JP3963529B2 - Method for treating sewage containing dioxin - Google Patents

Method for treating sewage containing dioxin Download PDF

Info

Publication number
JP3963529B2
JP3963529B2 JP19013797A JP19013797A JP3963529B2 JP 3963529 B2 JP3963529 B2 JP 3963529B2 JP 19013797 A JP19013797 A JP 19013797A JP 19013797 A JP19013797 A JP 19013797A JP 3963529 B2 JP3963529 B2 JP 3963529B2
Authority
JP
Japan
Prior art keywords
treatment
dioxins
ozone
hydrogen peroxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19013797A
Other languages
Japanese (ja)
Other versions
JPH1133570A (en
Inventor
創太 中川
俊博 田中
甬生 葛
博司 佐久間
三郎 伊藤
学 池口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP19013797A priority Critical patent/JP3963529B2/en
Publication of JPH1133570A publication Critical patent/JPH1133570A/en
Application granted granted Critical
Publication of JP3963529B2 publication Critical patent/JP3963529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はゴミ埋立て地浸出水、産業廃水等の汚水のうち、ダイオキシンを含有する汚水を処理する方法に関するものである。
【0002】
【従来の技術】
ダイオキシンは発ガン性、催奇形性があり毒性が極めて高いことで知られている。特に種々のダイオキシン異性体の中で最も毒性が高い2,3,7,8−4塩化PCDD(ポリクロロダイベンゾパラダイオキシン)はモルモットに対するLD50が0.0006mg/kg 、成人の致死量は数10μgと推定されており、極めて危険な物質である。ダイオキシンは、焼却場から排出される焼却灰、飛灰に多く含有されており、これらは最終処分場等にそのまま埋め立て処分されている。しかし、ダイオキシンは自然環境中で分解されにくく長期間残留し、更に最終処分場への降雨によって水に溶解し、埋立土壌からしみ出てくるために、この様にして生成したいわゆる浸出水中にダイオキシンが検出される例が近年数多く報告されている。
【0003】
前述のようにしてできた浸出水に溶存しているダイオキシンを処理する従来技術としては、紫外線によるダイオキシンの脱塩素化反応と、光化学的反応によって生成したヒドロキシラジカルによるダイオキシンの酸化分解反応を同時に行うものが知られている。代表的なものとしては、ダイオキシンを含有する汚水に対して紫外線とオゾンガスを同時に投入し、紫外線によるダイオキシンの脱塩素化反応と、紫外線とオゾンガスの反応によって生成したヒドロキシラジカルによるダイオキシンの酸化分解反応を同時に行う処理法がある。
【0004】
【発明が解決しようとする課題】
しかし、この方法では紫外線によるダイオキシンの脱塩素化反応及び酸化分解反応が効率よく進まず、紫外線と未反応のオゾンガス即ち廃オゾンガスが増加して、オゾン注入量あたりのダイオキシン分解効率が悪化するという欠点があった。よってこの方法で確実な処理を行う場合に必要な紫外線照射量、紫外線ランプ本数及び酸化剤投入量は膨大なものとなってしまうという欠点があった。また、処理の過程でpHが低下する傾向があり、この様な方法で塩素イオンが含まれている原水を処理する場合には、オゾンと塩素イオンの反応で生じた次亜塩素酸がpHが4以下の状態で塩素ガスに変化していた。塩素ガスは(1)人体に有毒である。(2)ステンレスを腐食させる。等の特徴があるためpHを少なくとも4以上に保つためのpH調整が必要であり、pH調整コストが高額であった。
【0005】
従って、本発明は、従来のダイオキシンを含有する汚水の処理方法における、ヒドロキシラジカルの発生効率を向上させてダイオキシンの分解反応を促進させ、かつpH調整コストを抑制しうる方法を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明者らは、鋭意検討の結果、オゾン、過酸化水素及び紫外線を併用することにより、反応中のpHが安定し、更にヒドロキシラジカルの生成効率が向上することを見いだした。
即ち本発明は、総ダイオキシン量が100〜10,000pg/Lで、2,3,7,8−PCDD毒性等価換算濃度(TEQ)が5.0〜200pg/Lのダイオキシンを含有するゴミ埋立て地浸出水を、オゾン注入量が10〜300[mg/L]、過酸化水素注入率が1〜100[mg/L]、紫外線照射量が0.1〜10.0[W・hr/L]の条件で、オゾン、過酸化水素及び紫外線により処理し、この処理によりpHの低下が抑制され、ダイオキシンを減少させた処理水を得ることを特徴とするダイオキシンを含有するゴミ埋立て地浸出水の処理方法である。
【0007】
本発明では上記の工程を行うことにより、以下に示す作用によりダイオキシンの分解が効率よく行われる。
ダイオキシンの処理においては、過酸化水素を添加しない条件においては紫外線によるダイオキシンの脱塩素化反応が行われるものの、ヒドロキシラジカルの発生反応がオゾンと紫外線の反応のみであり、ダイオキシンの酸化分解反応の効率が悪かったが、過酸化水素を添加することにより紫外線と過酸化水素、オゾンと過酸化水素の反応によってもヒドロキシラジカルが生成され、ヒドロキシラジカルの生成反応が著しく活発になる。またオゾンと過酸化水素の反応が生じるため、オゾンガスの液側への吸収効率が高まり、オゾン注入率あたりで見た場合のオゾンの利用効率が格段に向上する。また、これにより廃オゾン設備もより小さくすることができる。また、過酸化水素がpHの低下を抑える働きを示し、pHの低下が殆どない。
【0008】
以上のように、過酸化水素を添加することにより(1)ヒドロキシラジカルの生成が活発となり、ダイオキシンの分解をより促進することができる。(2)オゾンが有効利用され、廃オゾン設備も小さくすることができる。(3)pHが安定しpH調整が不要になる。(4)塩素イオンを含有する排水を処理する場合においても、塩素ガスの発生が皆無である。
即ち本発明によるダイオキシンを含有する汚水の処理方法を用いることにより汚水中のダイオキシンが低コストかつ安全に処理される。
【0009】
【発明の実施の形態】
以下に本発明を、その実施の形態に基づいて、詳細に説明する。
本発明の方法を行うための具体的構成の一例を図1に基づいて説明する。
図1は、本発明の方法を行うための処理槽の1例である。
活性種を生成させるためのオゾン3及び過酸化水素4が、各々、処理槽1の入口及び処理槽1内に供給され、活性種の生成及びダイオキシンの脱塩素化反応に必要な紫外線ランプ2が槽内に設置されている。
オゾン3の供給形態は特に限定されないが、オゾンガスとして、処理槽1の下部から供給すると、その気泡により処理槽1内の攪拌を行うことができる。
またこの処理槽1で、ダイオキシン含有水の処理を回分式に行っても、連続式に行っても、いずれでも良い。
【0010】
紫外線を供給する光源としては、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、エキシマレーザー等、170〜380nmの範囲の比較的低波長の紫外線を照射可能なもの、或いは自然光、蛍光灯等を挙げることができるがこれに限るものではない。
紫外線ランプの破損防止のために保護管を使用する場合、材質は170〜254nmの紫外線透過率が高い合成石英が望ましい。紫外線の設置方法としては、水の流れに対して垂直方向に並べる方法と水の流れに対して水平方向に並べる方法があるが、水と紫外線との接触効率を考慮した場合、水の流れに対して垂直方向に並べるのが望ましい。
【0011】
オゾンの注入方法としては、ディフューザー方式、イジェクター方式、Uチューブ方式、オゾンガスを0.5〜10kg/cm2の加圧状態で溶解させる方式等を挙げることができるがこれに限るものではない。また、反応槽内に注入した酸素含有気体に対して電気的なエネルギーを加えてオゾンを発生させる方法も可能である。
過酸化水素の注入方法としては、流入配管に直接注入する方法、処理槽に直接注入する方法、オゾンを注入するイジェクターの内部に注入する方法を挙げることができる。
【0012】
反応槽内の攪拌方法としては、オゾン気泡、或いは攪拌翼による攪拌の他、反応槽の上下端または左右端または前後端を配管で結びポンプで循環させる方法も可能である。特に反応槽に紫外線ランプを複数配置し、ランプ同士の間隔が広くなる場合には、処理の安定のために強い攪拌を行うことが有効である。
処理の安定化のため反応槽が複数の反応槽より構成されていても良い。この場合は複数の反応槽を直列に連結する構成が水の流れがプラグフローとなり、より効果的である。
【0013】
また、本発明の方法によって得られた処理水を脱酸化剤工程に導入し、後段の処理の安定性、処理水の安全性を高めることも可能である。
脱酸化剤工程は、曝気処理、触媒処理、活性炭処理、紫外線処理或いはこれらの組合せを挙げることができる。触媒には二酸化マンガン、貴金属含有固体、金属含有固体、金属イオン等、二酸化チタン含有固体等を使用することができる。
更に本発明による処理水を活性炭処理することで処理水質を一層向上させることも可能である。
【0014】
本発明による処理方法の原水は、汚水より生物学的に分離可能な有機物を生物学的に除去する前或いは除去した後の水、汚水より物理化学的に分離可能な有機物を物理化学的に除去する前或いは除去した後の水、汚水より物理化学的、生物学的に分離可能な有機物を物理化学的、生物学的に除去する前或いは除去した後の水を用いることできる。
生物学的に除去する方法としては、活性汚泥処理、接触酸化処理、生物膜ろ過処理、嫌気処理等が挙げられ、物理化学的に除去する方法としては、沈澱分離処理、浮上分離処理、膜分離処理、ろ過処理、凝集沈殿処理、活性炭処理、電気透析等が挙げられる。
【0015】
上記の水を逆浸透膜により濃縮した水も原水として用いることができる。逆浸透膜によってダイオキシンが濃縮された水を原水として使用する場合にはヒドロキシラジカル生成量あたりのダイオキシン除去量が多くなり、ヒドロキシラジカルが有効に利用される。
汚水より生物学的、また物理化学的に分離可能な有機物が除去された水を原水とする場合には、これらの有機物によるヒドロキシラジカルとダイオキシンの反応の阻害が少なくなり、生成したヒドロキシラジカルがダイオキシンの分解に有効に利用される。
【0016】
汚水より生物学的、また物理化学的に分離可能な有機物が除去される前の水を原水とする場合には、本発明による処理水を生物学的または物理化学的に分離する方法の原水として用いてもこれらの処理で生じる汚泥中にダイオキシンが含まれることがなく、汚泥も安全なものとなる。また、本発明による処理では、有機物の生物分解性、凝集分離性が良くなるので、生物処理、凝集沈殿処理の処理性能が向上する。
また、処理中のpHをpH計により測定し過酸化水素注入ポンプを組合せ、pHの低下が検出された場合に過酸化水素を注入するように制御することで、pHの制御を過酸化水素で行うことも可能である。
【0017】
本発明における処理条件は、処理対象原水の性状、例えば総ダイオキシン量、TEQ(2,3,7,8−PCDD毒性等価換算濃度)、COD濃度等によって種々選定することができる。
例えば、原水のCODMnが約30[mg/l]、総ダイオキシン量が100〜10000[pg/l]、TEQが5.0〜200[pg/l]の場合を以下に記載する。
オゾン注入量は通常10〜300[mg/l]、好ましくは20〜300[mg/l]、過酸化水素注入率は1〜100、好ましくは2〜100[mg/l]の範囲から選定される。紫外線照射量は低圧水銀ランプを用いる場合は通常0.1〜10.0[W hr/l]、好ましくは0.1〜5.0[W hr/l]の範囲から選定される。また、反応時間は通常1〜60[min] 、好ましくは2〜30[min] である。
【0018】
【実施例】
以下、本発明の具体的実施例を説明するが、本発明はこれに限定されるものではない。
〔実施例〕
CODMnが約30[mg/l]のゴミ埋立て地浸出水に、総ダイオキシン量が7000[pg/l]、TEQが150[pg/l]となるようにダイオキシンを添加した水を原水とし、下記条件で図1に示す装置を用いて回分処理した。
処理条件
・オゾン注入率:300[mg/l]
・過酸化水素注入率:30[mg/l]
・反応時間:30[min]
・紫外線照射量:5.0[W hr/l]
なお、反応時間は30[min] であるが、pHについては、7.5[min] 、15[min] の時点においても測定した。
以上のような条件で処理した結果を第1表に示す。
【0019】
【表1】

Figure 0003963529
【0020】
〔比較例〕
また比較例として、過酸化水素を注入しなかった以外は、上記実施例と同様の条件で回分処理した場合の結果を第2表に示す。
【0021】
【表2】
Figure 0003963529
【0022】
第1表および第2表より、本発明による処理法ではpHの低下が殆どなく、かつダイオキシン及びTEQの除去量も大きくなる結果であった。特に比較例におけるpHは反応時間が15[min] の時点で4.0を下回ったが、本発明では反応時間が30[min] の時点においても7.5であり、中性に維持された。これより、本発明においては、pHが酸性側に移行する現象が殆ど見られないのでpH調整に関わるコストが無くなり、かつダイオキシンの除去が効率的に行われることが認められた。
【0023】
【発明の効果】
本発明によるダイオキシンを含有する汚水の処理方法を用いることにより、総ダイオキシン量が100〜10,000pg/Lで、2,3,7,8−PCDD毒性等価換算濃度(TEQ)が5.0〜200pg/Lのダイオキシンを含有する汚水中のダイオキシンが低コストかつ高度に処理される。
つまり、ダイオキシンの処理においては、総ダイオキシン量等に対し特定量のオゾン及び過酸化水素を添加することにより紫外線と過酸化水素、オゾンと過酸化水素の反応によってもヒドロキシラジカルが生成され、ヒドロキシラジカルの生成反応の効率が飛躍的に向上する。また、オゾンと過酸化水素の反応が生じるため、オゾンガスの液側への吸収効率が高まり、オゾン注入率あたりで見た場合のオゾンの利用効率は更に向上する。また、これにより廃オゾン設備もより小さくすることができる。
【0024】
また、過酸化水素がpHの低下を抑える働きを示し、過酸化水素を添加しない条件と比較するとpHの低下は殆ど皆無である。よって、塩素イオンを含有する排水を処理する場合においても、塩素ガスの発生を皆無とすることができる。
即ち本発明によるダイオキシンを含有する汚水の処理方法を用いることにより総ダイオキシン量が100〜10,000pg/Lで、2,3,7,8−PCDD毒性等価換算濃度(TEQ)が5.0〜200pg/Lのダイオキシンを含有する汚水中のダイオキシンを安全かつ高度に処理することができる。
【図面の簡単な説明】
【図1】本発明の方法を行うための処理槽の1例を示す図。
【符号の説明】
1 処理槽
2 紫外線ランプ
3 オゾン
4 過酸化水素[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating sewage containing dioxin among sewage such as landfill leachate and industrial wastewater.
[0002]
[Prior art]
Dioxins are known for their carcinogenic and teratogenic properties and are extremely toxic. In particular, 2,3,7,8-4 chloride PCDD (polychlorodibenzoparadioxin), the most toxic of the various dioxin isomers, has an LD 50 of 0.0006 mg / kg for guinea pigs, and the lethal dose for adults is several. It is estimated to be 10 μg and is a very dangerous substance. Dioxins are abundantly contained in incineration ash and fly ash discharged from incineration sites, and these are disposed of in landfills at final disposal sites. However, dioxins are difficult to be decomposed in the natural environment and remain for a long time. Further, they dissolve in water due to rainfall at the final disposal site and ooze out from landfill soil. In recent years, many cases have been reported.
[0003]
As a conventional technique for treating dioxins dissolved in leachate produced as described above, the dechlorination reaction of dioxins by ultraviolet rays and the oxidative decomposition reaction of dioxins by hydroxy radicals generated by photochemical reactions are simultaneously performed. Things are known. As a typical example, ultraviolet rays and ozone gas are simultaneously added to sewage containing dioxins, and the dechlorination reaction of dioxins by ultraviolet rays and the oxidation and decomposition reaction of dioxins by hydroxy radicals generated by the reaction of ultraviolet rays and ozone gas are performed. There are processing methods to be performed simultaneously.
[0004]
[Problems to be solved by the invention]
However, in this method, the dechlorination reaction and the oxidative decomposition reaction of dioxin by ultraviolet rays do not proceed efficiently, the ultraviolet ray and unreacted ozone gas, that is, waste ozone gas, increase, and the dioxin decomposition efficiency per ozone injection amount deteriorates. was there. Therefore, there has been a drawback that the amount of UV irradiation, the number of UV lamps, and the amount of oxidant input necessary for reliable processing by this method become enormous. In addition, there is a tendency for pH to decrease during the treatment process, and when raw water containing chlorine ions is treated by such a method, hypochlorous acid generated by the reaction between ozone and chlorine ions has a pH of It changed to chlorine gas in a state of 4 or less. Chlorine gas is (1) toxic to the human body. (2) Corrodes stainless steel. Therefore, it is necessary to adjust the pH in order to keep the pH at least 4 or more, and the pH adjustment cost is expensive.
[0005]
Therefore, the present invention seeks to provide a method for improving the generation efficiency of hydroxy radicals in the conventional method for treating sewage containing dioxins, promoting the decomposition reaction of dioxins, and suppressing the pH adjustment cost. It is.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the combined use of ozone, hydrogen peroxide, and ultraviolet light stabilizes the pH during the reaction and further improves the generation efficiency of hydroxy radicals.
That is, the present invention is a landfill containing dioxins having a total dioxin amount of 100 to 10,000 pg / L and a 2,3,7,8-PCDD toxicity equivalent equivalent concentration (TEQ) of 5.0 to 200 pg / L. The ground leachate has an ozone injection amount of 10 to 300 [mg / L], a hydrogen peroxide injection rate of 1 to 100 [mg / L], and an ultraviolet irradiation amount of 0.1 to 10.0 [W · hr / L. The wastewater leachate containing landfill containing dioxin is characterized in that it is treated with ozone, hydrogen peroxide and ultraviolet light under the conditions of the above, and a treated water in which the decrease in pH is suppressed and dioxin is reduced by this treatment is obtained. It is a processing method.
[0007]
In the present invention, by performing the above steps, dioxins are efficiently decomposed by the following actions.
In the treatment of dioxins, the dechlorination reaction of dioxins by ultraviolet rays is performed under the condition where hydrogen peroxide is not added, but the generation reaction of hydroxy radicals is only the reaction of ozone and ultraviolet rays, and the efficiency of dioxin oxidative decomposition reaction However, by adding hydrogen peroxide, hydroxyl radicals are also generated by the reaction of ultraviolet rays and hydrogen peroxide, ozone and hydrogen peroxide, and the reaction of generating hydroxyl radicals becomes extremely active. Further, since the reaction between ozone and hydrogen peroxide occurs, the absorption efficiency of the ozone gas to the liquid side is increased, and the utilization efficiency of ozone when viewed by the ozone injection rate is significantly improved. This also makes it possible to make the waste ozone facility smaller. In addition, hydrogen peroxide has a function of suppressing a decrease in pH, and there is almost no decrease in pH.
[0008]
As described above, by adding hydrogen peroxide, (1) the generation of hydroxy radicals becomes active, and the decomposition of dioxins can be further promoted. (2) Ozone can be used effectively and waste ozone equipment can be reduced. (3) The pH is stable and pH adjustment is unnecessary. (4) No chlorine gas is generated even when wastewater containing chlorine ions is treated.
That is, by using the method for treating sewage containing dioxins according to the present invention, dioxins in sewage can be treated at low cost and safely.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on the embodiments.
An example of a specific configuration for performing the method of the present invention will be described with reference to FIG.
FIG. 1 is an example of a treatment tank for carrying out the method of the present invention.
Ozone 3 and hydrogen peroxide 4 for generating active species are respectively supplied to the inlet of the treatment tank 1 and the treatment tank 1, and an ultraviolet lamp 2 necessary for the production of active species and the dechlorination reaction of dioxin is provided. It is installed in the tank.
Although the supply form of ozone 3 is not specifically limited, if ozone gas is supplied from the lower part of the processing tank 1, the inside of the processing tank 1 can be stirred by the bubbles.
In the treatment tank 1, the dioxin-containing water may be treated batchwise or continuously.
[0010]
As a light source for supplying ultraviolet rays, a low-pressure mercury lamp, medium-pressure mercury lamp, high-pressure mercury lamp, excimer laser, etc., which can irradiate ultraviolet rays having a relatively low wavelength in the range of 170 to 380 nm, natural light, fluorescent lamps, etc. It can be mentioned, but not limited to this.
When a protective tube is used to prevent damage to the ultraviolet lamp, the material is preferably synthetic quartz having a high ultraviolet transmittance of 170 to 254 nm. There are two methods for installing ultraviolet light, one is a method of arranging them in the vertical direction with respect to the flow of water and the other is a method of arranging them in the horizontal direction with respect to the flow of water. It is desirable to arrange them vertically.
[0011]
Examples of the ozone injection method include, but are not limited to, a diffuser method, an ejector method, a U tube method, and a method in which ozone gas is dissolved in a pressurized state of 0.5 to 10 kg / cm 2 . A method of generating ozone by applying electric energy to the oxygen-containing gas injected into the reaction vessel is also possible.
Examples of the method of injecting hydrogen peroxide include a method of injecting directly into the inflow pipe, a method of injecting directly into the treatment tank, and a method of injecting into the ejector for injecting ozone.
[0012]
As a stirring method in the reaction vessel, in addition to stirring with ozone bubbles or stirring blades, a method of connecting the upper and lower ends, left and right ends or front and rear ends of the reaction vessel with piping and circulating them with a pump is also possible. In particular, when a plurality of ultraviolet lamps are arranged in the reaction vessel and the distance between the lamps is widened, it is effective to perform strong stirring for stabilization of the treatment.
The reaction vessel may be composed of a plurality of reaction vessels for stabilization of the treatment. In this case, a configuration in which a plurality of reaction vessels are connected in series is more effective because the flow of water becomes a plug flow.
[0013]
In addition, the treated water obtained by the method of the present invention can be introduced into the deoxidizer step to enhance the stability of the subsequent treatment and the safety of the treated water.
Examples of the deoxidizer step include aeration treatment, catalyst treatment, activated carbon treatment, ultraviolet treatment, or a combination thereof. As the catalyst, manganese dioxide, noble metal-containing solid, metal-containing solid, metal ion, titanium dioxide-containing solid, or the like can be used.
Furthermore, the quality of the treated water can be further improved by treating the treated water according to the present invention with activated carbon.
[0014]
The raw water of the treatment method according to the present invention is a physicochemical removal of organic matter that can be separated physicochemically from sewage before or after biological removal of organic matter that can be biologically separated from sewage. Water before or after removal, or water after physicochemical or biological removal of organic substances that can be separated physicochemically or biologically from sewage can be used.
Biological removal methods include activated sludge treatment, catalytic oxidation treatment, biomembrane filtration treatment, anaerobic treatment, etc., and physicochemical removal methods include precipitation separation treatment, flotation separation treatment, membrane separation. Treatment, filtration treatment, coagulation sedimentation treatment, activated carbon treatment, electrodialysis and the like can be mentioned.
[0015]
Water obtained by concentrating the above water using a reverse osmosis membrane can also be used as raw water. When water in which dioxins are concentrated by a reverse osmosis membrane is used as raw water, the amount of dioxins removed per hydroxy radical generation amount increases, and hydroxy radicals are effectively used.
When the raw water is water from which organic substances that can be separated biologically and physicochemically from sewage are used, the inhibition of the reaction of hydroxy radicals and dioxins by these organic substances is reduced, and the generated hydroxy radicals are dioxins. It is effectively used for disassembling.
[0016]
In the case where the raw water before the removal of biologically and physicochemically separable organic substances from the sewage is used as the raw water, the raw water of the method for separating the treated water according to the present invention biologically or physicochemically Even if it is used, dioxins are not contained in the sludge produced by these treatments, and the sludge is also safe. Further, in the treatment according to the present invention, the biodegradability and the coagulation / separation property of the organic matter are improved, so that the treatment performance of the biological treatment and the coagulation / precipitation treatment is improved.
In addition, the pH during the treatment is measured by a pH meter, combined with a hydrogen peroxide injection pump, and controlled to inject hydrogen peroxide when pH drop is detected, thereby controlling the pH with hydrogen peroxide. It is also possible to do this.
[0017]
The treatment conditions in the present invention can be variously selected depending on the properties of the raw water to be treated, such as the total dioxin amount, TEQ (2, 3, 7, 8-PCDD toxicity equivalent equivalent concentration), COD concentration, and the like.
For example, the case where COD Mn of raw water is about 30 [mg / l], the total dioxin amount is 100 to 10,000 [pg / l], and the TEQ is 5.0 to 200 [pg / l] is described below.
The ozone injection amount is usually selected from the range of 10 to 300 [mg / l], preferably 20 to 300 [mg / l], and the hydrogen peroxide injection rate is 1 to 100, preferably 2 to 100 [mg / l]. The When the low-pressure mercury lamp is used, the ultraviolet irradiation amount is usually selected from the range of 0.1 to 10.0 [W hr / l], preferably 0.1 to 5.0 [W hr / l]. The reaction time is usually 1 to 60 [min], preferably 2 to 30 [min].
[0018]
【Example】
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.
〔Example〕
The raw water is dioxin-added so that the total dioxin amount is 7000 [pg / l] and the TEQ is 150 [pg / l] in the landfill leachate with COD Mn of about 30 [mg / l]. Batch processing was performed using the apparatus shown in FIG. 1 under the following conditions.
Treatment conditions / ozone injection rate: 300 [mg / l]
・ Hydrogen peroxide injection rate: 30 [mg / l]
・ Reaction time: 30 [min]
・ UV irradiation amount: 5.0 [W hr / l]
The reaction time was 30 [min], but the pH was also measured at 7.5 [min] and 15 [min].
The results of processing under the above conditions are shown in Table 1.
[0019]
[Table 1]
Figure 0003963529
[0020]
[Comparative Example]
As a comparative example, Table 2 shows the results of batch treatment under the same conditions as in the above example except that hydrogen peroxide was not injected.
[0021]
[Table 2]
Figure 0003963529
[0022]
From Tables 1 and 2, the treatment method according to the present invention showed almost no decrease in pH and increased amounts of dioxin and TEQ removal. In particular, the pH in the comparative example was less than 4.0 when the reaction time was 15 [min]. However, in the present invention, the pH was 7.5 even when the reaction time was 30 [min], and was kept neutral. . As a result, in the present invention, it was recognized that since the phenomenon of pH shifting to the acidic side is hardly observed, the cost for pH adjustment is eliminated, and dioxin removal is efficiently performed.
[0023]
【The invention's effect】
By using the method for treating sewage containing dioxins according to the present invention, the total dioxin amount is 100 to 10,000 pg / L, and the 2,3,7,8-PCDD toxicity equivalent equivalent concentration (TEQ) is 5.0 to Dioxins in sewage containing 200 pg / L of dioxins are treated at low cost and highly.
In other words, in the treatment of dioxins, by adding a specific amount of ozone and hydrogen peroxide to the total amount of dioxins, etc., hydroxyl radicals are also generated by the reaction of ultraviolet light and hydrogen peroxide, ozone and hydrogen peroxide, The efficiency of the production reaction is greatly improved. Further, since the reaction between ozone and hydrogen peroxide occurs, the absorption efficiency of the ozone gas to the liquid side is increased, and the utilization efficiency of ozone when viewed around the ozone injection rate is further improved. This also makes it possible to make the waste ozone facility smaller.
[0024]
Further, hydrogen peroxide has a function of suppressing the decrease in pH, and there is almost no decrease in pH compared with the condition in which hydrogen peroxide is not added. Accordingly, even when wastewater containing chlorine ions is treated, generation of chlorine gas can be eliminated.
That is, by using the method for treating sewage containing dioxin according to the present invention, the total dioxin amount is 100 to 10,000 pg / L, and the 2,3,7,8-PCDD equivalent equivalent concentration (TEQ) is 5.0 to Dioxins in wastewater containing 200 pg / L of dioxins can be treated safely and highly.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a treatment tank for performing the method of the present invention.
[Explanation of symbols]
1 Treatment tank 2 UV lamp 3 Ozone 4 Hydrogen peroxide

Claims (2)

総ダイオキシン量が100〜10,000pg/Lで、2,3,7,8−PCDD毒性等価換算濃度(TEQ)が5.0〜200pg/Lのダイオキシンを含有するゴミ埋立て地浸出水を、オゾン注入量が10〜300[mg/L]、過酸化水素注入率が1〜100[mg/L]、紫外線照射量が0.1〜10.0[W・hr/L]の条件で、オゾン、過酸化水素及び紫外線により処理し、この処理によりpHの低下が抑制され、ダイオキシンを減少させた処理水を得ることを特徴とするダイオキシンを含有するゴミ埋立て地浸出水の処理方法。 Waste landfill leachate containing dioxins with a total dioxin amount of 100-10,000 pg / L and 2,3,7,8-PCDD equivalent equivalent concentration (TEQ) of 5.0-200 pg / L, Under the conditions that the ozone injection amount is 10 to 300 [mg / L], the hydrogen peroxide injection rate is 1 to 100 [mg / L], and the ultraviolet irradiation amount is 0.1 to 10.0 [W · hr / L], A treatment method for waste landfill leachate containing dioxins, characterized in that treatment with ozone, hydrogen peroxide and ultraviolet rays is carried out to obtain treated water in which a decrease in pH is suppressed and dioxins are reduced . 前記処理が30分以内であることを特徴とする請求項1記載のダイオキシンを含有するゴミ埋立て地浸出水の処理方法。The method for treating landfill leachate containing dioxins according to claim 1, wherein the treatment is performed within 30 minutes.
JP19013797A 1997-07-15 1997-07-15 Method for treating sewage containing dioxin Expired - Fee Related JP3963529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19013797A JP3963529B2 (en) 1997-07-15 1997-07-15 Method for treating sewage containing dioxin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19013797A JP3963529B2 (en) 1997-07-15 1997-07-15 Method for treating sewage containing dioxin

Publications (2)

Publication Number Publication Date
JPH1133570A JPH1133570A (en) 1999-02-09
JP3963529B2 true JP3963529B2 (en) 2007-08-22

Family

ID=16253022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19013797A Expired - Fee Related JP3963529B2 (en) 1997-07-15 1997-07-15 Method for treating sewage containing dioxin

Country Status (1)

Country Link
JP (1) JP3963529B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126787A (en) * 1998-08-19 2000-05-09 Japan Organo Co Ltd Method of and apparatus for inactivating chemical substance having hormone-like activity
JP4703801B2 (en) * 1999-06-15 2011-06-15 オルガノ株式会社 Method and apparatus for treating a liquid containing a chemical substance having hormone-like activity
JP3716143B2 (en) * 1999-11-05 2005-11-16 三菱重工業株式会社 Hazardous substance processing method and apparatus

Also Published As

Publication number Publication date
JPH1133570A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
US7462288B2 (en) Ozone/UV combination for the decomposition of endocrine substances
US6991735B2 (en) Free radical generator and method
WO2001042144A3 (en) Device and method for treating water with ozone generated by water electrolysis
JP4673709B2 (en) Water treatment system
JP2001205277A (en) Method and apparatus for removing hardly decomposable organic compound in water
JP3963529B2 (en) Method for treating sewage containing dioxin
JPH11347591A (en) Treatment of sewage containing biologically hardly decomposable organic matter
JP3573322B2 (en) Method and apparatus for treating dioxin-containing wastewater
JP2000202466A (en) Treatment of sewage containing internal secretion disturbance material or carcinogenic substance and its apparatus
KR20110090747A (en) Water re-cycling system and method thereof
KR101071709B1 (en) Photo-Fenton oxidation reactor to remove 1,4-dioxane and method to remove 1,4-dioxane by Photo-Fenton oxidation
JP2011031164A (en) Method and apparatus for treating hardly biodegradable organic matter-containing water
JP2000202471A (en) Treatment of sewage containing endocrine disrupter or carcinogenic substance and its apparatus
JP3466083B2 (en) Decomposition method of organic chlorine compounds such as dioxins in landfill leachate
JP2005103391A (en) Wastewater treatment method and apparatus
JP4519218B2 (en) Method and apparatus for treating landfill leachate containing dioxins
JP2003103271A (en) Treatment method for dioxins in wastewater
JP2652493B2 (en) COD removal method for leachate from landfill
KR100297928B1 (en) Method of nitrogen removal in wastewater with photocatalytic technology
KR19980085039A (en) Wastewater treatment method and device by electron beam and ozone
JPH1076296A (en) Treatment method for drainage containing poorly decomposable organic substance
JP3373138B2 (en) Organic wastewater treatment method and apparatus
JP3963533B2 (en) Water treatment method
RU2099294C1 (en) Method and apparatus for finely cleaning highly loaded waste waters
JPH10165991A (en) Method for treating waste water containing biologically hardly decomposable organic matter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040126

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees