光素子チップの例を示す図で、図4(b)は、図1に示す光伝送路保持部材に熱的接続部材(熱伝導バンプ)や電気的接続部材(電気伝導バンプ)を配置した状態を説明する模式的な鳥瞰図である。 図5は、本発明の第1の実施形態の光伝送路保持部材に光素子チップを搭載した際の形態を説明する図で、図5(a)は、接続端面1Aを見る透視正面図、図5(b)は、第1側面1C側から見た平面図である。 本発明の第1の実施の形態の変形例(第1変形例)に係る光伝送路保持部材に、光伝送路として光導波路フィルムを実装した状態を示す模式的な鳥瞰図である。 図7(a)は、本発明の第1の実施の形態の他の変形例(第2変形例)に係る光伝送路保持部材の第3側面側から見た裏面図、図7(b)は、その接続端面側から見た正面図、図7(c)は、対応する第1側面側から見た平面図である。 本発明の第1の実施の形態の更に他の変形例(第3変形例)に係る光伝送路保持部材の概略構成を示す断面図である。 本発明の第1の実施の形態の更に他の変形例(第4変形例)に係る光伝送路保持部材の概略構成を示す断面図である。 本発明の第1の実施の形態の更に他の変形例(第5変形例)に係る光伝送路保持部材の概略構成を示す断面図である。 本発明の第2の実施形態に係る光伝送路保持部材の概略構成を示す鳥瞰図である。 本発明の第2の実施形態の変形例に係る光伝送路保持部材の概略構成を示す鳥瞰図である。 図13(a)は、本発明の第3の実施の形態に係る光伝送路保持部材の平面図、図13(b)は、図13(a)のA−A方向から見た断面図である。 図14(a)は、本発明の第3の実施の形態の変形例(第1変形例)に係る光伝送路保持部材の平面図、図14(b)は、図14(a)のA−A方向から見た断面図である。 図15(a)は、本発明の第3の実施の形態の他の変形例(第2変形例)に係る光伝送路保持部材の第3側面側から見た裏面図、図15(b)は、その接続端面側から見た正面図、図15(c)は、対応する第1側面側から見た平面図である。 図16(a)は、本発明の第4の実施の形態に係る光伝送路保持部材の接続端面側から見た正面図、図15(b)は、対応する第1側面側から見た平面図である。
符号の説明
1…基体
1A…接続端面
1B…対向端面
1C…第1側面
1D…第2側面
1E…第3側面
1F…第4側面
2a,2b,2c,2d…保持穴
3a,3b,3c,3d…開口部
4a,4b,4c,4d…電気配線
5a,5b,5c,5d,5e…熱伝導ストリップ(保持部材側熱伝導ストリップ)
6a,6b,6c,6d…コア
7a,7e…パッド
8…外部段差
9…内部段差
10…面取り部
12a,12b…ザグリ
21…光素子チップ
22a,22b,22c,22d…活性領域
23a,23b,23c,23d,23e…熱的接続部材(熱伝導バンプ)
24a,24b,24c,24d…電気的接続部材(電気伝導バンプ)
26a,26b,26c,26d…電気配線
27a,27b,27c,27d,27e…チップ側熱伝導ストリップ
31a,31b,31c,31d…光ファイバ
32…光導波路フィルム
71…放熱用パッド
72…放熱部材
Sn…法線方向
Xij…メタルパターン
t…肉厚

Claims (11)

  1. 複数の光半導体素子を同一半導体チップに集積化した光素子チップ実装用の接続端面、前記接続端面に相対する対向端面、前記接続端面と前記対向端面を接続する複数の側面とで外形を定義される絶縁性の基体と、
    前記接続端面と前記対向端面間を貫通し、複数の光伝送路を機械的に保持する保持穴の前記接続端面における複数の開口部の近傍から、前記複数の側面の内の1側面上まで延長形成される複数の電気配線と、
    前記接続端面において、前記複数の電気配線と互いに交互に配置され、且つ前記1側面上まで延長形成され、前記接続端面上での長さが、前記複数の電気配線の前記接続端面上での長さより長いか、或いは、前記1側面上での長さが、前記複数の電気配線の前記1側面上での長さより長い複数の放熱経路
    とを備え、前記交互の配置において、最も外側の2本が放熱経路であり、該外側の2本の放熱経路が、前記交互の配置のパターンを挟むことにより、熱の流れの経路の対称性を保つようにしたことを特徴とする光伝送路保持部材。
  2. 前記接続端面の法線方向が、前記保持穴の軸方向に対して傾いていることを特徴とする請求項1に記載の光伝送路保持部材。
  3. 前記対向端面の法線方向が、前記接続端面の法線方向と平行となるように、前記保持穴の軸方向に対して傾いていることを特徴とする請求項2に記載の光伝送路保持部材。
  4. 前記接続端面の法線方向が、前記保持穴の軸方向に対して4〜10°傾いていることを特徴とする請求項2に記載の光伝送路保持部材。
  5. 前記複数の放熱経路を、一括して熱的に短絡する部材を更に備えることを特徴とする請求項1〜4のいずれか1項に記載の光伝送路保持部材。
  6. 前記接続端面と前記対向端面間において、前記1側面に段差を有することを特徴とする請求項1〜5のいずれか1項に記載の光伝送路保持部材。
  7. 前記接続端面と前記1側面との境界縁部に面取り部を備え、前記複数の放熱経路及び前記複数の電気配線はそれぞれ、前記面取り部を介して前記接続端面から前記1側面へ延長形成されることを特徴とする請求項1〜6のいずれか1項に記載の光伝送路保持部材。
  8. 前記複数の側面の内、前記1側面に対向する他の側面上に、前記光伝送路保持部材を実装基板に実装するために、複数の領域に分割されたメタルパターンを備えることを特徴とする請求項1〜7のいずれか1項に記載の光伝送路保持部材。
  9. 前記複数の側面の一部に位置決め用のザグリを設けたことを特徴とする請求項1〜8のいずれか1項に記載の光伝送路保持部材。
  10. 前記複数の放熱経路が、それぞれ帯状のパターンであることを特徴とする請求項1〜9のいずれか1項に記載の光伝送路保持部材。
  11. 前記複数の放熱経路が導電性を有していることを特徴とする請求項1〜10のいずれか1項に記載の光伝送路保持部材。
JP2003435827A 2003-12-26 2003-12-26 光伝送路保持部材 Expired - Fee Related JP3967318B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003435827A JP3967318B2 (ja) 2003-12-26 2003-12-26 光伝送路保持部材
US11/014,833 US7198412B2 (en) 2003-12-26 2004-12-20 Holder of optical transmission lines and multi-core optical wave-guide
TW093139848A TWI249253B (en) 2003-12-26 2004-12-21 Holder of optical transmission lines and multi-core optical wave-guide
KR1020040111922A KR100662039B1 (ko) 2003-12-26 2004-12-24 광전송선로의 홀더 및 다중코어 광도파관의 홀더
CNB2004101048979A CN100381846C (zh) 2003-12-26 2004-12-24 光传输线和多芯光波导的保持器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435827A JP3967318B2 (ja) 2003-12-26 2003-12-26 光伝送路保持部材

Publications (2)

Publication Number Publication Date
JP2005195699A JP2005195699A (ja) 2005-07-21
JP3967318B2 true JP3967318B2 (ja) 2007-08-29

Family

ID=34805276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435827A Expired - Fee Related JP3967318B2 (ja) 2003-12-26 2003-12-26 光伝送路保持部材

Country Status (5)

Country Link
US (1) US7198412B2 (ja)
JP (1) JP3967318B2 (ja)
KR (1) KR100662039B1 (ja)
CN (1) CN100381846C (ja)
TW (1) TWI249253B (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3795877B2 (ja) * 2003-07-28 2006-07-12 株式会社東芝 光半導体モジュール及びその製造方法
JP3967318B2 (ja) 2003-12-26 2007-08-29 株式会社東芝 光伝送路保持部材
JP2006054260A (ja) * 2004-08-10 2006-02-23 Toshiba Corp 外部とのインターフェース機能を有するlsiパッケージ、外部とのインターフェース機能を備えたlsiパッケージを有する実装体、外部とのインターフェース機能を備えたlsiパッケージを有する実装体の製造方法
JP2006053266A (ja) * 2004-08-10 2006-02-23 Toshiba Corp 光半導体モジュールとそれを用いた半導体装置
TWI278075B (en) * 2004-08-17 2007-04-01 Toshiba Corp LSI package with interface module, transmission line package, and ribbon optical transmission line
US7352935B2 (en) * 2004-08-17 2008-04-01 Kabushiki Kaisha Toshiba Optoelectronic conversion header, LSI package with interface module, method of manufacturing optoelectronic conversion header, and optical interconnection system
JP2007003906A (ja) * 2005-06-24 2007-01-11 Toshiba Corp 光伝送路保持部材と光モジュール
JP4945965B2 (ja) * 2005-09-01 2012-06-06 住友電気工業株式会社 光電変換機能付き光ファイバ端末およびその実装方法
JP4768384B2 (ja) * 2005-09-29 2011-09-07 株式会社東芝 光伝送路保持部材及び光モジュール
JP4763446B2 (ja) * 2005-12-19 2011-08-31 住友電気工業株式会社 光接続部品の製造方法
JP4337862B2 (ja) * 2006-01-05 2009-09-30 セイコーエプソン株式会社 光学デバイス、光スキャナ、および画像形成装置
JP4680797B2 (ja) * 2006-02-28 2011-05-11 住友電気工業株式会社 リードフレームおよびこのリードフレームを用いた光接続部品ならびにこの光接続部品の製造方法
JP4788448B2 (ja) * 2006-04-05 2011-10-05 住友電気工業株式会社 光接続部品の製造方法
KR100810327B1 (ko) * 2006-09-05 2008-03-04 삼성전자주식회사 광 모듈 및 그를 이용한 광 통신 시스템
JP2008102315A (ja) * 2006-10-19 2008-05-01 Sumitomo Electric Ind Ltd 光接続部品の製造方法および光接続部品
JP4970908B2 (ja) 2006-11-20 2012-07-11 住友電気工業株式会社 光ファイバ位置決め部品の製造方法および光ファイバ位置決め部品
US8092507B2 (en) * 2007-02-05 2012-01-10 Novian Health, Inc. Interstitial energy treatment probe holders
JP2009103758A (ja) 2007-10-19 2009-05-14 Toshiba Corp 光伝送路保持部材と光モジュール及びその実装方法
KR100993059B1 (ko) * 2008-09-29 2010-11-08 엘지이노텍 주식회사 발광 장치
US8705906B2 (en) * 2009-04-23 2014-04-22 Korea Electronics Technology Institute Photoelectric conversion module
US7726972B1 (en) * 2009-07-17 2010-06-01 Delphi Technologies, Inc. Liquid metal rotary connector apparatus for a vehicle steering wheel and column
JP2012002993A (ja) * 2010-06-16 2012-01-05 Sumitomo Electric Ind Ltd 光ファイバ位置決め部品及びその製造方法
JP2012018231A (ja) * 2010-07-06 2012-01-26 Toshiba Corp 光伝送路保持部材と光モジュール
US9341791B2 (en) * 2011-04-07 2016-05-17 Sony Corporation Optical module, manufacturing method of optical module and optical communication device
JP4960519B2 (ja) * 2011-05-09 2012-06-27 株式会社東芝 光伝送路保持部材及び光モジュール
JP2013061478A (ja) * 2011-09-13 2013-04-04 Toshiba Corp 光モジュール及びその製造方法
US8948197B2 (en) * 2011-09-28 2015-02-03 Cosemi Technologies, Inc. System and method for communicating optical signals via communication cable medium
US9354410B2 (en) 2012-01-31 2016-05-31 Hewlett Packard Enterprise Development Lp Monolithically integrated, self-aligning, optical-fiber ferrule
TWI572921B (zh) * 2013-01-25 2017-03-01 鴻海精密工業股份有限公司 光連接器
USD733873S1 (en) 2013-05-07 2015-07-07 Novian Health Inc. Probe holder
JP6582827B2 (ja) * 2015-09-30 2019-10-02 日亜化学工業株式会社 基板及び発光装置、並びに発光装置の製造方法
CN105891971A (zh) * 2016-06-18 2016-08-24 苏州高精特专信息科技有限公司 一种简易结构光纤连接器
US10877217B2 (en) 2017-01-06 2020-12-29 Rockley Photonics Limited Copackaging of asic and silicon photonics
US10468839B2 (en) * 2017-06-29 2019-11-05 Lotes Co., Ltd Assembly having thermal conduction members
JP2019015797A (ja) * 2017-07-04 2019-01-31 住友電気工業株式会社 光結合部材及び光通信モジュール
CN110799874A (zh) * 2017-08-01 2020-02-14 洛克利光子有限公司 具有发射光学子组件和接收光学子组件的模块
JP7034869B2 (ja) * 2018-09-18 2022-03-14 株式会社東芝 光伝送デバイスの製造方法
US11175463B2 (en) 2020-02-21 2021-11-16 Mobix Labs, Inc. Extendable optical-based data communication cable assembly
US11165500B2 (en) 2020-02-21 2021-11-02 Mobix Labs, Inc. Cascadable data communication cable assembly
US11177855B2 (en) 2020-02-21 2021-11-16 Mobix Labs, Inc. Extendable wire-based data communication cable assembly

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155786A (en) * 1991-04-29 1992-10-13 International Business Machines Corporation Apparatus and a method for an optical fiber interface
JPH04333806A (ja) * 1991-05-10 1992-11-20 Nec Corp 受光モジュール
JPH08160242A (ja) * 1994-12-12 1996-06-21 Hitachi Cable Ltd 光ファイバアレイ
US5625733A (en) * 1995-02-09 1997-04-29 Lucent Technologies Inc. Arrangement for interconnecting an optical fiber to an optical component
JP3281518B2 (ja) * 1995-09-28 2002-05-13 京セラ株式会社 光通信用モジュール
JPH09205248A (ja) * 1996-01-26 1997-08-05 Hitachi Ltd 半導体レーザ
JPH09289330A (ja) * 1996-04-24 1997-11-04 Nec Corp 受光モジュール
JPH11233877A (ja) * 1998-02-16 1999-08-27 Nec Corp アレイ型レーザダイオード
JP2000039541A (ja) * 1998-07-23 2000-02-08 Sumitomo Metal Mining Co Ltd 光ファイバアレイとその製造方法
JP2000349307A (ja) * 1999-06-08 2000-12-15 Seiko Epson Corp 光モジュール及びプラットフォーム並びにこれらの製造方法並びに光伝達装置
JP2000357804A (ja) 1999-06-16 2000-12-26 Seiko Epson Corp 光モジュール及びその製造方法並びに光伝達装置
JP3758938B2 (ja) * 1999-06-16 2006-03-22 セイコーエプソン株式会社 光モジュール及びその製造方法並びに光伝達装置
JP2001154035A (ja) * 1999-11-30 2001-06-08 Japan Aviation Electronics Industry Ltd シリコン基板及びシリコン基板モジュール
JP2001159724A (ja) * 1999-12-02 2001-06-12 Seiko Epson Corp 光モジュール及びその製造方法並びに光伝達装置
US6916121B2 (en) * 2001-08-03 2005-07-12 National Semiconductor Corporation Optical sub-assembly for optoelectronic modules
JP3672831B2 (ja) * 2001-02-27 2005-07-20 住友電気工業株式会社 搭載基板及び光モジュール
JP4785019B2 (ja) * 2001-05-25 2011-10-05 古河電気工業株式会社 光コネクタ用フェルール
US7269027B2 (en) * 2001-08-03 2007-09-11 National Semiconductor Corporation Ceramic optical sub-assembly for optoelectronic modules
JP2003347653A (ja) * 2002-05-30 2003-12-05 Sumitomo Electric Ind Ltd 半導体光デバイス
JP4134639B2 (ja) 2002-08-28 2008-08-20 住友電気工業株式会社 多心光コネクタ、及び光モジュール
JP3888682B2 (ja) * 2002-09-11 2007-03-07 日本電信電話株式会社 ファイバ付き面型光半導体モジュール
JP4113406B2 (ja) 2002-09-24 2008-07-09 東京エレクトロン株式会社 プラズマ処理装置内部品の製造方法及びプラズマ処理装置内部品
JP4115872B2 (ja) * 2003-04-14 2008-07-09 株式会社フジクラ 光モジュール用マウント部材、光モジュール、光モジュールの製造方法
JP2004334189A (ja) * 2003-04-14 2004-11-25 Fujikura Ltd 光モジュール用マウント部材、光モジュール、アレイ型光モジュール、光伝送モジュール
JP3795877B2 (ja) * 2003-07-28 2006-07-12 株式会社東芝 光半導体モジュール及びその製造方法
JP2005165165A (ja) * 2003-12-05 2005-06-23 Suzuka Fuji Xerox Co Ltd レセプタクル及びレセプタクルの製造方法
JP3967318B2 (ja) 2003-12-26 2007-08-29 株式会社東芝 光伝送路保持部材

Also Published As

Publication number Publication date
JP2005195699A (ja) 2005-07-21
US7198412B2 (en) 2007-04-03
KR100662039B1 (ko) 2006-12-28
CN100381846C (zh) 2008-04-16
US20050169596A1 (en) 2005-08-04
KR20050067060A (ko) 2005-06-30
TW200529458A (en) 2005-09-01
TWI249253B (en) 2006-02-11
CN1637449A (zh) 2005-07-13

Similar Documents

Publication Publication Date Title
JP3967318B2 (ja) 光伝送路保持部材
US9653382B2 (en) Semiconductor laser structure
US7768689B2 (en) Photo detector and optically interconnected LSI
KR100704390B1 (ko) 인터페이스 모듈을 갖춘 대규모 집적회로 패키지와 이패키지에 사용되는 전송라인 헤더
KR100937879B1 (ko) 역전 발광 소자 제조 방법 및 역전 발광 다이오드
US5287001A (en) Cooling structures and package modules for semiconductors
CN108198924B (zh) 光电组件及其制造方法
US10818650B2 (en) Semiconductor module and method of manufacturing the same, and method of communication using the same
CN111725375A (zh) 红光发光二极管及其制造方法
WO2013105834A1 (ko) 반도체 발광소자
US9691944B2 (en) Semiconductor light-emitting device and method for manufacturing the same
JP2020021964A (ja) 発光素子および発光素子パッケージ
JP3434473B2 (ja) 光モジュール用シリコンプラットフォーム
EP0936706A1 (en) Array type laser diode
US8772822B2 (en) Light emitting device
JP4962144B2 (ja) 光モジュール
JP2009111065A (ja) 光半導体装置
US20240053552A1 (en) Electronic package and method of manufacturing an electronic package
EP4398321A1 (en) Optical waveguide package and light-emitting device
KR101378950B1 (ko) 반도체 발광소자
JPWO2016175124A1 (ja) 光伝送基板および光伝送モジュール
JP4671480B2 (ja) 光実装基板の製造方法及び光モジュールの製造方法
JP2016162878A (ja) 光半導体装置及び光半導体装置の製造方法
KR20220139868A (ko) 광전기 혼재 기판
KR101628381B1 (ko) 발광 소자 패키지 및 그 제조방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees