JP3963100B2 - Method and apparatus for treating vanadium-containing water - Google Patents

Method and apparatus for treating vanadium-containing water Download PDF

Info

Publication number
JP3963100B2
JP3963100B2 JP2001391781A JP2001391781A JP3963100B2 JP 3963100 B2 JP3963100 B2 JP 3963100B2 JP 2001391781 A JP2001391781 A JP 2001391781A JP 2001391781 A JP2001391781 A JP 2001391781A JP 3963100 B2 JP3963100 B2 JP 3963100B2
Authority
JP
Japan
Prior art keywords
vanadium
exchange resin
cation exchange
mixed bed
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001391781A
Other languages
Japanese (ja)
Other versions
JP2003190947A (en
Inventor
聿宏 松下
信博 織田
光和 益戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001391781A priority Critical patent/JP3963100B2/en
Publication of JP2003190947A publication Critical patent/JP2003190947A/en
Application granted granted Critical
Publication of JP3963100B2 publication Critical patent/JP3963100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はバナジウムを含有する被処理水からバナジウムやその他の不純物を除去するバナジウム含有水の処理方法、特にイオン交換樹脂によりバナジウムやその他の不純物を除去するバナジウム含有水の処理方法に関するものである。
【0002】
【従来の技術】
バナジウムは触媒として使用されており、石炭、石油等の灰分中に含まれるほか、特定の天然水中にも含まれている。バナジウム含有水はその起源に応じていろいろな形のバナジウムを含んでいる。バナジウムは−Iないし+Vの価数に応じて種々の化合物を形成し、それぞれの化合物はバナジウムがカチオンに解離するものとアニオンに解離するものとがある。可溶性塩のようにイオンまたはイオン化可能状態でバナジウムを含む場合には、イオン交換によりバナジウムを除去することが可能である。
【0003】
上記のバナジウム含有水で、含まれるバナジウム化合物がカチオンに解離するものは、カチオン交換によりバナジウムを除去することができる。火山灰地の地下水にはカチオンに解離するバナジウム化合物を含有するものがあり、このようなバナジウム化合物を含有するバナジウム含有水はカチオン交換樹脂により、カチオンに解離したバナジウムを交換吸着させて除去することが可能である。
【0004】
上記のようにバナジウム含有水をカチオン交換樹脂により処理すると、交換吸着によりバナジウムは樹脂中に濃縮される。ところがバナジウム化合物は広く触媒として使用されており、バナジウムの価数あるいは化合物の種類によって活性に差があるが、多くのバナジウム化合物は触媒活性を有している。そしてこのような触媒活性を有するバナジウムがカチオン交換樹脂中に濃縮されると、カチオン交換樹脂がその触媒作用により酸化を受けて、カチオン交換樹脂の交換基を含む比較的高分子の分解生成物(例えばポリスチレンスルホン酸)が流出して劣化を起こし、カチオン交換活性が低下しやすい。また流出するポリスチレンスルホン酸等の比較的高分子の分解生成物は処理水質を悪化させ、後段にアニオン交換樹脂がある場合にはその負荷となり、アニオン交換樹脂の再生サイクルを短縮させるなどの問題点がある。
【0005】
【発明が解決しようとする課題】
本発明の課題は、簡単な構成と操作によりバナジウムを効率的に除去することができるとともに、樹脂の分解生成物をも除去することができ、これにより後段のイオン交換樹脂の劣化を防止し、イオン交換活性を低下させることなく、イオン交換を行うことが可能なバナジウム含有水の処理方法および装置を提案することである。
【0006】
【課題を解決するための手段】
本発明は、次のバナジウム含有水の処理方法および装置である。
(1) バナジウム含有水を前段で、H形強酸性カチオン交換樹脂およびCl強塩基性アニオン交換樹脂の混床と接触させてバナジウムをカチオン交換樹脂に交換吸着させて除去するとともに、放出されるHイオンにより混床の内部を酸性にしてバナジウムの交換吸着効率を高くし、バナジウムの濃縮により流出する樹脂の分解生成物をアニオン交換樹脂に吸着させ、
その処理水を後段のカチオン交換樹脂およびアニオン交換樹脂と接触させて残留イオンを除去して純水を製造する
バナジウム含有水の処理方法。
(2) 後段のカチオン交換樹脂の再生排液で前段の混床を再生する上記(1)記載の方法。
(3) 混床の初期の処理水により混床または後段のカチオン交換樹脂を再生上記(1)または(2)記載の方法。
(4) 混床を構成するカチオン交換樹脂および/またはアニオン交換樹脂が使用済樹脂である上記(1)ないし(3)のいずれかに記載の方法。
(5) バナジウム含有水と接触させてバナジウムをカチオン交換樹脂に交換吸着させて除去するとともに、放出されるHイオンにより混床の内部を酸性にしてバナジウムの交換吸着効率を高くし、バナジウムの濃縮により流出する樹脂の分解生成物をアニオン交換樹脂に吸着させるように、H形強酸性カチオン交換樹脂およびCl強塩基性アニオン交換樹脂が混合された前段の混床と、
混床の処理水と接触させて残留イオンを除去して純水を製造する後段のカチオン交換樹脂層およびアニオン交換樹脂層と
を含むバナジウム含有水の処理装置。
【0007】
本発明で処理の対象となるバナジウム含有水は、バナジウムをカチオン交換可能な状態で含む水であり、バナジウムをカチオンとして、またはカチオンに解離可能な状態で含む水があげられるが、アニオンに解離したバナジウム、アニオンに解離可能なバナジウム化合物、イオン化しないバナジウム化合物、あるいは他の不純物を含んでいてもよい。本発明で処理の対象となるバナジウム含有水としてはカチオンに解離したバナジウム、またはカチオンに解離可能なバナジウムを0.1μg/L以上含有するものが処理に適している。本発明で処理の対象となるバナジウム含有水の具体的なものとしては、天然水、河川水、特に火山灰地の地下水、伏流水、深井戸水などがあげられる。
【0008】
バナジウムは前述のように−I〜+Vの価数の化合物を形成するが、このうち+IIから+Vまでが一般的である。酸化数IIとIIIでは主としてカチオンとして塩をつくるが、酸化数IVでは酸素と結合してVO2+の塩をつくることが多い。酸化数VではVO3+やVO2 +の塩とともにメタバナジウム酸イオンVO3 -の塩を形成する。触媒として広く利用されているV25は水に溶けにくく両性で、酸に溶解するとVO2 +を生成し、アルカリ性水溶液にはメタバナジウム酸イオンを生成してアニオンに解離する。
【0009】
このようにバナジウムは種々の価数の化合物を形成する。天然水、特に火山灰地の地下水、伏流水、深井戸水にはカチオンに解離するバナジウムを含むものが多い。またバナジウム触媒を使用する系から排出される排水には、pHに応じてカチオンに解離するもの、およびアニオンに解離するものがある。
【0010】
本発明ではバナジウム含有水を前段で、H形の強酸性カチオン交換樹脂およびCl強塩基性アニオン交換樹脂の混床と接触させて、カチオンに解離したバナジウムをカチオン交換樹脂に交換吸着させて除去する。この場合バナジウム含有水がカチオンのほかにアニオンを含む場合には、アニオン交換樹脂にアニオンが交換吸着される。混床はH形の強酸性カチオン交換樹脂とCl形強塩基性アニオン交換樹脂が混合された層であり、本発明のバナジウム含有水の処理装置はこのような混床を含む装置である。以下の説明では、特に断らない限り「イオン交換」という言葉は「カチオン交換および/またはアニオン交換」を意味する。
【0011】
本発明で混床に使用するカチオン交換樹脂およびアニオン交換樹脂は、水処理において一般的に使用されている粒状やゲル状のイオン交換樹脂を使用することができるが、使用済の廃樹脂を用いるのが経済的な面から好ましい。このようなイオン交換樹脂はスチレンとジビニルベンゼンの共重合体を基体樹脂とし、スチレンにカチオン交換基を付けたものがカチオン交換樹脂、アニオン交換基を付けたものがアニオン交換樹脂として使用されている。
【0012】
カチオン交換樹脂には、カチオン交換基としてスルホン基を付けた強酸性カチオン交換樹脂を用いる。またアニオン交換樹脂には、アニオン交換基として第四アンモニウム基を付けた強塩基性アニオン交換樹脂を用いる。
このようなカチオン交換樹脂およびアニオン交換樹脂にバナジウムが吸着されるとバナジウムが樹脂に濃縮されるため、その触媒作用により樹脂の一部が分解され、交換基を含む比較的高分子の分解生成物が流出する。カチオンに解離するバナジウムの場合カチオン交換樹脂に吸着されると、ポリスチレンスルホン酸等の比較的高分子のアニオン性の分解生成物が流出する。このように流出するアニオン性の分解生成物はアニオン交換樹脂に吸着される。
【0013】
本発明ではバナジウム除去用として混床に用いられるカチオン交換樹脂およびアニオン交換樹脂はカチオン交換樹脂がH形、アニオン交換樹脂がCl形で用いられる。このようなイオン形に整えるには混床を塩酸で再生することにより行われる。後段に純水製造装置等のイオン交換装置を設ける場合、そのカチオン交換樹脂の再生排液を通液して再生できるほか、混床の通水初期の酸を含む処理水によって再生することもできる。
【0014】
混床にバナジウムを含有する被処理水を通水すると、バナジウムがカチオン交換樹脂に交換吸着されるが、Na、Ca等の他のカチオンも交換吸着され、Hイオンが放出される。一方アニオン交換樹脂は塩形であるため、Cl、SO4等のアニオンは交換吸着されることなく流出する。従って混床の内部は酸性となり、バナジウムの交換吸着効率が高くなる。この酸性の処理水は後段のイオン交換装置のカチオン交換樹脂の再生剤として使用可能である。
【0015】
通水の条件は通常のイオン交換による処理と同様とすることができる。通水速度は被処理水のバナジウム濃度、水質処理目標値等により異なるが、一般的には5〜100 L/L−Resin/hr、好ましくは5〜30 L/L−Resin/hrとすることができる。通水の終了は処理水中にイオン等が漏出するのを検知して判断することができる。この場合、バナジウム含有水が天然水のようにバナジウムの他にナトリウム等の他のカチオンを含む場合は、最初にリークするカチオンがリークを始めた時点で終了する。またバナジウム含有水がバナジウムのみを含む場合はバナジウムがリークした時点で終了することができる。
【0016】
通水の継続によりバナジウムはイオン交換樹脂中に交換吸着されて樹脂に濃縮される。イオン等が漏出を始めた時点で通水を停止し、再生に移る。再生は前述のように塩酸を再生剤として通液し、その後押出、水洗等を行って再生を終了する。再生剤としては後段のイオン交換装置のカチオン交換樹脂の再生排液、あるいは混床の処理水も使用できる。再生により、カチオン交換樹脂に吸着されたバナジウムやその他のカチオンは溶離して、樹脂はH形に再生され、アニオン交換樹脂もCl形に再生されるので、通水再開によりイオン交換による交換吸着が行われる。
【0017】
本発明の混床によるバナジウム含有水の処理方法および装置は、簡単な構成と操作によりバナジウムを効率よく除去することができる。この場合H形のカチオン交換樹脂とCl形のアニオン交換樹脂を組合せることにより、pHを低くしてバナジウムの除去効率を高めることができるとともに、アニオン性の分解生成物を吸着除去できるから、装置および操作を簡単にし、しかもバナジウムおよび分解生成物の除去が効率化する。
【0018】
本発明の混床を用いるバナジウムの含有水の処理方法および装置はバナジウム含有水であれば、廃水処理にも用水処理にも適用することができるが、純水製造、超純水製造等のイオン交換装置を後段に設けてイオン交換を行う場合に、バナジウムを効率よく除去して、後段のイオン交換樹脂の劣化を防止し、イオン交換を効率よく行えるので好ましい。
【0019】
後段に設けるイオン交換装置はカチオン交換樹脂およびアニオン交換樹脂を用いるものであり、両者を用いる純水製造装置、超純水製造装置等が使用できる。このようなイオン交換装置では通常はバナジウム除去のための前処理は行われていないので、バナジウム含有水を被処理水として通水すると、樹脂が劣化し、処理性能が低下する。このような場合に前記の混床からなるバナジウム除去装置を前処理装置として設けると、簡単な構成と操作によりバナジウムが効率よく除去され、後段のイオン交換装置のイオン交換樹脂のバナジウムによる劣化防止をすることができ、イオン交換効率を高く維持することができる。この場合バナジウム除去用の混床はバナジウム除去のみを目的とすればよいので、使用済の廃樹脂を用いることができ、その再生も後段のカチオン交換樹脂の再生排液を用いて再生することができるので、大幅なコスト増を招くことなくイオン交換を効率化することができる。
【0020】
上記の後段にイオン交換装置を設ける場合の処理装置は、前段にH形の強酸性カチオン交換樹脂およびCl形の強塩基性アニオン交換樹脂の混床を配置し、後段にカチオン交換樹脂層およびアニオン交換樹脂層を含むイオン交換装置を配置する。後段のイオン交換装置は、通常純水製造装置、超純水製造装置などとして用いられているイオン交換装置が使用される。その構成および操作、再生方法などは公知のものが採用できる。使用するカチオン交換樹脂およびアニオン交換樹脂は新品が用いられる。再生剤は新しい酸、アルカリを用いることができるが、カチオン交換樹脂の再生剤は混床の初期の処理水を用いてもよい。またカチオン交換樹脂の再生排液を用いて混床を再生すると、効率のよい処理を行うことができる。
【0021】
【発明の効果】
本発明によれば、バナジウム含有水を前段で、H形の強酸性カチオン交換樹脂およびCl形の強塩基性アニオン交換樹脂の混床と接触させてバナジウムをカチオン交換樹脂に交換吸着させて除去するとともに、放出されるHイオンにより混床の内部を酸性にしてバナジウムの交換吸着効率を高くし、バナジウムの濃縮により流出する樹脂の分解生成物をアニオン交換樹脂に吸着させ、その処理水を後段のカチオン交換樹脂およびアニオン交換樹脂と接触させて残留イオンを除去して純水を製造するようにしたので、簡単な構成と操作によりバナジウムを効率的に除去することができるとともに、樹脂の分解生成物をも除去することができ、これにより後段のイオン交換樹脂の劣化を防止し、イオン交換活性を低下させることなく、効率よくイオン交換を行い純水を製造することができる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面により説明する。
図1は実施形態のバナジウム含有水処理装置を示すフロー図である。図1において、1はバナジウム除去塔であって、内部にH形の強酸性カチオン交換樹脂およびClの形強塩基性アニオン交換樹脂の混床2が充填されている。3はイオン交換装置(純水製造装置)であって、カチオン交換塔4およびアニオン交換塔5からなり、それぞれH形のカチオン交換樹脂層6およびOH形のアニオン交換樹脂層7が充填されている。バナジウム除去塔1に被処理水路L1が連絡し、バナジウム除去塔1、カチオン交換塔4間、ならびにカチオン交換塔4、アニオン交換塔5間に移送路L2、L3が連絡し、アニオン交換樹脂塔5に処理水路L4が連絡している。またカチオン交換塔4に再生剤路L5が連絡し、カチオン交換塔4、バナジウム除去塔1間に移送路L6、ならびにバナジウム除去塔1に再生排液路L7が連絡し、アニオン交換塔5に再生剤路L8および再生排液路L9が連絡している。
【0023】
上記の処理装置によるバナジウム含有水の処理方法は、被処理水路L1から被処理水としてのバナジウム含有水をバナジウム除去塔1に供給し、混床2を通過させることによりバナジウムを交換吸着させる。このとき塔内は酸性となるので、バナジウムの交換吸着効率は高くなる。バナジウムの濃縮により生成するアニオン性の樹脂の分解生成物は混床2を形成するアニオン交換樹脂に吸着される。バナジウム除去塔1の処理水は移送路L2からイオン交換装置3のカチオン交換塔4に入り、カチオン交換樹脂層6を通過することにより残留するカチオンが交換吸着して除去される。カチオン交換処理水は移送路L3からアニオン交換塔5に入り、アニオン交換樹脂層7を通過することによりアニオンが交換吸着され、処理水(純水)は処理水路L4から取り出される。
【0024】
上記の処理ではバナジウム除去塔1でバナジウムが除去されるので、カチオン交換樹脂層6においてバナジウムが吸着されることはなく、このためカチオン交換樹脂層6がバナジウムによる劣化を受けることはなく、カチオン交換能は高く維持される。またバナジウムの濃縮による分解生成物は混床2のアニオン交換樹脂に吸着されるため、アニオン交換樹脂層7に吸着されることはなく、このためアニオン交換樹脂層7のアニオン交換能は高く維持される。従って、イオン交換装置3のイオン交換能は高く維持され、効率のよいイオン交換を行うことができる。
【0025】
上記の装置では洗浄(逆洗)用の洗浄水または空気の導入用、その他の配管、ポンプ、弁類、脱気、脱炭酸装置等の付属設備が設けられているが、省略して図示されている。再生は再生剤路L5から再生剤(酸)をカチオン交換塔4に供給してカチオン交換樹脂層6を再生し、その再生排液を移送路L6からバナジウム除去塔1に供給して混床2を再生し、再生排液路L7から排出する。これによりカチオン交換樹脂層6はH形に再生され、混床2のカチオン交換樹脂層はH形、アニオン交換樹脂はCl形に再生される。アニオン交換塔5には再生剤路L8から再生剤(アルカリ)を供給し、アニオン交換樹脂層7をOH形に再生し、再生排液は再生排液路L9から排出する。逆洗、押出、洗浄等の操作は通常のイオン交換装置と同様である。
【0026】
【実施例】
以下、本発明を実施例および比較例により説明する。
【0027】
実施例1
(供試樹脂の調製)
強酸性カチオン交換樹脂(モノプラスS100バイエル社製、商標)60mlおよび強塩基性アニオン交換樹脂(レバチットM500バイエル社製、商標)120mlを混合し、180mlの混合樹脂をガラスカラム(28mmψ×500mmH)に充填した。次に強酸性カチオン交換樹脂に対し、5%HCl溶液500mlを(再生レベル約400g/l)、3L/L−Resin/hrの通液速度で再生し、カチオン交換樹脂をH形に、アニオン交換樹脂をCl形に整えた。
次に薬液(再生廃HCl液)押し出しおよび水洗し供試樹脂を調製した。
【0028】
(被処理水の調製)
硫酸酸化バナジウム(VOSO4・nH2O)約4.65gおよび塩化カルシウム(CaCl2・2H2O)約3.65gを純水20 literに溶解し、VイオンおよびCaイオンがそれぞれ50mg/lになるよう調製した。
(通水試験)
次に上記被処理水(V,Ca=50mg/l)を、7.6L/L−Resin/hrの通水速度で樹脂カラムに下向流で通水し、カチオン交換樹脂のV、Caの吸着性能およびCl形アニオン交換樹脂のポリスチレンスルホン酸(PSA)の吸着性能を処理水分析した。結果を表1に示す。なお処理水はpH2.4〜2.8であった。
【0029】
【表1】

Figure 0003963100
*1):PSA分析は、225nm吸光度値(10mmセル)。
【0030】
表1より、VイオンおよびCaイオンともに、強酸性カチオン交換樹脂に十分に吸着されるが、Vイオンの方が少し選択性が強かった。またカチオン交換樹脂が酸化され溶出してくるポリスチレンスルホン酸は、混合しているCl形アニオン交換樹脂に吸着され、処理水へのリークは僅かであった。
【0031】
比較例1:
実施例1において、強酸性カチオン交換樹脂のみを用いて同条件で試験を行ったところ、処理水中のCaイオンは0.1〜0.3mg/l、Vイオンは0.2〜0.6mg/l、通液倍数200以上のPSAは3.5〜6.5mg/l、TOCは1.5〜3.0mg/lとなった。
【図面の簡単な説明】
【図1】実施形態の処理方法を示すフロー図である。
【符号の説明】
1 バナジウム除去塔
2 混床
3 イオン交換装置
4 カチオン交換塔
5 アニオン交換塔
6 カチオン交換樹脂層
7 アニオン交換樹脂層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating vanadium-containing water that removes vanadium and other impurities from water to be treated containing vanadium, and more particularly to a method for treating vanadium-containing water that removes vanadium and other impurities using an ion exchange resin.
[0002]
[Prior art]
Vanadium is used as a catalyst, and is contained in ash such as coal and petroleum, as well as in certain natural waters. Vanadium-containing water contains various forms of vanadium depending on its origin. Vanadium forms various compounds depending on the valence of -I to + V, and each compound has one in which vanadium dissociates into a cation and one in which it dissociates into an anion. When vanadium is contained in an ionized or ionizable state like a soluble salt, vanadium can be removed by ion exchange.
[0003]
In the above vanadium-containing water, the vanadium compound contained therein dissociates into cations can remove vanadium by cation exchange. Some groundwater in volcanic ash sites contain vanadium compounds that dissociate into cations, and vanadium-containing water containing such vanadium compounds can be removed by exchanging and adsorbing vanadium dissociated into cations using a cation exchange resin. Is possible.
[0004]
When vanadium-containing water is treated with a cation exchange resin as described above, vanadium is concentrated in the resin by exchange adsorption. However, vanadium compounds are widely used as catalysts, and there are differences in activity depending on the valence of vanadium or the type of compound, but many vanadium compounds have catalytic activity. When vanadium having such catalytic activity is concentrated in the cation exchange resin, the cation exchange resin is oxidized by the catalytic action, and a relatively high molecular decomposition product containing the exchange group of the cation exchange resin ( For example, polystyrene sulfonic acid) flows out and deteriorates, and the cation exchange activity tends to decrease. Also, relatively high molecular degradation products such as polystyrene sulfonic acid that flow out deteriorate the quality of the treated water, and if there is an anion exchange resin in the subsequent stage, it becomes a burden and shortens the regeneration cycle of the anion exchange resin. There is.
[0005]
[Problems to be solved by the invention]
The problem of the present invention is that it is possible to efficiently remove vanadium with a simple configuration and operation, and also to remove a decomposition product of the resin, thereby preventing deterioration of the ion exchange resin in the subsequent stage, It is to propose a method and apparatus for treating vanadium-containing water that can perform ion exchange without reducing ion exchange activity.
[0006]
[Means for Solving the Problems]
The present invention is the following method and apparatus for treating vanadium-containing water.
(1) a vanadium-containing water in front, with is contacted with a mixed bed of H-shaped strongly acidic cation exchange resin and Cl form strongly basic anion exchange resin to remove vanadium is replaced adsorbed on a cation exchange resin to be released The inside of the mixed bed is made acidic with H ions to increase the exchange adsorption efficiency of vanadium, and the decomposition product of the resin flowing out by the concentration of vanadium is adsorbed to the anion exchange resin,
A method for treating vanadium-containing water, wherein pure water is produced by contacting the treated water with a subsequent cation exchange resin and anion exchange resin to remove residual ions .
(2) The method according to the above (1) , wherein the mixed bed at the former stage is regenerated with the regeneration drainage of the cation exchange resin at the latter stage.
(3) The method according to (1) or (2) above, wherein the cation exchange resin in the mixed bed or the latter stage is regenerated with treated water at the initial stage of the mixed bed.
(4) The method according to any one of (1) to (3) above, wherein the cation exchange resin and / or anion exchange resin constituting the mixed bed is a used resin.
(5) Contact with vanadium-containing water to remove vanadium by exchanging and adsorbing to the cation exchange resin, and acidifying the inside of the mixed bed with the released H ions to increase the vanadium exchange and adsorption efficiency. A mixed bed in the preceding stage in which the H-type strongly acidic cation exchange resin and the Cl -type strongly basic anion exchange resin are mixed so that the decomposition product of the resin flowing out by
Processor of vanadium-containing water and a subsequent cation exchange resin layer and A anion exchange resin layer to produce a the contacted with pure water to remove residual ions treated water mixed bed.
[0007]
The vanadium-containing water to be treated in the present invention is water containing vanadium in a cation-exchangeable state, including water containing vanadium as a cation or in a state dissociable into a cation, but dissociated into anions. Vanadium, a vanadium compound that can be dissociated into anions, a vanadium compound that is not ionized, or other impurities may be included. As the vanadium-containing water to be treated in the present invention, those containing 0.1 μg / L or more of vanadium dissociated into cations or vanadium dissociable into cations are suitable. Specific examples of the vanadium-containing water to be treated in the present invention include natural water, river water, in particular, groundwater, underground water, deep well water, etc. of volcanic ash.
[0008]
As described above, vanadium forms a compound having a valence of −I to + V, and among these, + II to + V is common. Oxidation numbers II and III produce salts mainly as cations, but oxidation numbers IV often combine with oxygen to form VO 2+ salts. At an oxidation number V, a salt of metavanadate ion VO 3 is formed together with a salt of VO 3+ or VO 2 + . V 2 O 5, which is widely used as a catalyst, is amphoteric and hardly soluble in water. When dissolved in an acid, VO 2 + is generated, and metavanadate ions are generated in an alkaline aqueous solution and dissociated into anions.
[0009]
Vanadium thus forms compounds of various valences. Natural water, especially groundwater, underground water, and deep well water in volcanic ash lands, often contains vanadium that dissociates into cations. In addition, wastewater discharged from a system using a vanadium catalyst includes those that dissociate into cations and those that dissociate into anions according to pH.
[0010]
In the present invention, vanadium-containing water is removed in the preceding stage by contacting with a mixed bed of H-type strongly acidic cation exchange resin and Cl -type strongly basic anion exchange resin to exchange and adsorb vanadium dissociated into cations on the cation exchange resin. To do. In this case, when the vanadium-containing water contains an anion in addition to the cation, the anion is exchanged and adsorbed on the anion exchange resin. The mixed bed is a layer in which an H-type strongly acidic cation exchange resin and a Cl-type strongly basic anion exchange resin are mixed, and the vanadium-containing water treatment apparatus of the present invention is an apparatus including such a mixed bed. In the following description, unless otherwise specified, the term “ion exchange” means “cation exchange and / or anion exchange”.
[0011]
As the cation exchange resin and anion exchange resin used in the mixed bed in the present invention, a granular or gel ion exchange resin generally used in water treatment can be used, but a used waste resin is used. It is preferable from the economical aspect. Such an ion exchange resin uses a copolymer of styrene and divinylbenzene as a base resin, a styrene having a cation exchange group is used as a cation exchange resin, and a styrene exchange resin having an anion exchange group as an anion exchange resin. .
[0012]
The cation exchange resin, Ru with a strong acid cation exchange resin with a sulfonic group as a cation-exchange group. Moreover the anion exchange resin, Ru with a strong base anion exchange resins with quaternary ammonium groups as anion-exchange groups.
When vanadium is adsorbed to such a cation exchange resin and anion exchange resin, vanadium is concentrated in the resin, so that a part of the resin is decomposed by its catalytic action, and a relatively high molecular decomposition product containing an exchange group Leaks. In the case of vanadium dissociated into cations, when adsorbed on the cation exchange resin, a relatively high-molecular anionic decomposition product such as polystyrene sulfonic acid flows out. The anionic decomposition product flowing out in this way is adsorbed on the anion exchange resin.
[0013]
In the present invention, the cation exchange resin and anion exchange resin used for mixed bed for removing vanadium are used in the H form for the cation exchange resin and in the Cl form for the anion exchange resin. To arrange for such ionic form is carried out by reproducing the mixed bed with hydrochloric acid. When an ion exchange device such as a pure water production device is provided in the subsequent stage, it can be regenerated by passing the regeneration drainage of the cation exchange resin, or it can be regenerated by treated water containing acid at the initial stage of water flow in the mixed bed. .
[0014]
When water to be treated containing vanadium is passed through the mixed bed, vanadium is exchange-adsorbed on the cation exchange resin, but other cations such as Na and Ca are also exchange-adsorbed and H ions are released. On the other hand, since the anion exchange resin is in a salt form, anions such as Cl and SO 4 flow out without being exchanged and adsorbed. Therefore, the inside of the mixed bed becomes acidic, and the exchange adsorption efficiency of vanadium is increased. This acidic treated water can be used as a regenerant for the cation exchange resin in the latter ion exchange apparatus.
[0015]
The conditions for water flow can be the same as those for treatment by ordinary ion exchange. The water flow rate varies depending on the vanadium concentration of the water to be treated, the target value for water quality treatment, etc., but generally 5-100 L / L-Resin / hr, preferably 5-30 L / L-Resin / hr. Can do. The end of water flow can be determined by detecting the leakage of ions or the like in the treated water. In this case, when the vanadium-containing water contains other cations such as sodium in addition to vanadium like natural water, the process is terminated when the first leaking cations start leaking. Moreover, when vanadium containing water contains only vanadium, it can complete | finish when vanadium leaks.
[0016]
As the water flow continues, vanadium is exchanged and adsorbed in the ion exchange resin and concentrated in the resin. When ions etc. start to leak, stop water flow and start regeneration. Play is liquid passing the hydrochloric acid as described above as a regenerant, then extruded, to end the playback then washed with water or the like. As the regenerant, it is also possible to use the regenerated drainage of the cation exchange resin in the subsequent ion exchange apparatus or the mixed bed treated water. By regeneration, vanadium and other cations adsorbed on the cation exchange resin elute, the resin is regenerated to H form, and the anion exchange resin is also regenerated to Cl form. Done.
[0017]
The method and apparatus for treating vanadium-containing water by the mixed bed of the present invention can efficiently remove vanadium with a simple configuration and operation. In this case, by combining the H-type cation exchange resin and the Cl-type anion exchange resin, the pH can be lowered to increase the vanadium removal efficiency, and the anionic decomposition product can be adsorbed and removed. And the operation is simplified and the removal of vanadium and decomposition products is efficient.
[0018]
The treatment method and apparatus for vanadium-containing water using the mixed bed of the present invention can be applied to both wastewater treatment and water treatment as long as it is vanadium-containing water. When ion exchange is performed by providing an exchange device in the subsequent stage, it is preferable because vanadium is efficiently removed, deterioration of the ion exchange resin in the subsequent stage is prevented, and ion exchange can be performed efficiently.
[0019]
Ion exchanger provided downstream are those using a cation exchange resin and A anion exchange resins, pure water production system using both, ultrapure water production system can be used. In such an ion exchange apparatus, pretreatment for removing vanadium is not usually performed. Therefore, when vanadium-containing water is passed as treated water, the resin is deteriorated and the treatment performance is lowered. In such a case, if the vanadium removal device comprising the mixed bed is provided as a pretreatment device, vanadium is efficiently removed by a simple configuration and operation, and the deterioration of the ion exchange resin of the subsequent ion exchange device is prevented by vanadium. The ion exchange efficiency can be maintained high. In this case, since the mixed bed for removing vanadium only needs to remove vanadium, the used waste resin can be used, and the regeneration thereof can also be regenerated using the regenerated effluent of the subsequent cation exchange resin. As a result, ion exchange can be made more efficient without causing a significant cost increase.
[0020]
When the ion exchange apparatus is provided in the subsequent stage, a mixed bed of H-type strongly acidic cation exchange resin and Cl-type strongly basic anion exchange resin is arranged in the previous stage, and the cation exchange resin layer and the latter in the latter stage. placing the ion exchange device including vias anion exchange resin layer. As the subsequent ion exchange apparatus, an ion exchange apparatus that is usually used as a pure water production apparatus, an ultrapure water production apparatus, or the like is used. Known configurations and operations, reproduction methods, and the like can be employed. New cation exchange resins and anion exchange resins are used. As the regenerant, a new acid or alkali can be used, but the regenerated agent of the cation exchange resin may be treated water in the initial stage of the mixed bed. Further, when the mixed bed is regenerated using the regeneration drainage of the cation exchange resin, an efficient treatment can be performed.
[0021]
【The invention's effect】
According to the present invention, the vanadium-containing water in front, is contacted with a mixed bed of H-shaped strongly acidic cation exchange resin and Cl form strong base anion exchange resin vanadium is replaced adsorbed on a cation exchange resin to remove it At the same time, the inside of the mixed bed is acidified by the released H ions to increase the exchange adsorption efficiency of vanadium, the decomposition product of the resin flowing out by the concentration of vanadium is adsorbed on the anion exchange resin, and the treated water is added to the latter stage. Since pure water is produced by contacting with cation exchange resin and anion exchange resin to remove residual ions, vanadium can be efficiently removed with a simple configuration and operation, and a decomposition product of the resin also it can be removed, thereby preventing deterioration of the subsequent ion exchange resins, without reducing the ion-exchange activity, efficiently Lee The on-exchange it is possible to produce a line have pure water.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Drawing 1 is a flow figure showing the vanadium content water treatment equipment of an embodiment. In FIG. 1, reference numeral 1 denotes a vanadium removal tower, which is filled with a mixed bed 2 of an H-form strongly acidic cation exchange resin and a Cl- form strongly basic anion exchange resin. 3 is an ion exchange device (pure water production device), which comprises a cation exchange column 4 and an anion exchange column 5, filled with an H-type cation exchange resin layer 6 and an OH-type anion exchange resin layer 7, respectively. . The treated water channel L1 communicates with the vanadium removal tower 1, the transfer channels L2 and L3 communicate with each other between the vanadium removal tower 1 and the cation exchange tower 4, and between the cation exchange tower 4 and the anion exchange tower 5, and the anion exchange resin tower 5 The treatment water channel L4 is in contact with. Further, the regenerant path L5 communicates with the cation exchange tower 4, the transfer path L6 communicates between the cation exchange tower 4 and the vanadium removal tower 1, and the regeneration drainage path L7 communicates with the vanadium removal tower 1 to regenerate to the anion exchange tower 5. The drug path L8 and the regeneration drainage path L9 communicate with each other.
[0023]
In the method for treating vanadium-containing water by the above-described treatment apparatus, vanadium-containing water as treated water is supplied to the vanadium removing tower 1 from the treated water channel L1 and passed through the mixed bed 2 to exchange and adsorb vanadium. At this time, since the inside of the column becomes acidic, the exchange adsorption efficiency of vanadium is increased. The decomposition product of the anionic resin produced by the concentration of vanadium is adsorbed by the anion exchange resin forming the mixed bed 2. The treated water in the vanadium removal tower 1 enters the cation exchange tower 4 of the ion exchange device 3 from the transfer path L2 and passes through the cation exchange resin layer 6 so that residual cations are exchanged and removed. The cation exchange treated water enters the anion exchange tower 5 from the transfer path L3 and passes through the anion exchange resin layer 7, whereby the anions are exchanged and adsorbed, and the treated water (pure water) is taken out from the treated water path L4.
[0024]
In the above treatment, vanadium is removed by the vanadium removal tower 1, so that vanadium is not adsorbed in the cation exchange resin layer 6, and therefore the cation exchange resin layer 6 is not deteriorated by vanadium. The performance is kept high. Further, the decomposition product of vanadium concentration is adsorbed on the anion exchange resin in the mixed bed 2 and therefore is not adsorbed on the anion exchange resin layer 7, so that the anion exchange capacity of the anion exchange resin layer 7 is maintained high. The Therefore, the ion exchange capacity of the ion exchange device 3 is maintained high, and efficient ion exchange can be performed.
[0025]
The above equipment is provided with auxiliary equipment such as washing water or air for washing (back washing), other piping, pumps, valves, deaeration and decarbonation equipment, etc. ing. Reproduction is supplied from the regenerant passage L5 to supply regenerant to (hydrochloric acid) to the cation exchange column 4 plays a cation exchange resin layer 6, the vanadium removal column 1 the reproduced drainage from the transfer passage L6 mixed bed 2 is regenerated and discharged from the regeneration drainage path L7. As a result, the cation exchange resin layer 6 is regenerated to H type, the cation exchange resin layer of the mixed bed 2 is regenerated to H type, and the anion exchange resin is regenerated to Cl type . A regenerant (alkali) is supplied to the anion exchange tower 5 from the regenerant path L8 to regenerate the anion exchange resin layer 7 into OH form, and the regenerated drainage is discharged from the regeneration drainage path L9. Operations such as backwashing, extrusion, and washing are the same as those of a normal ion exchange apparatus.
[0026]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples.
[0027]
Example 1
(Preparation of test resin)
60 ml of strongly acidic cation exchange resin (monoplus S100, manufactured by Bayer, trademark) and 120 ml of strongly basic anion exchange resin (trademark, manufactured by Levacit M500 Bayer) were mixed, and 180 ml of the mixed resin was placed in a glass column (28 mmφ × 500 mmH). Filled. Next, 500 ml of 5% HCl solution (regeneration level of about 400 g / l) is regenerated at a flow rate of 3 L / L-Resin / hr for the strongly acidic cation exchange resin, and the cation exchange resin is converted to H form to perform anion exchange. The resin was trimmed into Cl form.
Next, a test solution was prepared by extruding a chemical solution (recycled waste HCl solution) and washing with water.
[0028]
(Preparation of treated water)
About 4.65 g of vanadium sulfate oxide (VOSO 4 · nH 2 O) and about 3.65 g of calcium chloride (CaCl 2 · 2H 2 O) are dissolved in 20 liters of pure water, so that V ion and Ca ion are 50 mg / l respectively. It was prepared so that it might become.
(Water flow test)
Next, the water to be treated (V, Ca = 50 mg / l) was passed downward through the resin column at a water flow rate of 7.6 L / L-Resin / hr. The treated water was analyzed for the adsorption performance and the adsorption performance of the Cl-type anion exchange resin polystyrene sulfonic acid (PSA). The results are shown in Table 1. The treated water had a pH of 2.4 to 2.8.
[0029]
[Table 1]
Figure 0003963100
* 1): PSA analysis is 225 nm absorbance value (10 mm cell).
[0030]
From Table 1, although both V ions and Ca ions are sufficiently adsorbed by the strongly acidic cation exchange resin, the V ions are slightly more selective. In addition, polystyrene sulfonic acid that was oxidized and eluted from the cation exchange resin was adsorbed by the mixed Cl-type anion exchange resin, and there was little leakage to the treated water.
[0031]
Comparative Example 1:
In Example 1, when the test was conducted using only the strong acid cation exchange resin under the same conditions, the Ca ion in the treated water was 0.1 to 0.3 mg / l, and the V ion was 0.2 to 0.6 mg / l. l, PSA having a flow rate of 200 or more was 3.5 to 6.5 mg / l, and TOC was 1.5 to 3.0 mg / l.
[Brief description of the drawings]
FIG. 1 is a flowchart illustrating a processing method according to an embodiment.
[Explanation of symbols]
1 Vanadium removal tower 2 Mixed bed 3 Ion exchange device 4 Cation exchange tower 5 Anion exchange tower 6 Cation exchange resin layer 7 Anion exchange resin layer

Claims (5)

バナジウム含有水を前段で、H形強酸性カチオン交換樹脂およびCl強塩基性アニオン交換樹脂の混床と接触させてバナジウムをカチオン交換樹脂に交換吸着させて除去するとともに、放出されるHイオンにより混床の内部を酸性にしてバナジウムの交換吸着効率を高くし、バナジウムの濃縮により流出する樹脂の分解生成物をアニオン交換樹脂に吸着させ、
その処理水を後段のカチオン交換樹脂およびアニオン交換樹脂と接触させて残留イオンを除去して純水を製造する
バナジウム含有水の処理方法。
The vanadium-containing water in front, with is contacted with a mixed bed of H-shaped strongly acidic cation exchange resin and Cl form strongly basic anion exchange resin to remove vanadium is replaced adsorbed on a cation exchange resin, by the emitted H ions By making the inside of the mixed bed acidic, the exchange adsorption efficiency of vanadium is increased, and the decomposition product of the resin flowing out by the concentration of vanadium is adsorbed on the anion exchange resin,
A method for treating vanadium-containing water, wherein pure water is produced by contacting the treated water with a subsequent cation exchange resin and anion exchange resin to remove residual ions .
後段のカチオン交換樹脂の再生排液で前段の混床を再生する請求項記載の方法。The method according to claim 1 , wherein the mixed bed in the former stage is regenerated with a regeneration drainage of the latter stage cation exchange resin. 混床の初期の処理水により混床または後段のカチオン交換樹脂を再生する請求項またはに記載の方法。The method according to claim 1 or 2 , wherein the cation exchange resin in the mixed bed or the subsequent stage is regenerated with the treated water in the initial stage of the mixed bed. 混床を構成するカチオン交換樹脂および/またはアニオン交換樹脂が使用済樹脂である請求項1ないしのいずれかに記載の方法。The method according to any one of claims 1 to 3 , wherein the cation exchange resin and / or anion exchange resin constituting the mixed bed is a used resin. バナジウム含有水と接触させてバナジウムをカチオン交換樹脂に交換吸着させて除去するとともに、放出されるHイオンにより混床の内部を酸性にしてバナジウムの交換吸着効率を高くし、バナジウムの濃縮により流出する樹脂の分解生成物をアニオン交換樹脂に吸着させるように、H形強酸性カチオン交換樹脂およびCl強塩基性アニオン交換樹脂が混合された前段の混床と、
混床の処理水と接触させて残留イオンを除去して純水を製造する後段のカチオン交換樹脂層およびアニオン交換樹脂層と
を含むバナジウム含有水の処理装置。
Contact with vanadium-containing water to remove vanadium by exchanging and adsorbing to the cation exchange resin, making the inside of the mixed bed acidic by releasing H ions to increase the exchange adsorption efficiency of vanadium, and flowing out by concentration of vanadium. A pre- mixed bed in which a H-type strongly acidic cation exchange resin and a Cl -type strongly basic anion exchange resin are mixed so that the decomposition product of the resin is adsorbed on the anion exchange resin;
Processor of vanadium-containing water and a subsequent cation exchange resin layer and A anion exchange resin layer to produce a the contacted with pure water to remove residual ions treated water mixed bed.
JP2001391781A 2001-12-25 2001-12-25 Method and apparatus for treating vanadium-containing water Expired - Fee Related JP3963100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001391781A JP3963100B2 (en) 2001-12-25 2001-12-25 Method and apparatus for treating vanadium-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001391781A JP3963100B2 (en) 2001-12-25 2001-12-25 Method and apparatus for treating vanadium-containing water

Publications (2)

Publication Number Publication Date
JP2003190947A JP2003190947A (en) 2003-07-08
JP3963100B2 true JP3963100B2 (en) 2007-08-22

Family

ID=27599271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001391781A Expired - Fee Related JP3963100B2 (en) 2001-12-25 2001-12-25 Method and apparatus for treating vanadium-containing water

Country Status (1)

Country Link
JP (1) JP3963100B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4627028B2 (en) * 2005-10-04 2011-02-09 オルガノ株式会社 Bacteria propagation prevention method of waste water treatment equipment
JP5915683B2 (en) * 2014-03-28 2016-05-11 栗田工業株式会社 Method and apparatus for treating vanadium-containing water
CN111233090A (en) * 2020-03-16 2020-06-05 佛山市云米电器科技有限公司 One-way anion mixed exchange type water purification system and method and water purifier

Also Published As

Publication number Publication date
JP2003190947A (en) 2003-07-08

Similar Documents

Publication Publication Date Title
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
JP3963100B2 (en) Method and apparatus for treating vanadium-containing water
JPH10137751A (en) Ion exchange method and ion exchange column used for ion exchange method
JP3963101B2 (en) Vanadium-containing water ion exchange method and apparatus
JP3918383B2 (en) Pure water production apparatus and pure water production method
US3975267A (en) Liquid treating system
JP2891790B2 (en) Regeneration method of anion exchange resin
JPH0735242B2 (en) Crude hydrochloric acid purification method
JPH1099853A (en) Apparatus for treating water containing tetraalkylammonium hydroxide
JP2002205062A (en) Method for removing copper in salt water, method for regenerating copper adsorbing resin and apparatus for removing copper in salt water
US3655587A (en) Methods and devices for the regeneration of ion exchangers
JP5093292B2 (en) Method for treating vanadium-containing water
JP4721554B2 (en) Method for treating vanadium-containing water
JP2940651B2 (en) Pure water production equipment
JP4411669B2 (en) Regeneration method of cation exchange resin
JP2000153166A (en) Regeneration of mixed bed type ion exchange apparatus
JP2742975B2 (en) Regeneration method of ion exchange device
JP4294203B2 (en) Regeneration method of sugar liquid purification equipment
JP3951456B2 (en) Pure water production equipment
JP3570066B2 (en) Ion exchange equipment
JPH0568880A (en) Reproduction for ammonia removing zeolite
JP3417244B2 (en) Regeneration method of ion exchange resin
JP2941121B2 (en) Ultrapure water production equipment
JPH11221561A (en) Water purifying device
JPH10128128A (en) Method for separation and regeneration of ion exchange resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

R150 Certificate of patent or registration of utility model

Ref document number: 3963100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140601

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees